
AP-DOC-020
Application

Note

DiskOnChip
Boot Developers Kit
Dmitry Shmidt & Raz Dan

April-99
------------ Rev. 1.21

DiskOnChip Boot Developers Kit Preliminary

USA - M-Systems Inc., Phone: 510-413-5950, Fax: 510-413-5980, email: info@m-sys.com
Taiwan - M-Systems Asia, Phone: 886-2-2550-1741, Fax: 886-2-2550-1745
Japan – M-Systems Japan, Phone: 81-3-3445-9042, Fax: 81-3-3445-9045
Israel - M-Systems Ltd, Phone: 972-3-647-7776, Fax: 972-3-647-6668
http://www.m-sys.com

Limited Warranty

(a) M-Systems warrants that the Licensed Software — prior to modification
and adaptation by Licensee — will conform to the documentation provided by M-
Systems. M-Systems does not warrant that the Licensed Software will meet the
needs of the Licensee or of any particular customer of Licensee, nor does it make any
representations whatsoever about Licensed Software that has been modified or adapted
by Licensee. .

(b) Subsection (a) above sets forth Licensee’s sole and exclusive remedies
with regard to the Licensed Software.
M-SYSTEMS MAKES NO OTHER WARRANTIES, EXPRESS OR IMPLIED,
WITH RESPECT TO THE LICENSED SOFTWARE, INCLUDING BUT NOT
LIMITED TO ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. THERE ARE NO OTHER WARRANTIES WITH
RESPECT TO THE LICENSED SOFTWARE ARISING FROM ANY COURSE OF
DEALING, USAGE OR TRADE OR OTHERWISE.
IN NO EVENT SHALL M-SYSTEMS BE LIABLE TO LICENSEE FOR LOST
PROFITS OR OTHER INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES,
WHETHER UNDER THIS AGREEMENT, IN TORT OR OTHERWISE.

(c) Licensee shall not make any promise, representation, warranty or guaranty
on behalf of M-Systems with respect to the Licensed Software except as expressly set
forth herein.

Please note: The Licensed Software is not warranted to operate without failure.
Accordingly, in any use of the Licensed Software in life support systems or other
applications where failure could cause injury or loss of life, the Licensed Software
should only be incorporated in systems designed with appropriate and sufficient
redundancy or back-up features.

DiskOnChip Boot Developers Kit Preliminary

M-Systems Page 2 of 16 Rev 1.21

 1. Introduction
Booting a system from the DiskOnChip is of utmost importance for engineers that
design the DiskOnChip into their target platform. It allows them to use only a very
small boot ROM and store the Operating System itself on the DiskOnChip.

This application note is intended for system integrators designing with the
DiskOnChip2000, DiskOnChip Millennium or DiskOnChip DIMM. It will explain
how to take advantage of a special DiskOnChip feature that allows booting virtually
any system from it. The application note will briefly discuss the hardware
requirements of the DiskOnChip. Furthermore, it will explain the principal of
operation and the practical aspects of the boot solution. Finally, it will discuss the
utilities required for formatting and updating the DiskOnChip.

It is assumed that the reader is familiar with the Operating System in use.

 2. Hardware Requirements for the DiskOnChip
The DiskOnChip can be easily connected to any CPU bus. The minimum
requirements are a 13-bit address bus, an eight-bit data bus, and three control signals.
These control signals are identical to the SRAM or EEPROM signals for reading,
writing and chip enable. They are typically found on every hardware platform and can
be easily interfaced with.
The following figure shows a simplified structure of a typical hardware system,
focusing on the DiskOnChip connections. For a detailed discussion of the
DiskOnChip hardware environment, please refer to the DiskOnChip data-sheet or to
Application Note AP-DOC-10, “Designing with the DiskOnChip”, AP-DOC-30
“Designing with the DiskOnChip Millennium in a RISC Environment” or AP-DOC-31,
“Designing with the DiskOnChip Millennium in a PC Environment”.

DiskOnChip Boot Developers Kit Preliminary

M-Systems Page 3 of 16 Rev 1.21

31 22 24

16

30

32

D0

D1

D2

D3

D4

D5

D6

D7

13

14

15

17

18

19

20

21

CPU

DiskOnChip
(2-160MB)

ROM or NOR Flash
Boot Loader: Typically

less than 128KB

RAM
 Typically

1 MB and up

Other Devices Other Devices

DiskOnChip
SD0

SD1

SD2

SD3

SD4

SD5

SD6

SD7

A12

A11

A10

A9

A8

A7

A6

4

25

23

26

27

5

6

SA12

SA11

SA10

SA9

SA8

SA7

SA6

A5

A4

A3

A2

7

8

9

10

SA5

SA4

SA3

SA2

GND

Vcc
0.1µF

Vcc

A1

A0

11

12
SA1

SA0

WR CE OE

A13 A14 A15 A16

NC NC NC NC NC
1 28 29 3 2

Chip Enable (Active Low)
Output Enable (Active Low)

Write Enable (Active Low)

Figure 1 – Block Diagram of a Typical System with a DiskOnChip

DiskOnChip Boot Developers Kit Preliminary

M-Systems Page 4 of 16 Rev 1.21

 3. Booting Up the System from the DiskOnChip
The generic boot solution presented in this application note is based on the following
components:
 • The DiskOnChip. Its size must be large enough to contain the Operating System

image and the required file storage area. The DiskOnChip is partitioned into two
sections:
- The first partition holds the OS image. This partition will be called “BDK

Partition” in the remainder of this application note
- The second partition holds the file storage area, which is accessed through a

filesystem
 • A very small ROM or NOR Flash, containing the following:

- The code required for minimal system initialization. This code depends on the
OS and the platform. This code should, at the least, initialize the chip select
unit such that the ROM, RAM and the DiskOnChip can be accessed. Other
components, such as display, keyboard and mouse do not have to be initialized
at this time. Since this code depends heavily on the OS and the platform, this
subject won’t be discussed in detail in this application note.

- The code for copying the OS image from the DiskOnChip to RAM is referred to
as “Boot Loader”. This code is supplied along with this application note, and
will be thoroughly discussed in the next sections.

- The code for executing the Operating System, once it is in RAM. This code is
OS dependent, and might include switching processor modes or other special
system initialization. This code is beyond the scope of this application note.

Upon power-up, the code stored in ROM will be executed first. It will do the
necessary initializations, copy the Operating System image from the “BDK Partition”
of the DiskOnChip into RAM, and execute it. The following drawing outlines the
flow of control. Note that the file storage area of the DiskOnChip is not involved in
the boot process.

DiskOnChip Boot Developers Kit Preliminary

M-Systems Page 5 of 16 Rev 1.21

� Take Image from
DiskOnChip

DiskOnChip

� Copy Image
to RAM

RAM

ROM or
NOR-Flash

� Basic system initialization

Boot Image
Partition

(OS storage)

Flash Disk
Partition

(File storage)
Operating System

Image

� Power-Up

Boot Loader:
Copy the OS image to RAM

� Operating system
execution code

Figure 2 – Boot Process

 4. The Boot Loader

 4.1 The Operating System Image Storage Format
The BDK Partition on the DiskOnChip is composed of units. The unit size depends on
the size of the Erase Block within the flash chip. Different flash chips have different
Erase Block sizes. You can use the function getBootPartitionInfo, described below,
to retrieve the unit size. Typically the units are 8 KB long. Each unit is marked with a
signature. Bad units, if any, are not used, and have no signature. The signature is
made up of 4 distinct characters, followed by a 4-digit hexadecimal number. This
number starts at 0 for the first unit and is increased by one for each consecutive unit.
The last unit is always marked by the hex number FFFF, independent of it’s ordinal
number.
The 4-character prefix is determined while creating the Operating System image part
of the DiskOnChip. See section 5 for further details.

Note: When using DFORMAT utility version 1.20 or up, the signature offset is by
default 8. Previous versions have a default value of 0. Make sure that the #DEFINE
SIGN_OFFSET in the file DOC_BDK.H is set to the same value (see Figure-3).

DiskOnChip Boot Developers Kit Preliminary

M-Systems Page 6 of 16 Rev 1.21

...

Offset 0

Offset 8

Spare
Area

P
ag

e
=

51
2

by
te

P
ag

e
=

51
2

by
te

P
ag

e
=

51
2

by
te

Erase Unit

One of these sections
contains the 4 byte signature

and 4 byte block number

... ...

Permanent Registry Storage NK.BIN Storage

BDK Partition

Figure 3 – BDK Partition Structure

DiskOnChip Boot Developers Kit Preliminary

M-Systems Page 7 of 16 Rev 1.21

 4.2 The Boot Loader Code
The simple boot loader code includes a stripped down version of the DiskOnChip
driver, consisting only of the modules that read data from the DiskOnChip. The code
is customizable to a great extent, and can be adapted to fit your target platform. The
function that provides the entry point is named copyBootArea. For details on its
parameters, see the function header. All functions and user types are placed in the
DOC_BDK.H header file. All functions return 0 (or flOK) after successful processing.
Error codes are described in the header of every function in the file DOC_BDK.C.

 Following are the steps taken by the boot loader:

 1) Search for the DiskOnChip window in memory. Two #DEFINE statements
control the search range. They should be set to reflect the memory region in
which the DiskOnChip can reside. DOC_LOW_ADDRESS determines the start
address, while DOC_HIGH_ADDRESS determines the end address. In addition
there is a global variable, docWindow, that can be used during runtime to define
a specific search address. By setting the value of docWindow to something other
than zero you can force the search routine to scan only one address. This is
convenient for special tools or if you can retrieve the base address of the
DiskOnChip from some external storage area.

Note: To use the variable docWindow you need to define in your application the
following:
EXTERN UNSIGNED LONG docWindow;

DOC_WINDOW_SIZE determines the window size used to access the

Page #0

Page #1

 . . .

Page #N-1

Page #0

Page #1

 . . .

Page #N-1

 . . .

Page #0

Page #1

 . . .

Page #N-1

Unit
 #0

Unit
#1

Sign0000

Sign0001

SignFFFF

Unit
#K-1

Figure 4 – Block and Page Numbers

DiskOnChip Boot Developers Kit Preliminary

M-Systems Page 8 of 16 Rev 1.21

DiskOnChip. This is typically 8KB, but the size is modified by the value of
DOC_ACCESS_TYPE. For example, in a system which uses 32-bit access the
default window size will be 32KB.

 All these variables are placed in the header file DOC_BDK.H. When setting the
first two variables, keep in mind that the end address actually determines the last
address that can be used as an ending address for a window. If both address
variables are equal, no search will be performed and it is assumed that the
DiskOnChip resides in that address. The function findDiskOnChip can be used
separately to identify the DiskOnChip in memory.

Function usage:

 FLStatus findDiskOnChip(unsigned long FAR2 *docAddress,
 unsigned long FAR2 *docSize);

Where docAddress will return the physical DiskOnChip base address and
docSize will return the unformatted size of the DiskOnChip in bytes.

 2) Search for the storage units as described in section 4.1. The units are copied into
RAM. A byte-checksum is calculated while copying. It may be accessed using
the pointer transferred to the entry point function.

 Function usage:

 FLStatus copyBootArea(unsigned char FAR1 *startAddress,

 unsigned short startBlock,
 unsigned long areaLen,
 unsigned char FAR2 *checkSum,
 char FAR2 *signature);

 Where startAddress is a pointer to the starting location area in the RAM,

 startBlock is the number of the first block of the specified BDK Partition on the
DiskOnChip (usually 0 block), areaLen is the length of the specified BDK
Partition you want to read, checkSum is the pointer that will return the checksum
of the image and signature is signature of the BDK Partition as described in
section 4.1.

 Note: you can use this function to copy any area of the DiskOnChip Boot Image.

 4.3 Boot Loader Code Customization

A few issues in the boot loader code need special attention. They all appear at the
beginning of the source file.

DiskOnChip Boot Developers Kit Preliminary

M-Systems Page 9 of 16 Rev 1.21

 4.3.1 Far pointers

Far pointers are usually associated with Intel 80x86 architectures, and are usually
irrelevant on other architectures. If your processor/compiler has no far pointers, i.e. it
uses a flat memory model, then define the variable FAR_LEVEL as 0.
On 80x86 architectures, you need to define which pointers are far, by specifying a
value of 0 to 3 for the variable FAR_LEVEL. If you are using a flat 32-bit addressing
model, define FAR_LEVEL as 0. Otherwise:
• If the RAM window and the DiskOnChip window are near (in the boot loader data

segment), define FAR_LEVEL as 0.
• If only the DiskOnChip window is far, define FAR_LEVEL as 1.
• If both the DiskOnChip window and the RAM window are far, define

FAR_LEVEL as 2.
• If the DiskOnChip window, the RAM window and the pointer(s) transferred to the

copying function are far, define FAR_LEVEL = 3.

 4.3.2 Pointer arithmetic

 Here, you are asked to supply two macros (or short routines) for two pointer arithmetic
operations that may depend on your processor or compiler.

 physicalToPointer(address, length)
 This is a macro that takes a number that specifies a physical address, and returns a (far)
pointer that points to that address. In a real-mode Intel 80x86 architecture, this macro
would convert a linear address (say hex 0D8000), to a segment :offset far pointer (say
0D800:0).

 In a system that uses virtual addressing, this macro would be more complex. It would
need to know the correspondence between physical and virtual addresses, and would
have the task of mapping the physical address to the virtual address-space so that a
pointer can be returned for it. For this reason the second parameter length is
supplied. This parameter reflects the amount of space starting at the address that
should be mapped to the virtual address-space.

 addToFarPointer(pointer, increment)
 This macro defines how to add an offset to a (far) pointer and returns a new (far)
pointer. The increment may be as large as the socket window size. In most cases this
can be coded simply as ((char *) (pointer)) + (increment), but sometimes this might be
inappropriate. For example: in a real-mode 80x86 system, where the increment might
be larger than 64KBytes, there is a need to perform “huge” pointer arithmetic, because
segment offsets may not exceed 64KBytes.

 freePointer(pointer)
 This macro frees an allocated pointer. It might be required only for environments that
use virtual mapping.

DiskOnChip Boot Developers Kit Preliminary

M-Systems Page 10 of 16 Rev 1.21

 4.3.3 Delay

 A short delay function is required for the operation of the DiskOnChip. This can
either be implemented by a library function, having a millisecond resolution, or by a
specifically calibrated delay loop. The required delay is no more than a few
milliseconds.

 4.3.4 DiskOnChip Access

 DiskOnChip is 8-bit device, therefore it demands 8-bit data access. In some systems
the DiskOnChip window has 16-bit or 32-bit access. Besides hardware changes you
need to access the DiskOnChip correctly in software. For compile-time version you
simply need to put the correct bus access width into the file DOC_BDK.H file as
follows: #DEFINE DOC_ACCESS_TYPE 8
In order to get the ability to change bus access width in run-time, you need to
uncomment #DEFINE USE_FUNC_FOR_ACCESS and to define in your module
EXTERN UNSIGNED SHORT DOC_ACCESS_TYPE
You need to assign to DOC_ACCESS_TYPE the bus access width (8, 16 or 32) before
any call to the BDK functions.

 Note: Default value is 8.

 Note: It is possible to customize DiskOnChip access functions in module DOC_BDK.C
for BIG_ENDIAN processor or NON_MEMORY_MAPPED DiskOnChip access.

 4.4 Advanced Boot Image Processing
 When you need more complicated DiskOnChip boot image processing or you need to
implement several of your own functions like the Windows CE functions
ReadRegistryFromOEM and WriteRegistryToOEM for example, you can
use the BDK write functions.
 By deleting the remarks from #define WRITE_IMAGE in the file DOC_BDK.H,
you will be able to use the following functions for writing to the BDK Partition of the
DiskOnChip:
 - getBootPartitionInfo (obtaining information about the BDK partition)
- writeBootAreaInit (initializing the required data structures)
- writeBootAreaBlock (writing data to the BDK partition)

 Note: Be careful. These functions erase blocks before writing, therefore you can loose
your data!

Function Usage:

FLStatus getBootPartitionInfo(unsigned long FAR2 partitionSize,
unsigned long FAR2 *unitSize,
 char FAR2 *signature);

DiskOnChip Boot Developers Kit Preliminary

M-Systems Page 11 of 16 Rev 1.21

 Where partitionSize returns the current size of the BDK Partition in bytes,
unitSize returns the minimum unit size that can be updated, signature is the signature
of the BDK partition.

Function usage:

 FLStatus writeBootAreaInit(unsigned short startBlock,
 unsigned long areaLen,
 unsigned char updateFlag,
 char FAR2 *signature);

 Where startBlock is the block of the specified BDK Partition you want to start

from, areaLen is the specified BDK Partition length and signature is the BDK
Partition signature. updateFlag can get one of the two following values:
BDK_COMPLETE_IMAGE_UPDATE or BDK_PARTIAL_IMAGE_UPDATE. The first
is used in order to update for example NK.BIN storage (see Figure-3) and the second
one is used in order to update for example Permanent Registry Entries storage (see
Figure-3). The difference between these two modes of update is that the first one
finishes the update with [Signature]FFFF (i.e. BIPOFFFF) and the second one only
updates the image, setting current numbers to the blocks.

 Function usage:

 FLStatus writeBootAreaBlock(unsigned char FAR1 *buffer,

 unsigned short bufferLen);

 Where buffer is the current buffer you want to write to and bufferLen is the
current buffer length.

Note: The image is updated one buffer at a time. The buffer size must be less than or
equal to the Unit Size. Most buffers should be equal between themselves and should be
equal to Page Size (512 Bytes) or a multiple integer of Page Size. However the last
buffer may be less than the previous.

 4.5 Example source code

 In the source code of the BDK you can find two function examples that show you how
to read the BDK Partition into a file and how to copy a file into the BDK Partition. To
compile these functions you need to delete the remarks from:
 #define BOOT_TO_FILE in the file DOC_BDK.H.

 Function Usage:

 FLStatus copyBootAreaFile(char FAR2 *fname,

 unsigned short startBlock,

DiskOnChip Boot Developers Kit Preliminary

M-Systems Page 12 of 16 Rev 1.21

 unsigned long areaLen,
 unsigned char FAR2 *checkSum,
 char FAR2 *signature);

 Where fname a is pointer to a file name, startBlock is the starting block of the

specified BDK Partition on the DiskOnChip (usually block 0), areaLen is the length
of specified BDK Partition you want to read, checkSum is the pointer that will return
the checksum of the image and signature is the signature of the BDK Partition as
described in section 4.1.

 Function Usage:

 FLStatus writeBootAreaFile(char FAR2 *fname,

 unsigned short startBlock,
 unsigned long areaLen,
 char FAR2 *signature);

 Where fname is a pointer to a file name, startBlock is the starting block of the

specified BDK Partition on the DiskOnChip, areaLen is the length of specified BDK
Partition you want to write and signature is the signature of the BDK Partition as
described in section 4.1.

 5. Utilities
In order to create the BDK partition, you need to use one of the following DOS
utilities.

 5.1 DFORMAT

Before the DiskOnChip can be used, it must be low-level formatted. Formatting
initializes the media and writes a new and empty DOS file system on it. When
formatting is complete, the media contains only a root directory.

In order to prepare the DiskOnChip for booting, the following steps are taken by
DFORMAT:
1. Format the DiskOnChip, preserving the area for the BDK Partition.
2. Install the DiskOnChip firmware.
3. Copy the Operating System image to the BDK Partition on the DiskOnChip.

Note: The region reserved for the Operating System image is automatically set,
according to the image file size. To prepare for future versions of the Operating
System, versions that might require a larger image file, it is recommended to
artificially increase the size of the image file.

Following is a description of the command line options that can be used with the
DFORMAT utility. Please refer to the DiskOnChip User’s Manual for detailed
information about the standard usage and command line options of this utility.

DiskOnChip Boot Developers Kit Preliminary

M-Systems Page 13 of 16 Rev 1.21

/S:Firmware The firmware file (driver) to be written to
DiskOnChip. Usually the file extension is .EXB

/BDKF:<file name> This flag specifies the Operating System image file
name.

/BDKN:XXXX This flag specifies the 4-character prefix (signature)
of the BDK Partition. XXXX can be replaced by
any combination of 4 ASCII characters.
Use capital letters. Default: BIPO

/BDKL:partition size Size of BDK Partition.

/O:signature offset This flag specifies the BDK Partition signature
offset. Can be 0 or 8. Default: 8.
Note: From firmware version 1.20 and onwards, the
default value is 8. Previous firmware versions hold a
default value of 0.

/NODOS Do not create a DOS FAT file system while

formatting. Only low-level format is performed.
This is useful for non-DOS applications.

Note: All sizes specified in DFORMAT options are in bytes if specified as simple
numbers, in KBytes if specified with the suffix K, or in megabytes if specified with the
suffix M.

Examples

1. Formats the DiskOnChip, located at address D000h, with the firmware named
docimage.bin, an Operating System image file named NK.BIN and the
signature “WCE*”. Signature offset is 0.

DFORMAT /WIN:D000 /S:docimage.bin /BDKF:nk.bin /BDKN:WCE* /O:0

2. Formats the DiskOnChip, located at address D000h. Creates a BDK Partition of
5MB size.

DFORMAT /WIN:D000 /BDKL:5M

3. Formats the DiskOnChip, located at address D000h. Creates a BDK Partition of
5MB and writes the file NK.BIN to it.

DiskOnChip Boot Developers Kit Preliminary

M-Systems Page 14 of 16 Rev 1.21

DFORMAT /WIN:D000 /BDKF:nk.bin /BDKL:5M

Note: The size of the file NK.BIN can be up to 5MB. Operation will fail if the size
is larger than the BDK Partition size.

4. Formats the DiskOnChip, located at address D000 without firmware or BDK
Partition. If they previously existed, they will be deleted.

DFORMAT /WIN:D000 /BDKF:! /S:!

 5.2 DUPDATE
This utility updates the DiskOnChip firmware and the Operating System image
without altering the file-system area. The usage is similar to that of the DFORMAT
utility. The same command line parameters can be used.
Since DUPDATE does not create a new BDK Partition, the only useful flags are : /S:
and /BDKF:

Note: DUPDATE does not access the file-system area, therefore user files are not
erased.

Example

Updates the BDK Partition with the file newnk.bin and the firmware on the
DiskOnChip, located at address D000h.

DUPDATE /WIN:D000 /S:firmware.exb /BDKF:newnk.bin

Note : The file newnk.bin cannot be larger than the BDK Partition.

 6. Accompanying Files
The following files accompany this application note:

DOC_BDK.H : The boot loader H header code

DOC_BDK.C : The boot loader C source code
DFORMAT.EXE : DiskOnChip formatting utility

DUPDATE.EXE : DiskOnChip updating utility

DiskOnChip Boot Developers Kit Preliminary

USA - M-Systems Inc., Phone: 510-413-5950, Fax: 510-413-5980, email: info@m-sys.com
Taiwan - M-Systems Asia, Phone: 886-2-2550-1741, Fax: 886-2-2550-1745
Japan – M-Systems Japan, Phone: 81-3-3445-9042, Fax: 81-3-3445-9045
Israel - M-Systems Ltd, Phone: 972-3-647-7776, Fax: 972-3-647-6668
http://www.m-sys.com

 7. Additional information and Tools

AP-DOC-10 : Designing with the DiskOnChip 2000

AP-DOC-15 : Obtaining DiskOnChip 2000 information
AP-DOC-16 : Using the DiskOnChip 2000 with QNX
AP-DOC-17 : Using the DiskOnChip 2000 with Windows CE
AP-DOC-19 : Using the DiskOnChip 2000 with Windows 95
AP-DOC-21 : Using the DiskOnChip 2000 with Linux O/S

AP-DOC-30 : Designing with the DiskOnChip Millennium in a
RISC Environment

AP-DOC-31 : Designing with the DiskOnChip Millennium in a
PC Environment

DiskOnChip 2000 Data Sheet... : DiskOnChip Data Sheet
DiskOnChip Millennium : DiskOnChip Millennium Data Sheet
DiskOnChip DIMM................. : DiskOnChip DIMM Data sheet
DiskOnChip 2000 Utilities : DiskOnChip 2000 Utilities User Manual

DiskOnChip2000-EVB : DiskOnChip Evaluation Board
DiskOnChip2000-PIK.............. : DiskOnChip Programmer and Integrators Kit
DiskOnChip-GANG................. : 8 Socket Gang Programmer

M-Systems assumes no responsibility for the use of the material described in this document. Information contained
herein supersedes previously published specifications on this device from M-Systems. M-Systems reserves the right
to change this document without notice.

