SRS-M1

SMALL INDUSTRIAL ROBOT SYSTEM
TUTORTAL MANUAL

Manual Order Number: M1/TUTORIAL

; Copyright 1985 CRS Plus Inc
CRS Plus Inc., P.0O. Box 163 Stn 'A', Burlington, Ontario, L7R 3Y2 MJ

.

ii

REV. REVISION HISTORY DATE
-001 Original Issue 2/86
-002 Version 3.30 9/86

Additional copies of this manual or other CRS Plus
literature may be obtained from:

CRS Plus Inc.

P.0. Box 163, Stn 'A'
Burlington, Ontario
L7R 3¥2
(416)639-0086

The information in this document is subject to change
without notice.

CRS Plus Inc makes no warranty of any kind with regard to
this material, including, but not limited to, the implied
warranties of merchantability and fitness for a particular
purpose, CRS Plus Inc assumes no responsibility for any
errors that may appear in this document, CRS Plus Inc makes
no commitment to update nor to keep current the information
contained in this document.

CRS Plus Inc assumes no responsibility for the use of any
circuitry other than circuitry embodied in a CRS product.

CRS Plus Inc software products shall remain the property of
CRS Plus Inc.

M EE B D BE EE G E)_GE BN BN BN S S P

This manual provides general user information for the
CRS Plus SRS-M1 Small Industrial Robot System.
Additional information is available in the following
documents:

* RAPL Programming Manual

* SRS-M1 Small Industrial Robot System - Technical Manual

PREFACE

iid

PAGE

CHAPTER 1

TUTORIAL

IﬂtrOduﬁtiQn aau-atvp-snoov---n-s-toveo-n.ostaoo.ovoe»n;o«;o-t-cu--uo»--»
Fix Robot to TADLE seasesssessssssrssrsssnsssaonnasssonareonsrassesresnsss
HOOk”up all Compﬂneﬂﬁs .oco-oou-p--oo--oono-..pv»c.co-o--oo-n-ow-.-»no-:c
Power ON ProCedUI® sescssesssssrsssnsssanesssrssssscsersasnsensrnssonssnss
System Check out qn-n.oau-oaooqqno»u-q-oocuua.na--o-oo.o.cco--oqno.msonn-

ot
bl

t

!

i
P B DD b e

Arm pDW@r tou.IntonQs"l’i.b!..'b-..DilDoto.lldl‘lln.ocb.li!.uqll'ttlloho o
Manua]- Mod»e IC.O'.UI...CDI’..'O."Ol.l“.l..!‘.'."‘l.‘lIIQ..'.I..'E.DI..
Hom@ RObOﬁ ;-4;:0-..pqqn-cb.ocp-p»‘ls---ounaQnoltnoob.o.nv--&cnu-uonc-u&o E

i
£l = 00 =IOV A

Teaching a LOCALION ..cecssssssssencancsassssssrcsrasoncrancnsserrncrsncs
Motion COmMANAS secesssscsesssssssssnsossssssrassssssnarerrsrcassasrnnsnns
Basic Prﬂgrﬁmmiﬂg TeChniques s s P S EEAEEN ISP RNRNSESARERBANTEEIITEIARIEIRIISTRDLTS
Advanced Programming Techniques ..eecccssrscscnccsessassansassancscoracee
Input/Output Cﬂmmands lﬂ'..ﬂ'..&ll"...UD‘.I!OD‘Q!.O'O".Dl".oooao‘.vta

Subroutines ..‘l"‘.."'lO.‘..'l.'l.Q'll..t‘..l.’5"'0.....0'.‘.00..‘..'ﬁ

ok ot ot o ot ok ek ot e
i

i

%‘?‘hﬂ
P

APPENDIX A
TRACH MODE

Teach”ode Q...!‘."“....““"..."‘..'..'QQ.‘...."’.'.’.....b.&‘.‘..“ Am‘i—

APPENDIX B
MANUAL MODE

Manual MOde !Q...DRIAII‘!0.0!‘IOII..QQll'.'ﬁ.0.0l.li..t’.ﬂi!...tl.Dsl&l!- B“I

iv

CHAPTER 1

1-1 INTRODUCTION

The CRS Plus Small Robot System is a complex piece of equipment. We recommend
that ALL potential users of the robot participate in CRS Plus introductory
seminars on the use of this machine.

This manual will allow a careful experienced user to work through the simpler
commands used by the robot and to gain an understanding of its operation. A
more in-depth description of the robot command language is contained in the
RAPL Manual, more detail of the installation and servicing of the machine can
be found in the Technical Manual. The robot user should be familiar with the
contents of both of these documents prior to use of the machine.

1-1 FIX ROBOT TO TABLE

The robot must be firmly fastened to a sturdy table during all operations. If
it is not, the inertia of fast motions may cause the robot to "walk" away. A
typical table for mounting the robot can be seen in figure 3-1 of the
technical manual.

A suitable location must also be found for the control box, video terminal,
and digital I/0 module (if used). The controller and 1/0 Module are designed
for mounting in a standard 19" rack. When used, the 1/0 Module should be below
the controller. A table for the video terminal should be located near the rest
of the system.

1-2 HOOK-UP ALL COMPONENTS

The robot system must be connected together. First, install the power cords to
both the robot system control box and the terminal.

The CRS SRS-6110 terminal must then be connected to the controller with the
supplied 25-conductor flat ribbon cable. If you are using your own terminal
then follow the detailed instructions found in section 3 of the Technical
manual,

The robot must be connected to the controller box. The cable from the back of
the box must be hooked up to the connector in the base of the robot. The cable
will exit toward the rear of the robot when installed correctly. The connector
is keyed to prevent incorrect installation.

If the 1/0 Module will be used, connect it to the controller box as well. The
first one (two may be connected in the same system) should be plugged in to
the internal edge connector visible through the right hand slot in the lower
right hand corner of the control box rear panel,

Finally, connect the teach pendant to the connector on the front panel of the
control box. Once done, the robot system is ready for use.

-1

1-2 POMER-ON PROCEDURE

Turn video terminal on first. 1f the CRS SRS-6110 is used, the terminal will
not appear ready to the controller until a key has been pressed. Any key can
be pressed before turning the controller power on.

The robot power should be turned on next. Check the video display screen for
the RAPL sign-on message. This should appear about a second after the power

switch is tripped.

Following the sign-on message, is the "prompt"”. The normal RAPL prompt is a
dual angle bracket (">>'). This prompt tells you that you are in the Tmmediate
mode, meaning that any command you enter through the keyboard will be executed
immediately when you finish the entry with a carriage return.

1-4 SYSTEM CHECK-OUT

Before proceding to type any commands, you should know how to deal with typing
errors that you may make. In general the RAPL system looks for correct syntax
for each line as you type it. If you make a mistake, you can correct it using
the "del" (delete) key. If you continue, the system will abort your command
1ine as soon as a key is pressed that enters an ineligible command string. The
error is number 12: a command error. If this occurs, just make sure you are
starting from the prompt again and re-enter the command.

1f you have entered a command correctly and are starting to enter the argument
when you make a mistake, you can generally correct it using the delete key on
the keyboard. If you have entered one argument and terminated it with a space
or a comma before you realize that you have made a typing error, you cannot go
back into the previous argument to correct it. In this case, you must use a
Control-C to "abort" the command. Control-C works at all times in any mode of
the robot control. That is, it will also abort a program command or a motion
command entered through the immediate mode. It is identical in function to
pressing the "abort" button on the teach pendant (more on that later).

There are several commands which allow the user to check the status of the
robot system and its memory. The first is the STATUS command. Type "STA" at
the keyboard and a "<cr>" (carriage return).

[Notice that the computer finished the command for you.
This is because the controller is in the RAPL HELP-mode.
The HELP-mode lets you enter a command after typing the
minimum number of letters to ensure a unique string. When
in this mode, the computer will also prompt you for the
correct syntax of a command entered in the immediate
command mode. The help mode is automatically enabled when
the power is turned on.]

The display will be filled with information about the robot's current status.
It tells you the currently set robot speed, the program currently being
edited, the last program executed and the line number at which it was stopped,
the number of loops done and to go (in case repeated executions of the same
program were commanded), the status of several system flags, the current tool
transform, what axes are selected, if any are finished moving, and if any are
in the LIMP mode. Normally at start-up, no axes will be locked out (ie. a row

1-~2

of N's for No should follow the LOCK line), all axes should be DONE, and when
the arm power is off, all should be LIMPed (ie. a row of Y's for Yes should
follow the DONE and LIMP lines). It is not too important to understand the
meaning of these messages at this point. However, later you will use this
command to check that everything is as it should be.

Next look at the amount of unused user memory using the FREE command. Type
"FR<er>". The display will show the amount of memory remaining. When there are
no programs or locations in the robot user memory, the display will show 76
variables, 76 locations, 16 programs, and 4304 bytes of program memory.

If the system shows less than these numbers, you should find cut what the
memory is being used for. Execute a directory by typing "DI<cr>". This will
show what programs are in the memory and the program size in bytes. Take a
1ook at one of the programs in memory by typing "LISTP" and then one of the
program names and then ficer>", If the program fills more than one screen, the
screen output will stop and you will have to press a key to see the whole
listing.

1f there are programs in memory, there will also be locations in the location
table. These can be seen by typing "LISTL<cr>". Observe that the locations are
stored by their names and their cartesian coordinates. X, Y, and Z dimensions
are in inches, while Yaw, Pitch and Roll are in degrees.

1-5 ARM POWER

Until this time, the robot arm has been limp. In order to have it move, the
power to the motors must be turned on. To turn the arm power on, lift the
robot away from its hard stops, then press the ARM POWER switch on the front
panel., The LED above the switch will come on. Notice that the robot arm is now
locked in position.

As soon as the arm power is on, the computer is controlling the position of
the arm. The computer is constantly issuing commands to each motor to maintain
the required joint angle, The mechanism (including the motor) which follows
the command is called a servo (short for "positional servo-mechanism'). The
servo constantly monitors the position of the motor shaft and corrects any
difference between the commanded position and the motor's actual position.
More information on the servo can be found in the Technical Manual.

It may not be apparent, but even when the machine is sitting still, the
controller is commanding the arm to stay where it is. Any interruption of the
servo will cause the robot to move in an unpredictable way. Under normal
operation, this will not happen, but in case of component failure, it could.

Another important thing to realize is that just because the robot is sitting
still, does not mean that it will stay that way. In normal program operation,
the machine may stand still for an extended period of time. It could move at
any time, Personnel must not enter the robot workspace when the machine is
under program control.

Once arm power is on, you must be prepared to react to an emergency situation.

The robot may do something completely unexpected at some time and you must
know how to deal with it.

1-3

There are two ways to stop the robot. The motion can often be arrested by
interrupting the command to the motor. This is done by pressing the ABORT
button on the teach pendant, If the computer has commanded it to go somewhere
that it cannot reach, such as into some stationary object, the servo will be
trying to move the arm there. In this case, the only way to recover is to turn
arm power off with the mushroom button on the controller front panel. If you
allow the servo to drive the arm into an immovable object for as long as 15
seconds, a fuse will blow in the amplifier circuitry. Refer to the Technical
Manual for replacement of these fuses.

There are three states of the robot arm: power off, power on, and LIMP. The
1IMP mode is a state such that the arm power is on but the servo is commanding
the motors to follow any externally applied force, To see this last mode, type
"LIM{er>" through the keyboard. Be prepared to catch the arm if it droops when
you LIMP it, as in some positionms, gravity is an externally applied force! A
message on the screen will tell you to type "NOLIMP" to end.

When you grasp the end of the arm in the LIMP mode, you will see that you can
push the arm around into any desired position. There is some resistance to the
motion due to servo damping, but this is an effective way of moving the arm to
a desired location quickly. To lock up the arm again, type "NOL<Lcr>".

1-6 MANUAL MODE

Next we will try out the manual mode of moving the robot. Make sure that the
Teach Pendant is plugged in to the front panel receptacle. Type "MAN<cr>" to
enable this mode. Note that the prompt has changed from ">>" to "M>". This
will stay that way until you exit from the MANUAL mode.

Look at the lables on the eight switches down the right hand side of the
pendant. The first five are labled with the names of the five axes of the
robot. The bottom three are just numbered 6 through 8. Unless you have
external servo axes, the only switches you should be concerned with are the
first five,

Pick up the Teach Pendant and try some simple moves. Rotate the speed knob to
fully counter-clockwise (ie. set speed to zero). Push the first switch to the
right or left and slowly increase the speed (rotate speed knob clockwise)
until the arm moves. Slow down and stop by using the speed knob and the
direction switch. The reason for starting from zero speed is to assure that
you don't drive the arm into some stationary object before you get a feel for
the manual mode operation.

Try each different axis in turn. Always start manual motion at a slow speed to
avoid collisions. Note that more than one axis can move at any time. Please be
cautious while in this mode, as the arm does not check for out of range of
motions in the manual (or for that matter the limp) mode.

The manual mode can be disabled in two ways. The first is the NOMANUAL
command. Typing "NOM<cr>" will return the immediate mode prompt. The second
way is to command a motion of the arm. The computer cannot command the arm to
move when in'the manual mode, so whenever a computer motion command is issued,
it exits the manual mode. Since you will do a HOME comand next, you may leave
the arm in the manual mode.

14

—

1-7 HOME ROBOT

When the arm is first turned on, the control system does not know where the
arm is relative to the mounting surface of the robot. Since all locations are
stored as cartesian coordinates from the center of the base, the controller
must somehow be informed of this vital information. The sequence to do this is

called HOMING the robot.

A precise location has been entered in the robot's memory at which the
controller and the robot can be synchronized. The HOMING sequence involves
roughly moving the arm to this location, the "READY" position (so called
because the robot is READY to be homed from there), and instructing the robot
to precisely move each axis the last few degrees to reach this calibrated

location.

You must first go to the READY location by roughly lining up calibration marks
on the arm. The arrow must point to somewhere in the range of the trapezoidal
mark opposite. The arm can be moved to this approximate location manually or
in the limp mode. Since you should still be in the manual mode, use the teach
pendant to move the robot into the READY position.

Once all marks have been lined up as shown, the controller can take over and
accurately reach the home point. Do this by typing "HO". The screen will ask
you "LOCATED IN ITS HOME BOUNDS?". If the marks are lined up correctly, answer
"ycer>” for yes. Notice that each axis moves at a very slow rate until the
arrow points at the pointed end of the opposite homing mark. As each reaches
its home location exectly, the screen tells you that the home test has passed.
1f any test fails, or the arrow does not line up properly when the test has
passed, you must repeat the entire HOMING procedure. When the HOMING sequence
is completed successfully, the robot "knows where it is".

We can move the robot back to the READY position (the point from which a HOME
is executed) by doing the following:

1) Set the robot speed - A good speed to start with is 40% of full speed. Type
"SP40<er>", Try a STATUS to see that indeed the robot's speed is now 40% of
full,

2) Move the robot to the READY position - Type "REA<cr>". The robot will move
at 40% speed to an upright position. This position should put the homing
marks in the correct starting position to execute a HOME sequence.

1-8 TEACHIRG A LOCATION

Locations are essential to programmed motion of the robot. These are the final
positions of the arm where parts will be picked up or put down, machines
controlled, fluids dispensed, or whatever. In general, the robot arm is moved
to precisely the location you wish to store, then this location is saved in
the RAM memory of the computer. Since locations are stored by their cartesian
coordinates, they can also be entered off-line. However, due to the
flexibility of the robot structure and unavoidable math errors in calculating
the final location of the arm, there is no substitute for on-line programming.

There are several ways to move the robot to the desired location to store. You
have already seen the Manual and Limp modes. These are the two basic ways to
manipulate the robot for teaching. There are others however, such as the JOINT
command, This command moves one joint of the robot by a specified number of
degrees. Type "JOI" first and the screen prompts for a joint number. Enter
"1<space>" and then "-15<cr>" for -15 degrees. Repeat this sequence to move
joint 2 by -50, joint 3 by -50, and joint 4 by -80 degrees. The arm will be
close to a place which can simulate picking up a part from the surface of the
mounting plate. [Make sure that the moves leave a couple of inches between the
end of the gripper and the solid surface,]

The gripper is now close-to but not exactly vertically aligned. To pick the
imaginary part up, we want it exactly vertical. Now we do an ALIGN command by
simply typing "ALI<cr>". The arm will move so that the center of the gripper
flange is in exactly the same spot, but the gripper is aligned vertically.
This command will also align the tool axis horizontally if it is closer to
horizontal when the command is executed.

If you wish to "fine tune" the gripper's location, the JOG command is useful.
Measure the distance from the current position to the desired position in
inches in three directions (the robot's XYZ coordinates). Type "JOG" and then
the increments of distance in the three directions in turn. Type "1,0,.5<cr>".
The robot will move the distance desired,

If you are satisfied with the location and wish to store it in memory, type
"HER" on the keyboard. The screen will answer by prompting you for the name of
the location., We will call this point PICK. Verify that the location has been
stored by a LISTL command, You should see PICK somewhere in the location
table, Return the robot to the READY position.

In our imaginary routine we will pick up a part at PICK, and put it down at a
location a few inches away. We could repeat the above exercise of manually
moving the arm, aligning it, fine tuning it and teaching it, but that would be
inefficient. Let's try another method. We can enter a location equal to
another one using the SET command. Type "SET" and then "PLACE=PICK<cr>". Now
the location table contains two locations PICK and PLACE with identical
coordinates., Another way would have been to just type enter HERE PLACE while
still at PICK.

Since we don't want to put the part back down where we got it from, we must
SHIFT the location called PLACE away from PICK., Type "SHIFT PLACE BY
0,8,0<cr>". This has the effect of moving the PLACE location 8 inches away in
the positive Y direction. Confirm this using LISTL. We are now ready to use
these locations,

1-6

1-9 MOTION COMMANDS

There are several motion commands in the RAPL language. You have already used
the JOG, READY, ALIGN and JOINT commands. Others include MOVE, APPRO, DEPART
and MOTOR. The MOTOR command causes an incremental motion of one motor by a
specified number of pulses. It is not often used in programming the robot.

The APPRO, MOVE and DEPART commands are used often. They allow the robot to
move to and from points near a programmed location. Try approaching the point
PICK. Type "AP" and then "pICK,". The screen prompts for a distance from the
point PICK. Enter 2 and hit M¢er>", The robot will move to a point 2 inches
back from PICK along the tool axis (which for this point is vertical).

"PTCK<er>" when the screen prompts for a 1ocation. The robot moves directly to
PICK, Try moving to PLACE as well.

l Now move the robot to PICK using the MOVE command, Type "MOV" and then
From here, we can try the DEPART command, Actually the depart command will
work from any robot location (as long as it does not cause an axis to go out

l of range). Type "DEP" and the screen prompts you for a distance. Type "2"
(inches) and hit "<cr>". The robot will depart 2 inches along the tool axis.
Now issue a JOINT command to change the tool axis "JOINT 4,20<cr>" and try

l another DEPART, Note that the direction of departure has changed. You can even
DEPART in the negative direction which will move the robot out in the
direction of the tool but be careful mnot to drive the gripper into a

l stationary object by doing this. Because of the relative nature of the DEPART
command, it is useful for accurate final positioning during location

' programming .

' With a few more commands, you will be equipped to program the robot to do a

simple "pick-and-place” routine. Two common commands are the OPEN and CLOSE

commands. If you have a gripper connected to the robot and hooked up to an air
supply, these commands will be easy to demonstrate. Just type "OP<cr>" and
then "CLO<cr>" to see the results.

The CRS Plus robot comes equipped with a three-way pneumatic valve, This will
prgssurize the gripper in one direction only. If you are using the standard
gripper, a spring should be used to return the gripper to the open position.

1-10 BASIC PROGRAMMING TECHNIQUES

Programs are stored in the controller's RAM memory. You have already done a
DIiRectory command to see which programs are now stored there. The next section

shows how to enter a program.

At any time, only one program can be edited even though several exist in the
memory. The program being edited is changed using the EDIT command. Type "E"
and then "PICK<cr>". Using a program name which is the same as a location does
not bother the robot since the use of these "lables" is quite different. You
can of course name the program anything you like but it makes sense to call it
something that reminds you of its function.

Entering the EDIT PICK as above has two effects, Firstly, it sets the edited
program to one called PICK. If there had been a program with this name already
in the directory, then you would be adding to or editing that program, Since
there is not already a program PICK, you have just created one. The second
thing is that you have entered the "EDTT" mode. The prompt is an asterisk like
my#" jnstead of the former ">>". For now exit this mode by typing "E". The
screen will echo an "End" and the ">>" prompt will return., Check that you have
created a program called PICK by the DIR command. Note that the size of the
program is 00000 because you have not added anything to it yet.

The STATUS command shows that the program currently being edited is PICK.
Check this now as well. From now on, any line typed which starts with a number
will be interpreted as a program line and will be inserted into program PICK.
To insert lines then type the following:

10 OPER<Lcx>

20 READY<cr>

30 APPRO PICK,2<{cr>
40 MOVE PICK<Lcr>

50 CLOSELcr>

60 DEPART 2<cr>

70 APPRO PLACE,2{cr>
80 MOVE PLACE<cr>
90 OPEN<cr>

100 DEPART 2<cr>
110 READY<cr>

This is a simple pick-and-place routine to take some part from PICK and move
it to PLACE.

Try running the program now. When trying a program out for the first time,
always use a slow speed and be ready to abort the program should anything
unusual happen. Set the speed to 30% with the SPEED command and place the
Teach Pendant where you can reach it. Have a finger over the ABORT button on
the Teach Pendant and if the robot does anything surprising, press and release
this button. This stops the robot immediately and is equivalent to entering a
Control C from the keyboard. Type "RU" and then "pICK<cr>". The robat should
move from PICK to PLACE as planned.

The first thing you may notice when you turn your attention to the display

screen is an error message, This is because there is no termination of the
program, A STOP command is needed.

1-8

——

1f you were paying close attention to the robot as it moved (and you should
have been) you would have seen that the gripper open and close did not occur
when the robot was at the PICK and PLACE locations. This is because RAPL sets
up the robot move commands, starts motion and then goes on to the next
command. In this case, it executes the OPEN or CLOSE commands just after

setting up the next motion commands.

This strategy speeds up program execution, but at times it can lead to
problems in sychronizing. To overcome this, you must use the FINISH command.
This command will cause the robot to hold execution of the next step of the
program until the current motion command is completed. to illustrate, insert a
FINISH just before the OPEN and CLOSE lines of program PICK. To make these

changes, type:

45 FINISH<cr>
85 FINISH<cx>
120 STOP<Lcr>

RAPL will insert these lines in numerical sequence in the correct place,

Try running the program again and see how it looks. This time you just have to
type "RU<cr>" as RAPL will default to the program which was the last one
executed. This "current program executing" can be checked by a STATUS. The
problems encountered before should be solved,

What if you want this program repeated again and again? The RUN command can
use an argument to indicate a number of repetitions. Type "RU,2<cr>". This is
equivalent to RUN PICK,2 since RAPL defaults again to the "current program
executing". The comma tells RAPL that the "2" is a second argument and not
part of the program name. This command will cause the PICK program to be run
through twice as you will see. The program can be run indefinitely by entering
RUN PICK,F. The "F" standing for Forever. Try this.

You have now checked out the program and it seems to work alright. In fact, if
you have followed my instructions to the letter, it is now running this
program indefinitely at a very slow speed. It is time to throw caution to the
wind and run the routine at "production" rates. To do this you must first stop
the program. You could stop it by a Control-C or the ABORT button, but this is
a bit drasic. Try typing Control-A. This terminates execution of the program
at the end of the next instruction. It is not so much a panic stop as a a way
to stop a normally running program; it is much gentler.

When the prompt returns (after execution of the step that RAPL is decoding)
set the speed to 100 with the SPEED command., Since the robot stopped neatly at
the end of a line of code, we should be able to PROCEED from there without
restarting the program at the beginning. However, if the next step happens to
be the STOP or another program branching command, it may not proceed properly
and will just return a prompt. If this happens, re-start the program with the
RUN command. Just run it once this time,

Another way to have the program run indefinitely is to use the GOTO command to
cause program flow to jump to some previous line., In this case, a logical
place to return to would be line 30. To do this type:

115 GOTO 30<cr>

1-9

List the program to see that it has put all of these lines in the correct
location. Type "LISTP<cr>". The program 1isted will be the one currently being
edited unless a program name is given (ie. LISTP PICK<cr>). You should see
this on the screen:

>>LISTP
PROGRAM: PICK
10 OPEN

20 READY

30 APPRO PICK,2
40 MOVE PICK

45 FINISH

50 CLOSE

60 DEPART 2

70 APPRO PLACE,?2
80 MOVE PLACE
85 FINISH

90 OPEN

100 DEPART 2
110 READY

115 GOTO 30

120 STOP

$

Notice that the STOP command will never be reached since program flowwill
jump to line 30 before the STOP is executed. The "$" at the end of the list is
a seperator which tells the memory that this is the end of the program.

Tf you have made some error in the program logic, one way to look into it is
to use the trace mode, Before running the program, type "TR<cr>" to enable the
tracing of the program. Running the program now will cause the robot to run
the pick-and-place routine continuously., As each line is executed, the program
name and line number is printed on the screen. As it runs, note that flow
passes through lines 10 and 20 only at the first run through. From then on it
flows from 30 to 115 and back to 30 again. This pattern will be repeated
indefinitely. It can be stopped by Control-A, The TRACE mode is disabled using
the NOTRACE command.

1-10

—_—

1-11 ADVANCED PROGRAMMING TECHNIQUES

You can now try some of the more complex features of RAPL. For instance, COPY
this program to another program called PICK2. You should also RENAME program
PICK to PICK1 to keep the names straight. You can try these commands yourself,
just following the instructions from the syntax building feature (HELP mode).
Otherwise, a detailed description of the use of these commands can be found in

the manual.

Try implementing a counter in the PICK2 program. To do this add the following
lines (be sure that you are editing PICK2 by entering EDIT PICKZ and then E

for end):

5 1 COUNT = O

35 1 COUNT = COUNT + 1
75 TYPE 'Count ='

76 TYPEI COUNT

77 TIPE 'Y/

Line 5 initializes a variable called "COUNT" and sets it to zero. Because of
the looping back to line 30 this is done only once at the start of execution.
Line 35 increments COUNT by one each time through the loop. This statement
could be anywhere in the loop to be effective. Lines 75 to 77 will type out
the value of count each time through. The TYPE command allows the string
enclosed in quote marks to be sent out to the screen, The TYPEI sends out a
variable using the "I"nteger format (TYPEV uses the Real format). Following a
string in a TYPE command (even an empty one) with a "/" cause the screen to
jump down a line (a carriage return/line feed). Thus if the count is 355 the
message created by this code will read:

Count = +355
Try running the program with these changes.

Variables are useful in programs for counting loops. If for example, you
wanted PICK2 to get 5 parts and then to stop, you could add the following
line:

112 IF COUNT EQ 5 THEN 120

This will check the value of COUNT each time through the loop. When it has
picked and placed 5 parts, COUNT will equal 5 and program flow will jump to
the STOP line before it reaches the GOTO 30.

To go along with this new logic, edit the counting message and add a stop
message. Go into the EDIT mode. Type "E<erd>", We will once again be editing
PICK2 as this is the current default program. Instead of 'End'ing the edit
session immediately, delete the lines you wish to change. Type "D75<cr>" and
then "D120<cr>", Note the controller echos a "Delete" for each "D" entered.
The two lines to be changed have been deleted and can now be re-entered, While
still in the EDIT mode, type "I120 STOP FINISHED FIVE PARTS<cr>" and then b
TYPE 'PART COUNT IS NOW '<cr>". The controller will echo "Insert" for each o
typed when in the EDIT mode. End the EDIT mode with the End command.

Alternatively you could have Ended the EDIT mode and entered the lines as
before. There are other commands in the EDIT mode to "M"ove one line to

1~11

another location in the program ie. change its 1ine number, "C"opy a line to
another location, etc. See section 11 of the RAPL manual for a detailed

description of the EDIT commands.
Run the program to see the result of these changes.

Variables in a program can also be used to shift locations if for example you
wish to stack parts or load and unload palletized parts. As an example, if the
5 parts were at five locations differing by 0.75 inches, the PICK location
would have to be shifted as in the program below. Note that a location called
PICK REF must be defined at the original location of PICK:

PROGRAM: PALLETTE

10 ;

20 ; Initialize the program:
30 ;

100 OPEN

120 | COUNT = O

130 SET PICK = PICK_REF

140 ;

150 ; Start of loop:

160

200 READY

210 ;

%20 s Determine the new position of PICK-up:
30

240 ! OFFSET = COUNT * 0.75

250 SHIFT PICK BY OFFSET,0,0

255 ! COUNT = COUNT + 1

260
270
280 ;

300 APPRO PICK,2

310 MOVE PICK

320 FINISH

330 CLOSE

340 DEPART 2

350 APPRO PLACE,2

360 MOVE PLACE

370 FINISH

380 OPEN

390 DEPART 2

400 ;

410 ; Type out message:

420 3

430 TYPE 'Now completed part #'
440 TYPEL COUNT

450 TYPE ''/

500 ;

510 ; Check counter and branch:
520 3

530 IF COUNT EQ 5 THEN 600

540 GOTO 200

200 STOP Pallet is empty.

e we

Pick and Place routine:

1-12

Notice the use of comment lines in the program. These will help you to
understand what you did if you look at the program sometime in the future.

1-12 INPUT/OUTPUT COMMANDS

There are several commands in the RAPL language to allow the robot controller
to interface with its environment. These are grouped as Input/Output commands.
Some commands are used to interface the controller to the terminal, while
others are used with the optional 1/0 Module for digital discrete workplace

interface.

The use of the TYPE and PRINT groups of commands are used in outputting
messages to the screen. You have already seen the TYPE commands, the PRINT
commands work in the same fashion but operates through the second RS23Z port
which is often hooked up to a printer, The INPUT command allows the user to
interactively enter a value during program execution,

To try the input command, add the following lines to program PICKZ:

7 TYPE 'ENTER NUMBER OF PARTS TO RUN’
8 INPUT MAX_NUM

117 TYPE 'FINISHED'

118 TYPEI MAX_NUM

119 TYPE ' PARTS'/

Edit line 112 and 120 to read:

112 IF COUNT EQ MAX_NUM THEN 117
120 STOP

The program will now start by asking you how many parts you wish to run.
Respond by typing a number, any number. The program will stop after running
that number of parts.

There are a number of commands to interface the robot to the I/0 Module. If
you have this option installed you could try some of them. However, the
interconnection of inputs and outputs to the Module requires studying the
Technical Manual and following the instructions carefully. For this reason,
Digital 1/0 commands are best left to later, after you have read the Technical
and RAPL Manuals,

1-13

1-13 SUBROUTINES

1f there is a section of code that is executed several times in the same
routine, you may wish to use a subroutine to simplify the writing and logic of
the program. A subroutine is called from a main routine {or even from another
subroutine) using the GOSUB command. To illustrate the use of this feature

look at the following programs:

PROGRAM MATIN:

10 3

20 ; Initialize the program:
30 ;

100 SET PICK = PICK 1
110 GOSUB PK_N_PLC
120 SET PICK = PICK 2
130 GOSUB PK_N PLC
140 SET PICK = PICK 3
150 GOSUB PK_N PLC
160 SET PICK = PICK 4
170 GOSUB PK_N PLC
180 SET PICK = PICK_5
190 GOSUB PK_N_PLC
200 ;

210 STOP All finished
$

PROGRAM PK_N PLC:

100 ;

110 ; Routine to pick and place part.
120 3

200 APPRO PICK,2

210 MOVE PICK

220 FINISH

230 CLOSE

240 DEPART 2

250 APPRO PLACE,2

260 MOVE PLACE

270 FINISH

280 OPEN

290 DEPART 2

300
310
320 ;
400 RETURN
$

This program will have the same effect as the one above. Though there are some
essential differences. Note that all locations must be taught in the second
method instead of using the shift command. This then uses more location memory
which could be a problem for large pallets. One advantage is that oddly
located parts could be accessed. Also each point is taught individually so
that round-off errors in the SHIFT command mathematics will not build up. Thus
the second method could be more accurate,

Return to main routine:

* wa wm¥

Thinpgs to note about subroutines include the use of the RETURN instead of the
STOP command to terminate the routine, This causes program flow to return to

1-14

- .
£

—

the line after the GOSUB call. An argument in the RETURN statement can be used
to return control to successive 1ines. Refer to the RAPL manual for more

detail on this command.

Interrupting execution of a program while in the subroutine will leave the
subroutine as the default "currently executing program” not the calling
program. Take this into account when using the RUN command without an
argument, Trying to run a subroutine directly will cause an "EOL not found"
error as it looks for the calling routine when it executes the RETURN and does
not find one.

1-15

APPENDIX A
TEACH MODE

The teach mode permits the user to store robot positions for later use in
programs. The teach mode is activated by entering the TEACH command from the
terminal. Exiting the teach mode is performed by entering the NOTEACH
command, While in the teach mode, robot positions can be recorded by pressing
the TEACH button on the pendant, Pressing the ABORT button will terminate the
teach mode.

Tn the teach command, the programmer must enter a variable name template for
use in storing the teached points. The teach mode uses the same naming
conventions as described in the RAPL manual, but the teach mode modifies the
symbol somewhat in order to store consecutive points in a logical format. The
teach name template should be no more than 5 characters long. If a name
shorter than five characters is used, then the underline character ' ' will
£fi11l then remaining spaces. For instance, the command:

TEACH PNT<cxr>
will set up a template which appears as:

PNT

i e

in the robot location table. Each time the teach button is pressed, a point is
stored in the memory which is named according to the template, and the current
teach point register whose value is superimposed upon the last three
characters of the template. For instance, if the command above was entered,
the following points would be recorded after hitting the pushbutton:

PNT__000
PNT__001
PNT__002
PNT_ 003
etCans

BRI

The teach point register is a counter from 0 to 255 which automatically
increments by one after each successive teach point is recorded. The counter
resets to zero if the template entered appears as above, However, the
programmer may choose to set the teach point register to a selected value by
entering the teach point name in a slightly different fashion. If the

following where entered:

TEACH PNT_10<cr>

then the following points would be recorded:

PNT_ 010
PNT_ 011
PNT_ 012
etcl LR B A B J

If the teach button is pressed so many times that the teach point register
exceeds 255, then the counter overflows to zero and starts counting upwards

again.

For instance:

TEACH PNT__250<cr>

SAVED POINT PNT__250
SAVED POINT PNT_ 251
SAVED POINT PNT_ 252
SAVED POINT PNT_ 253
SAVED POINT PNT_ 254
SAVED POINT PNT_ 255
SAVED POINT PNT__ 000
SAVED POINT PNT_ 001

In this example, if a point PNT__000 already existed in memory, then the new
position would replace the old information. For applications requiring more
than 256 points, then it is necessary to use at least two different templates
to define all of the positions.

It is also permissable to store robot positions in both cartesian coordinates
and in precision point formats. Both contain the same advantages as defining
any point as either cartesian coordinates or precision points, and both
require the same memory size. Use the same naming conventions as you would in
normal programming.

_—

APPENDIX B
MANUAL MODE

The manual control mode permits the operator to move all robot joints easily
for setup purposes. The manual control commands are issued through the teach

pendant.

The manual mode is selected from the terminal by entering the following
command line;

MANUAL<Lcr>

After the command has been entered, you will notice that another prompt ap-
pears. This is because the MANUAL mode of control has now been established as
the background mode of operation, and further keyboard commands are still
available. During the manual mode, most command functions can be accessed from
the terminal,

In software, pressing the appropriate directional switch on the pendant will
be transformed into the correct motor commands in order to provide joint
control. Pneumatic gripper control is provided with the toggle switch on the
pendant.,

The eight toggle switches on the teach pendant provide directional control
with the selected joint,

The speed knob provides the operator with a choice of robot speeds from 0 to
100% of the maximum permissable speed.

Quite often, the manual mode is used in conjuction with the teach mode.

The manual mode is terminated by entering NOMANUAL at the video terminal.

B-1

	SRS_M1_TUTOR_MAN_0001.jpg
	SRS_M1_TUTOR_MAN_0002.jpg
	SRS_M1_TUTOR_MAN_0003.jpg
	SRS_M1_TUTOR_MAN_0004.jpg
	SRS_M1_TUTOR_MAN_0005.jpg
	SRS_M1_TUTOR_MAN_0006.jpg
	SRS_M1_TUTOR_MAN_0007.jpg
	SRS_M1_TUTOR_MAN_0008.jpg
	SRS_M1_TUTOR_MAN_0009.jpg
	SRS_M1_TUTOR_MAN_0010.jpg
	SRS_M1_TUTOR_MAN_0011.jpg
	SRS_M1_TUTOR_MAN_0012.jpg
	SRS_M1_TUTOR_MAN_0013.jpg
	SRS_M1_TUTOR_MAN_0014.jpg
	SRS_M1_TUTOR_MAN_0015.jpg
	SRS_M1_TUTOR_MAN_0016.jpg
	SRS_M1_TUTOR_MAN_0017.jpg
	SRS_M1_TUTOR_MAN_0018.jpg
	SRS_M1_TUTOR_MAN_0019.jpg
	SRS_M1_TUTOR_MAN_0020.jpg
	SRS_M1_TUTOR_MAN_0021.jpg
	SRS_M1_TUTOR_MAN_0022.jpg

