7% | M-Systems

mssssm [lash Disk Pioneers

Installation Manual
IM-DOC-022

Using DiskOnChip®with VxWorks

Written by: Esther Spanjer

SEP-2000

91-SR-005-38-7L REV. 1.3

7% M-Systems

mmmmmm Flash Disk Pioneers Using DiskOnChip with VxWorks

Limited Warranty

(@ M-Systemswarrants that the Licensed Software — prior to modification and adaptation by
L icensee — will conform to the documentation provided by M-Systems. M-Systems does not
warrant that the Licensed Software will meet the needs of the Licensee or of any particular customer
of Licensee, nor does it make any representations whatsoever about Licensed Software that has been
modified or adapted by Licensee.

(b) Subsection (@) above sets forth Licensee's sole and exclusive remedies with regard to the
Licensed Software.

M-SYSTEMS MAKES NO OTHER WARRANTIES, EXPRESS OR IMPLIED, WITH RESPECT
TO THE LICENSED SOFTWARE, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. THERE ARE NO
OTHER WARRANTIES WITH RESPECT TO THE LICENSED SOFTWARE ARISING FROM
ANY COURSE OF DEALING, USAGE, TRADE OR OTHERWISE.

IN NO EVENT SHALL M-SYSTEMSBE LIABLE TO LICENSEE FOR LOST PROFITS OR
OTHER INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES, WHETHER UNDER THIS
AGREEMENT, IN TORT OR OTHERWISE.

(c) Licensee shall not make any promise, representation, warranty or guaranty on behalf of M-
Systems with respect to the Licensed Software except as expressly set forth herein.

Note: The Licensed Software is not warranted to operate without failure. Accordingly, in any use of
the Licensed Software in life support systems or other applications where failure could cause injury
or loss of life, the Licensed Software should only be incorporated in systems designed with
appropriate and sufficient redundancy or back-up features.

91-SR-005-38-7L Rev. 1.3 2

7% M-Systems

mmmmmm Flash Disk Pioneers Using DiskOnChip with VxWorks
Contents
R | 41 o Yo [0 o [0 IR P PP PP PPPPPPPPP 5
Hardware Requirements for the DiSKONCRIPuiviiiiiiiiiiiiiiiiiiiiieeeeeeee e 6
Installing the TrueFFS Driver into VXWOIKScooiiiiiiiiii e 7
3.1 Preparing VXWOTKS ..o s 7
3.2 Contents of TrUEFFS Driver PaCKagecoooeiiiiiiiii e 7
3.3 Customizing the TIUEFFS DIIVETuuiiiiiii s 8
3.4 Creating a ‘device’ for the DISKONCHIPcoiiiiiiiiiiie e 10
3.5 Configuring ‘dOSFS’ File SYSIEMuvuuiiii i 11
4 Booting VxWorks from the DiskOnChip (on an x86 Platform).........ccccoeviiiiiiiiiiineeeeee, 12
o R = T T]] 1T = SRR 12
4.2 Requirements for Installation of the DiskONChip into VXWOIKS........cccooveeeviiiiiiiiiiiieeeeeceenns 13
4.3 Preparing the DiskONChip t0 bOOt VXWOIKScceviiiiiiiiiiiiiiiiieeeeeeee s 13
5 TrueFFS Driver Run-time Configuration OPLiONSuuuuuiiiiiiiiiiiiiiiiiiiiiiiiieiiieeiieeenne. 14
Y0 R [0 1 {0 o [V T 1T] o SOOI UPUOTR 14
5.2 8-Bit/32-Bit Access to the DISKONCHIPuiiiiiiiiiic e 14
5.3 ConfiguriNng RAM USBQEuuuuiiiiiiiiiiiiiii s 15
5.4 BUIlt-iN DIAGNOSTICS .. .ooiiiiiiiiii i e e et e e e e e e e e e e ettt e e e e e e e e e earbb e e aaaaeas 15
5.5 Yielding the CPU During Long Flash Operationcccccceeeeeaiiiiiieveeeeeee 15
6 Formatting the DiskOnChip Under VXWOTIKScooiiiiiiiiiiie et 16
7 Data Integrity on the DISKONCRIP ..o 17
8 Garbage CollECLION ... e et a e e e 17
9 IOCTL calls t0 the TrUEFFS ArVErciviiiiiiiiiiiiiiiiiiiiieieeeeeeeeeeee ettt eeeeneeneeneennennes 19
LS A 011 o o [o3 1T o R 19
T2 = I (o Yo 1 I] = w11 = 1RO 20
9.3 FL_IOCTL_DEFRAGMENTuituutituuuiuuintuunnnunnneunenenuenennnnnesssnnsnsnnsssssassssnnsssnssnnsnnnnnsnnssnnnnns 21
9.4 FL_IOCTL_WRITE_PROTECT ..oouiieieeee ettt en et es e en st enstennnsaeeenns 22
9.5 FL_IOCTL_BDK_OPERATIONuuuuuuuuuuuutuuuuuuuunuinenenunnnnennsensnnsnnsnnsssssnssnsnnsnssssnnsnnnnnsnnssnnnnes 24

9.6 FL_IOCTL_READ_SECTORS and FL_IOCTL_WRITE_SECTORS

91-SR-005-38-7L Rev. 1.3 3

7% M-Systems

mmmmmm Flash Disk Pioneers Using DiskOnChip with VxWorks
O T o 111V o T o o] o =1 o 29
Appendix I: Two Step Stand AlONE BOOTeiii e 29
Additional Information and TOOIS 41
o [0 TV (o T @0 T g ¥ = T 1 £ 42

91-SR-005-38-7L Rev. 1.3 4

7% M-Systems

mmmmmm Flash Disk Pioneers Using DiskOnChip with VxWorks

1 Introduction

M-Systems' DiskOnChip® isafamily of high performance flash disk. DiskOnChip provides aflash
disk in several standard form factors:

« DiskOnChip 2000 — Standard 32-pin DIP package, single chip flash disk.

« DiskOnChip Millennium — Standard 32-pin DIP package or standard TSOP-II 32-pin package
single die flash disk.

« DiskOnChip DIM M 2000 — Standard 144-pin Small Outline DIMM (Dual In-line Memory
Module) flash disk.

When used under VxWorks, the DiskOnChip is managed by TrueFFS” (True Flash File System), a
technology based device driver, attached to VxWorks dosFS file system. Most of VxWorks' disk
oriented calls (including all ANSI Cfile 1/O facilities) work correctly with the DiskOnChip.

Thisinstallation manual isintended for system integrators designing with the DiskOnChip 2000,
DiskOnChip Millennium or DiskOnChip DIMM 2000 and describes how the DiskOnChip can be
installed as an additional disk or as a boot device under VxWorks. In this manual, all of the devices
described above will be referred to as DiskOnChip.

A single TrueFFS driver is capable of supporting up to 4 DiskOnChip devices, possibly of different
types and capacities, in parallel. The driver isfully re-entrant and takes care of all issuesrelated to a
multitasking environment, thus freeing an application from this task.

It is assumed that the reader is familiar with the Operating System in use.

The hardware requirements of the DiskOnChip will be briefly discussed. The main part of this
installation manual is related to software installation. Thiswill include basic driver installation and
boot issues.

91-SR-005-38-7L Rev. 1.3 5

7% M-Systems

mmmmmm Flash Disk Pioneers Using DiskOnChip with VxWorks

2 Hardware Requirements for the DiskOnChip

Originally designed for PC environments, the DiskOnChip can aso be used in different hardware
environments. The minimum requirements are a 12-bit address bus, an 8-bit data bus, and three
active low control signals (#CE, #OE, #WR). Figure 1 below is a drawing of the DiskOnChip and its
pins. For more detailed information of the DiskOnChip hardware environment, refer to the following
Application Notes:

« AP-DOC-010 “Designing with the DiskOnChip DIP’
« AP-DOC-030 “Designing with the DiskOnChip Millennium in a RISC Environment”
« AP-DOC-031 “Designing with the DiskOnChip Millennium in a PC Environment”

[EnY

={\C 5V
3 NC (A16) 0 ©
NC (A15)
29 INC (A14) veel 32
28 {ne (A13) Jo1
SA12 21a12 GND
SA11 25 {a11 -
SA10 —231A10 '
SA9 23 A9
oo 5], DiskonChip |4
= DO SDO
SA6 —A6 D124 sp1
SA5 71°° D22 sp2
SA4 ——Ad D3| sp3
SA3 m A3 pa| 8 SD4
SA2 = A2 D52 sps
SAL ——AL D622 sps
SA0 A0 D7 SD7
Active Low Chip Enable 22 CE#
Active Low Output Enable 24 OE#
Active Low Write 31 WR#

Figure 1 DiskOnChip Pin-out

91-SR-005-38-7L Rev. 1.3 6

7% M-Systems

= Flash Disk Pioneers

Using DiskOnChip with VxWorks

3 Installing the TrueFFS Driver into VxWorks

3.1 Preparing VxWorks

Verify that the BSP library (Tornado/target/lib<CPU>gnuvx.a) or the BSP object directory
(Tornado/target/obj<CPU>gnuvx) contain the following object modules and if so, delete them:

tffsDrv.o nftllite.o
tffsLib.o flflash.o
dosform .o |nfdc2148.0
fatlite.o reedsol .o
fltl.o fl socket.o
fl base. o

Example:

To check the contents of the 'pc486' BSP library (1 i bl 80486gnuvx. a), use the following
command:

ar386 -tv |ibl80486gnuvx. a

Example:

To deletethemodulef | t 1. o fromthe BSPlibrary | i bl 80486gnuvx. a, usethefollowing
command:

ar386 -dv |ibl80486gnuvx.a fltl.o

Ensure that the BSP configuration .H file (Tornado/target/config/pc486/config.h in case of pc486
BSP) excludes the following VxWorks components:

#undef | NCLUDE_TFFS /* include TrueFFS driver for
#undef | NCLUDE_PCMCIA /* include PCMCI A driver */

FIl ash */

3.2 Contents of TrueFFS Driver Package

The distribution of the TrueFFS driver for VxWorks on x86 compatible platforms consists of the
following files:

MBYSVXW o x86 binary of the TrueFFS driver for VxWorks
fldrvvxw. h TrueFFSdriver's"include' file

flioctl.h Extended functionality "include” file

Readne Readmefile

91-SR-005-38-7L Rev. 1.3 7

7% M-Systems

mmmmmm Flash Disk Pioneers Using DiskOnChip with VxWorks

MSYSVXW o

The object module MSYSVXW o contains the x86 binaries of the TrueFFS driver for VxWorks. This
object module should be added to the application's linking process, either statically or dynamically.
One possible way to accomplish thisisto copy the file MSYSVXW o to the directory

Tornado/ target /| i b and then add it to the existing VxWorks/180486 object library as follows:

ar386 -cru |ibl80486gnuvx. a MSYSVXW o

fldrvvxw h

Include file for the TrueFFS driver that must be #i ncl uded by the application in order to access the
driver’s API. Furthermore, make sureit is on the compiler’ s INCLUDE path.

flioctl.h

Extended functionality "include” file. This file must be #included by the application in order to be
able to access the Extended functionality API.

3.3 Customizing the TrueFFS Driver

3.3.1 Setting the Address Range

The initialization routine of the TrueFFS driver scans the host address space for the DiskOnChip(s).
By default, the driver will ook for a single DiskOnChip in the address range 0xc8000. . 0xe0000.

In most x86 architecture scanning, the default address range will be sufficient, but in certain cases,
there might be a need to change it. Changing the area to be scanned can be accomplished by calling
theroutinet f f sSet up() .

Note: Theroutinet f f sSet up() must be called only once, before the call to theinitiaization routinet f f sDrv() .
Normally, thisis done fromusr Root .

Theroutinet f f sSet up() can be found in the header filef | dr vvxw. h and has the following
declaration:
extern void tffsSetup (int diskonchips, |ong *addressRange);

wheredi skonchi ps isthe number of DiskOnChip devicesinstalled in the system and
addr essRange isan array of address pairs that restricts the area of scanning.

Example 1:

For instance, if the platform allows an installation of up to three DiskOnChips, and the regionsto
search for the DiskOnChips are as follows:
[0xc8000 .. 0xd0000] 1st DiskOnChip

[0xdOO0O .. 0xd2000] 2nd DiskOnChip

91-SR-005-38-7L Rev. 1.3 8

7% M-Systems

mmmmmm Flash Disk Pioneers Using DiskOnChip with VxWorks

[0xd2000 .. 0xd4000] 3rd DiskOnChip

Then the following code fragment should be included in the application:
#i ncl ude "fl drvvxw h"
/* address ranges to search for the Di skOnChip */
|l ong tffsAddresses[] = {0xc8000, 0xd0000, /* 1st Di skOnChip */
0xd0000, 0xd2000, /* 2nd Di skOnChip */
0xd2000, 0xd4000}; /* 3rd Di skOnChip */

[* Configure the driver to detect up to three D skOnChips */
tffsSetup(3, tffsAddresses);

In some cases, when the DiskOnChip islocated at a known address, it isrequired to prevent the
TrueFFS driver from performing its scanning routine. In such cases both the upper and lower
boundary of the search range can be set to the exact DiskOnChip address.

Example 2:

If the DiskOnChip is aways installed at address 0xd000O0, then the application can instruct the
TrueFFS driver to look for the DiskOnChip at that particular address by executing the following code
fragments:

#i ncl ude "fl drvvxw h"

/* single address to | ook for a D skOnChip */
|l ong tffsAddresses[] = { 0xd0000, 0xd000O };

/* configure the driver to detect a single DiskOnChip */
tffsSetup(l, tffsAddresses);

91-SR-005-38-7L Rev. 1.3 9

7% M-Systems

mmmmmm Flash Disk Pioneers Using DiskOnChip with VxWorks

3.3.2 Configuring the TrueFFS Driver

The TrueFFS driver provides configuration options that are described in detail in Section 4 . Most
applications can use the default settings for these options.

If it isrequired to change some of the driver's configuration options, you should do so at this stage.
Example:

To enable the TrueFFS driver's built-in diagnostics (refer to Section 5.4), include the following code
fragment:

#i ncl ude "fl drvvxw h"

[* enable built-in diagnostics and allocate 4K B for logging diagnostics messages */
fl _useDebug = 4;

Note: All the driver's configuration options must be set to the desired values before calling the initialization routine
tffsDrv().Oncetheroutinet f f sDr v () hasbeen called, the configuration options must NOT be changed.

3.4 Creating a ‘device’ for the DiskOnChip

Before a*device' for each physical DiskOnChip installed in the system can be created, the TrueFFS
driver must beinitialized. Thisis done through acall to theroutinet f f sDrv() .

Note: Theroutinet f f sDrv() should be caled only once, after the call to routinet f f sSet up() . Normaly, thisis
done fromusr Root .

The next step isto create a‘device’ for each DiskOnChip, which is done by calling the routine
tffsDevCreate().Theroutinet f f sDevCr eat e() can befound in the header file
f 1 dr vvxw. h and has the following declaration:

extern BLK DEV* tffsDevCreate (int tffsDriveNo,
i nt renovabl eMedi aFl ag) ;

wheret f f sDri veNo isthe DiskOnChip sequential number (zero-based). The argument
r enovabl eMedi aFl ag must always be zero.

Theroutinet f f sDevCr eat e() routine returns a pointer of type (BLK_DEV *), which must be
saved by the application for later use.

Example 1:

If there is only one DiskOnChip in the system, the application should include the following code
fragment:

#i ncl ude "fl drvvxw h"
BLK DEV *tffs blk dev = tffsDevCreate (0, 0);

In a system containing three DiskONnChips, the code fragment is as follows:

91-SR-005-38-7L Rev. 1.3 10

7% M-Systems

mmmmmm Flash Disk Pioneers Using DiskOnChip with VxWorks

#i nclude "fldrvvxw h"

BLK DEV *tffs blk dev[3] = { NULL, NULL, NULL };

tffs _blk dev[O]=tffsDevCreate (0, 0); /*1st Di skOnChi p*/
tffs blk dev[1l]=tffsDevCreate (1, 0); /*2nd D skOnChi p*/
tffs blk dev[2]=tffsDevCreate (2, 0); /*3rd Di skOnChi p*/

Once the 'devices have been created for every DiskOnChip, they must be given names and associated
with the file system (dosFs). Thisis accomplished by calling the routinedosFsDevl ni t () (refer
to the VxWorks Reference Manual). The parameter that is passed to this routine is a pointer of type
(BLK_DEV *) that has been returned by the preceding call tot f f sDevCr eat e() .

Theroutinedosf sDevl ni t () returnsapointer of type (DOS_VOL_DESC *) which must be
saved by the application for later use.
Example 2:

If there is only one DiskOnChip in the system, the following code section namesit/t f f sO and
associates it with the dosFs file system:

#i ncl ude "fl drvvxw h"

DOS VOL_DESC *tffs _dosFs _vol =
dosFsDevinit ("/tffsO:", tffs_blk dev, NULL);

In a system containing three DiskONnChips, the code fragment is as follows:
#i ncl ude "fl drvvxw h"
DOS_VOL_DESC *tffs_dosFs_vol [3] = { NULL, NULL, NULL };
tffs_dosFs_vol [0] = dosFsDevinit("/tffsO:",tffs_blk dev[0], NULL);
tffs _dosFs _vol[1] = dosFsDevinit("/tffsl:", tffs _blk dev[1l], NULL);
tffs_dosFs_vol [2] = dosFsDevinit("/tffs2:",tffs_blk dev[2], NULL);

3.5 Configuring ‘dosFs’ File System

M-Systems guarantees that the low-level format of the DiskOnChip never becomes corrupted by
unexpected power shutdowns. Unfortunately, the default configuration of VxWorks dosFs file
system isaimed at providing high 1/0 performance by caching user datain RAM rather than
immediately writing it onto the disk.

If unexpected power shutdowns are likely, this datawill be lost. To minimize therisk, it is possible to
eliminate data caching by dosFS. This can be achieved by calling the routine
dosFsVol Opti onsSet () (refer tothe VxWorks Reference manual), as follows:

#i ncl ude "fl drvvxw h"

91-SR-005-38-7L Rev. 1.3 11

7% M-Systems

mmmmmm Flash Disk Pioneers Using DiskOnChip with VxWorks

dosFsVol Opti onsSet (tffs_dosFs_vol,
tffs_dosFs_vol - >dosvd_options | DOS_OPT_CHANGENOMRN) ;

wheret f f s_dosFs_vol isapointer returned by the routinedosFsDevinit ().
(Refer to Section 3.4).

More detailed information on unexpected power shutdowns can be found in Chapter 7.
Note: Disabling the file system cache reduces the 1/0 performance of the DiskOnChip.

4 Booting VxWorks from the DiskOnChip (on an x86 Platform)

4.1 Boot Options

There are three basic VxWorks boot options supported by the TrueFFS driver:
+ Network boot

+ One-step standal one boot

+ Two-step standalone boot

Networ k boot

The bootfile BOOTROM SYS that is located on the DiskOnChip acts as a secondary program |oader
and uses the network connection to download the VxWorks application from the remote host. This
scenario is usualy used during application devel opment/debugging stage.

One-step standalone boot

The bootfile BOOTROM SYS includes the application itself. This scenario is used for relatively small
applications that fit entirely into the first 640K B of RAM.

Two-step standalone boot

The bootfile BOOTROM SYS acts as a secondary program loader and |oads the application from the
DiskOnChip. This scenario is used with large VxWorks applications where a one-step boot cannot be
used because of the application's size.

The DiskOnChip supports both the network boot and the one-step boot and there is no need to make
any changes to the VxWorks boot code.

The two-step boot requires some minimal changes to the following VxWorksfiles:

+ BSPconfiguration .H file (i.e. Tor nado/ t ar get / confi g/ pc486/ confi g. h in case of
pc486 BSP)

« Tornado/target/config/all/bootConfig.c
« Tornado/target/config/all/usrConfig.c

91-SR-005-38-7L Rev. 1.3 12

7% M-Systems

mmmmmm Flash Disk Pioneers Using DiskOnChip with VxWorks

The procedures outlined in Sections 4.2—4.3 are common to all three-boot scenarios. When using the
two-step boot, follow the extra procedures outlined in Appendix 1.

Note: The procedures described in Sections 4.2—4.3 are typically done only once, on the very first DiskOnChip you use.
Once you have successfully gone through one of these procedures, it is possible to copy the binary image of the
DiskOnChip to other DiskOnChips (i.e. cloning the first DiskOnChip)®.

4.2 Requirements for Installation of the DiskOnChip into VxWorks

In order to prepare the DiskOnChip to boot VxWorks, the following software tools are required:

+ DiskOnChip DOS utilities diskette. The utilities can also be found on M-Systems' website:
WWW.M-Sys.com.

+ DiskOnChip firmware file DOC121. EXB file (where'121' is the firmware version. Any firmware
version higher than '121" will do). Thisfile can be found on the DOS utilities diskette or can be
downloaded from the M-Systems website.

+ Standard VxWorks VXSYS utility.
« VxWorks bootfile BOOTROM SYS.
+ DOS-bootable floppy.

4.3 Preparing the DiskOnChip to boot VxWorks

If you wish to boot VxWorks from the DiskOnChip either using the network boot, the one-step
standal one or two-step standal one boot option, follow the steps as described below.

1. Boot DOS on the target board from a DOS diskette.
2. Reformat the DiskOnChip by running the DOS utility DFORMAT.EXE as shown below:
DFORVAT /W N={address} /S={firmvare} /FIRST /Y

3. where{ addr ess} isthe base address of the DiskOnChip (i.e. D000, D400 and so on), and
{firmnare} istheDiskOnChip firmwarefile (DOC110. EXB, DOC121. EXB, and so on).

4. Reboot the target system from the DOS diskette and check that the driver letter C: was assigned
to the DiskONnChip:

dir C
5. At the DOS prompt, run WindRiver's VXSYS utility to write the VxWorks bootstrap code onto
the DiskOnChip:
VXSYS C.

! Another solution to copy the binary image of the DiskOnChip to various target DiskOnChip is through the usage of the
GANG programmer. For further details refer to “DiskOnChip GANG programmer User Manual” or contact M-Systems.

91-SR-005-38-7L Rev. 1.3 13

7% M-Systems

mmmmmm Flash Disk Pioneers Using DiskOnChip with VxWorks

6. Copy thefile BOOTROM SYS to the root directory of the DiskOnChip.

At this point, the DiskOnChip is ready to boot VxWorks. If you wish to follow the two-step
standalone boot scenario, refer to Appendix A.

5 TrueFFS Driver Run-time Configuration Options

5.1 Introduction

The TrueFFS driver provides a number of run-time configuration options. The default settings of
these options are adequate for most applications. However, in some situations it may be required to
change these settings. All the driver’s configuration options are described in detail in Sections 5.2 to
5.5.

Note: All the configuration variables must be set to the desired values before the initialization routinet f f sDrv() is
called. The value of the configuration variables must NOT be changed after the call tot f f sDrv() .

5.2 8-Bit/32-Bit Access to the DiskOnChip

By default, the TrueFFS driver accesses the DiskOnChip in 32-bit mode. Most platforms are capable
of breaking down a single 32-bit cycle into correct sequences of 8-bit access cyclesto the
DiskOnChip. However, there are some platforms that don’t support this mode and accessing the
DiskOnChip in 8-bit mode is required.

To configure the TrueFFS driver to access the DiskOnChip in 8-bit mode, set the configuration
variablef | Use8bi t to'1l" in your application:

extern unsigned char fl Use8bit;
/* Access the DiskOnChip in 8-bit node */
flUse8bit = 1;

Note: The DiskOnChip I/O performance decreases by 10-20% (depending on the platform) when the TrueFFS driver is
configured to run in 8-bit mode.

91-SR-005-38-7L Rev. 1.3 14

7% M-Systems

mmmmmm Flash Disk Pioneers Using DiskOnChip with VxWorks

5.3 Configuring RAM Usage

By default, the TrueFFS driver is configured to store the internal mapping and trandlation tables in
RAM, alowing fast 1/0 performance to the DiskOnChip.

However, for high capacity DiskOnChip’s, the amount of RAM taken by these tables can be
significant. To minimize RAM usage, set the configuration variable
f1 UseNFTLCache_useSCache to zero:

extern unsigned char fl UseNFTLCache;
/* Mnimze RAM usage */

fl UseNFTLCache = O;

0;

Note: The configuration variable f | UseNFTLCache is not related to the issue of unexpected power shutdowns. The
settings of thisvariableis purely a matter of 1/0 performance vs. RAM usage.

5.4 Built-in Diagnostics

The TrueFFS driver provides built-in diagnostics, alowing messagesissued at critical points of the
DiskOnChip operation to be logged into an internal buffer.

By default, the diagnostics feature is disabled, but can be enabled by setting the configuration
variablef | _useDebug to any non-zero value, asfollows:

extern int fl_useDebug;
/* Enable built-in diagnostics */
fl _useDebug = 4;

The size of the dlocated buffer (in KBytes) is equal to the numerical value of thef | _useDebug
variable (in the example above, the buffer size will be 4KB).

The diagnostics buffer will contain C-style zero-terminated strings that can either be viewed (using
the debugger) or printed on the console at any time.

A pointer to the start of the diagnostics buffer is returned by theroutinet f f sVi ewDebugLog()
(seefl drvvxw. h).

Note: In most cases, avalue of 2 for the variablef | _useDebug (thus allocating 2KB for the diagnostic buffer) will
suffice.

5.5 Yielding the CPU During Long Flash Operation

Inherent to flash technology is the need to erase the flash media before new dataiswritten to it. The
erase operation is done “on-the-fly” whenever available media becomes scarce, taking typically

91-SR-005-38-7L Rev. 1.3 15

7% M-Systems

mmmmmm Flash Disk Pioneers Using DiskOnChip with VxWorks

around 4 milliseconds to complete. During an erase operation, by default the TrueFFS driver pollsthe
DiskOnChip, waiting for the erase operation to complete.

Alternatively, the TrueFFS driver can suspend itself during the erase operation, allowing other tasks
to use the CPU’ sresources. To instruct the TrueFFS driver to aways release the CPU right after
starting the erase operation, set the configuration variable f | Del ay to non-zero value:

extern unsigned char fl Del ay;
fl Del ay = (unsigned char) 1,

Note: Suspending the TrueFFS driver for a certain amount of clock ticks can affect the write performance of the
DiskOnChip. This may occur when the TrueFFS driver is not given the CPU right after the specified number of clock
ticks, but rather be put at the end of the queue of tasks that are waiting for the CPU resource, the write performance is
reduced.

Furthermore, the duration of a clock tick in VxWorks (usually 10 msec, or 2.5 times longer than the
erase operation) provides poor granularity for suspending the TrueFFS driver.

6 Formatting the DiskOnChip Under VxWorks

It is possible to format the DiskOnChip under VxWorks, instead of using the standard DiskOnChip
DOS utilities DFORMVAT. EXE.

In order to format the DiskOnChip under VxWorkstheroutinet f f sDevFor mat () iscaled. The
routinet f f sDevFor mat () can be found in the header filef | dr vvxw. h and has the following
declaration:

extern STATUS tffsDevFormat (int tffsDriveNo, int arg);

wheret f f sDri veNo isthe DiskOnChip sequential number (zero-based) and ar g is a pointer (type
castedtoi nt)tothestruct tffsDevFor mat Par ans, containing the parameters of the format
call.

Note: A brief description of thefieldsinthest ruct t f f sDevFor nat Par anms can be found in the header
filef | dr vvxw. h.

In most cases, thest ruct tffsDevFor mat Par ans can beinitialized using the #def i ne
TFFS_STD_FORVAT _PARAMS(seef | dr vvxw. h) asshown below:
struct tffsDevFormat Parans format _parans = TFFS_STD FORVAT PARAMS;

Example:

If there are three DiskOnChips present in the system, the application can format each DiskOnChip
separately. The following code sample formats the first and third DiskOnChip available in the
system:

#i ncl ude "fl drvvxw. h"
/* use standard format paranmeters */

91-SR-005-38-7L Rev. 1.3 16

7% M-Systems

mmmmmm Flash Disk Pioneers Using DiskOnChip with VxWorks

struct tffsDevFormatParans format_parans = TFFS_STD FORVAT_ PARANS;

[* format the first D skOnChip */
tffsDevFormat (0O, (int) (& ormat_parans));

[* skip the second D skOnChip */
[* tffsDevFormat (1, (int) (& ormat_parans)); */

[* format the third D skOnChip */
tffsDevFormat (2, (int) (& ormat_parans));

7 Data Integrity on the DiskOnChip

The data structures on the DiskOnChip can be divided into low-level data structures and file system
data structures. The low-level data structures are M-Systems' proprietary flash-specific data
structures that are maintained by the TrueFFS driver. The file system data structures are maintained
by VxWorks dosFs filesystem and basically consist of the FAT, root directory, and so on.

The flash management algorithms that are used inside the TrueFFS driver have been carefully
designed to keep the low-level format consistent at any given moment of time and guarantee the
integrity of the low-level data structures, even after a power failure or an unexpected system
shutdown.

Dataintegrity on the file system level is the responsibility of the OS and not the TrueFFS driver. By
default, VxWorks dosFs file system does not immediately write data onto the storage device (i.e.
DiskOnChip), but instead caches datain RAM. While this increases the 1/O performance of the
system, it also becomes more vulnerable to corruption in cases of power failure or unexpected system
shutdown.

It is possible to prevent dosFs from caching the datain RAM by using the option
DOS_OPT_CHANGENOWARN (refer to Section 3.5).

Unfortunately, the risk of data corruption at file system level due to power failures or an unexpected
system shutdown cannot be reduced to zero. Repair of corrupted data structures on file system level,
such as broken FAT chains or corrupted directory entries, can be done by tools similar to CHKDSK in
DOS. Please contact WindRiver Systems regarding the availability of similar tools for VxWorks.

8 Garbage Collection

Inherent to flash technology is the need to erase flash media before new datais written to it. The
process of erasing previously used blocks of flash is known as "garbage collection”.

The TrueFFS driver automatically performs a*“garbage collection” whenever there is not enough free
space on the media available to complete the write operation. Thisimplies that at random times the
write operation is delayed due to “ garbage collection” that needs to be performed. The result is that
the time it takes to write a certain amount of data varies.

91-SR-005-38-7L Rev. 1.3 17

7% M-Systems

mmmmmm Flash Disk Pioneers Using DiskOnChip with VxWorks

For most applicationsit is of minor concern that the length of awrite operation varies. However,
there are certain applications that have specia requirements regarding the write operation’ stiming. In
these cases, it is possible to provide a separate “ garbage collection” task that runs at arelatively low
priority, when the systemisidle.

The sole purpose of thistask isto perform a"garbage collection™ on the DiskOnChip and guarantee
that there will be enough "free" media available for the next write operation.

Theroutinet f f sRecycl e() that provides the "garbage collection™ task can be found in the header
filef | dr vvxw. h and hasthe following declaration:

extern STATUS tffsRecycle (int vol No, int node);

wherevol No isthe DiskOnChip sequential number (zero-based) and 'mode' is the mode of recycling
(Ofor single, quick “garbage collection” action and 1 for long, full "recycling” of al "dirty" flash
memory regions)..

Note: The second parameter of theroutinet f ssRecycl e has been changed from the "number of flash KBytesto
recycle" to the "mode of recycling” (0 or 1) from version 4.2.

Example:

If there is only one DiskOnChip in the system, then the "garbage collection” task can be
implemented:

#include "fldrvvxw. h"
voi d gar bageCol | ecti onTask(voi d)
{
while (1) {
/* quick "recycle" action on the first D skOnChip */
if (tffsRecycle(0, 0) !'= OK)
br eak;
/* sleep for a while (5 ticks) */
t askDel ay(5);
}

}

The priority of the "garbage collection” task should be slightly lower than the priorities of all the
tasks that write/read data to/from the DiskOnChip. At the same time, it shouldn’t be too low as it
could effectively block the access to the DiskOnChip for along timeif it is pre-empted by other tasks
while running.

Note: The "garbage collection" task should be started after the application has called all the routines mentioned in
Section 3.

91-SR-005-38-7L Rev. 1.3 18

7% M-Systems

mmmmmm Flash Disk Pioneers Using DiskOnChip with VxWorks

Note: The TrueFFS driver performs all the necessary synchronization between multiple tasks that access the DiskOnChip
concurrently. This means that there is no need for the application to synchronize the "garbage collection” task with all the
other tasks that access the DiskOnChip.

9 IOCTL calls to the TrueFFS driver

9.1 Introduction

Version 4.1 of the TrueFFS driver for VxWorks alows the user to implement the following new
features of the DiskOnChip software:

+ Obtain information on DiskOnChip

+ Software write protection

» Run "garbage collection" in the background

« Access the Binary Partition?, allowing the user to boot VxWorks on BIOS-less systems
+ Bypassthefile system and access the DiskOnChip at virtual sector level

These new features are accessible through standard VxWorks IOCTL calls to the TrueFFS driver®
(provided by the API giveninthefilef | i oct | . h). Thefollowing IOCTL calls are supported:

IOCTL call Usage
FL_I OCTL_CGET_I NFO Obtain information on DiskONChip
FL_I OCTL_DEFRAGVENT Background “ garbage collection”

FL_I OCTL_WRI TE_PROTECT Software write protection of the DiskOnChip

FL_I OCTL_BDK_OPERATI ON Accessing Binary Partition of DiskOnChip

Read virtual sectors from DiskOnChip
FL_I OCTL_READ SECTORS

Write virtual sectorsto DiskOnChip

FL_| OCTL_WRI TE_SECTORS

Note: All the data structuresin thefilef | i oct | . h are assumed to be packed, i.e. all the members of these data
structures are NOT aligned in any way. For instance, the function si zeof (f | Di skl nf oQut put) should return 55.

Sections 9.2 to 9.6 provide sample codes on how an application can issue IOCTL callsto the
TrueFFS driver.

2 For more information on accessing the Binary Partition on the DiskOnChip, refer to Application Note AP-DOC-020 “Boot Developers Kit”.

8 For more information on IOCTL calls, refer to Application Note AP-DOC-046 “ Extended functions of TrueFFS driver for DiskOnChip”.

91-SR-005-38-7L Rev. 1.3 19

7% M-Systems

mmmmmm Flash Disk Pioneers Using DiskOnChip with VxWorks

9.2 FL_IOCTL_GET_INFO
The following code sample shows how to obtain general information on the DiskOnChip's flash
array:

#i ncl ude <ioLi b. h>

#i ncl ude <dosFsLi b. h>

#i ncl ude <stdlib. h>

#i ncl ude <stdi o. h>

#i ncl ude <errno. h>

#i ncl ude "fldrvvxw h"

#i nclude "flioctl.h"

f1 D skl nf oQut put out ;

i nt fd;

i nt st at us;

/* open the Di skOnChip raw device (assumng it is "/dev/tffs0") */
fd = open ("/dev/tffs0", O RDWR O0);
if (fd == ERROR) {
printf ("Ox% error in open()\n", (int) errno);
return;
}
/* issue IOCTL call to the driver */
status = ioctl (fd, FL_IOCCTL_GET_INFO (int) &out);
if (status == ERROR) {
printf ("Ox% error in ioctl()\n", (int) errno);
}
(void) close (fd);
/* check out the out.status */
printf ("status Ox%\n", (int) out.status);
/* reply data is in out.info */

91-SR-005-38-7L Rev. 1.3 20

7% M-Systems

mmmmmm Flash Disk Pioneers Using DiskOnChip with VxWorks

9.3 FL_IOCTL_DEFRAGMENT

The following code sample describes how to perform a short cycle of the "garbage collection”
process on the DiskOnChip:

#i ncl ude <ioLi b. h>

#i ncl ude <dosFsLi b. h>
#i ncl ude <stdlib. h>
#i ncl ude <stdi o. h>

#i ncl ude <errno. h>

#i ncl ude "fldrvvxw h"
#include "flioctl.h"

t ypedef union {
f1 Def ragl nput in;
f 1 Def ragQut put out;
} fl DefragReq;

fl DefragReq 1ioctl _req;
i nt fd,
i nt st at us;

/* request mniml garbage collection */
ioctl _reqg.in.requiredNoCf Sectors = (long) -1

/* open the D skOnChip raw device (assumng it is "/dev/tffs0") */
fd = open ("/dev/tffs0", O RDWR O0);
if (fd == ERROR) {

printf ("Ox% error in open()\n", (int) errno);

return;

/* issue IOCTL call to the driver */

91-SR-005-38-7L Rev. 1.3 21

7% M-Systems

mmmmmm Flash Disk Pioneers Using DiskOnChip with VxWorks

status = ioctl (fd, FL_IOCTL_DEFRAGVENT, (int) & octl _req);
i f (status == ERROR) {
printf ("Ox% error in ioctl()\n", (int) errno);

(void) close (fd);

/* check out the ioctl _reqg.out.status */
printf ("status Ox%\n", (int) ioctl_req.out.status);

/* reply data is in ioctl_req.out.actual NoOf Sectors */

Note: The TrueFFS driver also providestheroutinet f f sRecycl e() , which can be used instead of the
FL_IOCTL_DEFRAGMENT IOCTL call. Refer to Section 8 for further details.

9.4 FL_IOCTL_WRITE_PROTECT
The code sample below describes how to software write protect on the DiskOnChip.

Note: Before executing the code fragment below, ensure that the DiskOnChip has been unmounted by a call to the routine
dosFsVol Unmount (1) . When write-protecting the DiskOnChip, please be aware of the fact that ALL the attemptsto
write data onto the DiskOnChip will be rejected, including the write requests which are generated by the filesystem
internally for it's own purposes.

#i ncl ude <ioLi b. h>

#i ncl ude <dosFsLi b. h>
#i ncl ude <stdlib. h>
#i ncl ude <stdi o. h>

#i ncl ude <errno. h>

#i nclude "fl drvvxw. h"
#include "flioctl.h"

t ypedef union {
flWiteProtectlnput in;
fl Qut put St at usRecord out;

} flWiteProtectReq;

91-SR-005-38-7L Rev. 1.3 22

7% M-Systems

mmmmmm Flash Disk Pioneers Using DiskOnChip with VxWorks

flWiteProtectReq ioctl_req;
i nt fd;
i nt st at us;

/* specify type of operation */
ioctl _reqg.in.type = (unsigned char) FL_UNPROTECT;

/* replace the password bel ow with your own */
0x11223344;
0x55667788;

ioctl _req.in.password[O0]

ioctl _req.in.password[1]

/* open the Di skOnChip raw device (assumng it is "/dev/tffs0") */
fd = open ("/dev/tffs0", O RDWR, O0);
if (fd == ERROR) {

printf ("Ox% error in open()\n", (int) errno);

return;

/* issue IOCTL call to the driver */
status = ioctl (fd, FL_IOCTL_WRI TE PROTECT, (int) & octl _req);
if (status == ERROR) {

printf ("Ox% error inioctl()\n", (int) errno);

(void) close (fd);

/* check out the ioctl_reqg.out.status */
printf ("status Ox%\n", (int) ioctl _req.out.status);

91-SR-005-38-7L Rev. 1.3 23

7% M-Systems

mmmmmm Flash Disk Pioneers Using DiskOnChip with VxWorks

9.5 FL_IOCTL_BDK_ OPERATION
The code sample below shows how to access the Binary (BDK) Partition on the DiskOnChip.

Note: For further details on the Binary Partition of the DiskOnChip and its usage, refer to Application Note AP-DOC-020
“Boot Developers Kit”.

#i ncl ude <ioLi b. h>

#i ncl ude <dosFsLi b. h>
#i ncl ude <stdlib. h>
#i ncl ude <stdi o. h>

#i ncl ude <errno. h>

#i ncl ude "fl drvvxw. h"
#include "flioctl.h"

t ypedef union {
f | BDKOper at i onl nput in;
f1 Qut put St at usRecord out;
} fl BDKOper ati onReq;

f| BDKOper ati onReq ioctl _req;

i nt fd;
i nt st at us;
unsi gned char buf [512];

/* buffer to read BDK data to/wite from */

swi tch (bdkOperation) {
case BDK WRI TE
ioctl _reqg.in.type
ioctl _reqg.in.bdkStruct. bdkBuffer
ioctl _reqg.in.bdkStruct.|ength
/* place your BDK data to buf[] */
br eak;
case BDK_READ:.

(unsi gned char) BDK WRI TE;
buf ;
si zeof (buf);

91-SR-005-38-7L Rev. 1.3 24

7% M-Systems

mmmmmm Flash Disk Pioneers Using DiskOnChip with VxWorks

ioctl _reqg.in.type
ioctl_req.in.bdkStruct. bdkBuffer
ioctl _reqg.in.bdkStruct.length

br eak;

defaul t: /* add ot her BDK operations here */

return;

}

(unsi gned char) BDK_READ;
buf ;
si zeof (buf);

/* open the Di skOnChip raw device (assuming it is "/dev/tffs0") */
fd = open ("/dev/tffs0", O RDWR 0);
if (fd == ERROR) {

printf ("Ox% error in open()\n", (int) errno);

return,

/* issue IOCTL call to the driver */
status = ioctl (fd, FL_IOCTL_BDK OPERATION, (int) & octl _req);
if (status == ERROR) {

printf ("Ox% error in ioctl()\n", (int) errno);

(void) close (fd);

/* check out the ioctl _reqg.out.status.status */
printf ("status Ox%\n", (int) ioctl_req.out.status);

i f (bdkOperation == BDK_READ) {
/* the returned BDK data is in buf[] */
}

91-SR-005-38-7L Rev. 1.3 25

7% M-Systems

= Flash Disk Pioneers

Using DiskOnChip with VxWorks

9.6 FL_IOCTL_READ_SECTORS and FL_IOCTL_WRITE_SECTORS

The code sample below demonstrates how to read virtual sectors from a source DiskOnChip and then

write these virtual sectorsto atarget DisknChip.

<i oLi b. h>
<dosFsLi b. h>
<stdlib. h>
<stdi o. h>

#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude

#i ncl ude <errno. h>

#i ncl ude
#i ncl ude

"fldrvvxw h"
"flioctl.h"

#defi ne FL_SECT_SIZE 512

t ypedef wunion {

fl ReadWi t el nput
fl ReadW i t eQut put

} fl ReadWit eReq;

/*

Assum ng :

*f r onVol Nane
*t oVol Nane

char
char
*

I nt

| ong

f1 Di skl nf oQut put
fl ReadWi t eReq
char

in;
out ;

is the nane of the source TrueFFS vol une

is the nane of the target TrueFFS vol une

fdil, fdz;

sectorsl, sectors2, iSect, hiddenSectors;
out ;

rwkeq;

buf [FL_SECT_SI ZE]; /* sector buffer */

91-SR-005-38-7L Rev. 1.3

26

7% M-Systems

mmmmmm Flash Disk Pioneers Using DiskOnChip with VxWorks

/* get the nunber of sectors on the source and target TrueFFS

vol unmes. Abort is target is snmaller then the source

*/

fdl = open (fronVol Nane, O RDONLY, 0);

if (fdl == ERROR)
return;, /* error */

if (ioctl (fdl, FL_IOCTL_GET_INFQ, (int) &out) == ERROR)
return;, /* error */

sectorsl (long) out.info.logical Sectors;

(long) out.info.sectors;

hi ddenSect or s

fd2 = open (toVol Nane, O RDWR, O0);

if (fd2 == ERROR)
return; [/* error */

if (ioctl (fd2, FL_IOCTL_GET_INFQ, (int) &out) == ERROR)
return; [/* error */

sectors2 = (long) out.info.l ogical Sectors;

if (sectorsl > sectors2)
return; /* error */

/| * Copy source TrueFFs volune to the target. Sector ## are zero-
based. */

for (iSect = 0; iSect < sectorsl; i Sect++) {
/* read the sector fromthe source vol une */
rwReq. in.firstSector

i Sect - hiddenSectors;

rwRkeq. i n. nunber & Sectors = (long) 1,
rwReq. i n. buf = buf;
if (ioctl (fdl, FL_IOCTL_READ SECTORS, (int) & wReq) == ERROR)

return;, /* error */

i f((rwReg. out. nunberOf Sectors !'= 1)|| (rwReq. out.status!= fl OK))
return;, /* error */

/* wite the sector to the target volune */

91-SR-005-38-7L Rev. 1.3 27

7% M-Systems

mmmmmm Flash Disk Pioneers Using DiskOnChip with VxWorks

rwReq.in.first Sector i Sect - hiddenSectors;

rwReq. i n. nunber Of Sect ors (long) 1,
rwReq. i n. buf = buf;
if (ioctl (fd2, FL_ICOCTL_WRI TE_SECTORS, (int) & wReq) == ERROR)
return; [/* error */
i f((rwReq. out. nunberO Sectors !'= 1)]|| (rwReq. out. status!=fl OK))
return; /* error */
}
(void) close (fdl);
(void) close (fd2);

Note: The lOCTL calsFL_| OCTL_READ SECTORS and FL_| OCTL_WRI TE_SECTORS use an atypical sector
numbering scheme. They assume that the sector numbers are zero-based, and map sector #0 to the starting sector of the
FAT partition (i.e VxWorks bootsector). To access the sectors located before the starting sector of the FAT partition (for
instance, the Master Boot Record), the application needs to specify negative sector numbers. The code fragment above
illustrates how to read the Master Boot Record. It setsthe parameter r wReq. i n. f i r st Sect or tothe'0 -

hi ddenSect or s’ (i.e. negative) value.

91-SR-005-38-7L Rev. 1.3 28

7% M-Systems

mmmmmm Flash Disk Pioneers Using DiskOnChip with VxWorks

10 Known Problem

Version 4.1 and up of the TrueFFS driver for VxWorks contains the following known problem:

* TheVxWorks routine dosFsMf s() isincompatible with the original MS-DOS FAT volume
formats. Usethet f f sDevFor mat () routineinstead (refer to Section 5 “ TrueFFS Driver Run-
time Configuration Options”) for creating dosFs file system structures on the DiskOnChip. Refer
to Appendix I: Two Step Stand Alone Boot

91-SR-005-38-7L Rev. 1.3 29

7% M-Systems

mmmmmm Flash Disk Pioneers Using DiskOnChip with VxWorks

Appendix | - Two Step Standalone Boot
To boot VxWorks two-step standal one from the DiskOnChip, perform the following:

1. Add the following line to the BSP configuration .H file (i.e.
Tor nado/ t arget/ confi g/ pc486/ confi g. h in case of pc486 BSP):

#define | NCLUDE_DI SKONCHI P /* M SYSTEMS TFFS */

2. Changethe #def i ne DEFAULT_BOOT LI NE inthe BSP configuration .H file (i.e.
Target/target/confi g/ pc486/ confi g. hincaseof pc486 BSP) asfollows:

#def i ne DEFAULT_BOOT_LI NE
\"tffs=0,0(0, 0)host:/tffsO/vxWorks
h=90. 0. 0. 3 €=90. 0. 0. 50 u=target"”

Note: The above code instructs the BOOTROM.SY S to look for an application named vx\Wor ks located in the root
directory of the device/ t f f sO (i.e. first DiskOnChip).

If it isrequired to name the application differently or to placeit in adifferent location other than the
root directory of the first DiskOnChip, change the respective fields in the code.

3. Modify thefile Tor nado/ t ar get / confi g/ al | / boot Confi g. ¢ by adding the following
code after theline#def i ne | NCLUDE_DI SKONCHI P, just beforetheroutineusrinit():

#i fdef | NCLUDE_DI SKONCHI P

#i fdef _ cplusplus

extern "C' {

#endi f

#i f ndef _ASMLANGUACE

#i ncl ude "bl kl 0. h"

[* TrueFFS driver configuration variables. */
/* See Section 4 for details */

extern unsigned char fl Use8bit;

extern unsigned char fl UseNFTLCache;

extern int fl _useDebug;

#if defined(__STDC) || defined(__cplusplus)
extern void tffsSetup (int diskonchips,

| ong addressRange);

extern STATUS tffsDrv (void);

91-SR-005-38-7L Rev. 1.3 30

7% M-Systems

mmmmmm Flash Disk Pioneers Using DiskOnChip with VxWorks

extern BLK DEV * tffsDevCreate (int tffsDriveNo, int
r enovabl eMedi aFl ag) ;

#else /* STDC */
extern void tffsSetup ();
extern STATUS tffsDrv ();
extern BLK DEV * tffsDevCreate ();
#endif /* _ STDC _ */
#endi f /* _ASMLANGUACE */
#i fdef _ cplusplus
}
#endi f
[* forward declarations */
#i fdef _ STDC _
void devSplit (char *full FileNanme, char *devNane);
#el se
voi d devSplit ();
#endif /* _ STDC _ */
extern unsigned noO Drives;
STATUS usrTffsConfi g
(
int drive, [* drive nunber of TFFS */
int renovable, /* 0 — non renovable flash nedia */
char * filenanme /* nount point */
)
{BLK_DEV * pBoot Dev;
char bootDir [BOOT_FILE LEN];
if ((UNT)drive >= noOfDrives)
{
printErr ("Drive is out of range (0-%).\n",
NoOfDrives - 1);
return (ERROR);
}

91-SR-005-38-7L Rev. 1.3 31

7% M-Systems

mmmmmm Flash Disk Pioneers Using DiskOnChip with VxWorks

/* Create a bl ock device spanning the entire disk */
/[* (non-destructive) */

if ((pBootDev = tffsDevCreate (drive, 0)) == NULL)

{

printErr ("tffsDevCreate failed.\n");

return (ERROR);

}
[* Split off boot device fromboot file */
devSplit (fileNane, bootDir);
/[* Initialize the boot bl ock device as a dosFs */
/* device nanmed <bootDir> */
if (dosFsDevinit (bootDir, pBootDev, NULL) == NULL)
{
printErr ("dosFsDevinit failed.\n");
return (ERROR);
}
return (OK);
}
LOCAL STATUS tffsLoad
(
int drive, /* TFFS drive nunmber (0 - (noOfDrives-1)) */
i nt renovabl e, /* 0 — non renovabl e flash nedia */

char * fileName, /* file name to downl oad */
FUNCPTR * pEntry

)

{

int fd;

/*

* Call tffsSetup() as appropriate for your application.
* | f you want to change the settings of the driver's

* configuration variables flUse8bit,

91-SR-005-38-7L Rev. 1.3 32

7% M-Systems

mmmmmm Flash Disk Pioneers Using DiskOnChip with VxWorks

fl UseNFTLCache and fl _useDebug, do it here.

*/

if (tffsDrv () = OK)

{

printErr ("Could not initialize.\n");

return (ERROR);

}

printf ("Attaching to TFFS... ");

dosFslnit (NUM DOSFS FILES); /* initialize DOS-FS */

if (usrTffsConfig (drive, 0, fileNanme) == ERROR)

{

printErr ("usrTffsConfig failed.\n");

return (ERROR);

}

printErr ("done.\n");

/* load the boot file */

printErr ("Loading %...", fileNane);

if ((fd = open (fileNane, O RDONLY, 0)) == ERROR

{

printErr ("\'nCannot open \"%\".\n", fileNane);

return (ERROR);

}

i f (bootLoadModul e (fd, pEntry) !'= OK)

goto tffsLoadErr;

close (fd);

return (OK);

tffsLoadErr:

printErr ("\nError loading file: status = Ox%.\n",
errnoGet ())

close (fd);

return (ERROR);

91-SR-005-38-7L Rev. 1.3 33

7% M-Systems

mmmmmm Flash Disk Pioneers Using DiskOnChip with VxWorks

}
#endi f /* | NCLUDE_DI SKONCHI P */

4. Modify thefile Tor nado/ t arget/ confi g/ al | / boot Confi g. ¢ by adding the following
code after theline#def i ne | NCLUDE DI SKONCHI PTFFS tothehel pMsg[] intheroutine
boot Hel p():

#i f def | NCLUDE_FD

[fdO/ vxWor ks", " ",

#endi f /* | NCLUDE_FD */
#i f def | NCLUDE_| DE

/1 de0/ vxWorks","",

*/

#i f def | NCLUDE_ATA

"boot device: ata=ctrl,drive file nane: /ataO/vxWorks","",
#endi f /* | NCLUDE_ATA */

#i f def | NCLUDE_PCMCI A

"boot device: pcntia=sock file name: /pcntial/vxWrks","",
#endi f /* | NCLUDE_PCMCI A */

#i f def | NCLUDE_DI SKONCHI P

"boot device: tffs=drive,renovable file nane:

[tffsO/ vxWorks","",

#endi f /* | NCLUDE DI SKONCHI P */

"Boot flags:", "",

5. Modify thefile Tor nado/ t ar get / confi g/ al | / boot Confi g. ¢ by adding the following
code after the line#def i ne | NCLUDE_DI SKONCHI P to the routine boot Hel p():

| NCLUDE_FD

printf (" fd");

#endif /* | NCLUDE_FD */
#i fdef | NCLUDE_I DE
printf (" ide");

#endif /* | NCLUDE I DE */
#i fdef | NCLUDE_ATA

91-SR-005-38-7L Rev. 1.3 34

7% M-Systems

mmmmmm Flash Disk Pioneers Using DiskOnChip with VxWorks

printf (" ata");

#endi f /* | NCLUDE_ATA */

#i fdef | NCLUDE_DI SKONCHI P */

printf (" tffs");

#endi f /* | NCLUDE_DI SKONCHI PTFFS */
#i fdef | NCLUDE_TFFS

printf (" tffs");

#endi f /* | NCLUDE_TFFS */

printf ("\n");

}

6. Modify thefile Tor nado/ t ar get / confi g/ al | / boot Confi g. ¢ by adding the following
code after theline#def i ne | NCLUDE_DI SKONCHI P to the routine boot Load() :

#i fdef | NCLUDE_FD

0)
{
int type = 0O;
int drive = 0;
2)
return (ERROR);
el se

&t ype);
X)

OxX%.\n",

errno);
return (ERROR);

}
return (OK);

}
#endi f /* | NCLUDE_FD */
#i f def | NCLUDE_| DE

0)

{

91-SR-005-38-7L Rev. 1.3 35

7% M-Systems

mmmmmm Flash Disk Pioneers Using DiskOnChip with VxWorks

int type = 0;
int drive = 0;
3)

return (ERROR);

el se
&t ype);

X)
{

errno);
return (ERROR);

return (CK);
}
#endi f /* | NCLUDE_I DE */
#i f def | NCLUDE_ATA
if (strncnp (parans. bootDev, "ata", 3) == 0)

{

int ctrl

0;
0;
if (strlen (parans. bootDev) == 3)
return (ERROR);

el se
sscanf (parans. boot Dev, "% 3s%c%% c%", &ctrl, &drive);

if (ataLoad (ctrl, drive, paranms.bootFile, pEntry) != OK)
{

printErr ("\nError loading file: errno = Ox%.\n",
errno);
return (ERROR);

}
return (OK);

}
#endi f /* | NCLUDE_ATA */
#i f def | NCLUDE _PCMCI A
pcntialnit (); /* init PCMCIA Lib */
if (strncnp (parans. boot Dev, "pcntia”, 6) == 0)

int drive

91-SR-005-38-7L Rev. 1.3 36

7% M-Systems

mmmmmm Flash Disk Pioneers Using DiskOnChip with VxWorks

{
i nt sock = NONE

if (strlen (parans. bootDev) == 6)
return (ERROR);
el se

sscanf (parans. bootDev, "% 6s% c%", &sock);
i f (pcntiaLoad (sock, parans.bootFile, pEntry) == OK)
return (OK);
/* fall through if the PC card is not a bl ock device
* let's try to boot it froman ethernet device.
*/
}
#endi f /* | NCLUDE_PCMCI A */

#i f def | NCLUDE_DI SKONCHI P
if (strncnp (parans. bootDev, "tffs", 4) == 0)
{

int drive = 0O;
int renovable = 0O;

(strlen (parans. boot Dev) == 4)
return (ERROR);
el se

sscanf (parans. boot Dev, "% 4s% c%% c%l",
&drive, &renovable);
if (tffsLoad (drive, 0, parans.bootFile, pEntry) !'= OK)

printErr ("\nError loading file: errno = Ox%.\n",
errno);
return (ERROR);

Eeturn (OK);

}
#endif /* | NCLUDE_DI SKONCHI P */

7.Modify thefile Tor nado/ t arget / confi g/ al I / boot Confi g. ¢ by adding theline
#def i ne | NCLUDE DI SKONCHI P asfollows:

#i f (defined (I NCLUDE SCSI _BOOT) || defined (INCLUDE FD) || \
defined (I NCLUDE_IDE) || defined (INCLUDE_ATA) || \
defined (I NCLUDE_DI SKONCH PTFFS) || defined (I NCLUDE_TFFS))

#define SPIN UP_TIMEQUT 45 /* max # of seconds to wait for spinup
*/

91-SR-005-38-7L Rev. 1.3 37

7% M-Systems

mmmmmm Flash Disk Pioneers Using DiskOnChip with VxWorks

8. Modify the file Tornado/target/config/all/bootConfig.c by adding
the follow ng code after the |ine #define | NCLUDE DI SKONCHI P, j ust
before the routine usrRoot():

#i f def | NCLUDE_DI SKONCHI P

#i fdef __ cplusplus

extern "C' {

#endi f

#i f ndef _ASMLANGUAGE

[* TrueFFS driver's configuration variables. */
extern unsigned char fl Use8bit;

extern unsigned char fl UseNFTLCache;

extern int fl _useDebug;

#if defined(__STDC) || defined(__cplusplus)
extern void tffsSetup (int diskonchips, |ong *addressRange);
extern STATUS tffsDrv (void);

#else /[* __ STDC _ */

extern void tffsSetup ();

extern STATUS tffsDrv ();

#endif /* _ STDC _ */

#endi f /* _ASMLANGUACE */

#i fdef _ cplusplus

}

#endi f

#endi f /* | NCLUDE_DI SKONCHI P */

9. Modify thefile Tor nado/ t ar get / confi g/ al | / boot Confi g. ¢ by adding the following
code after theline#def i ne | NCLUDE DI SKONCHI P, just before the routine usr Root () :

*/
#i fdef | NCLUDE_FD

*/
*/
#i fdef 1 NCLUDE_I DE

91-SR-005-38-7L Rev. 1.3 38

7% M-Systems

mmmmmm Flash Disk Pioneers Using DiskOnChip with VxWorks

*/
*/
#i fdef | NCLUDE_ATA
{
| MPORT ATA RESOURCE at aResources[];
ATA RESOURCE *pAt aResour ce;
for (ix = 0; ix < ATA MAX CTRLS; i x++)
pAt aResour ce = &at aResources[i X];
i f (pAtaResource->ctrl Type == | DE_LOCAL)
ataDrv (ix, pAtaResource->drives, pAtaResource->
i nt Vector, pAtaResource->intlLevel,

pAt aResour ce- >confi gType, pAtaResource->senili neout,
pAt aResour ce- >wdgTi nmeout) ;

}

}
#i fdef | NCLUDE_SHOW ROUTI NE

ataShow nit (); /* install ATA/IDE show routine */
#endi f /* | NCLUDE_SHOW ROUTI NES */
#endi f /* | NCLUDE_ATA */
#i fdef | NCLUDE_LPT
{
| MPORT LPT_RESOURCE | pt Resources[];
| pt Drv (LPT_CHANNELS, &l pt Resources[O0]);
[* init LPT parallel driver */
}
#endi f /* | NCLUDE_LPT */
#i f def | NCLUDE _PCMCI A
#i f def | NCLUDE_SHOW ROUTI NE
pcnti aShowinit (); /* install PCMCI A show routines */
#endi f /* | NCLUDE_SHOW ROUTI NES */
pcntialnit (); /* init PCMCIA Lib */
#endi f /* | NCLUDE_PCMCI A */

91-SR-005-38-7L Rev. 1.3 39

7% M-Systems

mmmmmm Flash Disk Pioneers Using DiskOnChip with VxWorks

#i f def | NCLUDE_DI SKONCHI P
/*
* Call tffsSetup() as appropriate for your application.
*/
/*
* |f you want to change the settings of the driver's

* configuration variables flU use8bit,
fl UseNFTLCache_useUCache,

and fl _useDebug, do it here.
*/
tffsDrv ();
#endi f /* | NCLUDE_DI SKONCHI PTFFS */
#i f def | NCLUDE_FORVATTED | O
*/

10. Recompile the BOOTROM SYS and copy it to the root directory of the first DiskOnChip. Also
copy the VxWorks application itself to the DiskOnChip.

Unlessyou have a#def i ned DEFAULT_BOOT_LI NE different from the one described in step 2,
the application should be called vxWor ks and it should be located in the root directory of the first
DiskOnChip.

91-SR-005-38-7L Rev. 1.3 40

7% M-Systems

= Flash Disk Pioneers

Using DiskOnChip with VxWorks

Additional Information and Tools
Additional information about the DiskOnChip, including application notes, can be found at

http://www.m-sys.com.

Additional tools and documents are listed in the following table:

Document/Tool Description

AP-DOC-010 Designing with the DiskOnChip DIP

AP-DOC-020 Boot Developers Kit

AP-DOC-030 Designing with the DiskOnChip Millennium in a RISC
Environment

AP-DOC-031 Designing with the DiskOnChip Millennium in a PC
Environment

AP-DOC-039 Programming of the DiskOnChip Millennium TSOP-II

AP-DOC-040 Programming DiskOnChip Millennium TSOP, Using a Bed of
Nails

AP-DOC-042 Designing the DiskOnChip with Hyundai ARM720 CPU

AP-DOC-046 Extended Functions of TrueFFS Driver for DiskOnChip

DiskOnChip 2000 Data Sheet
DiskOnChip Millennium Data Sheet
DiskOnChip DIMM2000 Data Sheet
DiskOnChip Utilities

DiskOnChip DIP EVB
DiskOnChip-GANG

DiskOnChip 2000 Data Sheet
DiskOnChip Millennium Data Sheet
DiskOnChip DIMM2000 Data Sheet
DiskOnChip Utilities User Manual
DiskOnChip Evaluation Board
DiskOnChip GANG Programmer

91-SR-005-38-7L Rev. 1.3

41

7% M-Systems

= Flash Disk Pioneers

Using DiskOnChip with VxWorks

How to Contact Us
Internet:

E-mail:

USA Office:
M-Systems Inc.

8371 Central Ave, Suite A
Newark CA 94560
Phone: 1-510-494-2090
Fax: 1-510-494-5545

Taiwan Office:
Room B, 13th floor, No. 133

Min Sheng East Road
Taipel, Taiwan

R.O.C.

Phone: 886-2-87706226
Fax: 886-2-87706295

http://www.m-sys.com

info@m-sys.com

Japan Office:
M-Systems Japan Inc.

Arakyu Bldg., 5F

2-19-2 Nishi-Gotanda Shinagawa-ku
Tokyo 141-0031

Phone: 81-3-5437-5739

Fax: 81-3-5437-5759

U.K. Office
M-Systems UK Ltd.

PO Box 20

Chalgrove SPDO

OX44 7YP

Phone: 44-1865-891-123
Fax: 44-1865-891-391

| sragl Office:
M-Systems Ltd.

Atidim Industrial Park P.O.B. 58036
Tel Aviv 61580

Phone: 972-3-647-7776

Fax: 972-3-647-6668

M-Systems assumes no responsibility for the use of the material described in this document.
Information contained herein supersedes previously published specifications on this device from
M-Systems. M-Systems reserves the right to change this document without notice.

91-SR-005-38-7L Rev. 1.3

42

