e

el
e

S

o

"

i

Ty

Specifications

= Mechanical structure

Drive system: DC servo motors with optical encoders
Transmission: Harmonic drives with preloaded drive chains
Payload {maximum speed): 2.2 1bs (1.00 kg)

Payioad {reduced duty): 4.4 1bs (2.00 kg)

Repeatability: +/- 0.008 in {0.13 mm)

Joint speed
Base: 60 degrees/second

Shoulder: 60 degrees/second
Elbow: 60 degrees/second
Wrist: 180 degrees/second
Tool: 180 degrees/second

Joint worst case resolution
Base: 0.0023 in
Shoulder: 0.0023 in
Eltiow: 0.0014 in
Wrist: 0.0025 in

Tool: 0.0025 in

Robot controller
Control
Number of axes: Eight DC servos {5+3)
Position detection: Digital optical encoders
Point-to-point: Joint interpolated
Straight line: At reduced speed
Speed settings: 0 to 100 percent
Programming
Manual: Teach pendant
Off-line: Resident RAPL language
Editor: Resident RAPL editor
Debugger: Resident RAPL debugger
User memory size: BK bytes
Auxifiary components
Communications: Dual RS232
Digital inputs: Sixteen TTL

{Optional buffering)
Digital outputs: Sixteen TTL

{Optional buffering)
Expansion: Peripheral expansion bus
Other

Power requirements: 100-130 VAC, 50-60 Hz. 3A
Mounting dimensions: 19 inches rack rnountable

Options

Analog inputs

Bubble memory

Digital 170 buffering {AC/DC)
Digital 170 expansion

PC host interface

Pneumatic gripper

Servo gripper

UNIX Host interface

Video terminal

Specifications are subject to change without notice.

JND us TRIA L AUTOMATION

CRS PLUS INC.

835 Harrington Court

P.O. Box 163, Station A
Burlington, Ontario, Canada
L7R 3Y2

Tel.: (416) 639-0086
0386-Ai - Printed in Canadz

SRE-M1A -

SMALL TNDUSTRIAL ROBOT SYSTEM
RAPL, PROGRAMMING MANUAL

Manual Order Number: SRS-MAN/RAPL

Copyright 1987,1988 CRS Plus Inc
CRS Plus Inc., 835 Harrington Ct., Burlington, Ontario, L7N 3F3.
CANADA

REV. REVISION HISTORY : DATH
-001 Original lssue 12/85
-002 RAPL V1.2 2/886
-003 Version 3.30 : 9/86
-004 Version 3.4.5 2/87
-006 Version 3.5.0 6/87
-008 Version 4.10 2788

Additional copies of this manual or other CRS Plus literature may
be obtained from:

CRS Plus Inc.

P.O. Box 163 Stn A’
Burlington, Ontario
L7N 3P3

CANADA

Phone: (416) 839-0086

The information in this document is subject to change without
notice.

CRS Plus Inc makes no warranty of any kind with regard to this
material, including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose. CRS Plus Inc
assumes no responsibility for any errors that may appear in this
document. CRS Plus Inc makes no commitment to update nor to keep
current the information contained in this document.

CRS Plus Inc assumes no responsibility for the use of any circuitry
other than circuitry embodied in a CRS product.

CRS Plus Inc software products shall remain the property of CRS
Plus Inc.

ii

PREFACE

This manual provides general programming information for the CRS
Plus RAPL programming language. Additional information is available
in the following documents:

* SRS-M1A Small Industrial Robot System - Tutorial Manual

* SRS-M1A Small Industrial Robot System - Technical Manual

* SRS-M1A Small Industrial Robot System - IBM-PC Host
Interface

CONTENTS

CHAPTER 1 - OVERVIEW

1-1 RAPL DESCRIPTION . . ; 1=1
1-2 NOTATIONAL OONVENTIONS USEID IN MANUAL " 142
1-3 COMMAND ACCESSIBILITY L s e e g § % 1-3
1 - BAVL VAN NPT . . o oo vt s e b wem & on & @ 1-3
1-5 NAMING CONVENTIONS TE N RN PR Y 1-4
1-6 TORKENIZED FORMAT 1-5

CHAPTER 2 - PROGRAMMING CONSIDERATIONS

ol PIOCRAEING ATDE . o onc o L 2-1
2-2 HELP MODE . . . DEat A i K 2-1
2-3 DEFINING THE WORKSPACE 2-1
2-5 TOOL COORDINATE PROGRAMMING . 2-3
2-6 MANUAL CONTROL 2-4
CHAPTER 3 - SOMMARY OF RAPL, COMMANDS
3«1 INTRODUCGEICN - . . . i 3=1
3-2 MOTION COMMANDS . . . 3%
3-3 INPUT/OUTPUT COMMANDS . 33
3-4 GRIPPER COMMANDS . . 9
3-5 SYSTEM COMMANDS . . 3-5
3-8 ROBOT LOCATION ASSIGNMENT . 3-6
3-7 PROGRAM FLOW FUNCTIONS 3-8
3-8 STRING FUNCTIONS . . 3-9
3-9 MATHEMATICAL FUNCTIONS i-11
3-10 EXTRA AXIS COMMANDS . 3-12
3-11 LINE EDITOR . 3-13
CHAPTER 4 - RAPL, COMMANDS
4-1 INTRODUCTION TO COMMAND LIST « « v o i a1
CHAPTER 5 - LINE EDITOR :
Bt DENCREBERON . . . e i) e e womw Beg
5-2 EDIT COMMANDS » . o v o v v v e s e v e s v n e, B2
APPENDIX A - COMPENDIUM OF RAPL COMMANDS
APPENDIX B - RAPL, ERROR LIST
APPENDIX C - TERMINAL CONTROL CODES
APPENDIX D - AUTOSTART PROCEDURE
Bl DRNRERRION: . . .o et R e e e e w B
R O L T P - . |
D3 BRI S . . . s e T ey v s e e o« DB

iv

i

g

&

b

()
tOO;OQO'}t'XHbCDMHH

:

TABLE310

TABLES
Switch functions in MANUAL Mode. 2-4
Motion Command Summary . . . Forg M iR Sl e gy 3-2
Input/Output Command Slmary o T T e TS 3-3
Gripper Command Summary SR P . . 3-4
System Command SUImary v e e e e e e 3-5

Robot Location Ass:tg:rmnt’f.‘émnd Smmar*y' W i N 3-7
Programming Flow Command Summary

BRIE Bl Bonotionm. .. . o) b e 3RO
Mathematical?mgramingcomand&mmry,,....... 3-11
Extra axis coomands . . . o Sl SR gt oI e 3-12
EditorComandSumary.......‘.........3»13

FIGURES
Defining the workspace - Real World Co-ordinates .. 2-2
Defining the workspace - Joint Motions. 2-2
Orientation of the tool coordinate system t. 8 G sl e 2-3
Arm "READY" Posgition s Lo t. s et e a4 s 47104

CHAPTER 1 — OVERVIEW

1-1 RAPL DESCRIPTION

The SRS-MIA Small Industrial Robot System uses the CRS Plus proprietary
language known as RAPL (Robotic Automation Programming Language). RAPL is an
automation-oriented line-structured language designed to facilitate the
design of applications of robot systems.

RAPL uses english-like commands to provide a user friendly interface for the
operator. Features of the RAPL language include efficient coding structures
to optimize memory usage, alternate command identifiers, and advanced math-

ematical expressions.

1=1

1-2 NOTATIONAL CONVENTIONS USED IN MANUAL
WIWION

Characters shown mast be entered in the order shown.

VAR_NAME Refers to a variable name.

PRG_NAME Refers to a program name.

LOC_NAME Refers to a Cartesian Point location name.

#LOC_NAME Refers to a Precision Point name.

STR_NUM Refers to the string number (1 - 4)

CHAR_INDEX Refers to the character index within a string

[] Square brackets indicate optional arguments or
parameters.

Lo gl The preceding argument may be repeated, but each
repetition must be separated by a comma.

< > Triangular brackets indicate required arguments or
parameters.

! Vertical bar separates options within [] or ©
brackets.

i Comma separates arguments.

+ High level true (input commands)

- Low level true (input commands)

<or> Indicates a carriage return.

& Indicates that a string number follows

i Indicates an implied location name

<ABORT> Indicates pressing <Ctrl-C>, <Ctrl-X> or the ABORT
push-button on the Teach Pendant.

EXAMPLE: APPRO command

[line#] APPRO <LOC_NAME>, <distance>[, <S>]<cry

ITEM DESCRIPTION

w%\g([line#) optional (line is needed for program entry only)

APPRO required parameter (command name)

<LOC_NAME> required location name

" comma must separate all arguments

<distance> required argument

[,<8] optional argument

or> required carriage return

12

1-3 COMMAND ACCESSIBILITY

Three levels of control are available with the SRS-M1 Small Industrial Robot
System. The levels are Interactive {1}, Program {P}, and Manual {M}:

{I} Interactive Used for the execution of single commands
{P} Program Used for the execution of user programs
{M} Manual Used for teaching points through joint moves

from teach pendant

Certain commands are only applicable for certain control modes. Chapter 4
describes each command and identifies their applicable modes of control by
{1}, {F}; andfor (M}.

1-4 RAPL COMMAND FORMAT

All RAPL command lines must use UPPERCASE characters only. RAPL command
lines can contain one or more items: a line number (optional), a command
identifier (required), one or more arguments (optional), and a carriage
return (reguired). The format is as follows:

[line#] COMMAND [<Argumentl>][,...J<er>

Line mumbers are used only when entering a command line into a program.
Entering a valid numeric character at the start of a command line will cause
that line to be inserted into the current program being edited (see Chapter
5). When a number is entered as the first character after the prompt, RAPL
is put into the program line entry mode. Whatever is typed after the number
will be considered an entry into the program currently being edited. Once
this is done, the only way to terminate program line entry is to type a <cr>
to enter the line, or an <ABORT> to terminate without entry.

Valid line numbers are from 1 to 65536. Entering a line number larger than
65536 will result in an entry equivalent to: ([line#] mod 65538) even though
it may be displayed as entered. Entering a line number of 0 will result in
an error.

If no line number is entered and the HELP mode is enabled, RAPL completes
the command when the operator has entered enough characters to identify it.
The number of characters needed depends on whether other commands use the
same first letters. For instance, there is currently only one command
beginning with the letter Y. Thus, entering a Y at the start of a command
line immediately infers the desire to use the YOOMP command. On the other
hand, the SHIFT command is not unique (different from the SHIFTA command)
until it is completed with a space character.

RAPL will also prompt the user for further information needed to complete

the command line (once the command itself is complete) when the HELP mode is
enabled. Three typical command line entries are seen below. In these

1-3

examples the user input is underliped and bold while the RAPL response ia
normal:

>>EHIFT. “<location> BY" :PICK BY <«dX,dY,dZ> :1.0,-.5<cx>
>>AFPRO <location>, PICK., <by a distance of>: 2.5<cr>
>>MNE To <destination> : PIK., <S> for straight: S<ord>

Notice that RAPL prompts for the correct syntax of the command, including
spaces and commas if needed. Arguments, when required, must follow a space,
following the RAPL command. Multiple arguments must be separated by commas
or spaces., Commas are recommended for improved program readability.

In {IInteractive or {M}anual mode, RAPL executes the command line as soon as
it receives the carriage return <cr>. {P}rogram line entry terminates with
the <cr>, but the command is executed onljy at progran run~time.

In {I} or {M}, changing or editing of a command line is permitted only
within the current item (the command and each argument are separate items).
Once an item is terminated (by a space, comma or <cr>), it can no longer be
changed. The only way to edit a command line is to back-space over
information entered previcusly. The ASCII character expected by RAPL is
character TF (hex). In most terminals this character is issued by pressing
the or delete key. In the ROBCOMM package, it is issued from the Back
Space (<BS>) key.

At any time before receiving the carriage return, a command line can be
aborted with an <ABORT> sequence.

When entering a {P}lrogram line, any part of the cammand line can be edited
before the <cr> which enters the line into the program memory.

1-5 NAMING CONVENTIONS

RAPL uses the same naming convention' for variables (var_name), locations
(loc_name) and program names (prg_name).

Names can consist of up to eight alphabetical and numeric characters,
however the first character of the name cannot be a number. For example:

"A1234587° is legal
“A123° is legal
1A is illegal

For improved readability underline characters (_) may be used. For
example:

"PICK_1" rather than "PICK1l-
RAPL allows for both precision point (these store the robot position in
terms of the motor pulses) and cartesian point variables. Precision point
names are identified by the special "#° character located in the first

1-4

¢

character of the name. Only seven additional characters are then allowed.
For example:

"$PICK_1° ie a precision point name
‘PICK_1" 1is a cartesian point name

Both location types can co-exist with the same key name (such as PICK_1 and
#PICK_1) in the location directory.

Another special form of a location name is the TEACH-type location. With the
TEACH mode enabled, pressing the Teach Button on the pendant will store the
current robot pose or location. In this case, the name used will consist of
a five-character Template and a three-digit Counter. If the template entered
is less than five characters, the remaining character spaces will be filled
with "under-score” characters:

Template = LOCN, Counter = 1 LOCN_001
Template = PT, Counter = 7 PT___007
Template = #TRAY, Counter = 73 H#TRAYO073

The last example would be a precision point.

1-6 TOKENIZED FORMAT

The tokenized format of RAPL commands permits program line decoding at a
rate of roughly ten times that of the source format. In this format, a
number (Token) preceded by a slash is substituted for the english language
RAPL command. Due to the speed possible in interpreting the number, RAPL can
determine a tokenized command much more quickly.

Tokenized format is recommended for all programs once they are thoroughly
debugged. The available ROBCOMM software package for use with IBM PC or
compatible computers contains a function to automatically tokenize a

program.

Mixing of Tokenized and non-tokenized commands is possible. Programs may be
written directly in tokenized form, however this makes program de-bugging
more difficult.

Chapter 4 contains a description of the RAPL commands, and the command line
syntax. Also shown is the equivalent tokenized command format. APPENDIX A
containg a short form list of standard RAPL commands, their functions and
tokens .,

-5

CHAPTER 2 - PROGRAMMING CONSIDERATIONS

2-1 PROGRAMMING AIDS

Included in the SRS-M1A Small Industrial Robot System resident RAFL is a
line oriented editor. Refer to Chapter 5 for additional details.

The optional SRSmRAPL/PC, personal computer software development package
(ROBCOMM) is avallable for advanced programming features such as a RAPL
tokenizer and off-line programming.

2-2 HELP MODE

When using the RAPL syntax builder, the programmer need only type enough

characters of a command to ensure that it is unique. The system then prompts
the user for any further information required. Advanced programmers may find
this feature a hinderance an can disable it with the NOHELP or DISABLE HELP

command .

2-3 DEFINING THE WORKSPACE

Refer to figure 2-1 for illustration of the SRS-M1 world co-ordinate
gystem. Note that 0,0,0 is at the centre of the base on the ground plane.
The arrow indicates the positive (+) direction. The positive directions of
the cartesian axes are defined by the “Right-Hand Rule”. Using the fingers
of the right hand, if the index finger is the positive X axis, the middle
finger will line up along the positive Y axie and the thumb along the
positive 2 axis. The orientation of the wrist is defined by three angles:
yaw (orientation about the Z axis), pitch (orientation about the Y axis) and
roll (orientation about the X axis). The Right-Hand Rule applies in
determining the direction of these angles as well. Point the thumb along
the positive axis and the fingers will curl in the direction of positive

rotation.

2~-1

2-3 DEFINING THE WORKSPACE (Continued)

FIGURE 2-1 Defining the workspace - World Co-ordinates

Refer to figure 2-2 for illustration of each of the SRS-M1 five joint
motions. The arrow indicates the positive (+) direction.

2-4 AUTOSTART

The SRS8-M1 Small Industrial Robot System provides the user an Autocstart fea-
ture allowing the robot to be used in production environments without the

use of a terminal.

The autostart sequence is activated when the Auto Start switch is depressed

as the system power is turned on. In that case, the controller searches its

memory for a program called "AUTO_ST . If the program is found, it is
executed. Refer to appendix 'D” for a sample Auto Start procedure.

2-5 TOOL COORDINATE PROGRAMMING

The TOOL command allows the RAPL user to specify the position of the centre
of interest (Tool Centre Point or TCP) on whatever tool the robot is
carrying. The TCP is then the position to which all location measuremernts
are made. Straight line moves for instance, will keep the TCP moving
linearly at a constant speed, the ALIGN command will keep the TCP fixed in
space while re-aligning the wrist pitch to a major axis, and any DEPART or
APPRO commands use the tool axis as the direction of the motion relative to
the end point.

The tool transform is a cartesian location referenced to the tool coordinate
system. This is an orthogonal system with its origin at the centre of the
outer surface of the tool flange. The tool coordinate system moves with the
tool flange. The X axis is normal to that point. Y and Z axes are aligned
with the robot Y and Z axes when the robot is at the READY position (see
Figure 2-3). The tool coordinate angles are defined by three angles: yaw
(orientation about the Z axis), pitch (orientation about the Y axis) and
roll {orientation about the X axis).

\‘ ‘.

ARM AT READY Post

FIGURE 2-3 Orientation of the tool coordinate system.
2~3

2-6 MANUAL CONTROL

Manual mode allows the operator to move the robot using the "TEACH
PENDANT" . RAPL provides two modes of manual control. The first is the JOINT
MANUAL mode. In this mode, the 8 toggle switches on the teach pendant, the
control each robot joint independently. This is the only possible MANUAL
mode until the robot has been homed.

The second mode, which is available after the robot is homed, is CYLINDRICAL

MANUAL mode. In this mode, joints 2 and 3 are synchronized so the tool
flange will move in a purely radial or vertical (Z axis) direction. This

simplifies arm positioning and location teaching.

1f fewer than 5 axes are selected, two additional functions are available on
the teach pendant during MANUAL mode:

ALIGN: Switch #7 is equivalent to entering "ALIGN" at the keyboard. RAPL
will re-position the robot so that the tool centre point is at the same
position as before but the tool X axis is aligned with the nearest major
axis, vertical or horizontal (see ALIGN in CHAPTER 4).

LIMP: Switch #8 is equivalent to entering LIMP or NOLIMP at the keyboard,
depending on which direction the switch is pushed. This opens the servo-loop
g0 a user can move the robot by hand while the controller keepe track of the
arm’s position. This simplifies rough positioning.

The function of the switches under various situations is seen in TABLE 2-1.
For more information, read the MANUAL, ALIGN, LIMP and NOLIMP commands in
CHAPTER 4.

SWITCH # JOINT mode CYL mode JOINT mode CYL mode
5-faxes bH-Baxes 7-8axes T - B axes

1 JOINT 1 JOINT 1 JOINT 1 JOINT 1

2 JOINT 2 RADIUS JOINT 2 RADIUS

3 JOINT 3 VERTICAL JOINT 3 VERTICAL

4 JOINT 4 JOINT 4 JOINT 4 JOINT 4

5 JOINT 5 JOINT 5 JOINT 5 JOINT 5

6 - - JOINT 6 JOINT 6

7 ALIGN ALIGN JOINT 7 JOINT 7

8 LIMP/NOL. LIMP/NOL. JOINT 8 JOINT 8

TABLE 2-1 Switch functions in MANUAL Mode.

2-4

CHAPTER 3 - SUMMARY OF RAPL COMMANDS

3-1 INTRODOCTION

RAPL, contains several different types of commands. This Chapter provides a
quick overview of those commands seperated by type. Prior to using any
commands from this list, refer to chapter 4 for the correct syntax and
function of each command.

3-2 MOTION COMMANDS

Motion Commands can support up to eight axes of motion control. The robot is
programmed to move using the SPEED command at a percentage of the maximum
gpeed of the robot. z

There are three types of robot motion programmable through RAPL: Joint
interpolated, Straight-line, and Path motion. Most commands will use Joint
Interpolated motion (all joints commanded start and stop at the same time).
The JOG command is always a straight line move while other commands may use
the straight line [S] argument (MOVE, APPRO, or DEPART). In this case, the
robot moves using five axis straight line interpolation. In Path motion, the
robot creates an eight-axis cubic spline function through a series of
programed locations. The path commands are CTPATH, GOPATH, and CPATH.
Constant tool-tip velocity for all path moves is set up using the "ENABLE
CARTVEL" command.

An optional software switch provides a faster motion type for joint
interpolated moves. This is what is called the SLEW mode and is turned on by
the "ENABLE CONSTVEL" command. This mode makes joint interpolated moves much
less smooth, but decreases the time required for longer moves. It should not
be used for normal motions, but may be used to decrease cycle time if, for
instance, long sweeps of joint 1 are reguired.

Using motion commands LOCK and UNLOCK, the robot controller can control two
fully independent machines. One or more axes can be locked together to
perform one coordinated motion.

Note that a motion command executed in MANUAL {M} mode will place operator
back in Interactive {1} mode.

On power up of the robot controller before the robot has been homed, no
absolute motion command, or command which references the cartesian work-
space (such as JOG), will be permitted. Any attempt to issue such a command
will cause the controller to display the error message "041 NOT HOMED". The
relative motion commands JOINT and MOTOR may be used before homing the
machine. Take extreme care with these commands (and MANUAL moves) before
homing as the joint limit checking does not function until the HOME
procedure has been completed.

3-2 MOTION CCMMARDS (Continued)

Once the robot has been HOMED, all motion commands are tested for movement
outside of software limits prior to the robot starting the motion. These
limits are defined by the kinematics of the robot structure. The software
limits change depending on the orientation of the robot arm. For example,
joint 3 can provide a range of motion which is plus or minus 100 degrees
added to the angle of joint 2.

ALIGN Align the tool with the nearest major axis.

APPRO Move the robot to an "approach” location.

CPATH Execute a continuous path.’

CTPATH Program a continuous path comprised of "teach”
points.

DEPART Move the robot away from its current location.

FINISH Flag instruct a motion command to complete.
motion prior to decoding the next program line.

GAIN Change the positional gain of the servos.

GOPATH Execute a continuous path programmed with CTPATH.

HALT Stop all motion or sets up "feed-hold” on input.

HOME Initialize robot position registers.

JOG Move robot by a cartesian increment in a straight
line.

JOINT Move a single joint by an angular displacement

LIMP Disengage positional servos

LOCK Prevent selected joints from motion

MA Move all 5 joints to an abeolute radian value

MI Move all 5 joints by an incremental radian value

HOTOR Drive selected motor by a selected number of
pulses I

HOVE Move the robot to a specified location

NOLIMP Re-engage positional servos
READY Move arm to "READY " position.
SPEED Set speed of robot motion
ONLOCK Allow selected joints to move

TABLE 3-1 Motion Command Summary

3-2

3-3 INPUT/OOTPUT COMMANDS

RAPL input/output commands permit the robot to interface to a number of
different external devices. RAPL can access digital input and output ports,
dual RS232 communication channels, and optional analog inputs.

The digital inputs can be used to sense switch closure signals in the work-
place, providing logical decisions for use in program flow control. The
digital outputs can be used to control external equipment.

The Dual serial commmication channels provide input and output to a video
digplay terminal, host computers, serial printers or any other serial
device. In standard configuration, they conform to the RS5-232 standard.
Optionally, they can be converted to RS5-422.

The optional analog inputs can provide feedback from sensor elements in many
robot applications.

ACOT Output analog voltage to selected charmel.
ANALOG Read selected analog channel.
AR Enable or disables arm power.

CONFIG Set Configuration of the RS232 ports.

DRVICE Select the RS232 port for use.

FLASH Set Flash Interval of light on teach pendant
panel.

IFPOWER Check status of arm power.

IFSIG Conditional statement based on status of selected
input(s).

IGNORE turn off auto-interrupt feature of robot.

INPUT input data into user program during run time.

NOFLASH stop flashing of light on teach pendant panel.

ONPOWER wait for arm power to come on.

oNSIG Turn on auto-interrupt feature of robot.

coTPoT Turn on selected output(s).

PRINT Output user information to printer port.

PRINTI Output variables in an integer format to printer
port.

PRINTV Output variables to printer port.

SERTAL Display the RS232 port status.

TRIQGER Change the state of a digital output in path move.

TYPE Display user information on video display.

TYPKI Display variables in integer format on video display.

TYPRY Display variables on video display.

WAIT Wait for a selected condition of an 1/0 port.

TABLE 3-2 Input/Output Command Summary

3-3

3-4 GHRIPPER COMMANDS

The SRS-M1A robot is equipped for control of a pneumatic, servo (electric)
or electromagnetic gripper.

The pneumatic gripper is controlled by the OPEN and CLOSE commands. The air
pressure must be manually regulated to provide the desired gripping force.

The servo gripper is controlled in the poaition mode by the GRIP command., It
can be opened or closed in the force mode using the OPEN and CLOSE commands.

The magnetic gripper is controlled by the MAGGRIP command. Gripping force of
the electromagnetic gripper is set as a percentage from 1 to 100. The
actual gripping force depends on the gain of the magnetic amplifier and the

coil type.
CLOGK Close gripper (at specified force if SERVO).
GRIP Change position of Servo-Gripper fingers.
MAGGRIP Select gripping force level for Magnetic
gripper.
CPEN Open gripper (at specified force if SERVO).
TOOL Specifie a tool centre point.
WGRIP Store the current finger spacing of the SERVO
@ gripper as a variable.
See % /

TABLE 3-3 Gripper Command Summary

: 4- 144

3-5 SYSTEM COMMANDS

The RAPL system commands provide general program manipulation, memory
allocation, system timer clock, controller status, and the human interface.

Elementary program line editing commands allow the programmer to alter the
contents of a program in the memory.

RAPL supports a variety of memory oriented commands intended to provide the
user with a working memory space which can be tailored to the specific need.

RAPL also has a HELP feature intended to aid inexperienced users of the
system. This assistance tskes the form of a "syntax builder”. As the command
is formalated on the terminal, the operator will only enter encugh
characters needed to make the command unique before the controller spells
out the rest. ' ‘

2 List Commands.

3 Documentation statement.

ALLOC Partition and clear robot memory.
ooPy Duplicate program.

DELAY Provide a time delay.

DELETE Delete program.

DIR List program names that are resident in memory.
DISARLE Turn off software "switch”.

EDIT Enter line editor or create a new program.
ENABLE Turn on a desired software "switch”.

FREE Display user memory status.

HELP Turn syntax-building feature on.

LISTP List program to a selected device.

~ MANUAL Enable the teach pendant for movement of robot.
NEW Clear user memory. . '

NEXT Single step through program.

NCHELP Turn syntax building feature off.

NOMANUAL: Disable the MANUAL mode.

NOTEACH Disable the teach push-button on teach pendant.
NOTRACE Disable TRACE mode.

PASSHORD Permit access to Monitor Level Commands.

RON Execute a program from memory.

STATUS Display operating status of robot.

TEACH Enable the teach pushbutton on teach pendant.

TIME Read the system timer clock.

TRACE Line numbers are displayed on terminal as executed.

TABLE 3-4 System Command Summary

3-5

3-6 ROBOT LOCATION ASSTGNMENT

One of the most useful capabilities of RAPL is its ability to deal with
named robot locations. There are commands which are used to inform the
operator of the robot’s current location, others to input and modify
locations and others to extract dimensional information from location data.

RAPL deals with locations in either inches or millimeters. A switch must be
get on the mother board of the RAPL controller to change from one to the
other. Changing without re-defining locations is dangerous and can lead to
collisions.

There are eight elements used to describe each robot location. The cartesian
(XYZ) location of the tool point is defined by its location in space
referenced to the centre of the robot base (unless an OFFSET command has
been issued). The orientation of the wrist is defined by three angles: yaw
(orientation about the Z axis), pitch (orientation about the Y axis) and
roll (orientation sbout the X axis). In addition the six coordinates
defined above, RAPL can store the position of the robot on a linear track or
on an X¥-Y gantry in a named location.

The component extraction functions are used to read dimensions from a
cartesian location and store the desired component as a variable. The value
is returned in real format. The name of the destination variable must be
specified for the extracted component.

The ability to define a location in terms of a remote coordinate system may
also be useful. This is performed by the OFFSET function. On the other hand,
the TOOL function permits changing the tool point at which the robot works
if the physical tool changes.

N

3-6 ROBOT LOCATION ASSIGNMENT (Continued)

The pitch coordinate is stored as a variable
name .

Define a location as the current actual robot
position.

Extract a defined component from a stored location.
Delete a stored location.

Define a location as the current commanded

robot position.

List any or all locations stored in memory.

Set up the sixth and seventh axes as an X-Y gantry.
The yaw coordinate is stored as a variable name.
Redefine the base coordinate.

Define a location.

Equate a new location with an existing location.
Shift a location by an incremental amount in

X, ¥,2.

Shift a location by an incremental amount in
any or all coordinates.

The roll coordinate is stored as a variable name.
Set the sixth axis to either an X or Y track.
Display current robot commanded position (Joint and World
coordinates).

Continually display actual current robot
position (Motor coordinates).

Continually display actual current position of
the robot extra axes (Motor coordinates).
Display the robot actual position.

Continually display the commanded robot
position (Motor coordinates).

Continually display the commanded position of
the extra axes (Motor coordinates).

Display the robot next end point.

Continually display the robot position error
(Motor coordinates).

Continually display the position error of the
extra axes. (Motor coordinates).

Permit numbered locations to be accessed using
a TEACH mode template. Used for implied location
access.

The X coordinate is stored as a variable name.
The Y coordinate is stored as a variable name.
The Z coordinate is stored as a variable name.

. . TABLE 3-5 Robot Location Assignment Command Summary

3-7 PROGRAM FLOW FUNCTIONS

RAPL, program flow functions permit conditional and un-conditional branches
within programs. Line number destinations may be defined by stored variables
which permit "case” type programming.

ABORT Terminate program execution and stop motion.
GOsuB Control ie passed to specified sub-program.
GoTo Un-conditional branch to a line number.

I¥ Branch if variable expression is true.
IFPOWER Branch on status of arm power.

IFSIG Branch on status of selected input(s).
IFSTART Branch on status of autostart switch.
IFSTRING Branch on status of a string comparison.
OHEER Trap an error condition.

ONPOWER wait for arm power to be turned on.

ONSIG Turn on auto~interrupt feature of robot.
ONSTART Wait for auto-start switch to be pressed.
PAUSE Halt program flow until the PROCEED command.
PROCEED Continues program flow after a PAUSE command.
RETRY Following an error correction, this command will retry

the line.
RETURHN Returns control to calling program.
RON Start a program or repeat it a number of times.
sTop Command to terminate a program.

TABLE 3-6 Programming Flow Command Summary

3-8 STRING FUNCTIONS

The RAPL language can manipulate up to 4 text strings. The strings are
identified by the special character &, followed by a number 1 to 4. Theae
strings can be up to 32 characters in length. Strings are bounded by the
gingle quote marks when they are being assigned. A string can conasist of any
printable character, or even any decimal byte value. For instance:

>»>1 &1 = “Hello’

assigns the string Hello into string 1. If the programmer wished to sound a
bell after printing this string, he could encode the ASCII bell character,
that has a decimal value of 7 into the string by doing this:

>>»! &1 = "Hello\7’

The back-slash character tells the string interpreter that a decimal code is
to be placed in the string. Carriage returns and line feeds can be placed
into the strings using this technique. A carriage return is a decimal value
13, while a line feed has a value of 10.

»>! &1 = "Type this, then a new line\13\10°
>TYPE &1
Type this, then a new line

>

Strings can be concatenated, using the standard assignment command !. As an
example, type in the following sequence at the terminal:

‘Hello®
> &2 = 7 World’
> ! &3 = &1 + &2
>>TYPE &3

“Bello World”

»>

>>»i &1

o ou

The string number appearing on the left side of the assignment statement
cannot appear on the right side in the same statement.

As shoun in the above example, the TYPE command can be used to display a
string. The operator can also enter a string using the INPUT command as
shown here:

>»>INPOT &1

3-8 STRING FONCTIONS (Continued)

The string entry will be terminated when the operator enters a carriage
return. The carriage return will not be part of the stored string value.

Special commands exist that permit encoding of variable-type data into a
string, or decoding data from a string. This is useful when interfacing the
robot to devices that transmit data in a serial fom, or which require
special serial commands for operation.

cor Remove a portion of the string.

DECOR Decode a data variable value from a string.
ENCODE Encode a data variable into a string.
IFSTRING Compare two strings and branch on result.
PASTE Paste a new portion of text into a string.
STRPOS Return the character location of a sub-string.

TABLE 3-7 RAPL String Functions

3-10

3-9 MATHEMATICAL FONCTIORS

RAPL contains a set of commands which can be used to perform mathematical
functions on variables stored in memory. The four elementary arithmetic in-
gtructions are supported. A library of advanced mathematical instructions
are also included.

The advanced mathematical package offers the user a range of extended func-
tions which can be used in the control program. These functions include
trigonometric functions and the square root function. The trig functions
provide results in either radians or degrees. Ubtaining an answer in degrees
is useful since they can be directly used in location assignments, such as
the SHIFTA command. Radians are useful in determining locations from purely
mathematical calculations.

The destination for all mathematical functions is a defined variable name.
The arc tangent function is particularly useful, since it provides the angle
defined by the two separate elements X and Y. The result is an angle defined
by the relationship of ANGLE = ATAN(Y/X).

! Assign an numeric value to a variable name.
ACCS Arc cosine.

ASIN Arc sine.

ATAN Arc tangent.

s Cosine.

VAR Delete a variable name.

LISTY List variables stored in memory.

SIN Sine.

SQRT Square root.

TAN Tangent.

TABLE 3-8 Mathematical Programing Command Summary

3-11

3-10 EXTRA AXIS COMMANDS

The SRS-M1A robot controller and the RAPL language provide control of up to
eight axes: five are normally used for the M1A arm, and the others may be
used to control up to three different servo axes. Two common applications of
these extra axes are mounting the robot on a track, and mounting it on a

gantry, suspended from above.

To set up the software for use with extra axes, several monitor level :

commands are used. These are included here for completeness, but are fully
documented only in the SRS-M1A/TECH technical manual. Operation of the axes
is controlled using "standard” RAPL commands.

In each case, the joint number in the extra axis commands will be numbered 6
through 8. Joints 1 through 5 are robot jointe and are not legal inpute to
these commands.

MONTTOR FUNCTIONS:

@MAXVEL, [Enter the maximum possible encoder speed for axis.
@XLINMITS Enter joint limits for extra axes.

@YPULSES Enter number of pulses per turn of extra axis encoder.
@RATIO [Enter transmission ratio for extra axis.

STANDARD RAPL COMMANDS:

JOINT Command motion for an axis - extra or robot.
GANTRY Set up axes 6 and 7 as X and Y gantry axes.
LOCK Lock an axis against motion commands.

TRACK Set up axis six as a track - X or Y axis.
DRLOCK Pernit motion of a formerly locked axis.
XCAL Calibrate an extra axis.

YHOME Home an extra axis.

XREADY Move an extra axis to its Zero position.
XZERO Set the axis current position to zero.

TABLE 3-9 Extra axis commands

3-12

3-11 LINE EDITOR

BAPL provides the programmer with a line editing feature which can be used
to create or modify existing programs. If a program name is provided, then
that program becomes the object of all future edit commands until it is
changed. A program cannot be deleted from within the edit mode.

To shorten the development time of a program, RAPL allows the programmer to
insert program lines while outside of the standard EDIT mode. While in the
{1} or {M} control mode, entering a number before a command identifier will
automatically place the following line into the program last edited. No
syntax check is performed on the line before it is inserted. A valid line
number must be entered, and the target program for the edit mode must have
already been defined.

A program line must always start with a line number. A line number is any
valid number from 1 to 65535. A line is inserted into a program simply by
typing the line number, followed by a command statement. Once a carriage
return is entered, the line is complete, and it is entered into the program
in the correct numerical sequence. The program memory is updated to reflect

the change.
An existing line number cannot be inserted without being deleted first.

Copy Copie program line to another program line.
Delete Delete program line.

End Exit Line Editor.

Insert Insert program line.

List Display program line.

Hove Move a program line to another location.

TABLE 3-10 Editor Command Summary

CHAPTER 4 - RAPL. COMMANDS

4-1 INTRODOCTION TO COMMAND LIST

This Chapter contains an alphabetical list of RAPL commands describing their
syntax, function, modes of operation, any associated hazards, and examples
of command usage.

Source: 2
Tokenized: /000
DESCRIPTION:

Displays RAPL commands and their numeric tokens. Monitor level commands will
be include in the display only if the correct PASSWORD has been entered.

APPLICABLE MODES:
{1}, (M}
EXAMPLE:
1. Display RAPL commands.
Enter:
»>HKer>
the response:
000 7727777 001 ALIGN 002 APPRO 004 DEPART 005 JOG 006 JOINT
ete.
CROSS-REFERENCE :

1

FORMATS:
Source: [Line#] ; [Message]
Tokenized: [Line#t] /008 [Message]

This command indicates a coment statement. These can be used throughout
programs to provide documentation. A space must always follow the ; command.

Although the ; statement is not an active command, it does use memory space,
and slows down the operation of the robot program slightly as the comment
line must be scanned just like any other. Comments should be used in a
concise fashion in order to reduce both effects.

APPLICABLE MODES:

{P}

EXAMPLE:

100 ;3 This is a comment.

CROSS-REFERENCE :
RAPL COMMANDS: none

OTHER CRS Plus Publications: none

!
FORMATS :

Source: [Line#] ! <&Nuom>}<Var nsme>=<8Nmn> | "String” |<argl>[+]-{%*;/]{arg2]
Token.: [Line#] /070<&Num> | <Var_name>=<&Num>| "String’ |<argl>(+|-{*|/]larg2]

DESCRIPTION:

Permits entry and modification of variable or string data. For variables,
the four standard arithmetic operations are supported: “+,-,%,/". Only one
operation can be performed per line. The right hand side arguments can be
variable references or explicit constant values. Variable references can be

preceded by a plus or minus sign as a unary operator. The assigned value
will be treated accordingly. :

If the variable on the left hand side of the assignment is previocusly
undefined, a new variable will be created with the value of the operation.
If a variable is used on the right side that is previocusly undefined, a
value of 0 is assigned to that variable. Spaces between arguments in the
expression are optional.
A special form of this command is useful for incrementing or decrementing
variable counters. The command: ! C+ will increment the variable C by one.
Similarly, ! C- will decrease the value of C by one.
APPLICABLE MODES:
{I},{M},{P}
EXAMPLES:
1. SBet String #1 to "Transferred WIDGETS :

5>) 81 = *Transferred WIDEETS'
2. Set string #2 to String #1:

o' 82 = &1
3. A is increased by one to 3:

>t A
4. STACK_S is now equal to -A (-3) multiplied by 4:

DISITAK S =A% 4
CROSS~REFERENCE :

RAPL COMMANDS: LISTV, DVAR, IF are variable related commands. Also
see string commands

FORMATS :
Source: [Line#] ABORT
Tokenized: [Line#] /071
DESCRIPTION:
The ABORT statement is an abrupt method of ending a program. If any motion
is in progress, it will be stopped immediately. This command is the software
equivalent of the ABORT pushbutton on the teach pendant.
APPLICABLE MODES:
{P}

CROSS-REFERENCES :

& RAPL COMMANDS: HALT, PAUSE, STOP are other mesns of stopping the
robot and/or a program

FORMATS :

Source: [Line#] ACOMP <LOC_NAME> , <VAR_NAME>
Tokenized: [Line#] /065 <LOC_NAME> , <VAR_NAME>

DESCRIPTION:

The A component (azimuthal or pitch angle) of the specified location is
extracted and stored as "VAR_NAME". The angle is stored in degrees.

APPLICABLE MODES:
{1}, {M}, {P}

RAPL COMMANDS: XCoMP, YCOMP, ZCOMP, OCOMP, TCOMP, COMP

FORMATS:

Source: [Line#t] ACOB <value>,<R!D>,<VAR _NAME>
Tokenized: [Line#t] /128 <value>,<R!D>, <VAR_NAME>

DESCRIPTION:

Calculates the angle associated with the value entered. The result is stored
in VAR_NAME in either radians <R> or degrees <D>.

{I},{M},{P}

CROSS-REFERENCES:
RAPL, COMMANDS: ASIN, ATAN, SIN, COS, TAN

4-7

FORMATS :
Source: [Line#] ACTUAL <LOC_NAME>
Tokenized: [Line#] /162 <LOC_NAME>

DESCRIPTION:
Read the actual position of the robot arm, and store the information as an
entry in the location table in memory.

This command differs from the HERE command in that it reads the actual
position including any positional error in the arm. Thus, a move to a
location taught with ACTUAL will not move to the same location as the one
taught: it will have its own error associated with it. ACTUAL is most useful
for determining current positional error so that compensation may be made.
Refer to the example below.

APPLICABLE MODES:
{1}, {M}, {P}

EXAMPLE:

1. A section of a program to determine the vertical position (Z-axis) error
at a programmed location (POS1) is as followus:

1000 MME POS1
1100 FINISH

1200 ACTUAL ERRPOSL

1300 ZOOMP POSL,G00D_Z

1400 ZCOMP ERRPDS1,BAD_Z

1500 ! Z_ERR = BAD_Z - GOOD_Z
1400 ...

ALIGN

FORMATS :

Source: [Line#] ALIGN
Tokenized: [Line#t] /001

DESCRIPTION:

This command provides the user with a method of aligning the tool flange
either horizontally or vertically. Essentially, it adjuste joints 4 and 5
so that the tool axis points either horizontally, or vertically downward or

upwards. The command is useful in the maniial mode, when it is essential to
quickly orient the tool correctly.

The manual mode has a hardware version of this command built in. If just 5
axes are installed in the system, switch 7 on the teach pendant performs the
equivalent of:

NOMARUAL
ALIGN
MANUAL

This feature requires that there not be a command partially entered through
the terminal when the switch is depressed.

{I},{M},{P}

CROSS-REFERENCES:
RAPL COMMANDS: MANUAL

4-9

ALIOC
FORMATS :
Source: ALIOC
Tokenized: /018
DESCRIPTION:

This function clears and re-partitions the robot memory. This can be done
with [A] Automatic or [N] Non-automatic partitioning.

If the [A] option is selected, then the memory is automatically divided
according to a formula leaving 16 programs in the program table and dividing
the remaining memory into 12% variable space, 38% location space and 50%
program space. If the [N] option is used, the programmer will be asked to
specify the gpace to be allocated to the program, variable and location
tables as well as "Reserved” memory which is used for PATH storage if an
expansion memory option has been installed.

WARNINGS:
1. The user memory is always cleared after the ALLOC command is issued.
2. A program table item takes 12 bytes, a location 42 bytes, and a variable

14 bytes of storsge. An error will result if not enough memory is
available for the user’s desired allocation.

APPLICARLE MODES:
{1}, {M}
EXAMPLE:

1. To manually allocate memory (20 m, 30 variables, 50 locations,
leaving 5832 bytes program), Enter:

>OALLOCLer>

Are you Sure -~ (this will erase user memory)? Y

Total available memory: 08592

Auto/Noautor N<or>

Programs, # Variables, # Locations, # reserved bytes:
20,30,50,0¢cr>

CROSS-REFERENCES :
RAPL COMMANDS: FREE, CTPATH, GOPATH, NEW

OTHER CRS Plus Publications: SRS-APP/PATH, SRS-M1A/TECH, SRS-RAM/16PB,
SRS-COMBO.

4-10

FORMATS : |
Source: ['I.lmeﬁ} ANALOG <ingurt#> , <VAR_NAME>
Tokenized: [Line#f] /083 <input#>, <VAR_NAME>

DESCRIPTION:

I
Up to nine analog input channels are available on the SRS-MIA robot system
using the SRS-ANAL/0OBI option. The SRS-COMBO/32 option increases the number
of channels by 18 25.

Analog Input channel #9 is the speed selector on the teach pendant. This ‘
input can be used for purposes other than MANUAL speed. No expansion option |
is needed to use tliisfeattm.

For all channels of analog in, accuracy of the converters is one part in 256
(8 bit resolution) referred to a voltage of 0 to 45 volte. The input value
is an integer ranging between 0 and 2556 (255 = 45 Volts). When reading the
analog channels, a variable name is used to specify the destination for the
data.

APPLICABLE MODES:
{1}, (M}, {F}

EXAMPLE:

1. This example inputs an analog value from the teach pendant speed
selector and stores the value as the variable ANA_1. This value is then
converted into la speed setting as a percentage of full (100%) and used
to control the gpeed of subsequent motion.

sommq, 9
Bl | ANA G = ANA 9 / 255
82 | VEL = 100 X ANA_9

84 SPEED VEL

|
p—
G

OTHER CRS Plus Publications: SRS-MAN/COMBO, SRS-MAN/ANAS

4-11

I A = Awn/{ﬂc £ &)

FORMATS :

Source: [Line##] AQUT <CHAN_NOM>, <VAR _NAME>

Tokenized: [Line##] /083 <CHAN NUM> , <VAR NAME>
DESCRIPTION:
This command will send a digital value to the selected analog output port.
The analog output ports have 8 bit resolution. This function is available
only with the expanded 1/0 option (SRS-COMBO/32).

There are two analog ocutput ports available with this expansion option.
These are referred to as 1 and 2 in the <CHAN_NOM> argument.

APPLICARLE MODES:
{1}, {M},{P}

CROSS-REFERENCES :
RAPL COMMANDS: ANALOG
OTHER CRS Plus Publications: SRS-MAN/ANA8S, SRS-MAN/COMBO

4-12

FORMATS :
Source: {Line#] APPRO <LOC_NAME>, <distance>[,S]
Tokenized: [Line#] /002 <LOC_NAME>, <distance>[,S]
DESCRIPTION:

The APPRO command moves the robot to a position which is the programmed
distance back along the tool axis from the stored location "LOC_NAME".

A new location is defined in the direction of the tool axis defined by
"LOC_NAME" coordinates and orientation, but offset in the direction of the
tool axis by “"distance”. It then moves the robot to that new location. The
location may either be a cartesian point, or a precision point. A positive
"distance” implies that the tool will stop in front of the specified
location.

The APPRO command enables the programmer to define an approach point
without using extra memory resources.

The straight line [S] specifier defines whether or not the approach should
be made in a straight line or not. Typically, in an insertion operation, a
non- straight approach is made to the approach point, then a straight move
command is used to move to the location required.

APPLICAELE MODES:
{1}, (P}

1. Approach point PICK_1 stopping +2 inches away. Decrease speed to 20,
then move to point PICK_1 in a straight line and close the gripper.

100 SPEED 100
110 AFFRD PICK_1,2
120 SPEED 20

130 MOVE PICK_1,S
140 FINISH

150 CLOSE

2. Approach point PICK_1 in a straight line stoppling +2 inches away.

110 APPRO PIOK_1,2,S

CROSS-REFERENCES
@
RAPL COMMANDS: DEPART, TOOL, MOVE

FORMATS :

Source: [Linett] ARM <ON!OFF>

Tokenized: [Line#] /142 <ON|CFF>
DESCRIPTION:
Sets the status of the Arm Power Relay (APR). If the "ON” parameter is
chosen, the APR is enabled and pressing the ARM POWER switch on the front
panel will then turn the power on.
If the arm power is on, the ARM OFF command will disable the APR and the arm
power will be turned off. This will result in an ARM POWER error. The switch

on the panel will be disabled until the ARM ON or ENABLE ARM command is
issued.

APPLICABLE MODES:

{I},{M},{P}

CROSS-REFERENCES :
RAPL COMMANDS: ENABLE, DISABLE, LIMP, NOLIMP
OTHER CRS Plus Publications: SRS-M1A/TECH

4-14

ASIN

EORMATS

Source: [Line#] ASIN <value>,<R!D>,<VAR NAME>
Tokenized: [Line#] /127 <value>,<R!D>, <VAR_NAME>

DESCRIPTION:

Calculates the angle associated with the value entered. The result is atored
in VAR_NAME in either radians <R> or degrees <.

APPLICAHLE MODES:
{1}, {M},{F}

. RAPL COMMANDS: ACOS, ATAN, SIN, COS, TAN

ATAN

Souree: [Line#t] ATAN <> ,<Y>,<R}D>,<VAR NAME>
Tokenized: {Line#t] /129 <X>,<Y>,<RiD>»,<VAR _NAME>

DESCRIPTION:

Determines the angle assoclated with the expression of angle = ATAN(Y/X).
The angle will be determined in the range of 0 to 360 degrees, or 0 to 2 pi
radians.

APPLICABLE MODES:
{1}, {M}, {F}

RAPL COMMANDS: ACOS, ASIN, SIN, COS, TAN

4-16

Source : [Line#] CLOBE [,torque]

Tokenized: [Line#] /038 [,torque]
DESCRIPTION:
With a pneumatic gripper installed, this command will close the gripper by
switching the solenoid in the arm. With the SERVO GRIPPER installed, it will
close the gripper at a specified torque. If no torque argument is specified,
then the previocus torque value (entered with either the OPEN or CLOSE
command) will be used.

When in Manual mode the gripper can be closed by use of the gripper switch
on teach pendant.

WARNING

1. The OPEN, CLOSE and GRIP commands have been re-structured with RAPL
version 4.10 and greater. Older versions of RAPL used the OPEN and CLOSE
commands only with the air gripper option. The OPEN and CLOSE commsnds
now control the servo gripper in the force mode of operation. This
change may lead to compatibility problems with programs written for RAPL
versions prior to 4.10.

APPLICABLE MODES:
{1}, {P}

EXAMPLE:
1. To close an air gripper:
2>0L08E<or>
2. To close the SERVO gripper at a torque of 60% of full:

> 08E 60<or>

CROSS-REFERENCES :
RAPL COMMANDS: CPEN, GRIP, @@GTYPE
OTHER CRS Plus Publications: SRS-MI1A/TECH, SRS-MAN/SGRIP

FORMATS:

Source: [Line#] COMP <COMP_NUM> , <LOC_NAME> , <VAR_NAME>

Tokenized: [Line#t] /181 <COMP_NUM>, <LOC_NAME>, <VAR_NAME>
DESCRIPTION:
This command replaces the series of commands XCOMP, YOOMP, ZCOMP, OCOMP,
ACOMP, TCOMP and adds the ability to extract components from precision
points as well. There are also two extra components associated with any
cartesian location in the case when a TRACK or GANTRY is specified. In this
case, the position of these extra axes can also be extracted and stored in
a variable.

A notable difference in the COMP command is that angular cartesian
component values will be extracted in radians, while the ACOMP, OCOMP and
TCOMP extract degree values.

APPLICABLE MODES:
{I1},{P}, {1}

EXAMPLE:

1. Extract the Z component of a location:
>>00MP 3,POINTL,PL Z<crd>

2. Extract the Joint 5 component of a precision point:
2O00MP 5,#KIT_024,TK24<cr>

3. Extract the X Gantry component of a cartesian location (valid only after
execution of the GANTRY command):

>>00MP 7,PIOK_G1,X_6_POS

RAPL, COMMANDS: XCOMP, YCOMP, ZCOMP, OCOMP, ACOMP, TCOMP

4-18

CONFIG

HORMATS :

Source:

[line#] CONFIG <devi>,<baud>, <parity>,<iidata>, <lstop> , <handshake> , <echo>
Tokenized:

[line#] /110 <devi#>,<baud>, <parity>,<fidata>, <#stop>, <handshake> , <echo>

DESCRIPTION:

This command alters the configuration of the serial ports (DEVICE #0 and
DEVICE #1) to match other equipment requirements. The following are the
only allowable values for each argument:

Device Number: 0,1

Baud rates: 50,75,110, 135, 150,200, 300,600, 1200, 1800, 2400, 4800,
7200, 9600,19200

Parity Check: [(E] Even, [O] OGdd, [N] None

Data Bits: 5,6,7,8

Stop Bits: (1] 1 bit, [2] 1 1/2 bits, [3] 2 bits

Handshake [R] RTS/CTS, [X] XON/XOFF, [N] None, [B] Both

(E] ON, [N] OFF

Devices #0 and #1 are initialized on start-up to the configuration last
specified by the user.

WARNINGS:

When issuing this command, all argtmm migt be entered and all must be
separated by commas.

APPLICABLE MODES:
{1}, {M},{P}
EXAMPLES:

1. This example will set the configuration of device #1 to 1200 baud, even
parity, B data bits, 1 stop bit, XON/XOFF handshake, and no echo:

>>OONFIG 1,1200,E,8,1,X,Nccr>

OTHER CRS Plus Publications: SRS-M1A/TECH

4-19

FORMATS:

Source: OOPY <OLD_NAME> , <NEW_NAME>
Tokenized: /099 <OLD_NAME> , <NEW_NAME>

DESCRIPTION:

Often it is necessary to utilize a modified version of an existing program.
In order to use the old program for this purpose, and yet retain this
original version, it is necessary to duplicate the program using this COPY
command

WARNINGS:

Errors will result if there is insufficient memory spaoe' to contain the new
program.

APPLICABLE MODES:

{I},{M}

EXAMPLE:
1. Copy program TEST to a new file called TEST1.

>>C0PY TEST, TESTi<cr>

FORMATS:

Source : [Line#t] CO6 <angle>,<R{D>,<VAR_NAME>
Tokenized: [Line#] /125 <angle>,<R}D>,<VAR_NAME>

DESCRIPTION: ‘

Will determine the Coasine of the given angle and store result in radians <R
or degrees <D> as a VAR_NAME.

RAPL COMMANDS: SIN, TAN, ACOS, ASIN, ATAN

4-21

CPATH
FORMATS :
Source: [Line#] CPATH <LOC_NAME>{ ,LOC _NAME,...]
Tokenized: [Line#] /163 <LOC_NAME>[,LOC_NAME,...]
DESCRIPTION:

This command permits the robot to move through a random series of points. In
this command, unlike the CTPATH command, the locations specified in the
argument list can be any arbitrary location. The location must be defined,
and all the locations in the list must be either cartesian locations, or
precision points. No mixing is allowed. Up to 16 locations are permitted in
the argument list. ;

Triggers will be activated during the path execution if the TRIGGER table

includes activities at any of the locations specified in the CPATH argument
string and the TRIGGER flag has been ENABLED.

WARNINGS :

No two consecutive locations in the list may be identical. This will
produce a mathematical error and processing will be aborted.

If more than 5 axes are used in the controller, precision points must be
used.

APELICABLE MODES:
{1}, {P}
EXAMPLE:

1. To move through a series of points without stopping. Any single location
can be used, so long as it does not appear consecutively.

>»{PATH A,B,C,B,C,A,B

2. 'This will produce an error, since the location B appears consecutively.
Also, the precision point #EE is not allowed since the remainder of the
locationg in the list are cartesian locations.

>>0PATH A,B,B,C,S,#EE

RAPL, COMMANDS: ENABLE, DISABLE, CTPATH, GOPATH
OTHER CRS Plus Publications: SRS-M1A/TECH, SRS-APP/PATH
4-22

CTPATH

FORMATS :

Source:
[Line#] CTPATH <template>,<start index>,<end indest>,<speed>
Tokenized: .
[Line##t] /164 <template>,<start index>,<end index>,<speed>

DESCRIPTION:

This command will generate a continuous path through the series of points
that were previously entered via the TEACH mode as described in the
argument list. The location list is presented in terme of the teach indices
that bound the intermediate locations. The command line contains the teach
template used to program the points specified. The speed argument is an
additional argument that permits the programmer to design a path that is
independent of the current robot speed setting. Thereafter, when the GOPATH
command is executed, the robot moves in the jJoint interpolated mode to the
first location in the path at current speed and then executes the path at
the speed specified in the CTPATH command.

CTPATH has several important differences from the CPATH command. First, the
CTPATH command does not actually execute a path. It simply determines the
path parameters for later executlion. A subseguent GOPATH command will
execute the path.

decond, the CTPATH command obtains locations from an array of locations
taught in the TEACH mode. The CTPATH commend can therefore program a path
through up to 256 locations if there is sufficient memory to store the path
data. The primary advantage is that subsequent GOPATH commands will not have
a time delay associated with calculating the path parameters.

Third, the robot will make a joint interpolated move to the starting "knot™
of the CTPATH and then will execute the path. The path will not include the
position where the robot is when the GOPATH command is executed.

The CTPATH command will utilize the trigger table contents in the same
fashion as the CPATH command.

WARNINGS:

1. In the location list, no two consecutive locations may be identical.
This condition would produce a math error. For this reason, it is wise
to move the robot through the location list in order to verify the path
locations.

2. Due to the high memory requirements of the CTPATH command, it requires
the installation of the expanded memory option.

Continued. ..

4-23

CTPATH (Cont)

APPLICABLE MODES:
{1}, {P}

EXAMPLE:

1. Having issued the command:
>>TEADH A0
Assuming that locations A___ 000 through to A____010 were stored using
the teach mode, we can now calculate a path through those points, at a
speed of 50% of full.
>>CTPATH A,0,10,50
The reverse path can also be executed by reversing the indices
>>CTPATH A,10,0,50
Variables may be used in the CTPATH command argument list as below:
>>CTPATH &4 ,FIRSY ,LAST, SPEED

The above command will use string #1 as the template, and the variables
FIRST, LAST, and SPEED as arguments in the list.

RAPL COMMANDS: ENABLE, DISABLE, GOPATH, CPATH, TRIGGER
OTHER CRS Plus Publications: SRS-M1A/TECH, SRS-APP/PATH

4-24

FORMATS:

Source: [Line#] CUT <STR_NOM>,<CHAR INDEX>, <NUM_CHARS>
Tokenized: [Line#] /145 <STR_NUM>,<CHAR_INDEX>, <NUM_CHARS>

DESCRIPTION:

This command will take the specified string, and will remove NUM_CHARS of
characters from the string, starting with, and including the character
indicated by CHAR_INDEX.

{1}, {P}, (M}

1. Assign a value to string 1, and remove 3 characters from it starting at
index 5.

>t &1 = ‘LET US OHOP THIS LINE’
»OUT 1,5,3

S>TYPE &1

LET CHOP THIS LINE

>>

CROSS-REFERENCES:

RAPL COMMANDS: PASTE, STRPOS, !, ENCODE, DECODE, IFSTRING are other
string related commands.

4-25

FORMATS:

Source: [Line#] DECCDE <STR_NIM>, <CHAR_INDEX> , <VAR_NAME>
Tokenized: [Line#] /147 <STR_NUM>, <CHAR_INDEX>, <VAR NAME>

DESCRIPTION:

Will decode an ASCII encoded real number from the specified string number,
astarting at the specified character index (character position within the
string). The character index takes on a value from 1 to 31.

WARNING

The letter ‘E° may be a legal character as part of a number encoded in a
gtring, as in ‘1E-6° (one times ten to the minus six). Thus an K’ following
a number without a space will be decoded as if it has an exponent. Use
caution with this letter.

APPLICABLE MODES:
{I},{P}, {M}

EXAMPLE:

1. Assigning string 1 to the value beldw, we can extract the real number
510 and place it into the variable AA

>>1 81 = ‘VALLE IS 510°
>>DEDIDE 1,10,AA
S>TYFEV AR

RAPL, COMMANDS: CUT, PASTE, STRPOS, !, ENCODE, IFSTRING are other
string related commands.

4-26

FORMATS:

Source: [Line#t] DELAY <time>
Tokenized: [Line#f] /081 <time>

DESCRIPTION:

This function provides a time delay for the robot. The delay is programmable
in seconds, and accuracy in excess of 30 milliseconds can be expected. A
maximum delay of 65.530 seconds can be programmed per command. Longer
delays must use successive DELAY commands.

APPLICABLE MODES:
{1}, M}, {F}

TIME, FINISH (may be required after move, before
DELAY)

4-27

;
é

FORMATS:

Source: DELETE <PHG NAME>
Tokenized: /100 <PRG_NAME>

DESCRIPTION:
Delete program from directory.

4-28

it e BB) e 2.

FORMATS :

Source: [Line#] DEPART <distance>[,S5]
Tokenized: [Line#t] /004 <distance>[,S5]

DESCRIPTION:

The DEPART command moves the robot from its present location by plus/minus
“distance” in the tool axie direction. The 8ign of the distance is the same
as that for the APPRO command. _

The DEPART command with the optional straight line [8] specifier is useful
when removing the tool along a straight line in order to eliminate the
possibility of collision in tight spaces.

{1}, {F}

EXAMPLES:

1. Approach point PICK_1 stopping +2 inches away. Decrease speed to 20,
then move to point PICK_1, Close gripper, delay for 2 seconds, then
depart from PICK_1 stopping +2 inchee away.

100 SPEED 100

110 APPRO PICK_1,2
120 SPEED 20

130 MOVE PIOK 1
140 CLOSE

150 DELAY 2

160 DEPPRT 2

2. Depart from PICK_1 in a straight line stopping +2 inches away.
140 DEPART 2,5

CROSS-REFFRENCES :
RAPL, COMMANDS: APPRO, TOOL (Affects the depart direction)

DEVICE

FORMATS :
Source: [Linett] DEVICE <dewi>
Tokenized: {Line#f] /112 <devit>
DESCRIPTION:
The user can select the device for standard commmication operations. This

facility is normally used for commmicating to an auxiliary serial device
in the work cell other than the standard terminal device.

APPLICABLE MODES:
(13, 0}, {P)

EXAMPLE:

1. This example prints a status report to device #1. This could also be
done using PRINT-type commands and no DEVICE statement.

340 DEVICE 1

350 TYPE "Production Report’/
355 TYPE "Widget transferred i’
356 TYPEV W_ONT

SO TYPE 2 "/

RAPL COMMANDS : CONFIG, SERIAL DIR, LISTL, LISTP, LISTV

4-30

DIR

FORMATS :

Source: [Line#t] DIR [1]
Tokenized: {Line#t] 7102 [1]

DESCRIPTION:

The directory command will list the names of all programs currvently in
memory. The program name and its length in characters are displayed on the

output device.
Output can be routed to the printer port by using the {1] optional argument.

APPLICABLE MODES:
{I},{M},{F}

RAPL COMMANDS: EDIT, DELETE, LISTP

4-31

DISABLE
FORMATS:
Source: [Line#] DISABLE [ITEM]
Tokenized: [Line#} /177 [ITEM]
DESCRIPTION:

This command turns off the corresponding system parameter. The DISABLE
command operates on a list of system parameters defined in the following

list:

TRIGGER Prevent trigger ocutputs from being performed.

QUTPUT Prevent all digital outpute from changing according to
the QUTPUT command.

ONSIG Turn off the ONSIG trigger, but maintain the ONSIG
condition.

EDIT Disable any further modifications to stored programs.

ARM Disable the ARM power signal, turning off the motor
amplifiers.

LOFB Disable the loas of feedback/collision detection check.
This is not recommended.

TRACE Disable the TRACE mode. Same as NOTRACE command.

FLASH Turn off the FLASH command. Same as NOTRACE.

APC Disable the Arm power check. Same as @NAPC monitor
command .

HELP Turn off the HELP mode. Same as NOHELP.

TEACH Turn off the teach facility, but maintain the TEACH

template, and the current value of the teach counter.
Same as the NOTEACH command.

MANUAL Disable the manual mode, but maintain the manual mode
type for the next invocation of the MANUAL mode.

CARTVEL Use joint (not CARTesian) distances to calculate path
knot timing.

SLEW Turn off SLEW (trapezoidal profile) in Joint-
Interpolated motion (see Section 3-2).

HOLD Disable the HOLD feature without losing "HALT ON..."
input number.

If no argument is entered, then the parameter list is displayed on the
terminal, along with the current parameter setting.

Several of the items in the parameter list are covered by other existing

RAPL commands. The HELP/NCHELP, TEACH/NOTEACH commande are examples. The
DISABLE command will be the standard RAPL parameter control function for

all future versions. Thus instead of typing NOFLASH, the user should type
DISABLE FLASH. It is recommended that the RAPL programmer follows this

convention.
Continued. ..

4-32

\
\
\
-

DISABLE {Cont)

APELICABLE MODRS:
{1}, 1P}, {M}
CROSS-REFERENCES :

RAPL, COMMANDS: ENABLE, NOHELP, NOMANUAL, NOTRACE, NOFLASH, EDIT,
NOTEACH, CTPATH, @NAPC, @LOFB

OTHER CRS Plus Publications: SRS-M1A/TECH, SRS-APP/PATH

FORMATS:

Source: {Line#t] DLOCN <LOC_NAME>T,....]
Tokenized: ([Line#] /048 <LOC_NAME>[,....]

DESCRIPTION:
Stored locations are erased permanently from memory.

WARNINGS:
If deleting more than one location, be aware that a location is deleted as

soon as the comma following its name is entered. Using the Back-Space
function to edit the command is not possible after the comma has been typed.

APPLICABLE MODES:
{1}, {4}, {P}

EXAMPLE:
1. Deletes stored location "A°.
>>DLOCN A
2. Deletes stored precision point location "#A™.

>>DLOCN #A

3. Deletes stored locations "A°,"B","C".

>>DLONN A,B,C

RAPL COMMANDS: LISTV, HERE, POINT

4-34

INAR

FORMATS:

Source: [Line#t] DVAR <VAR_NAME>[,...]
Tokenized: ([Line#] /067 <VAR_NAMES[,...]

DESCRIPTION:

This command will delete a variable or a list of references from the
variable table. When a variable is cleared, the next time it is referenced
it returns with a value of 0.

If deleting wmore than one variable, be aware that a variable is deleted as

soon as the comma following its name is entered. Using the Back-Space
function to edit the command is not possible after the comma has been typed.

{1}, (M}, {P}

EXAMPLE:
1. Deletes variable HEIGHT.
>OIVAR HEIGHT
2. Deletes variables A,B,C,D,E and F.

>>DVR A,B,C,D,E,F

CROSS-REFERENCES :
RAPL COMMANDS: !, LISV

4-35

EDIT 1

FORMATS :

Source: EDIT [PRG_NAME]
Tokenized: /101 [PRG_NAME]

DESCRIPTION:

RAPL provides the programmey with a line editing feature which can be used
to create or modify existing programs. The EDIT command activates the line
editor mode. When a program name is entered with the edit command, that
program then becomes the target program for any directly entered program
lines even after leaving the editor. If no program by that name exists, RAPL
will create one. An error will occur if the table is full. If no program
name specifier is used, the last edited program will be used. A program
cannot be deleted from within the edit mode.

To shorten the development time of a program, RAPL allows the programmer to
insert program lines while outside of the standard EDIT mode. While in the
monitor mode, entering a number before a command identifier will
automatically place the following line into the program last edited. No
syntax check is performed on the line before it is inserted. A valid line
number must be entered, and the target program for the edit mode must have
already been defined. An existing line may not be deleted or altered by
entering a new line with the same number. To alter an existing line, the old
line must first be deleted in the line edit mode.

All editing features can be prevented by the DISABLE EDIT command. EDIT will
stay disabled until either the ENABLE EDIT command is issued or a TEACH
START is done.

APPLICABLE MODES:

{I},{M}

CROSS-REFERENCES :

RAPL COMMANDS: LISTP, DELETE, ENABLE, DISABLE. Also refer to Chapter
5 of this manual.

FORMATS:

Source: [Line#] ELBOW <UP]DOWN>
Tokenized: [Line#] /168 <UP|DOWN>

DESCRIPTION:

Specify the position of the elbow (joint #3) for all successive cartesian
transformations. Transformations are calculated whenever the programmer
requests a move to a cartesian location. This transformation process
determines the joint angles required to achieve that location.

The ELBOW command chooses an acceptable configuration for joint #3. The
normal elbow configuration is UP when the robot is mounted on a platform. It
is normally elbow DOWN if the robot is suspended from a gantry in an
inverted fashion. Elbow DOWN is also used whenever the robot is attempting
to reach the work space "over its hsad”.

The ELBOW command is typically used in conjunction with the REACH command.
APPLICABLE MODES:

{1}.1P}, {1}

EXAMPLE:

10 ELBOW UP
20 MOMVE A

RAPL, COMMANDS: INVERT, REACH

4-37

ENABLE
FORMATS:
Source: [Line#] ENABLE [ITEM]
Tokenized: (Line#] /176 [ITEM]
DESCRIPTION:

meableoammdmmsonthecompmdingmmpammtﬂ. The ENABLE
command operates on a list of system parametere defined in the following

list:

TRIGGER Permit trigger outputs to be performed.

OUTPUT Permit all digital outputs according to the OUTPUT

ONSIG Turm on the ONSIG trigger, using the existing ONSIG
condition.

EDIT Fnable all future EDIT operations.

ARM Enable the ARM power signal, enabling the motor
amplifiers.

LOFB Enable the loss of feedback/collision detection check.
This is highly recommended.

TRACE Enab},etheTRACEmode‘Sameas'i‘RACEammd.

FLASH Turn on the FLASH command using the previous value of
the FLASH interval.

APC FEnable the Arm power check. Same as @AFC monitor
command .

HELP Turn on the HELP mode. Same as HELP.

TEACH Turn on the teach facility, using the previous TEACH
template, and the current value of the teach counter.

MANUAL Fnable the manual mode, under whatever mode type that
was previously.

CARTVEL Usze CARTesian distances to calculate path knot timing.

SLEW Turn on SLEW (trapezoidal profile) for Joint-
Interpolated motion (see Section 3-2).

HOLD Enable the HOLD feature for previously defined "HALT

ON..." input number.

If no argument is entered, then the parameter list is displayed on the
terminal, along with the current parameter setting.

controlled by other existing
commands are examples. The

Continued. ..

4-38

ENABIK (Cont)

APPLICABLE MODES:
{1},{P}, {M}
CROSS-REFERENCES :

RAPL, COMMANDS: DISABLE, HELP, MANUAL, TRACE, FLASH, EDIT, TEACH,
CTPATH, @APC, @LOFB

OTHER CRS Plus Publications: SRS-M1A/TECH, SRS-APP/PATH

FINISH
FORMATS :
Source: [Line#t] FINISH
Tokenized: [Line#] /010
DESCRIPTION:

The FINISH flag instructs the currently executing motion to finish before
the next program line is decoded and executed. The FINISH command only acts
on the current motion underway.

When FINISH is not specified, the next command will be executed as soon as
the path parameters of the commanded motion path have been determined
{generally shortly after a motion command has started). Usually, this is
ideal since the program will run much faster. Sometimes, however, it is
important to synchronize program control with robot motion. As an example,
the robot must usually reach its final destination before the signal to
close the gripper is issued.

If a program includes two consecutive motion commands, the first command
will be completed before the next is processed. No finish statements are
needed between consecutive motion blocke. The only exception is the MOTOR
command: consecutive MOTOR commands for different axes will not wait for
each other to finish.

{F}
EXAMPLE:

1. Without FINISH: This example will result in a collision between the
gripper and the object at PICK_1. The CLOSE command in line 150 will be
processed shortly after the MOVE command in line 140 has started.

110 APPRO PIOK_1,2
130 MOVE PICK_1
140 CLOSE

2. With FINISH: By inserting a FINISH command between the MOVE and the
CLOSE, the arm will reach PICK before the CLOSE signal is sent.

110 APPRO PICK_1,2
130 MIVE PICK_1
135 FINISH

140 CLOSE

CROSS-REFERENCES :
RAPL COMMANDS: OPEN, CLOSE, DELAY, OUTPUT, IFSIG may require FINISH.
4-41

FORMATS:

Source: [Line#] FLASH <interval>
Tokenized: [Line#] /084 <interval>

DESCRIPTION:

The READY light on the teach pendant can be used as a general purpose
output for use by the programmer.

The flash interval number hag a valid range of 1 to 255. Each unit of the
flash interval is approximately equal to 20 milliseconds.

If no flash interval value is entered, the default is the previous setting.

APPLICABLE MODES:

{1},{(M}, (P}

EXAMPLE:

1. Flashes the teach pendant light at an interval of 60 milliseconds.
POFLABH 3

CROSS-REFERENCES:
RAPL, COMMANDS: ENABLE, NOFLASH, DISABLE

4-42

FORMATS :

Source: {Line#] FREE [1]
Tokenized: [Line#} /023 [1]

DESCRIPTION:

The FREE command will display the status of the user memory, along with the

remaining wemory to be used. The optional argument will route the
information to the printer port.

APPLICABLE MODES:

{1},{M},{P}

EXAMPLE:
1. Display Memory remaining, Enter:
>>FREE

the response will be:
ROBOT MEMORY ALLOCATION:

NUMBER OF EMPTY VARIABLES : 085
NUMBER OF EMPTY LOCATIONS @ O77,
NUMBER OF EMPTY PROGRAMS @ 009
PROGRAM MEMORY REMAINING : 03659
RESERVED MEMORY ALLOCATED : 00000

CROSS-REFERENCES :
RAPL COMMANDS: ALLOC

4-43

GAIN
FORMATS :
Source: [Linet#t] GAIN <MOTCR #>, <VALUE>
Tokenized: [Line#] /150 <MOTOR #>, <VALUE>
DESCRIPTION:

The GAIN command allows the programmer to soften the response of the robot
arm in a predictable and controllable manner.

Although the servo control loop of the robot is complex, and mostly beyond
the reach of the operator, the gain command allows the operator to control
the proportional gain of the servo loop. Basically, the proportional gain
creates a driving voltage to the motor amplifiers proportional to the amount
of positional error that the controller sees when comparing the commanded
position with the actual position as provided by the encoder feedback.

Since increasing the proportional gain can lead to instability of the servo
mechanism, and possible mechanical damage, the operator should keep the GAIN
value for any of the robot joints to less than or equal to one (1). The

range of values acceptable in the command vary between zero (0) and two (2).

Nominally, the robot position gain factor is 1 on every axis, and this value
should be maintained for optimum robot performance.

The programmer can select any motor gain by specifying a number between 1
and 8, or all motors can be selected for a gain change by entering a number

0 for the motor number.

HARNINGS

A low gain will cause the arm to become less atiff. Under load it will droop
and paths will not be followed as closely.

Increasing the gain by more than 0.1 at a time may cause a noticeable junp
in the arm position. This effect will be more noticeable under load

conditions.
APPLICABLE MODES:
{1}, {M},{P}
CROSS-REFERENCES ;.
OTHER CRS Plus Publications: SRS-M1A/TECH, SRS-APP/EXTRA

4-44

FORMATS:

Source: {Line#] GANTRY
Tokenized: [Line#] /180

DESCRIPTION:

This command sets up a GANTRY condition. This means that every cartesian
location includes the position of axes 6 and 7 as X and Y gantry
coordinates.

The coordinates of the gantry are stored as a real numbers in 8 bytes
immediately above the standard esix coordinates of each cartesian entry in
the location table. The real values are the "joint” engineering unit values
of the axes when the HERE command is issued. Use of @XRATIO, @XLIMITS, and
@XPULSES for both axes 6 and 7 is mandatory before issuing this command.
Before storing values or commanding motion after the GANTRY command is
issued, an XHOME command must have been issued for both axes.

The coordinates stored for the extra axes are entered only as an input to
the motion command. Shifting of these coordinates is possible using the
SHIFTA command. Entry of a point "off-line” using the POINT command will
permit entry of the axis values. All motion commands referring to cartesian
locations after issuing the GANTRY command will coordinate with the GANTRY

axes.

For long moves involving the gantry axes it may be an advantage to use the
SLEW mode. This is entered with the ENABLE CONSTVEL command.

GANTRY is reset using the "TRACK RESET" command.

APPLICABLE MODES:
{1}, {4, {P}

TRACK, @XPULSES, @XRATIO, @XLIMITS, SHIFTA
OTHER CRS Plus Publications: SRS-APP/EXTRA

4-45

GOPATH

FORMATS:
Source: [Line#] GOPATH
Tokenized: [Line#] /165
DESCRIPTION:

This command will execute a CTPATH that has been entered. Once a CIPATH has
been executed, then the path remains in memory until the controller is shut
off, or another CTPATH is entered.

When GOPATH is issued, the robot will perform a joint interpolated move to

the starting knot of the path at the current robot speed setting and will
then start the continucus path at the programmed speed.

AFPLICABLE MODES:
{P}, {1}
EXAMPLE:

1. To execute a previously defined path in the Immediate or from the
manual mode:

>>G0PATH

2. From a program:
100 CTPATH PNTS,1,35,70
500 GOPATH

The actual path followed was entered with the last CTPATH command. A
valid path must be programmed first.

CROSS-REFERENCES :
RAPL COMMANDS: CTPATH, ENABLE, DISABLE
OTHER CRS Plus Publications: SRS-APP/PATH

4-48

FORMATS :

Source: {Line##t] GOSUB <PHG_NAME> [parameterl][,...]
Tokenized: [Line#] /074 <PRG_NAME> [parameteri}[,...]

DESCRIPTION:

Control is passed to the specified sub-program. The sub-program must have a
RETURN statement in it so the processor’s stack does encounter any problems.
The RAPL processor contains a stack which stores the information needed to
return to the calling program. The stack allows for up to 10 nested
sub—«pmgram calls.

The GOSUB command can transfer parameters to the subroutine. These
parameters are 8-byte string registers which can contain names of locations,
variables etc. for use inside the subroutine. In the subroutine, they are
recalled by substituting a special variable name identified as "%0°,

‘%1°,.. %7" depending on their position in the list in the calling lme

There can be 8 parameters in all. The programmer may nest subroutines which
make use of the same parameters.

The sub-program name can be entered as a reference to a string. This permits

a "BATCH ® approach to program execution, where the operator can enter a
program name as a response to a query from the system. See example #Z.

APPLICABLE MODES:
{P}

Continued. . ..
4-47

GOSUB (Cont)

EXAMPLE:

:

Program MAIN is the executive. Sub-program APPROACH will approach a
location by some distance with the ONSIG condition activated. Note that
Sub- program E_STOP uses the same parameters as APPROACH did without
them needing to be re-defined.

50 ; PROGRAM MAIN

&0 ;
100 GOSUB APPROACH FOINT1,4
110 s
PROGRAM APPROACH: PROGRAM E_STOP:
100 ONSIG 4 E_STOP 100 HALT
110 APPRO 70,71 110 WALT -4
120 FINISH 120 APPRO 70,71
130 IGNORE 130 RETURN
140 RETURN
2. Batch control over program execution can be an effective way to alter
robot programming for new jobs. Several tasks can be loaded into the
robot memory concurrently, providing decreased downtime required to load
new data. Program execution can then be branched to the correct job by
using a string to refer to the sub-program.
10 TYPE ‘ENTER THE JOB NAME (SWITCH, PLATE, KNOB)
10 INFPUT &1
16 TYPE &1
17 TYPE * NOW BEING EXECUTED /
20 6058 &1 ;
99 GOTO 10
The above MAIN program will permit branching to one of three sub-
programs. They must be called SWITCH, PLATE or KNOB. If the operator
enters a name which does not match any of the selections, a "PROGRAM
NOT FOUND® error will be created at line 20. If necessary, testing for
correct entry data can be made using the IFSTRING command.
CROSS-REFERENCES
RAPL COMMANDS: RETURN, ONERR, ONSIG
4-48

G010
FORMATS : :
Source: [Line#] GOTO <Line#>
Tokenized: [Line#] /075 <Linei>
DESCRIPTION:
An unconditional branch to another program line can be performed by this
statement.

. 1. Program will increment the value X and display the result to the
terminal indefinitely.

050 3 PROGRAM MAIN
040
90 X=0
100 ! X=X+l
110 TYPEI X
120 TYPE "/
130 GOT0 100

o e S e

CROSS-REFERENCES:

RAPL, COMMANDS: IF, IFSIG, IFSTART, IFPOWER all also redirect program
flow but conditionally.

4-49

FORMATS:

Source: [Line#] GRIP <distance>
Tokenized: [Line#] /039 <distance>

DESCRIPTION:

The GRIP command will open or close the gripper fingers. When the argument
«distance> is less than the current finger position the fingers will close.
When the argument <distance> is larger than the current finger position the
fingers will open. The argument <distance> reflects the distance between the

fingers and has a range from 0 to 2 inches.

The force applied to the object with the GRIP command is 100% always,
compared to the CLOSE or OPEN commands which control gripper force but not
position.

WARNINGS :
1. REQUIRES THE SRS-SGRIP/M1 OPTION

2 RAPL version 4.10 and higher have separated the gripper position and
force modes. The OPEN and CLOSE commands are now active in the servo
gripper mode, as they are used to specify the gripper force mode. This
command is incompatible with earlier versions of RAPL and some
programming change will be required for proper operation.

APPLICABLE MODES:
{I},{M},{P}

4-50

HALT

FORMATS :

Seurce: [Line#] HALT [ON <{-]Input#>]
Tokenized: [Line#] /154 [ON <[-]Input#>]

DESCRIPTION:

The HALT command will stop any current robot motion that is in progress. It
is useful when having to recover from an ONSIG command that requires a
robot motion to cease. In that mode, HALT would be the first command in the
routine called by the ONSIG. ;

If the optional "HALT ON <Input>" is called, all robot motion will cease
whenever the <Input#> is in the programmed state. Activation of this HOLD
feature requires the ENABLE HOLD command to be issued.

APPLICABLE MODES:
{1}, {P}

ABORT, PROCEED, ENABLE, DISABLE
OTHER CRS Plus Publications: SRS-AFP/SAFETY, SRS-APP/PATH

FORMATS :

Source: HELP
Tokenized: /095

DESCRIPTION:

Turns the syntax building feature ON. In this mode, the programmer needs
only to enter enough of the command to make it unique, then the syntax
builder will finish typing the command identifier. Depending on the command,
the syntax builder prompts the programmer to enter the balance of the
command correctly.

The syntax builder can also be turned on by a <Ctrl-H> from a standard
terminal. This control code will not work from ROBCOMM as it will be
interpreted as the Back-Space key.

WARNINGS:
1. Make sure to type carefully with HELP enabled since any extra characters

that are entered may be mistaken for data required later in the command
line.

APPLICABLE MODES:
{1}, {M}

FORMATS:
Source: [Line#t] HERE <LOC_NAME>
Tokenized: [Line#] /024 <LOC_NAME>

DESCRIPTION:
Defines a location as the current commanded robot position (contrast this
with the ACTUAL command). The location can be either a precision point or

cartesian location definition.

APPLICABLE MODES:
{1}, {M},{P}

1. For a cartesian location:
>>HERE. POINT |

2. For a precision point:
>>HERE #POINT

CROSS-REFERENCES:
RAPL, COMMANDS: ACTUAL, POINT, LISTL

HOME
FORMATS:
Source: (Line#] HOME
Tokenized: [Line#] /020
DESCRIPTION:

When the robot is first turned on, the controller does not know the arm
position relative to the world (as defined by the centre of the manipulator
base). The operator must HOME the robot to provide the synchronization
between controller and arm. '

APPLICABLE MODES:

{1}, (M}, {F}

EXAMPLE

1. Enter manual mode:
>>MANLIAL

Move all five joints with the teach pendant to marks on robot starting
with joint 1 through to Joint 5.

Enter <HOME> at keyboard. The controller will ask you to confirm that
you have moved the robot arm into the starting home range. If robot arm
is in starting home range then enter <YES> at keyboard.

J>HOME LOCATED IN HOME BOUNDS?. Y<ES>

The controller will move each joint to the factory set home position
and display the status on the terminal screen.

1f an error occurs in any of the joints return to step (1) and repeat
complete procedure. If a error occurs in three (3) consecutive attempis
contact your local distributor or CRS Plus.

Visnally inspect each homing marker to ensure that the robot is homed
properly. If the arm did not home correctly return to step (1) and

repeat complete procedure.
CROSS-REFERENCES :
RAPL COMMANDS: ®@CAL

4-54

FORMATS:

Source:

[Line#] IF <argm’t> <HQ}NE|LT{GTLE!GE> <argm t> THEN <Lined>
Tokenized: :

[Line#] /072 <argm t> <BEQINE|LT|GT,LE|GE> <argm t> THEN <Linei>

DESCRIPTION:

The expression is evaluated using one of the six tests listed below. If a
true result is obtained, then control passes to the specified line number.
Logical statements can be evaluated using the following expressions:

EQ equal to

NE not equal to

LT less than

GT greater than

LE less than or equal to
GE greater than or equal to

The two arguments can be variables, or explicit values, or one of each.

WARNINGS :

1. It should be noted that since all values are stored as real numbers, it
is possible to obtain confusing results when using the EQ operator,
since the numbers may not be exactly equal due to the round-off errors
associated with the storage of such elements.

APPLICABLE MODES:
{F}
EXAMPLE:

1. While the variable ROW is less than 5 this program will loop between
line #90 and line #100.

90 ! ROW = ROW + 1
100 IF ROW LT 5 THEN 90
110 STOP THE TRAY IS FINISHED

‘ RAPL COMMANDS: GOTO, IFSIG, IFSTART, IFPOWER, IFSTRING

4-55

FORMATS :
Source: {Linas#t] IFPONER THEN <line#>
Tokenized: [Line#] /155 THEN <linei#>
DESCRIPTION:

Test the sense of the arm power switch, and if it is turned on, then branch
to the line specified by the command.

{P}

CROSS-REFERENCES:
RAPL COMMANDS: GOTO, IF, IFSIG, IFSTART, IFSTRING

4-56

IFSIG

EORMATS :

Source: [Line#] IFSIG <[-J]input#>[,...] THEN <Line#>
Tokenized: [Line#] /073 <[-Jinput#>[,...] THEN <Line#>

DESCRIPTION:

The state of the input points are logically ANDed in this command. If any
specified input does not match the required state, the test is false and
program flow will continue to the next line. Should the test prove to be
true, then program flow will proceed to the specified line number. Any
number of inputs can be tested by this command, so long that the line length
does not exceed the maximum line length permitted.

APPLICABLE MODES:

{F}

EXAMPLES:

;

If input#l is at a high level, jump to Line 399, otherwise continue to
next line. ‘

100 IFSIG 1 THEN 399

If input#3 is at a low level, jump to Line #400, otherwise continue to
next line. 4

101 IFSIG -3 THEN 400

If input#l is at a high level AND input #2 is at a low level AND input
#3 is at a high level AND input #4 is at a low level AND input #5 is at
a high level AND input #6 is at a low level, jump to Line #101,
otherwise continue to next line.

120 IFSIG 1,-2,3,-4,5,-6 THEN 101

RAPL, COMMANDS: GOTO, IF, IFSTART, IFSTART, IFPOWER

4-57

IFSTART

Source: [Line#] IFSTART THEN <Linei>

Tokenized: [Line#] /086 THEN <Line#>
DESCRIPTION:
This is a specialized version of the IFSIG command. Here, the state of the
AUTOSTART switch is examined. If it is in a high state, then program control

is passed to the program number defined in the statement. If the input is
low, then control passes to the next block in the program.

{P}

CROSS-REFERENCES:
RAPL COMMANDS: GOTO, IF, IFSIG, IFSTRING, IFPOWER

4-58

IFSTRING

FORMATS :

Source: [Linett] IFSTRING <8m} TEXT > EQINE <&n| TEXT > THEN <LINE#>
Tokenized: [Line#] /151 <&n! TEXT > EQINE <&n) "TEXT > THEN <LINE#>
DESCRIPTION:

This command compares two strings using the "egual” condition only (EQ). If
a true result is obtained, then control passes to the specified line number.

The two arguments can be string variables, or explicit values, or one of
each. The line number can also be a variable.

APPLICABLE MODES:
{P}

CROSS-REFERENCES :
RAPL, COMMANDS : GOTO, IF, IFSIG, IFSTART, IFPOWER

4-59

IGNORE

FORMATS :
Source: [Line#] IGNORE
Tokenized: [Line#] /087
DESCRIPTION:
This command will disable and clear the ONSIG state. In contrast, the

“DISABLE ONSIG" command will disable but not clear the ONSIG state,
permitting re-enabling (by “ENABLE ONSIG") without re-programming.

APPLICABLE MODES:
{1}, (M}, {P}

CROSS-REFERENCES:
RAPL COMMANDS: ONSIG, DISABLE

4-60

Source: [Line#] INPUT <VAR NAME> | <&n>
Tokenized: [Line#] /068 <VAR _NAME> | <&n>
DESCRIPTION:

This command permits the user to INPUT data into the program at run time.
The specified variable or string specifier indicates the destination of the
input information. The operator can enter another variable name in response
to a variable type INPUT command (see EXAMPLE 1. below).

The current default device (1 or 0) is always the source of the data for
this operation. After INPUT of a variable, a <CRLEF> sequence will be echoed
to the device. After a string INPUT, no <CRLF> is echoed.

APPLICABLE MODES:

{P}

EXAMPLES:

1. Check for program continuation using a variable INPUT:

2100 ! N = -1

22001 ¥ = .1

2300 TYPE “Do you wish to proceed? (Y/N): °
2400 INPUT RESULT

2500 IF RESULT BQ Y THEN 3000

2600 IF RESULT BQ N THEN 2800

2700 GOTO 2300

2800 STOP Finished as requested.

3000 ; So continue...

i

2. (Check for program continuation using a string INPUT:

2300 TYPE Do you wish to proceed? (Y/N): ~
2400 INPUT &4

2450 TYPE "7/

2500 IFSTRING &4 BR 'Y~ THEN 3000

2600 IFSTRING &4 EQ "N° THEN 2800

2700 GOTO 2300

2800 STOP Finished as requested.

3000 ; So continue. ..

RAPL, COMMANDS: DEVICE, !, all string commands
4-81

FORMATS :

Source: [Line#] INVERT <ON;CFF>
Tokenized: [Line#] /170 <ON;OFF>

DESCRIPTION:

The SRS-M1A robot system can be mounted upside dowm to provide a clear
table top work space. To facilitate programming the robot in this
configuration, the Z axis of the robot coordinate system may be reversed.
This reversal leaves the X and Y coordinate axes the same a before. Notice
that while using the manual mode, and the JOINT command, the motions of the
joints are opposite of what is expected. Also, when using the robot in the
inverted position, the normal arm configuration is typically the elbow DOWN
selection.

As an aid to programming, the Z base OFFSET parameter can be set to equal
the distance between the robot base and the work surface. This way, the

inverted coordinate system will relate directly to the work surface, which
is usually more convenient.

WARNING:

Fneure that any locations taught with the INVERT ON condition are used in
that fashion as well. Otherwise, unexpected results could occur. It is good
programming practice to put the INVERT command at the start of any program
using inverted locations.

APPLICABLE MODES

{1}, (M}, {P}

CROSS-REFERENCES :
RAPL COMMANDS: ELBOW, REACH

4-62

FORMATS:

Source: [Line#] JOG <dX>,<dY¥>,<dZ>
Tokenized: [Line#] /7005 <«dX>,<dY>»,<dZ>

DESCRIPTION:

The JOG command permits the operator to move the robot by a specified
cartesian increment in inches. The move is completed by a straight line
motion with the gripper flange ending with the same orientation wherever
possible.

This command is useful when positioning the robot at a desired position.
Once close proximity has been achieved in the manual mode, the JOG command

can be used to perform final positioning. The jog command will execute at
the last setting of the SPEED command.

APPLICABLE MODES:
{1}, {M},{F}

EXAMPLE:
1. Move arm by +0.5 inches in the Y axis.

200 JOG 0,0.5,0

CROSS-REFERENCES :
RAPL COMMANDS: none

JOINT

FORMATS :
Source: [Line#] JOINT <Joint#>, <Degrees>
Tokenized: [Line#] /006 <Joint#>, <Degrees>
DESCRIFPTION:

Will drive a selected joint by a specified displacement. The joints of the
robot will move the specified distance in degrees. Optional extra axes will
move & number of unite from their current location. The desired unite are
selected by the @XPULSES and @XRATIO commands were executed.

Robot joints will move in a joint de-coupled fashion. The joint number de-
scribes which joint is moved by the following legend:

Waist

Shoulder

Elbow

. Wrist Bend (pitch)
Wrist swivel (Roll)

O b (OB

The joint command will execute at a speed as specified in the last SPEED
command. The sense of each joint can be seen in Figure 2-2.

1. Each robot joint has a limiting travel which should not be exceeded.
This limit is checked prior to the execution of the JOINT command when
the robot has been HOMED.

2. JOINT moves can be done before the robot has been homed, but limits will

not be checked. Care must be taken with this command until the robot is
homed .

APPLICABLE MODES:

{1}, {H},{P}

EXAMPLE:

1. Move Joint #1 (Base) by +45 degrees.
200 JOINT 1,45

CROSS-REFERENCES :

RAPL COMMANDS: @NOA, @ACCEL, @XPULSES, @XRATIO, @XLIMITS, @AXVEL,
LOCK, UNLOCK

OTHER CRS Plus Publications: SRS-M1A/TECH, SRS-APP/EXTRA

4-64

FORMATS:

Source: {Line#t] LIMP [Axis#]
Tokenized: [Line#] /007 [Axis#]

The LIMP command permits the operator to disengage all or some of the
positional servos which maintain the robot position. The robot joints can
then be moved freely.

The LIMP condition is terminated by the NOLIMP command. At termination of
the LIMP, the commanded position of each axis will be their current
position.

WARNINGS :

During limp motions, care must be exercised not to over-stress the robot arm
when driving back through the transmission elements.

APPLICABLE MODES:

{I},{M},.{P}

EXAMPLE:

1. Limp all 8 robot axes.
200 LIMP

2. Limp axis #1 (Base).

200 LIMP 1

RAPL COMMANDS: NOLIMP, ENABLE, DISABLE, @APC, @NAPC, ARM

LISTL

FORMATS :

Source: [Line#] LISTL [LOC_NAME}[,0}1]
Tokenized: {Line#t] /048 [LOC_NAME][,0}1]

DESCRIPTION:

This command will list a location stored in the robot memory. If no name is
supplied, then a complete list of all locations along with their values will
be provided in a tabular format.

The optional [1] argument will specify output to the printer port.

APELICABLE MODES:
{I},{M},{F}

EXAMPLE:

1. List all locations to video display.
>>LISTL

2. List location POINT to printer port.

>>LISTL POINT,1

RAPL COMMANDS: HERE, POINT, DLOC

4-66

LISTP

FORMATS:

Source: [Line#] LISTP <PRG_NAME>[,0!1]
Tokenized: [Line#] /103 <PRG_NAME>[,0!1]

This command lists a program to the selected device. If no program name is
specified, then the current program being edited will be listed.

The optional {1] argument will specify output to the printer port.
APPLICABLE MODES:

{1}, {M},(P}

CROSS-REFERENCES :
RAPL COMMANDS: EDIT

LISTV

Source: {Line#] LISTV [,0!1]
Tokenized: [Line##] /069 [,0!1]

DESCRIPTION:
Lists all the variables stored in memory and displays their values.
The optional [1] argument will specify output to the printer.

APPLICABLE MODES:
{1}, {M}, {P}

EXAMPLE:

1. List all variables to video terminal.
2>LISTV

2. List all variables to printer.

LISV ,1

CROSS-REFERENCES :
RAPL, COMMANDS : ', DVAR, TYPEV, TYPEI, PRINTV, PRINTI

FORMATS:
Source: [Line#] LOCK <Jointi>[,...]
Tokenized: [Line#] /009 <Joint#>[,...]
DESCRIPTION:

Any joints specified in the LOCK command will be excluded from any further
motion commands. Thie will allow the controller to control two separate
machines which must perform non-synchronized tasks.

This command is useful if uncoordinated motion is required as in the case
where the robot controller is used to control the robot and a separate piece
of equipment in a work cell. If at some time during the operation, this
external piece of equipment had to perform an independent motion, it could
be performed without affecting the timing of the robot motions. The
programmer commands the equipment to move, LOCKs those axes of motion, then
commands the robot to perform its task. '

WARNING:

The locked status will not apply in MANUAL mode.
APPLICABLE MODES:

{1},{M},{P}

EXAMPLE:

1. A program which commands the robot to move to a position including a
TRACK axis and then moves the arm only after locking the track axis:

100 TRACK Y

170 MIME MACHINEL

175 3 Lock out the track from the next move commands
180 LOCK &

200 APPRO PICK_1,2
210 MOVE PIOK_1

CROSS-REFFRENCES:

RAPL COMMANDS: UNLOCK, @NOA, @ACCEL, @XPULSES, @XRATIO, @XLIMITS,
@MAXVEL

OTHER CRS Plus Publications: SRS-M1A/TECH, SRS-APP/EXTRA

FORMATS :

Source: (Line#t] MA <j1>,<32>,<33>,<j4>,<i5>
Tokenized: [Line#] /132 <J1>,¢32>,¢33>,¢j4>, <35>

DESCRIPTION:

This command will feed the robot controller with a set of absolute joint
move commands. The robot will move all axes to the specified end locations
in a joint interpolated motion. The joint angles are entered in radian
units. The joint angles can be defined either by pre-defined variables, or
by explicit values. -

WARNINGS:

All five angles must be entered, each separated by a comma (preferred) or a
space.

{I}, {1}, (P}

4-70

FORMATS :
Source: [Line#] MAGGRIP <% maximm>
Tokenized: [Line#] /042 <% maximum>
DESCRIPTION:

To specify the amount of force to be applied by the magnetic gripper. The
programmey must enter a value between 0 and 100.

APELICABLE MODES:
{1},{P}

CROSS-REFERENCES:

FORMATS:
Source: (Line#] MANUAL [JOI ! CYL)
Tokenized: [Line#] /045 [JOI | CYL]

DESCRIPTION:

The MANUAL mode allows the operator to move the robot using the 8 joint
selector switches on the teach pendant, along with the gripper toggle switch
and the speed selector knob.

During MANUAL operation, all non-motion commands remain active. Note that
the aystem prompt changes from the usual >> after the MANUAL command is
entered. The system console may operate slightly slower in the manual mode
due to the extra scanning which is required for the teach pendant.

There are two modes of robot control in MANUAL. In the JOINT MANUAL mode,
individual joints are controlled with each toggle switch on the teach
pendant. In CYLINDRICAL, the motion of joints 2 and 3 are coordinated to
provide a motion of the wrist that is radial, with constant elevation, or
vertical (in the Z axis), with constant radial distance from the robot base.
The base rotate and the two wrist axes are controlled the same as in JOINT
mode. This mode cannot be used until the robot has been HOMEA.

The following table illustrates the functions of the 8 switches at different
robot configurations:

SWITCH # JOINT mode CYL mode JOINT mode CYL mode
5 -Baxes 5 -6axes 7 -8 axes 7 - 8 axes
1 JOINT 1 JOINT 1 JOINT 1 JOINT 1
2 JOINT 2 RADIUS JOINT 2 RADIUS
3 JOINT 3 VERTICAL JOINT 3 VERTICAL
4 JOINT 4 JOINT 4 JOINT 4 JOINT 4
5 JOINT 5 JOINT 5 JOINT 5 JOIRT 5
6 - - JOINT 6 JOINT 8
7 ALIGN ALIGN JOINT 7 JOINT 7
8 LIMP/NOL. LIMP/NOL. JOINT 8 JOINT 8
APPLICABLE MODES:
{1},{P}
CROSS-REFERENCES ;.

FORMATS :

Source: [Line#] MEMRD [ITEM],[AUDRESS],[VAR _NAME]
Tokenized: [Line#] /104 [ITEM],{ADDRESS],{VAR NAME]

DESCRIPTION:

This command will read the contents of memory that is specified at the
physical address location. This address can be supplied as a constant, or as
a variable name. The address must be within the physical address limits of
the 8086 processor (0-1048575) and in decimal notation.

The contents of the memory location is mﬁxmed and loaded into the variable
name that is provided. The type of memory access is specified by the [ITEM)]
argument, which is a string with one of the following values:

BYTE (0 to 255)
WORD (0 to 65535)
INTEGER (-32768 to 32767)
REAL
. DINTEGER (double integer)

APPLICABLE MODES:
{131, {P}, (M}
EXAMPLE:

1. In an program entered by the ONERR command, determine the error type
knowing the address of the "Alarm Number”:

1000 ; PROGRAM ERR_RECV:

1100 DISABLE ARM

1200 MEMRD BYTE, 7603, ERR_NUM

1300 TYPE “sokx Error encountered - °
1400 TYPEI ERR_NUM

1500 TYPE = %okk’/

1600 STOP

CROSS-REFERENCES :
RAPL COMMANDS : MEMWR
OTHER CRS Plus Publications: SRS-M1A/TECH

4-73

Gl Il Gk SN AN EN SN GE GE BN N S BN BN G B EBE B oam o
s
i

FORMATS:

Source : [Line#] MEMWR [ITEM],[ADDBRESS],[VAR NAME|CONSTANT]
Tokenized: ([Line#] /118 [ITEM], [ADDRESS], [VAR NAME CONSTANT]

DESCRIPTION:
This command will write the constant, or the contents of the supplied
variable to the physical address location. This address can be supplied as a

constant, or as a variable name. The addrese must be within the physical
address limits of the 8088 processor {(0-1048575) and in decimal notation.

BYTE (0 to 255)

WORD (0 to 65535)
INTEGER (-32768 to 32767)
REAL

DINTEGER (double integer)

WARNING:

1. The programmer can easily corrupt the robot operational parameters with
this command. It is therefore suggested that the programmer contact CRS
for technical assistance.

APPLICABLE MODES:

{1}, {P}, {M}

CROSS-REFERENCES:
RAPL COMANDS: MEMRD
OTHER CRS Plus Publications: SRS-M1A/TECH

4-74

FORMATS:

Source: [Line#t] MI <Jj1>,<J2>,<J3>,<jo ,<j5
Tokenized: [Line#] /131 <J1>,¢j2>,¢33>,¢j4>, <5

DESCRIPTION:
This command will feed the robot controller with a set of incremental joint
move commands. The robot will move all axes by the specified amounts in a

joint interpolated motion. The joint increments are entered in radian units.
The joint increments can be defined either by predefined variables, or by

explicit values.

WARNINGS:
All five angles must be entered, each separated by a comma (preferred) or a
space.

{I}, (M}, {P}

CROSS-REFERENCES :
RAPL COMMANDS: MA

4-75

EORMATS:

Source: [Line#] MOTOR <axis#>, ¢pulses>
Tokenized: [Line#] /011 <axis#>,<pulses>

DESCRIPTION:

Will drive the selected motor by the specified number of pulses. Consult the
technical reference manual for the description of the number of encoder
pulses per motor turn. Note that this command controls individual motors,
not axes.

If two joints are coupled, then a MOTOR command will move both joints. Also
remember that the motor coordinates may be reversed from what you may
expect, so treat this command with caution.

WARNINGS :

1. The joint limit checking function does not limit the travel of the robot
during this mode.

2. The FINISH command is not implicit in a MOTOR command. In the following
sequence, the command at 100 will not finish before the command at 200
starts. However, line 300 will not start until 200 is finished, nor
will 500 start before 400 is done.

100 MOTOR 2,2500
200 MOTOR 3,-7500
300 MOTOR 3,5000
400 MOTOR 1,2000
500 MOVE A

APPLICABLE MODES:
{1},{F}

OTHER CRS Plus Publications: SRS-M1A/TECH

4-76

. 1. More than the 5 axes are in the system and & precision point location is

Source: [Line#] MOVE <LOC_NAME>[,S]
Tokenized: [Line#] /012 <LOC_NAME>[,S]

Will move the robot to the specified location. The location can be elther a
cartesian coordinate, or a precision point.

A MOVE command will utilize a joint interpolated motion, where the
individual robot joints are commanded in such a way that they start and stop
at the same time.
The straight line [,S] argument will instruct the robot to move so that the
tool tip follows a straight line path to the destination. The MOVE command
proceeds at the previously defined SPEED setting.
MOVE will normally coordinate only the five axes of the robot. It will
coordinate the extra axes under the following conditions:

specified. _
2. A TRACK or GANTRY command has been issued prior to the move. In this

case all locations, cartesian and precision point include extra axis
coordinates,

AFPLICABLE MCDES:
{1}, {P}

CROSS-REFERENCES :
RAPL COMMANDS: APPRO, DEPART, FINISH, HERE

PORMATS:
Source: NEW
Tokenized: /021
DESCRIPTION:
This command will clear the current user memory without changing the memory
partitioning. Upon execution of the command, the user will be asked if he

is sure. All programe, locations and variables will be erased if a Yes
response is given,

APPLICABLE MODES:
{I}, (M}

EXAMPLE
1. Clear all memory, Enter:

POMNEWKCr>

response:

are you sure? Y<ES> <{cr>

CROSS-REFERENCES:
RAPL COMMANDS: ALLOC, FREE, DIR, LISTL, LISTV

4-78

FORMATS:

Source: NEXT [PRG_NAME],[Line#]
Tokenized: /105 [PRG_NAME],[Line#]

DESCRIPTION:

Single stepping through a program can often be a useful tool in debugging
programs. Once a program and line count has been specified with a NEXT
statement, they need not be entered again, since the program line number is
automatically incremented to the next line. The NEXT command can also be
used after a <Ctrl-A> program abort. The PROCEED command can be used to
continue program execution after a NEXT command.

NEXT can be used with TRACE enabled to provide single-stepping with a
display of the current program status.

APPLICABLE MODES:
{13}, (M}
EXAMPLE:

1. To start a program (MAIN in this example) at a point other than the
first line (line 1350 in this example) type:

PONEXT MAIN, 1350<cr>
After that program line has been’execu‘bed (check using STATUS), type:

>>PROCEED

CROSS~REFERENCES .
RAPL COMMANDS: RUN, PROCEED, TRACE, NOTRACE

4-79

FORMATS :
Source: [{Line#] NOFLASH
Tokenized: [Line#] /088
DESCRIPTION:
This command will turn off the FLASH command, and will reinstate the error
condition ocutput to the READY light.
APPLICABLE MODES:
{1},{M},{P}

CROS5-REFERENCES :

RAPL, COMMANDS: FLASH, ENABLE, DISABLE
i
i

4-80

FORMATS:
Source: NCHELP
Tokenized: /098
DESCRIPTION:
Turns the syntax building feature OFF. This makes the command entry a

completely manual affair. When controlling the robot through a host computer
interface, the syntax builder should be turned off.

APTLICABLE MODES:
{1}, {1}

CROSS~ REFERENCES :
RAPL COMMANDS: HELP, ENABLE, DISABLE

. ' 4-81

FORMATS:

Source: [Line#] NOLIMP {Axish]
Tokenized: [Line#] /008 [Axis#]

DESCRIPTION:

Re-establishes the closed loop servo control after a LIMP command has been
issued. (Refer to description of LIMP command.)

When the robot arm power is off, the robot is effectively in the limp mode.
This is so that whenever the arm power is' turned back on, the robot will
assume this current position under closed loop control.

APPLICABLE MODES:

{1},{P}

CROSS-REFERENCES :
RAPL, COMMANDS: LIMP, ENABLE, DISABLE

4-82

FORMATS:

Source: [Line#t] NOMANUAL
Tokenized: [Lineit] /046

DESCRIPTION:

Thie function will cancel a previously assigned MANUAL command. This will
return the system prompt to the >> symbol. (Refer to description of MANUAL
command.) Commanding & motion through the terminal will automatically
execute a NOMANUAL command.

APPLICABLE MODES:
{M}, {P}

CROSS-REFERENCES :
RAPL COMMANDS: MANUAL, ENABLE, DISABLE

Source: [Line#] NOTEACH
Tokenized: [Line#] /043

DESCRIPTION:

This statement will deactivate the TEACH mode. (Refer to description of
TEACH command.)

APPLICABLE MODES:
{1}, {M},{F}

TEACH, ENABLE, DISABLE, CTPATH, WITH
OTHER CRS Plus Publications: SRS-AFP/PATH

4-84

FORMATS:

Source: [Line#] ROTRACE
Tokenized: [Line#t] /080

DESCRIPTION:
This will disable the TRACE mode. (Refer to description of TRACE command.)

{1}, {1}, (P}

CROSS-REFERENCES :
RAFL COMMANDS: TRACE, ENABLE, DISABLE

4-85

FORMATS:

Source: [Lineti] OOOMP <LOC_NAME> , <VAR_NAME>
Tokenized: [Line#] /064 <LOC_NAME> , <VAR_NAME>

DESCRIPTION:

The O component (orientation or yaw angle) of "LOC_NAME" is extracted and
stored in "VAR_NAME". The angle is stored in degrees.

APPLICABLE MODES:
{I},{M},{P}

CROSS-REFERENCES :
RAPL, COMMANDS: COMP, XCOMP, YCOMP, ZCCOMP, ACOMP, TCOMP

4-86

EORMATS :

Source: [Line#] OFFSET <dX>,<dY>,<dZ>,<dO>

Tokenized: [Line#] /047 «<d¥>,<dY>,<dZ>, <dO>

DESCRIPTION:

The centre of the base of the robot defines the cartesian point (0,0,0) in
the default condition. The base coordinates can be re-defined uging the
OFFSET statement. Each of the three cartesian coordinates can be offset,
along with the YAW angle. All further robot commands which reference the
world coordinate system will be made relative to this new coordinate system.

OFFSET can be used to set the "Z=0" plane at the work surface in the case
where the robot is suspended from a gantry frame and the INVERT command has
been issued.

APPLICABLE MODES:
{1}, {M}, {P}

j 1

.mm

Two arrays of components to be picked are +2" in the X dimension, +2"
in the Y dimension, and at a 45 degree to each other. A program to pick
parts from both fixtures would be:

100 GOSUB GET_PRTS
150 (FFSET 2,2,0,45
200 GOSUB GET_PRTS

% e s

A robot is inverted on a gantry frame 28 inches above the work surface.
To set the world coordinate to a Z value of 0 at the table the following

is recommended:

100 INVERT ON
200 OFFEET 0,0,-248,0

s 8=

CROSS-REFERENCES:
RAPL COMMANDS: MOVE, SHIFT, INVERT

EORMATS :

Source: [Line#] ONERR <PRG_NAME>
Tokenized: [Line#] /143 <PRG_NAME>

DESCRIPTION:

Normally when a error occurs during the execution of a program, the robot is
halted and the program terminates. By using the ONERR command, an error
during the program will cause program control to jump to the named program
{(PRG_NAME). This is useful in the case of an arm power error due to the use
of the "ARM OFF" command in a program for instance.

APPLICABLE MODES:
{P}

EXAMPLE:

1. If an error occurs during a program, it is useful to determine what the
error is. If no terminal is in the system, the message will not be
displayed, and once the arm power is turned off, the last error STATUS
line will always show error "040 - ARM POWER". To trap the error, the
following may be used:

100 ; In MAIN: 1000 ; PROGRAM GET_ERR:
200 ONERR GET_ERR 1100 DISABLE ARM
- SN . 1200 MEMRD BYTE,7603,ERR_NLM

1300 TYPE "%xXx Error encountered -’
1400 TYPEI ERR_NM

1500 TYPE © %%k’ /

1600 RETURN

CROSS-REFERENCES :
RAPL COMMANDS: GOSUB, ONSIG, @APC, @NAPC, ENABLE, DISABLE, MEMRD

4-88

FORMATS:

Source: [Line#t] ONPOWER
Tokenized: [Line#] /156

DESCRIPTION:

Test the sense of the arm power switch, and hold until the arm power is
turned on. When the arm power is turned on, proceed to the next program
line. Unlike the ONSTART command, this command does not look for a
transition of the arm power state. Thus if the arm power is on when this
command is entered, control will pases to the next line.

This command is useful for auto-start routines (AUTO_ST) where the program
mist wait for the operator to turn on the arm power.

APPLICABLE MODES:
{1}, {P},{M}
. CROSS- REFERENCES :

RAPL COMMANDS: none
OTHER CRS Plus Publications: SRS-M1A/TECH (Chapter 9)

. 4-89

ONSIG

FORMATS :

Source: [Line#] ONSIG <[-JPort#>, Prg Neme>
Tokenlzed: [Line#] /080 <[-]Port#>,<Prg Name>

RESCRIPTION:

This command will set up RAPL to react to an input immediately by branching
to the specified sub-program.

Once the ONSIG condition has been activated, the specified input will be
seneed every approximately 40 milliseconds. When the input matches the
specified condition, the controller will execute the subroutine that is
specified in the command line.

The input used can be any user input. If the input is a pulse, the pulse
mist be at least 100 millisecomds in lemgth to be sure it is captured
reliably by the system.

RAPL COMMANDS: IGNORE, ENABLE, DISABLE, GOSUB, RETURN
OTHER CRS Plus Publications: SRS-APP/SAFETY, SRS-APP/PATH

4-90

®

ONSTART

i
\
i
FORMATS :
Source: [Linet#] ONSTART

Tokenized: [Line#] /092

This is a specialized version of the WAIT command. In this command, the
state of the AUTOSTART switch is scanned. When the state of the input
changes from low to high, control is passed to the next line of the program.
Note that this command waits for the transition not just for the state to be
high. Thus if the switch is depressed when the command is executed, it must
be released and pressed again for program flow to continue. This prevents
cne trip of the switch from passing through multiple ONSTART commands in the

same program.

APPLICABLE MODES:
{1k, (M}, {P}

CROSS-REFERENCES :
RAPL COMMANDS: ONPOWER, IFSTART

4-91

OPEN

FORMATS:

Source: [line#] OPEN (% FORCE]

Tokenized: [line#] /040 [% FORCE]
DESCRIPTION:
With a pneumatic gripper installed, this command will open the gripper. When
in Manual mode the gripper can be opened by use of the gripper switch on
teach pendarnt.

When the servo gripper is installed, then the CPEN command serves to open
the gripper at a specified force, as a percentage of full force.
APPLICABLE MODES:

{I},{P}

EXAMPLE:
1. To open an air gripper:
>>0PEN
2. To open the SERVO gripper at a torque of 60%:

>>(FEN &0

CROSS-REFERENCES :
RAPL COMMANDS: CLOSE, GRIP, @GGTYPE

OTHER CRS Plus Publications: SRS-APP/DBLGRIP

EORMATS:

Source: [Line#] OOTPUT <[-Joutputi>[,...]
Tokenized: [Line#] /088 <[-Joutput#>[,...]

DESCRIPTION:

Any number of output points can be switched on or off by this command. The
acceptable output number ranges from 1 to 40 with the extended option, or
from 1 to 16 standard. A sign before each output number describes the

requested state of the output. A negative sign before an ocutput channel
number will cause that output to go low. The positive sign is unnecessary.

APPLICABLE MODES:
{1}, {M},{PF}

1. Sets output #1 to a high level.
100 OUTRUT 1

2. Sets output #2 to a low level.
110 OouUnRuT -2
3. Sets outputs #1, #3 and #5 to a high level and #2 and #4 to a low level.

120 QUTPUT 1,-2,3,-4,5

CROGS-REFERENCES :
RAPL, COMMANDS: TRIGGER, ENABLE, DISABLE

4-83

PASSWORD

FORMATS :

Source: PASSWORD <passswiord>
Tokenized: /141 <pasaword>

DESCRIPTION:

Enters supervisory mode. Entry of the correct value will permit access to
monitor level commands. In addition, the monitor commsnds will be displayed
in the "?" command. The supervisory mode may be disabled by entering an
incorrect password.

WARNING :

After entry of the command, the terminal echo is disabled so that a private
password entry can be made. If the operator aborts the PASSWORD command
using the ABORT pushbutton, or a control C character from the keyboard, the
terminal echo will remain disabled until re-enabled by the control E
character or by the use of the CONFIG command.

APPLICABLE MODES: ;
{13, {1}

RAPL COMMANDS: ?
OTHER CRS Plus Publications: SRS-M1A/TECH

. PASTE

FORMATS:

Source: [Line#] PASTE <STRING1} "Text’>,<STRING2>, <CHAR_TNDEX>
Tokenized: [Line#] /146 <STRING1| Text’>, <STRINGZ>,<CHAR_INDEX>

DESCRIPTION:

This command will take the first string, and will insert, or paste it into
the second string at the character index provided. Notice that this command
requires the string symbol and number, not just the string index.

APPLICABLE MODES:
{1}, {F}, {1}

EXAMPLE:

1. Assign values to strings 1 and 2. Insert string 2 into string 1 starting
. at character index 8.

>>1 &1 = ' INSERT><THIS’
>>1 &2 = ‘SOURCE"
>>PASTE 82,81,B

>>TYFE &1

INSERT >SOURCECTHIS

>

CROSS-REFERENCES :

RAPL, COMMANDS: CUT, STRPOS, !, ENCODE, DECODE, IFSTRING are other
string related commands.

. 4-95

PAUSE

FORMATS :

Source: [Line#] PAUSE [message string]
Tokenized: [Line#] /076 [message string]

DESCRIPTION:

The PAUSE statement will halt program flow, and display the desired message
on the terminal. A PROCEED command from the operator will then resume
program control.

APPLICABLE MODES:
{P}

EXAMPLE:

1. In this example, the program will halt after the MOVE command and the
message INSERT NEW PART, THEN TYPE "PROCEED" will appear on the screen
of the terminal. When the operator enters "PROCEED, the program will
continue. :

20 MOVE AWAY

930 PALISE INSERT NEW PART, THEN TYFE "PROCEED™
P40 APPRO PART,3

CROSS-REFERENCES:
RAPL COMMANDS: STOP, RUN, PROCEED

4-96

FOINT

FORMATS ;.
Source: POINT <LOC_NAME>
Tokenized: /050 <LOC_NAME>
DESCRIPTION:

Defines a location, and allows ite current value to be changed from the
terminal before storage. A cartesian location reguires six values, the X,Y,2
coordinates and Yaw, Pitch and Roll angles of the tool. The orientation
angles are provided in degrees. A precision point value requires pulse
encoder unit inputs for each axis of motion.

APPLICABLE MODES:
{1}, {M}
EXAMPLES :
1. For a cartesian location (after a GANTRY command has been issued):
>>POINT Enter location name: PART7
. NAME X/TRACKX Y/ TRACKY Z Yaw Pitch Roll

PART7 +000 . 0000 +000.0000 +000.0000 +000.0000 +000.0000 +000.0000
+000.0000 +000 .0000

CHANGE? Y
X,Y,2,Y,P,R,Bantry-X,Bantry-Y :
12,15.75,10.675,0,90,0,0,2

2. For a precision point:

>>POINT Enter location name: #A

NAME AXHL/E AXH2/7 AXH3Z/8 AXH4 AXHD
#OO +0000001200 +0000001000 +0000002000 +O00O000000 +O000000212
CHANGE? Y

{(ml),(m2),(m3),{md), (mS), (mb), (m7),(mB) 3
1200, 1000, ~2000,0,212
>

RAPL COMMANDS: LISTL, HERE, ACTUAL

& 197

PRINT
FORMATS :
Source: {Line#] PRINT < text” |&STR_NUM>[argument]
Tokenized: [Line#t] /055 < text >[argument]
DESCRIPTION:

PRINT commsnds are automatically routed to the default printer port, which
is device #1. The optional arguments provide additional display duties. The

following are valid arguments:

/ Include a carriage return/line feed combination after the line
* Include only a carriage return after the text.
B Output the BELL character to the display.
F Output a form feed to the device.
HWARNINGS:

Attempting to use this command with device 1 configured as an ACI port will
cause a Reserved I/0° error #59.

APPLICABLE MODES

{I},{M},{P}

EXAMPLE:

1. Prints "TEST" on printer.
>>PRINT "TEST

2. Prints "TEST" on printer with a carriage return and line feed.
>>PRINT "TEST /

3. Prints "TEST" on printer with a carriage return.
>>PRINT "TEST %

4. Print a string on the printer

>2PRINT &1

CROSS-REFERENCES :
RAPL COMMANDS: TYPE, PRINTI, PRINTV

4-98

PRINTI

FORMATS :

Source: [Line#] PRINTI <VAR NAME>[,...]
Tokenized: ([Line#] /056 <VAR NAME>[,...]

DESCRIPTION:

PRINTI commands are automatically routed to the default printer port, which
is device #1.

Often it is useful to display variables in an integer format, since a
variable may only represent an integer value. A counter which must be
displayed each loop looks far more informative when shown as a "+1 instead
of "+1.0000° as a real variable would be displayed.

If the value does not fit within the integer limits (+/- 32766) then the
display will be shown in real format.

Each typed field will be separated by a single space. No carrisge return or

line feed control is included in this command, since it is often useful to
display more than one value on a display line.

WARNINGS:

Attempting to use this command with device 1 configured as an ACI port will
cause a "Reserved 1/0° error #59.

APPLICABLE MODES:
{1}, {M},{P}

RAPL COMMANDS: TYPEI, PRINT, PRINTV

4-99

PRINTV

FORMATS :

Source: [Line#t] PRINTV <VAR_NAME>],...]
Tokenized: [Line#] /057 <VAR _NAME>[,...]

PRINTV commands are automatically routed to the default printer port, which
is device #1.

Each typed field will be separated by a single space. No carriage return or

line feed control is included in this command, since it is often useful to
display more than one value on a display line.

WARNINGS :

Attempting to use this command with device 1 configured as an ACI port will
cause a "Reserved 1/0° error #59.

APPLICABLE MODES:
{1}, (M}, {P}

EXAMPLE:
1. Prints variable value RADIUS to printer.

POPRINTV RADILB<cr>
+002.7500

2. Prints variable values RADIUS and CIRCUM to printer.
POPRINTV RADILE, +002.7500 CIRMcr>

+Q08. 6393
»>

CROSS-REFERENCES :
RAPL COMMANDS: TYPEV, PRINT, PRINTI

4-100

FORMATS:

Source: [Linett] PROCEED
Tokenized: [Line#] /106

DESCRIPTION:

The PROCEED command has two distinct functions: it can be used in the
immediate mode in order to re-start a program that has terminated
prematurely, or it can be used in a program in order to re-start a
continuous path that was interrupted, typically by an ONSIG condition.

Following the detection of a PAUSE statement in the program, a PROCEED
command will cause the program to continue starting at the next program
line. PROCEED may also be used after a “soft’ abort: that is, typing
<«Ctrl-A>. It should not be used after a hard <ABORT> (<Ctrl-C> or ABORT
pushbutton on pendant) as this could cause unexpected results.

PROCEED can also be used after the NEXT command in some instances during
program debugging, however, if the NEXT command was used to position the
program pointer to within a subroutine, the RETURN statement could cause an

error .

When PROCEED is used to continue a path, the command includes an implicit
joint interpolated move back to the location where the path was interrupted.

WARNINGS:

1. The PROCEED command will resume a continuous path only if no other path
is programmed. Thie includes any straight line move, in addition to
CPATH or GOPATH commands.

APPLICABLE MODES:
{1}, {1}, {F}

EXAMPLES :
1. After a program has terminated by a <ctrl-A> program pause or with the

PAUSE command, or the program is being stepped through using the NEXT
command, normal program operation can be resumed by entering:

>rAROCEEIXer>
Continued. ...

4-101

PROCEED (Cont)

2. If a continuous path move 1s interrupted by a HALT command within a
program, the PROCEED command will cause it to resume from where it

stopped.

PROGRAM: MAIN
10 ONSIG 1,ERR

20 CPATH A,B,C,D,E,F,G,H,J,K,L,M,N
30 FINISH

40 STOP

PROGRAM: ERR

10 HALT

20 DEPART 2

30 MOVE SOFE

40 WAIT -1

45 3 Move back to the path and continue:
S0 PROCEED

&0 RETURN -1

The ERR sub-program will be triggered when input #1 goes high. The
robot will immediately stop, depart from the path, and move to a safe
location. There it will wait for the signal that everything is clear,
do a joint interpolated move back to the location at which it was
interrupted and resume the path.

When programming this type of sequence, ensure that the location SAFE
is accessible from any point along the path. If this is not the case, a
collision may result during the retreat or the joint interpolated move
back to the path. Also ensure that no path-type moves are executed
before the PROCEED command or the path pointer will be cleared. This
will prohibit the PROCEED from functioning as desired. Note that any
straight move is a path-type command.

CROSS-REFERENCES :
RAPL COMMANDS: PAUSE, RETRY, CPATH, GOPATH
OTHER CRS Plus Publications: SRS-APP/PATH

4-102

FORMATS:

Source: [Line#t] REACH <FORWARD:BACK>
Tokenized: [Line#] /171 <FORWARD!BACK>

DESCRIPTION:

When the SRS-M1A arm is mounted in the centre of the work area and working
dovn on the mounting surface, it is in the REACH FORWARD mode. The SRS-M1A
can, however, access a portion of its working volume "over its head”. In
some cases, a single location in space can be reached in both modes.
Optimum cycle time may be achieved by using the REACH BACK command. For the
M1A, the REACH BACK configuration must be accompanied by an ELBOW DOWN
command since when the arm is reaching back, the elbow joint is pointing
down. Refer to the description of the KLBOW command.

CROSS-REFERENCES :
RAPL COMMANDS: ELBOW, INVERT

FORMATS :
Source: [Line#] READY
Tokenized: [Line#] /015
DESCRIPTION:
Moves arm to "READY" position shown in Figure 4-1 below.
APPLICABLE MCODES:
{1}, {M},(P)
EXAMPLE :
1. Move arm to "READY" position shown in Figure 4-1.
> oRENDY

o .

FIGURE 4-1 Arm "READY" Position

RAPL, COMMANDS: HOME, @@CAL, XREADY
OTHER CRS Plus Publications: SRS-M1A/TECH

4-104

FORMATS :

Source: RENAME <old PRG_NAME> , <new PRG_NAME>
Tokenized: /107 <old PRG_NAME>, <new PRG_NAME>

DESCRIPTION:
This command will change the name of a program already stored in memory.
This function could be used when loading a new program through ROBCOMM. If

an existing program has the same name, an error will result. Renaming the
old program beforehand will eliminate this problem.

APPLICABLE MODES:
{I},{M}

CROSS-REFERENCES :
. RAPL COMMANDS: CCPY, EDIT, DELETE

. 4-105

FORMATS :

Source: RETRY
Tokenized: /108

DESCRIPTION:
If an error causes premature program termination, RETRY can be used to try
the erroneous line again after the error has been corrected. The program

will then execute as though it had not been interrupted, starting at the bad
line. The program loop count status will be maintained.

WARNINGD:

1. If the robot was in motion when the error ocurred, the error will have
caused the arm to halt somewhere in its path. The RETRY command will not
continue the motion but will pick up program execution at the line that
caused the error. motion commands following this ervor may cause
unexpected results. Caution with this command is advised at all times.

APPLICABLE MODES:

FORMATS:

Source: [Line#] RETURN [skip #)
Tokenized: [Line#t] /077 [skip #]

DESCRIPTION:

This statement is used to return program control to the calling program. By
using the optional line skip coumter, the return can include skipping over
one or more lines when returning to the calling program.

Up to 255 lines can be skipped with this function. Omitting the skip count
is the same as programming a skip count of 0. That is, the next line in the
main program immediately following the call to the sub-program will be
executed next.

Note that the skip number refers to numbers of lines and not to the numeric
value of the line numbers in the calling program.

There is a special case of the skip number which is useful when calling a

. routine from an ONSIG condition. A value of ~1 can be used in this case to
ensure a return to the exact line which was being executed at the time of
the ONSIG condition being satisfied. For instance if an onsig is anticipated
in a motion command, follow this command with a explicit FINISH command. If
the ONSIG occurs, a RETURN -1 at the end of the subroutine will return to
the FINISH command.

APPLICABLE MODES:
{P}

Continued. ...

. 4-107

RETURN (Cont)

EXAMPLE:

: 5

Main is a routine called from the AUTO_STart program. At the end of the
day s production, switch 2 is set, signalling a stop. This condition is
checked in WAIT and returned using the line skip feature. In MAIN, when
the stop signal has been received, flow returns to the AUTO_ST routine.

100 ;3 MAIN PROGRAM

110 GOSLUB WAIT 100 ;3 PROGRAM WAIT

120 RETURN 110 IFSIG 1 THEN 150

122 ; Task starts here: 120 IFSIG 2 THEN 140

130 MOVE S&FE 130 GOTO 110

140 ... 140 RETURN

vl 150 RETURN 1
S00 G070 110
2. To stop the robot when a light curtain is broken, and re-start it when

restored, the ONSIG command is used with a "RETURN -1" statement to
terminate the called routine (HALT):

400 ... PROGRAM HALT:

410 ; Move safely: 1000 SET DEST = ENDPNT

420 ONSIG -1 ,HALT 1100 HALT

430 APPRO PICKL,Z2 1200 WAIT 1

440 MOVE PICKL 1300 MAVE DEST

450 FINISH 1400 RETURN ~1

4460 ... $
In this case, program flow cannot pass to the next line until after the
commanded motion is complete. If signal 1 goes low, control passes to
HALT which determines the motion destination (line 1000), stops the
robot, waits for the signal 1 to go high, and repeats the move command.
The ~1 skip on the return will put the program pointer back to the
correct line in the calling program.

CROSS-REFERENCES :

RAPL, COMMANDS: GOSUB, ONSIG, ONERR
OTHER CRS Plus Publications: SRS-AFPP/PATH

4-108

FORMATS :

Source: [Line#t] HON [<PRG_NAME>]1[,loop count|F]
Tokenized: [Line#] /109 [<PRG_NAME>][,loop count]

DESCRIPTION:

This command will execute a program from the robot memory. If no program
name is given, then the program that was last executing is run. If that
program is a subroutine normally called by a main program, an error will
likely result.

Program execution will start with the first statement in the program.

A program loop counter can be included in the statement. If no loop counter
is supplied, then it is assumed to be 1. The maximum loop count is 85535,
optionally entering an "F’° (Forever) as the loop count will result in
infinite looping.

The RUN command may be used in a program with the following limitations:

1) The command must not be executed as many as 50 times without causing a
stack error in the system computer and causing a shutdown.

2) Returning to the interactive mode may cause an unexpected error:
probably error ‘012 COMMand ERROR . The system will also have disabled
the HELP mode when it returns.

APPLICABLE MODES:
{1}, {M},{P}

RETRY, PROCEED, PAUSE, STOP
OTHER CRS Plus Publications: SRS-M1A/TUTORIAL

4-109

FORMATS :

Source: [Line#t] SERIAL
Tokenized: [Line#] /111

DESCRIPTION:

This command will display the current setup of the two serial ports. It can
be used before a CONFIG command so that the programmer is sure of the
current settings of the port.

The display will always be routed to the default device.

APPLICABLE MODES:
{I}
EXAMPLE:
1. Enter:
>O8ERIA <cr>
Response :
Attribute ¢] X
Baud Rate 600 2400
Parity Even None
Data Bits a. 8
Stop Bits 2z 2
Xon/Xoff On On
RTS/CTS Off Off
Echo Off Off
CROSS-REFERENCES :

RAPL COMMANDS: CONFIG
OTHER CRS Plus Publications: SRS-M1A/TECH

4-110

' SET

FORMATS :
Source: {Line#] SET <LOC_NAME> = <LOC_NAME>
Tokenized: [Line#] /051 <LOC_NAME> = <LOC_NAME>
DESCRIPTION:

The SET function will equate one location to another. This command is
useful when a location must be modified, but its original value must also
be maintained.

The SET command can be used to assign ugser defined locations to reserved
internal robot locations. These locatlons refer to the current commanded
position, the actual position, and the current end point of the robot. These
specific locations are accessible through reserved location names. The
reserved locations can be determined in cartesian or precision point

values. These reserved names are:

ACTUAL, #ACTUAL - Actual robot position registers

POSCOM, #POSCOM - Commanded position registers

ENDPNT, #ENDPNT - End point or destination registers for any motion. For
PATH motion, this contains the last knot of the path.

. Never attempt to write to these registers. If any operations are to be
performed on this data, it is best assigned to a working location that is
defined by the user using the SET command.

APPLICABLE MODES:
{1}, {M},{P}
EXAMPLE:

1. A program used to halt any joint interpolated motion is below. Typically
this would be used with a light curtain input (denoted LC here). It uses
the SET command to determine swhere the robot is headed when
interrupted:

100 SET DEST = ENDENT
200 HALT

300 WAIT -LC

400 MOVE DEST

500 RETURN -1

RAPL, COMMANDS: HERE, POINT, SHIFT, SHIFTA
OTHER CRS Plus Publications: SRS-APP/PATH, SRS-APP/PALLET

. 4-111

FORMATS:

Source: [Line#t] SHIFT <LOC_NAME> BY «dX>,«d¥>,<d2>
Tokenized: [Line#t] /052 <LOC_NAME> BY <dX>,<d¥>,«<dZ>

In this command, the ¥, Y and Z values of the location are incremented by

the specified amounts. A precision point location cannot be changed using
SHIFT.

APPLICABLE MODES:
{1}, {M}, (P}
EXAMPLE:

1. SHIFT point P by 1,1,0

120 SHIFT P BY 1,1,0

2. SHIFT point "A” by .002,1.2,-0.5

>>V DX = 0.0024cr>
P>V DY = 1.24cr>
> DL = -.8cr>

140 SHIFT A BY DX,DV,DZ

CROSS-REFERENCES :
RAPL COMMANDS: SET, SHIFTA, HERE
OTHER CRS Plus Publications: SRS-APP/PALLET

4-112

SHIFTA

FORMATS :

Source:

[Line#] SHIFTA <LOC_NAME> BY <«dX>,<dY¥>,<dZ>,<d0>,<dA>, <dT>(, <DTrk> , <DTrkY>]
Tokenized:

{Line#i] /053 <LOC_NAME> BY «<dX>,<dY>,<dZ>,<d0>,<dA>,<dT>[, <DTrkX>, <DTrkY>]

DESCRIPTION:

Similar to the SHIFT function, the SHIFTA function permits all components of
a cartesian location to be changed. A precision point location can also be
changed in this fashion.

For cartesian locations, the X, Y, and Z coordinates are in inches, while
the tool angles are in degrees. For precision points, motor pulses are used.

WARNINGS:
All coordinates must be entered. For precision points, one coordinate per
axis. For cartesian locations, all six coordinates. If a TRACK or GANTRY

has been specified, the corresponding axis values for these must also be
entered in the programming units for the axis in question.

APFLICABLE MODES:
{1}, {M},{P}

CROSS-REFERENCES ;.
RAPL, COMMANDS: SHIFT, SET
OTHER CRS Plus Publications: SRS-AFP/PALLET

SIN

FORMATS :

Source: [Line#] SIN <angle>,<R}D>,<VAR_NAME>
Tokenized: [{Line#] /124 <angle>,<R!D>, <VAR_NAME>

DESCRIPTION:

Will determine the Sine of the given angle and store result in radians <>
or degrees <D> as a VAR_NAME.

APPLICABLE MODES:
{I},{M},{F}

CROGS-REFERENCES :
RAPL COMMANDS: COS, TAN, ASIN, ACOS, ATAN

FORMATS :
Source: {Line#] SPEED <Valuoe>
Tokenized: [Line#t] /018 <Value>
DESCRIPTION:

The SPEED command instructs the robot to perform motion commands at the
specified speed.

The value of the speed corresponds to a percentage of full speed. The range
permitted is from 1% to 150% of full speed. 100% speed is the maximum speed
at which the robot will move in a coordinated joint-interpolated motion from
any one programmable point to any other programmable point. A more detailed
discussion of this term can be found in the technical manual.

The speed value can be entered as an explicit value, or as a variable.

APPLICABLE MODES:
{I},{M},{P}

CROSS-REFERENCES :
RAPL COMMANDS: All motion commands
OTHER CRS Plus Publications: SRS-M1A/TECH

4-115

FORMATS :

Source: [Lineit] SQRT <value>, <VAR _NAME>
Tokenized: [Line#] /130 <value), (VAR_NAME>

DESCRIPTION:
Calculates square root of value and stores result in VAR _NAME,

APPLICABLE MODES:
{1}, {M},{P}

CROSS-REFERENCES :
RAPL COMMARDS: !, SIN, COS, TAN, ASIN, ACOS, ATAN

. STATUS

FORMATS:
Source: [Line#] STATUS [1]
Tokenized: ([Line#] /025 [1]
DESCRIPTION:

This command outputs a status display of many important robot operation
parameters to the current default device.

{1}.{M},.{P}
EXAMPLE :
1. Display status, Enter:

>>STATUELcr>

response:

LAST ERROR CODE: O40-ARM POWER
ROBOT SPEED (% of full) @ +40

. CURRENT PROGRAM EXECUTING: TEST LINE NUMBER: 00070
PROGRAM LOOPS EXECUTED: 65535 PROGRAM LOOPS REMAINING: 00001
CURRENT PROGRAM EDITING @ TEST

JOINT LIMIT CHECK IS DN

ROBOT IS HOMED

TOOL TRANSFORM :

NAME X Y Z Yaw Pitch Roll
TOOL_1 +000.000 +000.000 +000.000 +000.000 +000.000 +000.000

GRIPPER TYPE AIR

L

AXISH
LOCK
DONE.
LiMP
HOMED
CAL

<L <X <2Zr
L L LEN
<< L2UH
<L L CZ DD

3
N
Y
Y
Y
¥

Configuration Reach Forward/Elbow Up/lInvert Off
Manual Mode ON Mode CYLINDRICAL

CROSS-REFERENCES :
RAPL, COMMANDS: none
OTHER CRS Plus Publications: SRS-M1A/TECH

. 4-117

FORMATS :

Source: [Line#] STOP [message string)
Tokenized: [Line#] /078 [message string]

DESCRIPTION:

This command must be located at the end of a program, unless an ABORT
command is used. If it is not present, then an error will occur. The message
string is useful for informing the operator when a task is complete.
APPLICABLE MODES:

{P}

EXAMPLE :

1. The result of this portion of code ie to terminate the program and print
the message "THAT IS ALL ™ on the terminal screen.

70 MOVE AlAY
990 STOP THAT 15 ALL

CROSS- REFRRENCES :
RAPL COMMANDS:

4-118

FORMATS:

Source: [Line#] STRPOS <STR_NUM>, < TARGET STRING >, <VAR_NAME>
Tokenized: [Line#] /148 <STR_NUM>, < TARGET STRING™>, <VAR_NAME>

DESCRIPTION:

Will return the character index of the first character in the TARGET string
in the string identified by STR_NUM. The target string must be an assigned
text string, bounded by single quotes. If no match exists for the target
string, a value of 0 is returned in the variable. Otherwise, a value of 1 to
32 is returned. Y

APPLICABLE MODES:
{1}, {F}, {M}

‘lb EXAMPLE:

1. Assign string 1 with the following data. Pick the index for the target
string "KK” and assign it to variable AA. Print it out.

>>1 &1 = "FIND THE KK STRING”

RAPL COMMANDS: CUT, PASTE, !, ENCODE, DECODE, IFSTRING are other
string related commands.

TAN
FORMATS:
Source: {Line#t] TAN <angle>,<R!D>,<VAR NAME>
Tokenized: [Line#] /126 <angle>, <R!D>,<VAR_NAME>
DESCRIPTION:

Will determine the Tangent of the given angle (in radiane <R> or degrees
<D>) and store result as a VAR_NAME.

{I},{M},{P}

CROSS-REFERENCES ;.
RAPL COMMANDS: SIN, COS, ATAN, ASIN, ACOS

4-120

FORMATS :

Source: [Line#] TOOMP <LOC_NAME>, <VAR_NAME>
Tokenized: [Line#] /066 <LOC_NAME>, <VAR_NAME>

DESCRIPTION:
The ‘T component (tool or roll angle) of "LOC_NAME" is extracted and stored
in "VAR_NAME". The angle is stored in degrees.
APPLICABLE MODES:
{I},{M},.{P}
CROSS-REFERENCES :
RAPL, COMMANDS: COMP, XCOMP, YCOMP, ZCOMP, OCOMP, ACOMP

4-121

FORMATS .

Source: [Line#] TOOMP <LOC_RAME> , <VAR_NAME>
Tokenized: [Line#t] /066 <LOC_NAME>, <VAR_NAME>

DESCRIPTION:
The ‘T component (tool or roll angle) of "LOC_NAME" is extracted and stored
in "VAR_NAME". The angle is stored in degrees.

APPLICABLE MODES:
{1}, (™}, {F}
RAPL COMMANDS: CoMP, XCOMP, YCOMP, ZOOMP, OCOMP, ACOMP

FORMATS:

Source: [Line#] TEACH <teach template>[,count]
Tokenized: [Line#] /044 <teach template>[,count]

DESCRIPTION:

This command enables the function of the teach pushbutton on the pendant for
recording robot positions. Location names will consist of the template and
count merged into an 8-character string. The count is incremented by one
each time the teach button is pressed. Entering a [count] in the command
string permits entry of a new starting count. If not included, the count
will continue from the previous count used. The maximum count value is 255.
After 255, the counter will reset to 0.

The teach mode remaing active until a NOTEACH or DISABLE TEACH command is
issued. ENABLE TEACH will re-establish teach button function but not permit
changing the template or count values.

WARNINGS :

1. Pressing the TEACH button in the TEACH mode causes a message string to
be displayed. Since the teach button has a higher priority than all
other normal screen update functions, this message will interrupt
dynamic displays such as the one generated by the W1l command.

2} The WITH command uses the same internal register for storage of the

template as the TEACH command does. Thus the use of either command will
overurite the contents placed in that register by the other command.

APPLICABLE MODES:
{1}, {M},{P}

.. .Continued

4-122

EXAMPLES :
1. Teach three points, Enter:
>>TEACH PICK, 10<cr>
Press teach button at the desired three locations. Response:

>
POINT SAVED
PICK_010

>>

POINT SAVED :
PIDK_O11

>>

POINT SAVED
PICK_O12

Ll

-

2. Then enter a new template:
>>TEACH NEW<Cr>

Press teach button at the desired location. Response:

>>
POINT SAVED :
NEW__ 013
>
POINT SAVED :
NEW__O14
>>
CROSS-REFERENCES :

RAPL COMMANDS: WITH
OTHER CRS Plus Publications: SRS-APP\PATH

TEACH (Cont)

4-123

FORMATS :

Source: [Line#t] TIME <VAR_RAME>
Tokenized: [Line#f] /082 <VAR_NAME> .

DESCRIPTION:

Read the system timer clock register. The value returmed will be stored in
real format in the prescribed variable register. The system timer clock
ticks roughly every 41 milliseconds.

The counter is reset only by a TEACH START.

APPLICABLE MODES:
{I},{M},{F}
1. To determine the time taken for a certain move:

440 FINISH

450 TIME START

460 MOVE PLACE

470 FINISH

480 TIME FINISH

490 ¢ TIME = FINISH - START

495 ;1 To get the value in seconds, multiply by 0.041 seconds/tick:
500 ! TIME = TIME % .041 ;
510 TYPE "It took

520 TYPEV TIME

530 TYPE ' seconds for the move. /

For realistic numbers, the compiled version of the code would be better as
the time to interpret the code would be much less.

CROSS~-REFERENCES :
RAPL, COMMANDS: DELAY
(OTHER CRS Plus Publications: SRS-M1A/TECH

4-124

OPEN {{040} - Open the gripper. Force argument used only for optional servo
Eripper.

OUTPUT (/089) - Set the output lines to the specified states.
PASSWORD (/141) - Enters supervisory mode.

PASTE (/146) - Paste string 1 into string 2, starting at the specified
index.

PAUSE (/076) - Pause the program flow and display the message on the output
device. The program can then be continued by entering the PROCEED

command
POINT (/050) - Defines a location.

PRINT (/055) - Send the text string to the printer. Use a set of special
characters to enhance the display. See TYPE.

PRINTI (/056) - Print variable(s) to the printer in an integer format.

PRINTV (/057) - Print variable(s) to the printer in real format.

PROCEED (/108) ~ Continue program execution after a PAUSE statement or a
<«Ctrl-A> has been used to halt program flow. In a program, this command
will restart a path once interrupted.

REACH (/171) - Cause to robot to access a singularity location either in
forward mode (traditional) or by reaching "over the head".

READY (/015) - Moves arm to the "READY" position, and any extra axes to
their zero positions. Also resets any LOCK conditions.

RENAME (/107) - Rename an existing program in the robot memory.

RETRY (/108) - Retry any statement which caused an error, halting program
flow. That statement will be attempted again and the program will
continue normally.

BETURN (/077) - Return to calling program.

RON (/109) - Execute a program in memory. Execute it for a given number of
cycles. Execute it only once if no loop counter is present.

SERIAL (/111) - Display the current serial interface parameters.
SET (/051) - Assign the value of a location to that of an existing one.

SHIFT (/052) - Shift the cartesian displacements of a cartesian location by
the specified vector.

APPENDIX A - Page A-6

SHIFTA (/053) - Shift the values of all components of the cartesian location
by the specified amounts.

SIN (/124) - Determine the sine of the specified angle. The angle can be
given in either degrees or radians. Return the result in the given
variable location.

SPEED (/016) - Set the speed of future robot moves.

SQBT (/130) -~ Determine the square root of the specified value. Store the
value of this operation as the specified variable name.

STATUS (/025) - Display the current robot status on the default output
device.

STOP (/078) - Terminate program flow. Print the optional string on the
output device.

STREGS (/148) - Match the occurrence of the target string in the specified
gtring number, and return the character index in the varlable. Returns a
value of zero 1f no match was made.

TAN (/126) - Determine the tangent of thelspecified angle. The angle can be
given in either degrees or radians. Return the result in the given
variable location.

TCOMP (/066) - Store the tool roll component of a cartesian location as the
specified variable name. The angle is stored in degrees.

TEACH (/044) - Turn on the TEACH mode of operation. Specify a teach name
template which will be used to identify all fubture teach points. Each
time the teach pushbutton is pressed, a new location will be stored in
memory. Locations can be stored according to the format described by the
name; that is either a precision point, or cartesian location.

TIME (/082) - Extract the system timer clock value. Store the value in real
format in the given variable.

TOOL (/054) - Set the tool transform to a value described by a stored
"location”.

TRACK (/180) - Set up robot axis 6 as a Track axis, either in line with the
robot X or Y axis. Future cartesian location calls will include the
extra axis coordinate.

TRACE (/079) ~ Turn on the trace mode of operation. Each new program line
which is executed will be displayed on the output device in terms of
program name and line number.

TRIGGER (/175) - Set up a table of outputs to be turned on and/or off during
path execution.

AFPERDIX A - Page A-7

TYPE (/058) - Send a text string output to the default output device. Use
special characters to enhance the display.

TYPEI (/059) - Print the list of variables to the ocutput device in an
integer format.

TYPRV (/060) - Print the list of variables to the output device in a real
format.

ONLOCK (/017) - Disables LOCK command.

W0 (/027) - Display the current commanded robot position.

W1 (/029) - Display the actual robot position continucusly.

W2 (/031) - Display the actual current robot poeition.

W3 (é23§) ~ Displays the robot commanded position continuously on the output
vice.

W4 (/035) - Display the end coordinates of the current path.
W5 (/037) - Continuously displays the robot velocity command.

WATT (/094) - Test the condition of the input line and wait here until the
condition is met.

WE1 (/028) - Display the actual position of the extra axes continucusly.

WE3 (/032) - Displays the commanded position of the extra axes on the output
device continuously.

WES (/038) - Displays the extra axes velocity commands continucusly.

WGRIP (/041) - Stores the servo gripper opening distance (in inches) in the
specified variable.

WITH (/153) ~ Permits numerical access to all locations stored with the same
template.

XCAL (/157) - calibrate an extra axis.

XOOMP (/081) - Stores the X component of a cartesian location (in inches) as
the specified variable name.

YHOME (/158) - HOME an extra axis.
XREADY (/014) - Move an extra axis to its zero position.
XZERO (/159) - Zero the position registers of the specified axis.

APPERDIX A - Page A-8

YOOMP (/062) - Store the Y component of a cartesian location (in inches) as
the specified variable name. '

ZCMP (/063) - Store the 7 component of a cartesian location (in inches) as
the specified variable name.

APPENDIX A - Page A-9

. APPENDIX B - RAPL ERROR LIST

All robot operations are monitored for error conditions. Detectable errors
are listed in this appendix. When an error condition existas, a message will
be displayed at the default device, and the ready-light on the teach pendant
will turn off.

To clear the error condition, any correct command may be entered. The
comnand will clear the error detection flag, and will then turm the ready-
light back on. A STATUS command will list the previous error condition.

ERROR MESSAGE DESCRIPTION

000 AXIS#1 OOT AXIS #1 IS OUT OF RANGE:
This error means that there has been a Loss Of FeedBack error for
joint 1. This error could be due to a collision with a stationary
object, a blown fuse in the motor circuit, or a true loss of feedback
signal from the encoder.

001 AXIS#Z OUT AXIS #2 IS OUT OF RANGE:
Same as error 000, but for axis 2.
‘ 002 AXISH#H3 OUT AXIS #3 IS OUT OF RANGE:
Same as error 000, but for axis 3.
003 AXIS#4 OUT AXIS #4 IS OUT OF RANGE:
Same as error 000, but for axis 4.
004 AXISHS OUT AXIS #5 IS OUT OF RANGE:
Same as errvor 000, but for axis 5.
005 AXISH#6 QUT AXIS #6 IS OUT OF RANGE:
Same as error 000, but for axis 6.
006 AXISHT OUT AXIS #7 IS OUT OF RANGE:
Same as error 000, but for axis 7.
007 AXISHB OUT AXIS #8 IS OUT OF RANGE:
Same as error 000, but for axis 8.
008 ILLEG OPER ILLEGAL OPERAND:

An operand in the command line is not acceptable.

009 EOL NOT FO END OF LINE NOT FOUND:
The end of line descriptor (a <cr>) was not found, causing an
incorrect read of the data. Command lines are limited to 128
characters in length including the ECL character.

. APPENDIX B - Page B-1

010

011

012

013

014

015

016

017

018

019

020

021

ERROR MESSAGE DESCRIPTION

SYMB UNDEF SYMBOL UNDEFINED:
A necessary variable was not present in the symbol table. To correct,
manually, or through the program logic, create a symbol in the table.

LOCN UNDEF LOCATION UNDEFINED:
The robot location referenced was not previocusly defined. Check the
location table for the location in question, and create if necessary.

COMM ERR?? COMMAND ERROR:

The command entered wag not found in the command list. A spelling
mistake, or the lack of a space between the line number and the
command descriptor could have caused this problem. Either re-type the

line, or inspect the program line for the mistake.

ARG MISSIN ARGUMENT MISSING:
An argument was expected, but not read. Check the command syntax.

BAD SYNTAX BAD SYNTAX:
A general error which occurs when the command line could not be
decoded. Check for a spelling error in the command name.

FP NOT LEG PRECISION POINT NOT LEGAL:
A precision point was specified as a location in the command line, but
was not permitted in this situation.

1/0 ADDR?? 1/0 ADDRESS ERROR:

The 1/0 number which was entered in the command line was beyond the
permissable range. Standard digital I/0 is from 1 to 16, while
optionally, 1 to 40 can be used.

PROG NOT F PROGRAM NOT FOUND:
The program called was not found in the program directory. Create the
program, or check the spelling of the missing program call command.

ILLEG ARGU ILLEGAL ARGUMENT:
An argument was entered, but not permitted.

LINE NOT F LINE NOT FOUND:
The program line number called in a branching statement is not present

in the program.

ARG TOO BI ARGUMENT TOO BIG:
The value of a specified argument is too big for the command.
NO ROOM LE NO ROOM LEFT:

The program buffer is full, and cannot accept any further
information. Delete unwanted programs, or re-allocate memory with the
ALLOCATE command.

ERROR MESSAGE DESCRIPTION

022

023

024

025

026

027

028

029

030

TABLE FULL TABLE FULL:

The robot controller maintains program names, location and variable
references in tables. This error means that there is no room left to
store a new item. Delete all unwanted information, or re-allocate

memory .

BAD LINE N BAD LINE NUMBER:

The line number called could not be found, and that a value of zero
was returned after its search. The value of zero is an illegal line
rniunber .

ILL A/D CH ILLEGAL A/D CHANNEL:

An illegal analog to digital conversion channel was specified.
Channel numbers 1 to 25 are valid. Channel 9 is the speed selector
knob on the teach pendant.

LINE TOO L LINE TOO LONG:
The command line exceeded the maximum number of characters permitted,
128 characters.

EOF NOT FO END OF FILE NOT FOUND:

An end-of-file character was not found. This implies that a program
buffer error has occurred. To remedy clear all memory and re- load all
information. If the problem persists, then a fault exists in user
memory, or a problem with storing the information on an external
device caused invalid storage of information. When this information
was re-loaded, the EOF character was not found, thus causing the
error.

PROG EXIST PROGRAM EXISTS:

An attempt to create a duplicate file name, or an attempt to load into
an existing file name was discovered. Either delete the existing file,
or define a new program name for the new function.

LINEEXIST LINE EXISTS:
An attempt to insert an existing line number was found. Either define
a new line number, or delete the old one first.

XEFRM TLLEG TRANSFORM ILLEGAL
A move to an impossible robot coordinate was attempted and the
coordinate transformation for the location generated a mathematically

impossible result.

RESERVED

L

ERROR MESSAGE DESCRIPTION

031
032

033

034

035

036

037

038

039

040

041

042

043

RESERVED

HOME FAIL1 JOINT #1 HOME FAILURE:

The home sequence failed during the motion of axis 1. The axis was
commanded a motion of Jjust over 1000 pulses, or one motor revolution.
During this motion, a zero-crossing marker pulse was expected but not
seen. This could be due to an encoder failure, a wiring proglem or
just a lack of power to motor 1. Check for servo action and retry the
HOME command. If it fails againg, check encoder function and
connection.

HOME FAIL2 JOINT #2 HOME FAILURE:
Follow the same procedure as error 032.

HOME FAIL3 JOINT #3 HOME FAILURE:
Follow the same procedure as error 032.

HOME FAIL4 JOINT #4 HOME FAILURE:
Follow the same procedure as error 032.

HOME FAILS JOINT #5 HOME FAILURE:
Follow the same procedure as error 032.

HOME FAILS JOINT #6 HOME FAILURE:
Follow the same procedure as error 032.

HOME FAIL7 JOINT #7 HOME FAILURE:
Follow the same procedure as error 032.

HOME FAILS JOINT #8 HOME FAILURE:
Follow the same procedure as error 032.

ARM POWER ARM POWER:

The arm power switch was turned off, which means that no power is
going to the servo motors. In this condition, the robot camnot move.
The robot has been placed in a LIMP state.

NOT HOMED NOT HOMED:
The robot cannot perform the requested motion because it has not been

homed after power up.

JNT #1 OOT JOINT #1 OUT OF RANGE:
The next motion will send joint 1 out of range. Inspect the
destination point for validity.

JNT #2 OUT JOINT #2 OUT OF RANGE:
Follow the same procedure as error 042,

ERROR MESSAGE DESCRIPTION

044

045

046

047

048
049

050

051

052

053

052

0563

JNT #3 OUT JOINT #3 OUT OF RANGE:
Follow the same procedure as error (042,
JNT #4 OUT JOINT #4 OUT OF RANGE:
Follow the same procedure as errvor 042.
JNT #5 OUT JOINT #5 OUT OF RANGE:
Follow the same procedure as error D42.
CHECKSUM F CHECESUM FAILURE:

The desired item of memory (program, location or variable) has been
changed in some unpredictable way. The use of this memory item could
cause unexpected results. Check the item and change or edit it to the
correct value.

RESERVED

MEM NOT AL MEMORY NOT ALLOCATED:

RAPL checked user memory and believes it has not been allocated. This
could be an indication of battery fallure. Use the ALLOC command to
partition and clear the robot memory before use.

AMBIG CMD ‘ AMBIGUOUS COMMAND:

The user specified too few characters in a command specifier so that
it is not yet a unigue command choice. Re-enter the command. This
error will occur when pressing a <cr> immediately after the prompt.

#0 TXD TIM SERTAL CHANNEL #0 TIMEOUT:

A timeout in serial device 0 indicating a hardware commmication
failure. When you see this message, the condition should already be
cleared, but check the cable and its connections to be safe. If this
fails, then turn system off and on.

#0 CTS TIM SERTAL CHANNEL #0 CTS TIMEOUT:

A timeout in the serial device 0 handshske control signal. This will
appear only if the operator has selected a CTS/RTS handshake format. A
timeout error would seem to indicate that the external device has
failed, or a connection has come loose.

#1 TXD TIM SERTAL CHANNEL #1 TIMEQUT:
Follow the same procedure as error 051 but for device 1.
#1 CTS TIM SERIAL CHANNEL #1 CTS TIMEOUT:

Follow the same procedure as error 052 but for device 1.
RESERVED

APPENDIX B - Page B-5

ERROR MESSAGE DESCRIFPTION

054
055
056

087

058

060

061

062

063

064

065

066

RESERVED
RESERVED

CAL CKSUM CALIBRATE CHECEKSUM ERROR:

The robot arm calibration values stored in memory, which are used in
the homing sequence, have been corrupted. Re-Calibrate the robot or
re-load the calibration values from disk using the ROBCOMM utility

LOADCAL.

RESERVED

NG ACCESS NO ACCESS:

User requires supervisory access to this command. Enter the correct
PASSWORD and retry the command.

RSERVED IO RESERVED I/0 ERRCR:

Attempt to use serial device #1 when it has been reserved for ACI use.
ACI ERROR! REMOTE COMMUNICATION ERROR:

Contact your distributor.

RESERVED

NO RET LEV NO RETURN LEVEL

Either a RETURN instruction was used when the program was not called
with a GOSUB (ie. trying to RUN a subroutine), or a attempted GOSUB
call would result in a subroutine nesting level greater than 10.

BAD AXIS N BAD AXIS NUMBER
An extra axis command was issued to a nonexistent axis. Use the @NOA
command to set the number of axes.

SLOT USED AXIS SLOT ALREADY USED

Either the programmer was attempting to set up the controller for 8
axes while the servo or magnetic gripper option was installed, or vice
versa. The programmer must deactivate the option which uses slot 8
first before assigning the new function.

STR ERROR STRAIGHT LINE ERROR

A straight line path was halted since it hit a joint limit. It may not
be possible to move the arm out of this position using a straight
line, so use a JOINT move.

NOT INSTAL EXPANSION MEMORY NOT INSTALLED
The continuous path command CTPATH was attempted, but the extra memory
option was not installed.

APPENDIX C - TERMINAL CONTROL CODES

INTRODUCTION
RAPL, contains terminal control codes which can affect robot operation.

To enter a control code, the "control” (usually labeled "Ctrl”) key must be
pressed while the corresponding UPPERCASE alphabetic key is pressed.

CONTROL CHARACTERS

<Ctrl-A>

<Ctrl-C>

<Ctrl-E>

<Ctrl-H>

«Ctrl-I>

<Ctrl-Q>

«Ctrl-p>

<«Ctrl-5>

<Ctrl-X>

The robot will stop after the current block is finished. If a
motion is in progress, the next program line is processed as soon
as the motion profile has been determined. Stopping a program and
motion simultanecusly will likely leave the arm out of sync with
program execution. <Ctrl-A> is useful since it will terminate
program execution but permit the robot to finish motion.

The robot current operation is terminated immediately. <Ctrl-C>
will stop motion, terminate program execution or command line
entry, and reset commmication parameters. This command is the
equivalent of pressing the <ABORT> pushbutton on the pendant.

Resume echo mode of terminal operation. The serial channel that
is affected is the one that received this code.

Turn on the HELP mode. This will activate the syntax building
feature of the operator interface. [NOT effective when using
ROBCOMM program.)

Turn off the HELP mode. This will deactivate the syntax building
feature of the control.

Resume terminal output. Essentially, this is an XON code that the
user can manually issue to resume output to the terminal device.

The echo mode of terminal operation will be turned off. The
serial channel that is affected is the one that received this

code .

Stop terminal output. This code is an XOFF command to the
controller that stops further output to the terminal.

This command is the same as the <Ctrl-C> command. It is intended
for use where users utilize a personal computer instead of a
terminal to communicate with the robot controller. In this case,
often the personal computer responds internally to a <Ctrl-C>
character issued from the keyboard.

APPENDIX D - AUTOSTART PROCEDURE
D-1 INTRODUCTION

Before an auto-start operation is executed the system must have a program
called AUTO_ST. This special program is executed automatically when the
systen MAIN POWER is turned on with the AUTO START switch depressed. If this
type of start up is attempted and a program with this name is not found, an
error will result.

D-2 EXAMPLE 1

This example is an application for the AUTO START procedure using the
manual mode to HOME the robot during the start-up.

In this example, the auto start procedure takes care of homing the robot by
prompting the user to enter manual mode. The IFSTART, ONSTART and ONPOWER
commands are used to synchronize the homing procedure with the user. After
homing, program flow will branch to the application program.

Any output to a terminal device will be ignored if no terminal is connected
when the system is powered up. The FLASH command can be used to signal the
operator in this case. In this case, the teach pendant must be plugged in to
the front panel.

AUTO_ST PROCEDURE - example 1

STEP DESCRIPTION

1 Start with the Controller in the OFF condition.

. Press and HOLD Autostart button.

3. Turn on Controller.

4. Release Autostart button after about three (3) seconds.
3. Watch for Teach Pendant Indicator flashing (Slow).
6. Turn Arm power on.

i Press START switch again.

8. Watch for Teach Pendant Indicator flashing (Fast).
g. Move robot to home boundaries with teach pendant.
10. Press Autostart button.

11, Homing sequence executes.

12, Application program, MAIN_PRO, now executes.

EXAMPLE 1 AUTO_ST PROGRAM LISTING

10 TiPE "/

20 TYPE "Release START Switch.’ /
30 TYPE "/

50 FLASH 5

60 TYPE "Turn ARM POWER on. "/
70 TYPE "/

80 ONPOWER

90 FLASH 3

100
110
120
130
140
150
160
170
180
180
200
210
220

MANUAL
TYPE “Now in MANUAL mode. Move to within HOME®/

TYPE "bounds and press AUTO-START switch. /
TYPE "/

ONSTART

NOFLASH

HOME ‘

TYPE "Program will run when AUTO-START switch pressed. /
FLASH 1

CNSTART

NOFLASH

(GOSUB MAIN_PRO

STOP Finished for the day!

D-3 EXAMPLE 2

This example assumes the use of the Homing Bracket to position the robot for
automatic homing. It also assumes that no terminal will be used for output.
In this case, the only operator input will be to turn on the ARM POWER. (For
more information on the homing bracket, refer to CHAPTER 9 of the Technical
Manual.)

AUTO_ST PROCEDURE - EXAMPLE 2
STEP DESCRIPTION

Start with the Controller in the OFF condition.

Press and hold AUTO START switch.

Turn on Controller.

Release AUTO START button after three (3) seconds.

Watch for Teach Pendant Indicator flashing (Slow).

Turn Arm power on.

The robot will home itself and run the application procedure.

After completion of the application, the robot will return to the nest
and turn off the arm power.

CO =3 O O e 3 DO et

EXAMPLE 2 AUTO_ST PROGRAM LISTING

50 FLASH 5

80 ONPOWER

90 NOFLASH

100 ; Exit the homing bracket:

110 SPEED 20

120 JOINT 3,30

130 HOME

140 MOVE SAFE

145 ; Run the application program:
150 GOSUB MAIN_PRO

155 ; When finished, move back to the bracket:
160 MOVE CAFE

170 MOVE ABOVE

180 SPEED 20

190 MOVE BRACKET

200 FINISH

205 ; Turn off the arm power:

210 ARM OFF

220 STOP Finished for the day!

APPENDIX D -~ Page D-3

Another possibility for an AUTO_ST program is a "Pure executive” program. In
such a program, all activities are contained in subroutines. For instance,
an auto start program could look like this:

100 GOsUB EXIT

200 GOSUB INIT

300 GOSUB MAIN_PRO
400 GOSUB GOODNITE
500 STOP

In this case, EXIT waits for arm power, exits the bracket and HOMEs the
robot. INIT initializes several system parameters (gripper status, I/0
status, robot starting speed, tool transform, WITH command etc.), MAIN_PRO
rns the application in a loop form, and GOODNITE puts the robot back into
the bracket and turns off arm power.

This program format could be used for any industrial robot application.

FORMATS:

Source: [Line#] TOOL <tranmsform>
Tokenized: [Line#] /054 <transform>

DESCRIPTION:

To program for different tools of varying geocwetries, the TOOL transform is
provided,

Using the tool transform, the programmer can specify a "tool centre point”
of an end effector at some distance away from the centre of the tool
mounting flange. The tool transform is generated with any of the location
assignment commands and is stored as a location in robot memory.

For quick initiation of the TOOL transform, it is handy to create a
location called NULL, which has coordinates: 0,0,0,0,0,0. Then to clear tool
transform, enter TOOL NULL.

APPLICABLE MODES:

{1},{M}, (P}

EXAMPLE:

1. To enter a TOOL transform for a gripper with a tool centre point 2
inches from the mounting flange. In Interactive mode, using the POINT
command, GRIP_1 is set to 2,0,0,0,0,0:
>>POINT GRIP_L 2,0,0,0,0,0<cr>
Then under program control:

100 TOOL GRIP_1L

CROSS-REFERENCES
RAPL, COMMANDS: POINT, SHIFT, OFFSET, APPRO, DEPART
OTHER CRS Plus Publications: SRS-M1A/TECH

4-125

FORMATS:

Source: [Line#] TRACK <X|Y|RESET>
Tokenized: [Line#] /180 <X!Y!RESET>

DESCRIPTION:
This command sets up a TRACK condition. This mesns that every cartesian
location includes the position of axis 6 - the track position.

The coordinate of the track is stored as a real number in 8 bytes
immediately above the standard six coordinates of each cartesian entry in
the location table. The real value is the "joint" engineering unit value of
the axis when the HERE command is issued. Use of @XRATIO, @XLIMITS, and
@XPULSES are mandatory before issuing this command. Before storing values or
commanding motion after the TRACK command is issued, an XHOME command must
have been issued.

The coordinate stored for the extra axis is entered only as an input to the
motion command. Shifting of this coordinate is possible using the SHIFTA
command. Entry of a point "off-line" using the POINT command will permit

entry of the track axis value. All motion commands referring to cartesian
locations after issuing the TRACK command will coordinate with the TRACK

axis.

For long moves involving the gantry axes it may be an advantage to use the
SLEW mode. This is entered with the ENABLE CONSTVEL command.

The TRACK condition is turned off using "TRACK RESET" command.

APPLICABLE MODES:
{1}, {M},{P}

WARNINGS :

1. Accessing any locations taught without the TRACK option may cause
unexpected results.

CROSS-REFERENCES :
RAPL, COMMANDS: GANTRY, @XPULSES, @XRATIO, @XLIMITS, POINT, SHIFTA
OTHER CRS Plus Publications: SRS-APP/EXTRA

4-126

FORMATS :

Source: [Line#] TRACK <X|Y|RESET>
Tokenized: [Line#] /180 <X|Y|RESET>

DESCRIPTION:
This command sets up a TRACK condition. This means that every cartesian
location includes the position of axis 6 - the track poeition.

The coordinate of the track is stored as a real number in 8 bytes
immediately above the standard six coordinates of each cartesian entry in
the location table. The real value is the “joint” engineering unit value of
the axis when the HERE command is issued. Use of @XRATIO, @XLIMITS, and
@XPULSES are mandatory before issuing this command. Before storing values or
commanding motion after the TRACK command is issued, an XHOME command must

have been issued.

The coordinate stored for the extra axis is entered only as an input to the
motion command. Shifting of this coordinate is possible using the SHIFTA
command. Entry of a point "off-line” using the POINT command will permit
entry of the track axis value. All motion commands referring to cartesian
locations after issuing the TRACK command will coordinate with the TRACK
axis.

For long moves involving the gantry axes it may be an advantage to use the
SLEW mode. This is entered with the ENABLE CONSTVEL command.

The TRACK condition is turned off using "TRACK RESET" command.

APPLICABLE MODES:
{1}, {M},{P}

WARNINGS:

1. Accessing any locations taught without the TRACK option may cause
unexpected results.

CROSS-REFERENCES
RAPL COMMANDS: GANTRY, @XPULSES, @XRATIO, @XLIMITS, POINT, SHIFTA
OTHER CRS Plus Publications: SRS-APP/EXTRA

4-128

FORMATS:

Source: TRACE
Tokenized: /079

DESCRIPTION:

This command will cause the program and line number being executed to be
displayed at the current default device. This is useful when tracing through
programs and subroutines for debugging purposes.

Due to the ability of the controller to process a non-motion commands during
a move, the line number on the screen ig usually the next line after the one
being executed. When two consecutive motion commands occur, the line of the
second will appear during the execution of the first. This may lead to some

confusion.
APPLICABLE MODES:
{1}, {M}
. EXAMPLE:
1. To trace program TEST, Enter:

>>TRACE
>>RUN TEST

responge:

TEST [00030]
TEST [00040]

RAPL COMMANDS: NOTRACE, ENABLE, DISABLE, NEXT

TRIGGKR

FORMATS :

Source: [Line#] TRIGGER [<TRIG NUM>, <+/-OUTPUT NOM>, <LOCATION>)
Tokenized: ([Line#] /175 [<TRIG NUM>, <+/-OUTPUT NUM>,<LOCATION>]

DESCRIPTION:

Triggers are used in conjunction with CPATH and CTPATH commands. Triggers
activate cutputs when the robot passes through set points in a path,
rermitting digital output states to be changed without interrupting motion.
Using the — character before the output number will specify a low level for
that particular output, similar to the QUTPUT command. Due to the internal
architecture of RAPL, timing of the output is accurate to within 40
milliseconds of passing the specified location.

The trigger table can contain up to 8 entries. A complete entry in the table
consists of location name, output number and the state to which the output
will be changed at the specified location. Locations can be precision points
or cartesian locations.

On power-up, the trigger table is cleared and the trigger flag is disabled.
It is necessary to set up the trigger table in any program which makes use
of this function. Triggers will not be active until after the ENABLE TRIGGER
command has been executed. The TRIGGER table must be set up before calling
the path command intending to use the triggers; the CTPATH or CPATH
commands .

Entering a 0 for the trigger number will place the new entry in the first
vacant spot in the trigger table. Entering a 0 for the ocutput number will
clear that trigger table entry. Entering a "0O<cr>’ after the command will
provide a display of the current trigger settings.

APPLICABLE MODES:

{F}. {1}, {1}

EXAMPLE :

1. To register a trigger table entry:

>>TRIGEER 1,3,POINT1

This will turn ocutput 3 high when the robot passes POINT1 in the path.

.. .Continued

TRIGGER (Cont)

2. To register a trigger at the next available spot in the table:

>>TRIGEER 0,-3,POINT2<cr>
>>CPATH POINT1,POINTZ,POINT3<cr>

This will turn output 3 off at POINTZ.

3. To display the current trigger table:

>>TRIGEERLcr>

Trigger #(1-8), O for next entry, or <CR> for trigger list:
ook Trigger List ¥xiooorioxk
Trigh Output# Location State

c01 003 POINT1 HI

002 003 POINT2 Lo

CO3Z%kik No Valid Trigger Loaded Xkkkx
CO4%x¥kk No Valid Trigger Loaded kXXX
O0Skkkk No Valid Trigger Loaded kX
Q0&6x%%k No Valid Trigger Loaded ¥XkkX
QO7xxkk No Valid Trigger Loaded &kX¥¥
00B8%%x%x No Valid Trigger Loaded REXkX

4. To clear the first entry:

>>TRIGER 1,0,POINT1<cr>

5. To enable the trigger the trigger for any subsequent path moves:

>>ENARLE TRIGEER<Cr>

CROSS-REFERENCES :
RAPL COMMANDS: CTPATH, OUTPUT, ENABLE, DISABLE
OTHER CRS Plus Publications: SRS-APP/PATH

. 4-129

TYPE
FORMATS :
Source: [Line#] TYPE < text” |&Num>[argument]
Tokenized: [Line#] /058 < text’ |&Num>[argument]
DESCRIPTION:

Types & line of text characters on the terminal (device 0). The following
are valid arguments:

4 Include a carriage return/line feed combination after the text
* Include only a carriage return after the text.
B Output the BELL character to the display.
F Output a form feed to the device.
APPLICABLE MODES:
{1}, {M},{P}
EXAMPLE :

1. Type TEST on terminal.
>>TYPE “TESTS
2. Type TEST on terminal with a carriage return and line feed.
>>TYPE "TEST / .
3. Type TEST on terminal with a carriage return.
P>TYFPE "TEST &
4. Type TEST on terminal with a bell.
>>TYPE “TEST'B
5. Type a string on the terminal
>>TYFE &1
CROSS-REFERENCES :
RAPL, COMMANDS: TYPEI, TYPEV, PRINT, PRINTI, PRINTV

4-130

FORMATS:

Source: [Line#] TYPEI <VAR NAME>[,...]
Tokenized: [Line#] /058 <VAR_NAME>{,...]

TYPEI commands are automatically routed to the serial device #0, as a
terminal operation.

Often it is useful to display variables in an integer format, since a
variable may only represent an integer value. A counter which must be
displayed each loop locks far more informative when shown as a “+1 instead
of “+1.0000° as a real variable would be displayed. If the value does not
fit within the integer limits (+/- 32766) then the display will be shoun in
real format.

Each typed field will be separated by a single space. No carriage return or
line feed control is included in this command, since it is often useful to
display more than one value on a display line.

APPLICABLE MODES:
{1}, {M}.{F}

CROSS-REFERENCES :
RAPL COMMANDS: TYPE, TYPEV, PRINT, PRINTI, PRINTV

4-131

FORMATS:

Source: [Line#t] TYPEV <VAR NAME>[,...]
Tokenized: [Line#] /060 <VAR NAME>[,...]

DESCRIPTION:

TYPEV commands are automatically routed to the serial device #0, as a
terminal operation.

Each typed field will be separated by a single space. No carrisge return or

line feed control is included in this command, since it is often useful to
display more than one value on a display line.

APPLICABLE MODES:
{1}, {11}, {P}

EXAMPLE:
1. Types variable value RADIUS to video terminal.

>>TYPFEV RADILS
+002.7300

2. Types variable value RADIUS and CIRCUM to video terminal.
>>TYFEV RADILS, +002.7300 cxm_

+008.6393
>>

CROSS-REFERENCES :
RAPL COrMANDS: TYPE, TYPEI, PRINT, PRINTI, PRINTV

Source: [Line#] UNLOCK <joint#>[,...]
Tokenized: [Line#] /017 <joint#>[,...]
DESCRIPTION:

The specified joints will be controllable, as usual with the regular set of
motion commands.

The FINISH command will be able to synchronize any robot command with a
motion of a previously LOCERed joint. It is recommended that the LOCK
command be used only until both sets of motion have been commanded. Issuing
the UNLOCK command will then re-establish full commmication with all robot
joints. Issuing the UNLOCK command will not disturb any motion in progress.

APPLICABLE MODES:
{1}, {t},{P}
EXAMPLES:

1. The following example is an excerpt from a program which commands the
robot to load a rotary table (Joint #8). The rotary table then moves to
a new position, while the robot proceeds to pick up a new part.

100 MOVE PICK,S

105 CLOSE

110 DEPART 2

115 ; Move to the rotary table

120 APPRO TABLE,2Z

130 MOVE TABLE,S

140 OPEN

150 DEPART 2

155 ; Command the table to rotate at speed 20 by 180 degrees
160 SPEED 20

165 UNLOIK &

170 JOINT 6,180

175 3 Lock out the table from the next move commands
180 LOXK &

200 APPRO PICK,2

210 GOTO 100

CROSS-REFERENCES :
RAPL, COMMANDS: LOCK, JOINT
. OTHER CRS Plus Publications: SRE-APP/EXTRA

FORMATS :

Source: [Linett] WO
Tokenized: [Line#] /027

DESCRIPTION:

Displays the current robot position in the motor, joint and world coordinate
systems. If more than the standard 5 axes are installed, the extra axes will
be displayed under the first, second and third values in the MOTOR and JOINT
displays. In the WORLD display, they will be displayed only if a TRACK or
GANTRY command has been issued.

AFPLICABLE MODES:
{I}.{M},{P}

EXAMPLE :
1. Inmemmmamormmmdmmeﬁtemd:
>2W0

COMMANDED POSITION

NAME AX#L/b AXH2/7 AX#3/8 AXHG AXHS

PLLSES +0000000000 ~0000018000 +0000000000 +0000000000 +0000000000
+0O000000000 ~0000010000

NAME JT#1/6 JTH2/7 JT#3/8 JT#H4 JTHS

JUINTS +000.0000 +090.0000 +000.0000 +000.0000 +000.0000
+000.0000 -002.0000 '

NAME. X/TRACKX Y/ TRACKY z Yaw Pitch Roll
WORLD +013.5000 +000.0000 +020.0000 +000.0000 +000.0000 +000.0000
+000.0000 -002.0000

RAPL COMMANDS: Wi, W2, W3, W4, W5, WEl, WE3, WE5, LISTL, HERE

Wl

FORMATS :

Source: [Line#i] W1
Tokenized: [Line#t] /029

DESCRIPTION:

Continually displays the actual robot position in motor coordinates. A <cr>
or an <ABORT> is required to terminate this command.

If used in a program, program flow will wait here until a <cr> is entered
from the keyboard.

WARNINGS:
1. In use with the ROBCOMM software terminal emulation mode, an error or
pressing the TEACH button to register a location during a dynamic

display will cause the screen to lock up. Use caution when these
displays are underway.

APPLICABLE MODES:
{1}, {M},{P}

1. Enter:
> 7KW1

ACTUAL POSITION (MOTOR PULSES):
+0000000001 —0000000003 +0000000031 +0000000000 +O00CO0CO0O0

CRUSS-REFERENCES :
RAPL COMMANDS: WO, W2, W3, W4, W5, WE1, WE3, WES, LISTL, HERE

W2
FORMATS :
Source: [Line#] W2
Tokenized: [Line#] /031
DESCRIPTION:

Displays the current actual robot position in motor, joint and cartesian
coordinates. If more than the standard 5 axes are installed, the extra axes
will be displayed under the first, second and third values in the MOTOR and
JOINT displays. In the WORLD display, they will be displaved only if a TRACK
or GANTRY command has been issued.

APPLICABLE MODES:
{i}.{M},{P}

EXAMPLE :
1. Enter:
> W2

CURRENT ACTUAL POSITION:
NAVE AX#EL/E AXH2/7 AXHS/B AX#4 AXHS
PULSES +0000000000 —0000018000 +0000000000 +0000000000 +ODOOCOOO000
+Q000000000 —CO00010000
NAVE JTHL/6 JTH2/7 JTH3/8 JT#4 JTH#HS
JOINTS +000.0000 +090.0000 +000.0000 +000.0000 +000.0000
+000C . 0000 ~002.0000

NAME X/TRACKX Y/ TRACKY Z Yaw Pitch Roltl
WORLD +013.5000 +000.,0000 +020.0000 +000.0000 +000,0000 +000.0000
+000 . 0000 -002.0000

RAPL COMMANDS: WO, W1, W3, W4, W5, WE1l, WE3, WES, LISTL, HERE

FORMATS:
Source: [Line#t] W3
Tokenized: [Line#] /033
DESCRIPTION:

Continually displays the commanded robot position in motor coordinates. A
«cr> or an <ABORT> is required to terminate this command.

If used in a program, program flow will wait here until a <cr> is entered
from the keyvboard.

WARNINGS :
1. In use with the ROBCOMM software terminal emulation mode, an error or
pressing the TEACH button to register a location during a dynamic

display will cause the screen to lock up. Use caution when these
displays are underway.

APPLICABLE MODES:
{1}, {M},{P}

EXAMPLE:
1. Enter:
>2W3

COMMANDED POSITION (MOTOR PLLEES):
+000000000L ~0000000003 +0000OCOO31 +0000000000 +000CO0OO00

RAPL COMMANDS: WO, W1, W2, W4, W5, WE1, WE3, WES, LISTL, HERE

FORMATS:

Source: [Linet#i] W4
Tokenlzed: [Line#] /035

Displays the current motion end point in motor, joint and cartesian
coordinates. If more than the standard § axes are installed, the extra axes
will be displayed under the first, second and third values in the MOTOR and
JOINT displays. In the WORLD display, they will be displayed only if a TRACK
or GANTRY command has been issued.

APPLICABLE MODES:
{1}, {M}, {F}

EXAMPLE:
1. Enter:
> ki

NEXT END POINT:
NAME AX#L1/6 AXH2/7 AX#3/8 AX#HE AXHS
PLASES +0000000000 ~0000018000 +0000000000 +0000000000 +Q0OCCOCO0
+O000000000 ~0000O10000
NAME JT#1/6 JTH2/7 JT#3/8 JTH4 JTHS
JOINTS +000.0000 +090.0000 +000.0000 +000.0000 +000.0000
+000.0000 —002.0000

NAME X/TRACKX Y/ TRACKY Z Yaw Pitch Roll
WORLD +013.5000 +000.0000 +020.0000 +000,0000 +000.0000 +000.0000
+000. 0000 —002.0000

RAPL COMMANDS: WO, W1, W2, W3, W5, WE1, WE3, WE5, LISTL, HERE

FORMATS :
Source: [Line#t] WS
Tokenized: [Line#t] /037
DESCRIFTION:

Continually displays the robot velocity command. A <cr> or an <ABORT> is
required to terminate this command.

If used in a program, program flow will wait here until a <cr> is entered
from the keyboard.

HARNINGS :

1. In use with the ROBCOMM software terminal emulation mode, an error or
pressing the TEACH button to register a location during a dynamic
display will cause the screen to lock up. Use caution when these
displays are underway.

APPLICABLE MODES:

{i}, {M}.{F}

HXAMPLE
1. Enter:
WS

VELOCITY COMMAND (MOTOR PULSES) @
+0 +Q +0 +0 +0O

CROSS-REFERENCES ©
RAPL COMMANDS: WO, W1, W2, W3, W4, WE1, WE3, WES, LISTL, HERE

WAIT

FORMATS:

Source: [Line#t] WAIT < -J1input#>
Tokenized: [Line#] /094 <[-Jinput#>

DESCRIPTION:

This command will halt program flow until the value of the specified input
point matches the required state. The input value can range from 1 to 40
with the extended 1/0 option, but 1 to 16 is standard.

The sense of the input is denoted by including a sign with the input number.
If the input number is negative, then a low level on the input is requested.
Likewise, a positive sign, or none at all, implies that a high state on the
input is required.

APPLICABLE MODES:

{1}.{0}.{P}

EXAMPLE:

1. Wait until input #2 is at a low level, then continue.
100 WAIT -2

2. Wait until input #2 is at a high level, then continue.

120 WAIT 2

RAPL, COMMANDS: IFSIG, ONSIG

OTHER CRS Plus Publications: SRS-APP/SAFETY

WK1

FORMATS :
Source : [Line#] WE1
Tokenized: [Line#t] /028
DESCRIPTION:

Continually displays the actual position of the extra axes in motor
coordinates. :

A <cr> or an <ABORT> is required to terminate this command.

If used in a program, program flow will wait here until a <cr> is entered
from the keyboard.

WARNINGS :
1. In use with the ROBCOMM software terminal emuilation mode, an error or
pressing the TEACH button to register a location during a dynamic

display will cause the screen to lock up. Use caution when these
displays are underway.

{I},{M},{F} p)

EXAMPLE:
1. Enter:
>>UEL

ACTUAL POSITION (motor pulses):
+000Q02789 +123456789 ~PE7654321

CRUSS-REFERENCES ©
RAPL COMMANDS: WO, W1, W2, W3, W4, W5, WE3, WES, LISTL, HERE

FORMATS:

Source: {Line#] W3
Tokenized: [Line#] /032

DESCRIPTION:

Continually displays the commanded position of the extra axes iﬁ motor
coordinates .

A <cr> or an <ABORT> is needed to terminate the display.

If used in a program, program flow will wait here until a <cr> is entered
from the keyboard.

1. In use with the ROBCOMM software terminal emulation mode, an error or

pressing the TEACH button to register a location during a dynamic
display will cause the screen to lock up. Use caution when these

displays are underway.

APPLICABLE MODES:
{1}, {M},{P}

EXAMPLE:
1. Enter:
»>>WES

COMMANDED POSITION (motor pulses):
+000002789 +123456789 -87654321

CROSS-REFERENCES :
RAPL, COMMANDS: WO, W1, W2, W3, W4, W5, WE1, WES, LISTL, HERE

FORMATS

Source: [Line#t] WES
Tokenized: [Line#] /038

DESCRIPTION:

Continually displays the velocity commands to the extra axis motors.
115 is the maximum command allowed.

A <cr> or an <ABORT> will terminate this command.

If used in a program, program flow will wait here until a <cr> is entered
from the keyboard.

WARNINGS:

1. In use with the ROBCOMM software terminal emulation mode, an error or
pressing the TEACH button to register a location during a dynamic
dieplay will cause the screen to lock up. Use caution when these
displays are underway.

APPLICABLE MODES:
{1}, (M}, {F}
EXAMPLE:
1. Enter:
>PWEDS
VELOCITY COMMAND (MOTOR PLLSES) :
+5 =12 +55
CROGS-REFERENCES ©

RAPL COMMANDS: WO, W1, W2, W3, W4, W5, WE1l, WE3, LISTL, HERE

]

({ ;f'ry T Be Avay fRa™M THE Fly f;»?"};g,}u TCA Pl
1s7 bo vse® with A fiiaﬂg{;ar?j)

WGRTP
EXfle > Ny EpT Bie ¢
} m 4
FORMATS: ¥ ysekT S20 ¥ = wup;;ﬁcj k § = youk g AN AR Ful
R [Line#f] WGRIP <VAR NAME> N et th vAle .

Tokenized: § [Line#] /041 <VAR NAME>

£ xi,-fz/mﬁ'f gk)
DESCRIPTION: (See ff- /2

To read the position of the fingers of the servo gripper. The value of the
opening in inches or millimetres will be placed in the variable identified
by the argument.

{1}, (M}, {P}

CROSS-REFERENCES :
RAPL COMMANDS: " GRIP, OPEN, CLOSE, @@GTYPE
OTHER CRS Plus Publications: SRS-SGRIP/MAN

4-144

WITH

Source: [(Line#] WITH <TEMPLATE>
Tokenized: {Line#] /153 <TEMPLATE>
DESCRIPTION:

This command permits the operator to set up an implied addressing scheme for
locations stored in memory using the TEACH command. The template name
entered in this command adheres to the same programming rules as does the
template in the TEACH command (see section 1-6).

Once the WITH command has specified a template, then the programmer need
only to use the " character to address the range of locations atored under

that template.

Since an index number must be associated with a template before any location
can be uniquely defined, the " operator permits the use of a number Or
variable for this purpose. e

P
{

HARNING : s,

\
The WITH command uses the same internal register for storage of a template
as does the TEACH command, so that invoking either command will overwrite
the contents placed in that register by the other command.

APPLICABLE MODES:
{1},1M},{F}
EXAMPLE:
1. A program may use the WITH command as follows:
100 WITH POINT
120 MOVE 7“0
120 + C = 0O
140 MONVE ~C

Lines 120 and 140 both create a MOVE command to location POINTO000 stored in
memory. The advantage of using a variable as an index (as in line 140) is
that the same MOVE command can be used to move the robot to any one of the
taught points that use the template specified by the WITH command. The value
of the variable can be calculated using logic.

CROSS-REFERENCES :
RAPL COMMANDS: TEACH, NOTEACH, CTPATH

OTHER CRS Plus Publications: SRS-APP/PATH
4-145

it

FORMATS:

Source: [Line#] XCAL <Axisi>

Tokenized: [Line#] /157 <Axis #
DESCRIPTION:
The XCAL command permits the programmer to store a HOME position for any
extra axis (8, 7 or 8). Subsequent HOME commands will use the absolute
position stored by this command. The homing mark is the next encoder

sero-cross detection. The motor will be moved in a positive rotation
(counter-clockwise) until the mark is reached.

APPLICABLE MODES:
{I},{F},{M}

EXAMPLE:
1. Using XZERO command, zero the axis in question.

2. Using the manual mode, or a JOINT or motor command, move the axis to
within one (1) revolution of the homing mark.

3. Enter the XCAL command.

4. The axis is now calibrated.

RAPL COMMANDS: XZERO, XHOME, XREADY

OTHER CRS Plus Publications: SRS-APP/EXTRA

FORMATS :
Source: {Line#] XOOMP <LOC_NAME> , <VAR_NAME>
Tokenized: [Line#] /061 <LOC_NAME>,<VAR NAME>

DESCRIPTION:
The X coordinate component in "LOC_NAME" is extracted and stored in

"YAR_NAME" .

APPLICABLE MODES:

{1}, {0}, 4P}

CROSS-REFERENCES :
RAPL, COMMANDS: YOOMP, ZCOMP, ACOMP, OCOMP, TCOMP, COMP
OTHER CRS Plus Publications: SRS-APP/PALLET

. 4-147

FORMATS :

Source: [Line#] XHOME <axis#>
Tokenized: [Line#] /158 <axis#>

DESCRIPTION:

Similar to the HOME function, the XHOME command will home a single extra
axis. (Axis #8, 7 or 8). When the homing peint has been reached, the value
of the calibrated position will be loaded into the position registers.
APPLICABLE MODES:

{1},{P}, {M}

EXAMPLE:
1. Enter manual mode:
>rMANUAL
2. Move the extra axis to within 1 motor revolution of the homing position.
3. Fnter the XHOME command, say, for axis #6:
POXHIE &
4. Respond with a 'Y" to the query.

The control will home the specified axis.

($21

RAPL COMMANDS: XZERO, XCAL, XREADY
(THER CRS Plus Publications: SRS-APP/EXTRA

4-148

FORMATS
Source: [Line#] XREADY <Axish>
Tokenized: [Line#] /014 <Axis#>

DESCRIPTION:

This command will move the specified extra axis to its zerc position.
APPLICABLE MODES:

{1}, {M). (%}

CROSS-REFERENCES :
RAPL COMMANDS: XZERO, XCAL, XHOME

OTHER CRS Plus Publications: SRS-APP/EXTRA

. 4-149

FORMATS -
Source: [Line#] XZERO <Axis#>
Tokenized: [Line#] /159 <Axis#>
DESCRIPTION:
This command will zero out the position registers for the specified axis.

This is useful when doing a calibration sequence for an axis, as it allows a
known position to be loaded into the position registers.

APPLICABLE MODES:
{1}, {M},{P}

EXAMPLE:

1. To enter a value of zero (0) into the current position register for axis
six (6):

>>XIEFD &

CROSS-REFERENCES :
RAPL COMMANDS: XZERO, XHOME, XREADY
OTHER CRS Plus Publications: SRS-APP/EXTRA

4-150

FORMATS:
Source: [Line#] YCOMP <LOC_RAME>,<VAR NAME>

Tokenized: [Line#t] /062 <LOC_NAME>, <VAR_NAME>
The Y coordinate component of "LOC_NAME" is extracted and stored in
“"VAR_NAME" .
APPLICABLE MODES:
{1},{M},{P}

RAPL, COMMANDS: XCOMP, ZCOMP, ACOMP, OCOMP, TCOMP, COMP

OTHER CRS Plus Publications: SRS-APP/PALLET

. 4-151

FORMATS:
Source: [Line#] ZCOMP <LOC_NAME>, <VAR NAME>
Tokenized: [Line#] /063 <LOC_NAME>, <VAR _NAME>
DESCRIPTION:
The Z coordinate component of "LOC_NAME" is extracted and stored in
"VAR_NAME" .
APPLICABLE MODES:
{1},{M},{F}

RAPL COMMANDS: XCoMP, YCOMP, ACOMP, OCOMP, TCOMP, COMP

OTHER CRS Plus Publications: SRS-APP/PALLET

CHAPTER 5 - LINE EDITOR

5-1 DESCRIPTICH

RAPL provides the programmer with a line editing feature which can be used
to create or modify existing programs. The EDIT command is used to access
this editor. If a program name is given in the EDIT command, then that
program becomes the object of all future EDIT commands and immediate mode
line entries until a different program is edited. If no program by that name
exists, The editor creates one.

To shorten the development time of a program, RAPL allows the programmer to
insert program lines while outside of the standard EDIT mode. While in the
{I} or {M} control mode, entering a number before a command identifier will
automatically place the following line into the current program being
edited. No syntax check is performed on the line before it is inserted. A
valid line number must be entered, and the target program for the edit mode
must have already been defined.

A program line must always start with a valid line number. Valid line
numbers are from 1 to 65536. Entering a line number larger than 65536 will
result in an entry equivalent to: ([line#] mod 65536) even though it may be
displayed as entered. Entering a line number of 0 will result in an error.

A line is inserted into a program by typing the line number, followed by a
command line. When the carriage return is entered, the line is complete,
and is entered into the program in the correct numerical sequence. The
program memory is updated to reflect the change.

A line cannot be entered if a line with the same line number exists. Thus
changing a line requires that it be deleted first. '

5-2 EDIT COMMANDS

Once in the edit mode, several commands are available. Each is entered with
a single keystroke; RAPL will echo the complete command. Each command letter
mist be directly followed by the line number where applicable. The commands

are as follows:

1t may be necessary to use identical commands in a program. In order to
reduce the number of keystrokes required to enter these lines, the Copy
command can be used as shown.

Format: C<Line#>, <New Line#>
Example: Copy100, 200

Delete .
A program line is deleted. The deleted program line can not be recalled.

Format: D¢Lined>
Example: Deletel00

End
Exits the line editor mode.

Format: E
Example: End

Insert
A new command line is inserted into the program. A line cannot be

inserted if its line number already exists.

Format: I<Linett> <Command> <Arguments>
Example: Insert100 MOVE POINT

List
The programmer can display a line of the program while in the edit mode
with this command. It can be useful when modifying the program to first
view the line which will be affected.

Format: L<Linet>
Example: List100

Move
It may be necessary to move a line from one place to another. When the

line is aseigned a new mumber, it is automatically removed from the
program and replaced in the new correct numerical order.

Format: M<0ld Line#>, <New Linet>
Example: Move 100,200

=2

-~

APPENDIX A - COMPENDIUM OF RAPL COMMANDS

27 (/000) - RAPL Command directory

; (/098) - Comment statement.

I (/070) - Assign the value of the simple expression to the variable (/000)
specified on the left side of the =.

ABORT (/071) - Terminate existing program.

ACOMP (/065) - Store the A component of a cartesian location as the
specified variable name. This is the azimuthal angle. The angle is

stored in degrees.

ACOS (/128) - Determine the arc cosine of the specified value. Store the
result in either degrees or radians as the specified variable name.

ACTUAL (/152) - Stores the actual position of the arm.

ALIGN (/001) - Align the tool axis with the nearest world major axis (X, Y,
or 4}.

ALLOC (/018) - Allocate robot memory according to an Automatic format, or a
user defined format. In this way, robot memory can be divided between
locations, variables and robot programs as the programmer chooses .

ANALOG (/083) - Read the specified analog input channel, and store the
unipolar value as an integer number (value between 0 and 255) in the
specified variable location.

AOUT (/093) - Send a value to an analog output point (included in the COMBO
card option). The digital value is from -5 to +5 corresponding to
digital 0 to 255.

APPRO (/002) - Approach the given point (either cartesian or precision
point) by the specified amount. The approach path can be defined as
straight by using the optional [S] argument.

ARM (/142) - Enables or disables the arm power. Can be used to turn arm
power off but not back on.

ASIN (/127) - Determine the arc sine of the specified value. Store the
result in either degrees or radians as the specified variable name.

ATAN (/129) - Determine the arc tangent as specified by the value of Y/X.
Store the result in either degrees or radians as the specified variable
name. The angle returned will be an absolute value of 0 to 359.9999

degrees or the equivalent in radians.

APPENDIX A - Page A-1

CLOSE (/038) ~ Close the gripper. Force argument used only for optional
servo gripper.

OOMP (/181) - Extract a component out of a stored location. All cartesian
components supported,as well as precision points.

CONFIG (/110) - Set the configuration of one of the two serial input
channels to the required baud rate, parity, etc.

COPY (/089) ~ Copy one program to another.

00S (/125) - Determine the cosine of the specified angle. The angle can be
given in either degrees or radians. Return the result in the given
variable.

CPATH (/163) - Execute a continuous path through the points specified in the
argument list. Up to 16 locations can be specified; cartesian and
precision points cannot be mixed.

CTPATH (/164) - Calculate a continuous path through the selected series of
points that are identified by the template name, with the path passing
through all those points with TEACH index numbers in the specified range
at the specified speed. Path is executed with GOPATH.

CUT (/145) - Cut characters out from a string.

DECCDE (/147) - Decode a real value from the string, starting at the
character index, and load the value into the variable.

DRLAY (/081) - Specify a time delay, in seconds. The resolution of this
command is in milliseconds.

DELETE (/100) - Delete program.
DEPART (/004) - Depart from the present location (along the TOOL axis) by a
specified amount. The optional [8] argument will specify a straight line

motion.

DRVICE (/112) - Select either device 0 or device 1 as the future default
input/output device for user interaction.

DIR (/102) ~ Send a list of all programs, and the corresponding memory
requirements to the output device. The optional argument will send the
output to the printer port.

DISARLE (/177) - Turn off a software feature.

DLOCN (/048) - Delete location(s) from the robot’s memory.

VAR (/067) - Delete variable(s) from the robot’'s memory.

APPENDIX A - Page A-2

EDIT (/101) - Assign the specified program name for all future edit
commands and enter edit mode. The program will be created if it does not

already exist.

EILBOW (/169) -~ Specify the position of the elbow (joint #3) for future
moves. Allows elimination of singularity locations.

ENABIE (/178) - Turn on a software feature.

ENCODE (/148) - Encode a value into the string, in either real or integer
format.

FINISH (/010) - Complete current motion command before continuing.

FLASH (/0B4) - Flash the READY lamp on the teach pendant at the specified
frequency. Valid range is 1 to 255, 1 is fastest.

FREE (/023) - Display the current status of robot memory.

GAIN (/150) - Permits the user to change the position gain of each motor
servo system. A motor number of 0 will set all motors.

GANTRY (/180) - Set up the use of robot axes 6 and 7 as gantry axes X and Y.
All locations will include gantry coordinates.

GOPATH (/165) - Execute a path calculated with the CIPATH command.

GOSUB (/074) - Send program control to the specified subroutine. If a list
of arguments exist, then replace the current set of 8 macro parameters
with the contents of the list. These parameters are identified by
variable names %0 to %7.

Q0TO (/075) - Send program control to the epecified line number in the
current program.

GRIP (/039) - Commands the opening or closing of the servo gripper to a
specified distance.

HALT (/154) - Halt robot motion or set up the HOLD input.
HELP (/085) - Enables syntax building feature.

HERE (/024) - Stores the current robot commanded position as a precision
point or cartesian location in the location table.

HOME (/020) - Send the robot to its home position, assuming that the robot
arm is already within the correct bounds of the home position. Replace
the robot command registers with the calibrated home position when it is
reached.

IF (/072) - Evaluate the logical expression according to one of 6 operators.
If the expression is true, then send program control to the specified
line number.

IFPORER (/155) - This a special case of IFSIG, here the arm power status is
sampled.

IFSIG (/073) - Examm the states of the specified inputs. If all conditions
are true, then send program control to the given line number.

IFSTART (/086) - Examine the state of the autostart pushbutton on the front
panel. If it is set, then branch to the specified line number.

IFSTRING (/151) - Compare two strings and branch on result.
IGNORE (/087) - Cancel ONSIG command.

INPUT (/068) - Accept input from the current terminal device.
INVERT (/170) - Invert the coordinate system of the robot.

JOG (/005) - Move the robot end effector by the specified cartesian offsets
in a straight line fashion.

JOINT (/008) - Move the specified joint by the given number of units.

LIMP (/007) -~ Limp specified robot joint. No “joint# entered will limp all
joints. Terminated by NOLIMP command.

LISTL (/049) - List all location values in a tabular format on the cutput
device. The 1 argument will send output to the printer.

STP (/103) - List the program on the output device. Send it to the printer
if the 1 argument is specified.

LISTV (/069) - List the variables on the output device. Send it to the
printer if the 1 argument is specified.

LOCK (/009) - Prevents selected joints from motion.
MA (/132) - Move all 5 joints to an absolute radian position.
MAGGRIP (/042) - Adjust the magnetic strength.

MANUAL: (/045) - Activate the manual control mode, where the teach pendant
can be used to control robot motion either by axis or in cylindrical

form.

MI (/131) - Move all 5 joints by an incremental radian value.

APPENDIX A - Page A-4

HOTOR i/(}li) - Command an individual motor to move by a specified number of
pulses.

MOVE (/012) - Move the robot to the specified cartesian or precision point
location using the speed as given in the SPEED command. The optional S
argument will command a straight line move to the point.

NEW (/021) - Erase all robot user memory. All programe, variables and
locations will be erased.

REXT (/105) - Execute the next program line. Program name and line number
may optionally be specified.

NOFLASH (/088) - Cancel FLASH command. READY lamp on the teach pendant
indicates robot alarm status.

NCHELP (/096) - Disables syntax builder.

NOLIMP (/008) - Re-engages positional servo for specified joint or all
joints if no joint# specified.

NOMANUAL (/046) - Disables teach pendant. .
NOTEACH (/043) - Turn off the TEACH mode.
ROTRACE (/080) - Turn off the TRACE mode.

OCOMP (/064) - Store the YAW component of a carteasian location as the
specified variable name. The angle is stored in degrees.

OFFSET (/047) - Bet the robot base offset to the specified displacements and
yaw angle. All future locations will be made relative to this new base

offeset.

ONERR (/143) -~ Program flow will enter subroutine "PRG_NAME" instead of
going to the prompt in the case of a RAPL error.

(ONFOWER (/156) - This a special case of WAIT, here the arm power status ls
sampled.

ONSIG (/090) - Set the specified input line as a special input which will be
monitored at a regular interval. When the input changes to the desired
state, program flow is re-directed to the specified program. Returning
from this program will place the RAPL program pointer at the first
program line after the one in which the signal was detected.

ONSTART (/092) - Sample the state of the autostart push-button. When it is
switched high, program control will continue to the next line. Wait at
this point until the condition is met.

APPENDIX B
ADVANCED COMMUNICATION INTERFACE (ACI)

B-1 INTRODUCTION

The ACI permits external computer systems to communicate with one or more
robot controllers on a single RS232 1link.

In its basic configuration, this protocol is used to transfer raw data either
to or from the master device. The protocol allows any chunk of 8086 memory to
be the object of the communication in a segmented addressing technique.

The protocol permits error checking and automatic transmission retries in
order to establish a communication link.

B-2 FUNCTIONAL DESCRIPTION

The ACI is a master/slave protocol. All robot controllers are configured as
slaves in the network. Any external compter would then have to be a master,
Only a master can establish a communication. All the communication initiative
must be taken by the master unit.

B-3 MASTER PROTOCOL

The master device must establish a communication link by specifying a slave
device number as a target. It must then confirm to the target that it is
indeed requesting a communication. After the link has been established, the
master must then provide the slave with the information describing the data
transfer that is about to take place. After all of the particulars concerning
the communication has been transferred, the actual data is then sent. The data
is transferred in packages of 128 bytes. Each 'block' of data contains its own
start/stop characters and a checksum test byte to validate the data after
transfer. Finally, it is up to the master to close the communication link with
an EOT character.

A communication consists of four separate blocks. They are described in detail
in the following sections.

B-4 ENQUIRY SEQUENCE

The master issues a simple three byte code to the serial line, This code is;

?

'R' , slave ID + 20h , ENQ

The master must then follow this sequence with two character times of no
transmission. This will ensure that the slave has indeed read a valid enquiry
sequence, and not some random chunk of another communication. When the slave
has interpreted a correct enquiry, it will issue an appropriate response;

'R' , slave ID + 20h , ACK

When the master reads this response it has established the communication link
to the target device.

The slave id number is any number between O and 7F hexadecimal. Using the ACI
monitor command @@RN, the programmer can.configure each robot controller with
an appropriate slave id number.

Adding a value of 20 hex to the slave number provides security that the second
byte of this string does not resemble a control code in any way. This way, the
slave device will be able to distinguish an enquiry sequence and can establish
communications quickly.

The master should attempt to contact the slave only a limited number of times
before abandonning the communication. A failure to establish the commun-
ications with the slave after three attempts normally indicates a failure in
the link. Either the baud rates are not set correctly at either end, or a
physical problem exists with the interface wiring.

A delay of 2 character times should be included in the transmission of the
enquiry sequence. This delay is placed between the second and third characters
of the enquiry sequence. This time delay ensures that a three byte string from
a data block cannot be misconstrued as an enquiry sequence. The master control
must ensure that this time delay exists, or proper ACI operation cannot be
guaranteed. -

B-2

B—5 HEADER SEQUENCE

The header block consists of a description of the data transfer that will take
p lace. The header block is broken down into the following byte description;

1 SOH Start of header character

2 SLAVE ID + 20h Slave identification number

3 MASTER ID + 20h master identification number

A READ/WRITE data read or write selection

5 MEMORY TYPE memory access type (see special codes)
6 NUMBER OF FULL BLOCKS number of full blocks transferred

7 NUMBER OF BYTES IN LAST BLOCK number of byte in last data block

8 MEMORY OFFSET LOW target memory starting address

9 MEMORY OFFSET HI

10 MEMORY SEGMENT LO

11 MEMORY SEGMENT HI

12 ~El1 end of text character

13 LiRC longitudinal redundancy check
Table B-1

Adl1l data values are expressed in hexadecimal notation.
The slave ID number is the same that appears in the enquiry sequence.
The Master ID number must be 01 hexadecimal.

The Read/Write byte identifies what type of operation is to be executed. A
write operation will transfer data from the slave device to the master. The
read operation is the opposite. It transfers data from the master to the
slave. The following codes are used:

READ 0lh
WRITE 00h

The memory access type specifier identifies specific areas of memory that the
data transfer can take place in. This eases the burden of programming on the
programmer in many cases,

The elementary code 'OOh' is the general purpose memory access code. This code
eneabled the programmer to read or write any byte in the 8086 memory space.
This makes the command a very powerful and also a potentially hazardous tool
to work with, CRS technical staff should be consulted when this command is
used,

A list of the special codes available appears in a later section.

The next two byte in the header identify the amount of data to be transferred.
This information is considered as the number of full data blocks to be
transferred, and the number of bytes which remain in the last data block. The
last data block cannot have 0 bytes in it. A full block contains 128 bytes of
data., If the number of bytes to be transferred is an exact multiple of 128,
then the 1ast block will contain 128 bytes (80 hex). The logic to determine
the number of blocks and the number of bytes in the last block is as follows;

B-3

let N be the total number of bytes to be transferred,
let B be the number of full blocks to be transferred,
let n be the number of bytes in the last block;

B=N/128
n =N mod 128 ; (ie. the remainder of the division N/128)
if n = 0 then do
n =128
B=B-1
endif

The memory address identified the starting address of the data transfer
operation. It defines (in Intel segment/offset format) where in the robot
memory the data will be transferred to or from during this operation,

Header Transfer Error Detection

The LRC byte is the longitudinal redundancy check character . It is the sum of
bytes 2 through 11 inclusive of the header block. The slave device sums the
values of all received characters and will accept the header block only if it
reads an LRC that is the same as its own computed value. If the LRC's do not
match, then the header block is not accepted, and the slave will issue a NAK
character in response so that the master control will know to re-try the
header block transfer. The master can only have three re-try attempts before
the slave device issues an error, and aborts the communication cycle. If the
header block is accpted, the slave device will issue an ACK character as a
response. The slave also expects the correct control codes SOH and ETX during
the transmission, and any deviation from this pattern will cause an error, and
the communication will be aborted. Timeout checks are made between the end of
the enquiry sequence, and the accpetance of the SOH character, and also the
length of time reuqired between sending an SOH and ETX character.

B-4

B-6 DATA BLOCK TRANSMISSION SEQUENCE

The data block transfer sequence is determined by the format specified in the
header block.

In a data write command, the slave will begin to write the specified data
blocks quickly after it issues an ACK in response to receiving the header
block. It expects ACK characters from the master after each block is transmit-
ted. Receiving a NAK will provoke a retry of the previous block. After the
last block is sent and acknowledged, the slave will issue an EOT. It expects
to receive a final EOT from the master, and then will close down the communi-
cation. The data blocks are configured in the fol lowing manner;

STX + [DATA BYIE #0] + ,....,+ [DATA BYTE 127] + ETB + LRC
for the full data blocks, and

STX + [DATA BYIE #0] + ,....,+.[DATA BYTE #n-1] + ETX + LRC
for the last data block.

The last data block uses an ETX character instead of an ETB character in order
to signal the very end of the transferred data.

The following diagram illustrates the flow of data between the master and
slave devices during a separate read and write cycle.

S|E S E|L A Al |E
Master: RII|N O |HEADER| T|R C cl |o
D|Q H x|c K jg T
sla Als E[L] [S ElL] [E
Slave: RlI|lcC c|T|paTa#1|T|R| |T|DATA#a|T|R]| |O
D{K K|x|BLocK |Blc| |x|BLock |x|c| |T

Similarly, in a read command, the slave will expect blocks of data after the
header is aknowledged. It will issue a NAK if it detects an error in
transmission. The master will issue an EOT after the last data block is read
and acknowledged.

SIE S E|L] |S E{L} |S E|L] |E
Master: RII|N O|HEADER|T|R| |T|DATA#1|T|R| |T |DATA#n|T|R| |O
D|Q H X|C| X B|C| X el IT
remeem= S —
: Si{A A A A
Slave: R|I|C c C C
[i o K

B-5

Data Transfer Error Detection

As in the header block transfer, the LRC byte is the sum of all data bytes in
the block. Control codes STX, ETX or ETB are not included in the summation. An
erroneous LRC check will cause the receiving end to issue a NAK character,
which will force a re-try of the entire block. Only three re-tries are
permitted, whereupon the recieving end should issue an EOT and abort the
sequence. Timeout checks are made for reception of an STX after a complete
header transfer, or a complete previous data block transfer, and also btween
accpeting the opening STX of a data block transfer, and reading the ETX or ETB
character, Once a data block has been accepted by the ACI in a read operation,
the data block is transferred to the target memory address.

B-7 EOT SEQUENCE

The EOT is the final sequence, and is shown in the timing charts above., In the
communication, the master ALWAYS has the last word, and the master ALWAYS has
the ability to abort the communication. The slave will never knowingly abort
the communication once it is started.

B-8 ERROR CHECKING AND RECOVERY

The ACI can handle a range of different communication errors. The two broad
classifications of errors are transmission inaccuracies, and character time
outs. Character time outs are used when a pending communication cycle has been
interrupted by an unforgivable time delay. After a time out condition, the
slave ACI issues an EOT then resets for another cycle. When a character is
transmitted incorrectly, two things may happen. First, if it results in a
checksum error, the data block is retried. This process continues for a pro-
grammed number of retries. If still no luck is encountered, then the slave
executes a complete cycle reset, ready for the next communication attempt. If
a control character is mis-read because of a transmission error, then the
cycle is aborted immediately, and the ACI is reset. A timeout error causes an
immediate reset of the ACI, :

B-6

Error : Error Description, Cause, and recovery

Number
1 Not used
2 No SOH character found to lead off the header sequence. The SOH

character must be the first character of the header. Any other
character will cause the ACI to terminate, and the commun-
ication cycle will be ended. The ACI will release an EOT char-
acter,

3 The ACI encountered a software error when reading in the header
block. This is an internal software failure. Contact your CRS
Plus representative., The ACI will be reset after this error.

4 A header retry failure was encountered. This means that the ACI
tried four times to obtairn the header, and was unable to do so
due to repeated LRC failures, Usually, this is a sign of a bad
interface wiring, or incorrect master control software. If you
are using CRS Plus interface software for your host computer,
contact your CRS Plus representative,

3 No ETX, or ETB was read at the end of a data block transfer.
Remeber that the last data block must have ended with an ETYX
character. All other data blocks end with an ETB character. The
ACT will immediately reset after detecting this error.

6 Not used

7 Not used

8 Data block read retry failure. The ACI terminated due to rep-
eated LRC check failures when reading a data block from the
Master.

9 Character timeout. The ACI expected a character, and did not

receive one in the allotted time. The ACI will be reset. Check
that the Master control did not hang up part way through a
transmission, or that the correct number of characters were
sent.

10 , The ACI read a character other than an STX at the start of a
data block. The ACI will be reset.)

11 Data block write retry failure. The ACI was unable to deliver a
data block to the Master without getting a NAK responce four
consecutive times '

Table B - 2 ACI Error Codes

B-8

Error
Number

12

13

14

15

16

17

18

19

20

Error Description, Cause, and recovery

A character other than an ACK or NAK was read in response to a
data block write. This error can occur on a spurious noise
injection into the line, but is a rare error type. If this
error persists, then the Master could be responding with an
incorrect code. Contact your CRS Plus representative. The ACI
will be reset.

Timeout error on transmission of a character., The ACI was not
able to transmit a character in the allotted time. This timeout
would have been caused by a failure in the DART chip (see
hardware description) to present a transmit ready signal. The
ACI will be reset after this error. Contact CRS Plus if the
problem persists.

Bad target Id match in header block. The header block must
contain the same slave device number that the enquiry sequence
had, or this error will be generated. The ACI will be reset.

Not used

Bad character received when EOT expected. The ACI expects the
Master to close all communication with an EOT character. This
error is generated if this does not happen, and another char-
acter is received instead. Since the communication is already
finished by this point anyway, the ACI will be reset.

A character other than an ETX was received at the end of a
header block. This character must be delivered to the ACI
immediately after the LRC character is sent.

Timeout on receiving the header SOH character. The Master
control, after establishing communications with the slave
during the enquiry sequence, has a limited time to send the
following header block. See the table of timeout values. A
timeout error always causes the ACI to reset.

Timeout of recieving the header ETX character., This timeout
measures the time it takes to complete the transmission of the
header block. Once the SOH has been received, the Master has
only a limited time to transmit the whole header block. The ACI
will be reset after this error.

Timeout on receiving the data block STX character. When the
header block has been completed, and the Master has programmed
a read cycle for the slave, the Master must deliver the first

data block within a time period. Failing to do so will reset
the ACI.

Table B - 2 ACI Error Codes

Error
Number

21

22

23

24

25
26

27

28

Error Description, Cause, and recovery

Timeout on data block ETB/ETX character. Similar to error #19,
the master has only a limited time to send the entire data
block before this error occurs. The ACI will be reset.

Timeout on receiving a data block ACK/NAK character. After the
slave has transmitted the data block to the Master, the Master
must respond with the ACK or NAK character within the preset
time limit, or the ACI will reset automatically.

Timeout on receiving the final EOT. The slave expects the
Master to close thecommunication within a specified time limit,
Failure to do so will set this error, and the ACI will be
reset,

Unexpected EOT character. This error will be set if any
expected control character turns out to be an EOT. The Master
can close off the communication prematurely by sending an EOT
instead of the accepted control code at any time in the
sequence,

Not used

Bad special read code. The read code provided in the header is
not supported.

Bad special write code. The write code provided in the header
is not supported.

Bad special memory access code. The memory access code provided
in the header is not supported.

Table B - 2 ACI Error Codes (cont'd)

B-9 ABORTING A COMMUNICATION CYCLE

Sending an EOT at any time that a normal control character is to be
issued will be interpreted by the slave as a signal to abort the commun-
ication, This function may be required at times were an abrupt termination of
the link is essential, for instance when attempting to quickly service another
slave.

B-10 INTERFACE REQUIREMENTS

The ACI has been tested at baud rates up to and inculding 2400 baud. Faster
baud rates may be possible, but are not recommended. Handshaking should be
disabled, and parity should be turned off. A data byte size of 8 bits is
required, with two stop bits. See the RAPL CONFIG command for setting up
serial channel 1 to service the ACI link.

B-11 PREPARING THE ROBOT CONTROLLER FOR A COMMUNICATION CYCLE

The robot controller must be set up to accept the communication. This commun-
ication is executed through serial port 1. When this is active, then any robot
references to device #1 will not respond, since this protocol takes priority
when it is activated. '

B-10

B-12 ACI MONITOR COMMANDS

The programmer can access the ACI software through a set of commands available
at the terminal, These commands will allow the programmer to monitor any
communications to and from the controller. The programmer can also enable or
disable the ACI interface,

The commands are only available through the monitor level.

@@RI:

To force an initialization of the ACI interface. Any communication in
sequence will be aborted. This may causé a loss of synchronization bet-
ween the slave unit and the master control,

@@RN;
To select a slave device number for the robot controller. This value can
be any value between 1 and 127. The value of O is not permitted.

@@RS: .
Display the current status of the ACI software. The number of retries,
the number of communication failures and the number of successful cycles
will be displayed in a continuous fashion on the terminal device. This is
a useful debugging tool.

@@RE:

Enable the ACI software. This will dedicate the serial port #1 to the ACI
software. No other normal serial input will be allowed on this channel.
Output is still allowed, but it will cause problems if an ACI cycle is
concurrently running.

@@RD:
The ACI interface will be disabled. The serial port #1 will now be
considered as any other programmable serial channel.

@@RH:
The last header which was read in will be displayed. This will indicate
the type of the last (or current) conversation.

Character Hex Decimal

Code Code
STX 02 02
ETX 03 03
ETB 17 23
EOT 04 04
SOH 01 01
ENQ 05 05
ACK 06 06
NAK 15 21

Table B-3 ASCII control codes for the ACI

Event Timeout (in character times ++)

Enquiry timeout 300
Timeout used to test for characters
received during the enquiry
sequence,
SOH timeout 300
Time permitted between the recog-
nition of a successful enquiry
sequence, and the acceptance of the
header SOH character
Header ETX timeout 300
Time permitted between acceptance
of the header SOH character, and
the detection of the header ETX
character,
ACK for data block 300
Time permitted for waiting for an
ACK or NAK from the master after
the transmission of a data block
from the slave,
STX data block timeout 300
Time permitted for waiting for the
data block STX from the master
after a successful acknowledgment
of either the header block, or the
the previous data block.
Data block ETX/ETB timeout 300
Timeout permitted for the complete
data block, from acceptance of the
STX to the recpetion of either the
ETB or ETX character.
Final EOT timeout 300
Time permitted between the acknow-
ledgement of the last data block
read and the final EOT response, or
the last data block write acknow-
ledge from the master, and its
response to the slaves final EOT.

Table B-4 ACI timeout values

++ Timeouts are given in character times so that the baud rate does
not affect the timeout strategy.

B-13 SPECIAL ACI ACCESS CODES

This chapter deals with the special functions available with the ACI version 2
software from CRS Plus. The extra functions located here explain how the
system porgrammer can interface to the robot control to obtain information
that was previously very difficult to obtain,

The functions explained here will permit the programmer to access robot I/0
ports, as well as position and command registers.

The special codes are separated into special write codes (codes 40h to 4Fh)

and special read codes (20h to 2Fh). These codes are placed in the access type
specifier in the header block.

Special Write Codes

With the exception for code 47h, it is not necessary to specify an address
with special write commands. It is important, however to specify the amount of
data to be transferred. This is important in all cases.

40h

This special write command will return the most relevant addresses within
the robot software., The addresses which are returned will enable the master
control to access user memory directly, thereby permitting program upload
and downloading. The use of this function will provide master control
software which can operate independently from the robot software version.
The buffer of information which is returned is in the form of memory
pointers (4 byte, segment, offset format) . The lowest byte contains the
least significant byte of the pointer. The addresses included in the buffer
of information point to the items in the robot memory as described in table
F-8, in Appendix F of the technical manual, The buffer of pointer infor-
mation is the same as that used by the RAPL-BIOS facility, and is not
reproduced here. With this special code, no address field need be
specified, but since the pointer ‘information consists of more than one full
block, any portion of the data can be returned for use, starting with the
first element.

41h
Send robot error codes. This special write code will send four bytes to the

master indicating the health of the robot control. The buffer of four bytes
includes, in this order:

I AlarmStatus 00 indicates no alarmcondition
01 indicates that an alarm exists
2 RAPL error code NN See the RAPL error manual
3 ACI error 00 No ACI error in effect
01 ACI error is in effect
4 ACI error code NN See the ACI error list. This
is the last ACI error detected.

42h
This command will force a write of the user input port images as captured
by the RAPL operating system. The memory address in the header block need
not be initialized, but the byte count must be specified. That is, it
should contain a value of 8. See the technical description of the robot I/0
space for a description of the inputs that can be read.

43h
This command will. force a write of the user output port images as created
by the RAPL operating system. The memory address in the header block need
not be initialized, but the byte count must be specified. That is, it
should contain a value of 8. See the technical description of the robot I/0
space for a description of the inputs that can be read.

44h
This command will cause a write to the host computer of the position
command data in the robot controller. The position command data exists as
an array of 8 double integer values in memory. No address need be specified

in the header block, but a data length of 32 bytes or less should be
specified.

45h
This command will cause a write to the host computer of the actual position
data in the robot controller. The actual position data exists as an array
of 8 double integer values in memory. No address need be specified in the
header block, but a data length of 32 bytes or less should be specified.

46h
This command will cause a write to the host computer of the end point of
path data in the robot controller. The end point position data exists as an
array of 8 double integer values in memory. No address need be specified in

the header block, but a data length of 32 bytes or less should be spec-
ified.

£ 2

B-15

i - =
47h :
This command will transfer 8086 I/0 input port values to the host computer. ‘
The I/0 address is specified by the offset portion of the data address
field in the header block. The segment field is not used. The number of
bytes specified will result in a read of all ports from the specified
address. This is a special command in that only one partial block of data
can be transferred. The number of bytes in the last block will then
correspond to the number of I/0 ports to be scanned.,

Special Read Codes

Special read codes allow the programmer to load specific areas of the robot
memory with data.

20h
This special read command will load up to 128 bytes into the active command
input buffer. In this way, and external computer can simulate a data term-
inal entry. Only text characters will provide a valid response. Any attempt
to enter control codes as you would at the interactive level with the
erminal will produce a RAPL error. No echoing will be noticed, since all
aormal echoes will go to the terminal,

Appendix B: Reprint of Technical Manual, Appendix G

PTT— R

provide all of the ACD protocol support routines,
1 =

tha ACl ilsplzaentatiorn can be divided isto four pracedure

B o |
e gleloia

be provided ty the system

L]
2
moo
n
M
=
mn
i
m
i
-
=
m
I
=

vii? azi_nstrout! etr , n)

} char strl;

int nj
Send & string of cheracters out. Tne string it pointzd to by "etr’, and the
string is ‘o' bytes long.

grial interface, The nusber of characiers
ion chearacter array is pointed to

APPENDIX G - RAPL CONTROL PARAMETER LIST

G-1 INITKIIJCTION 2
G—ZMIEF(EIRAPLSGOANDLA‘I‘E{VERSIONS 2
G-3 RAPL PAEM!E'I'ER POINTER LIST 2
G-4 RAPL {BER MEMORY ALLEL‘ATIQ& 10
Progran BaRLay 2N e Shecdlm ., VBRI e m T e e W e e s 10
PyoqpuineBunte: . v esglaes el DV BN B T STPEEGEE T v w a a 10
TR PRl o PERETRSR, al we e e S e e & 11
Vapdable TaBle | o aG-d el o e WY D 0TRELTEBL F L VT w s 11
Teagger Tabhe . .5 e W B s e s 4 o v s 5 s % 12
Continuous Path Memory Allocation T 12

SRS—M1A Technical Manual - Page G-1

G-1 INTRODOCTION

RAPL, software provides a list of pointers so that the user can access system
parameters in RAPL using the ACI interface. See Appendix B for a complete
description of the ACI interface. By providing this list of pointers, the
programmey can be isolated from version changes in the RAPL software that could
result in parameter address changes. This parameter list is accessible through
special ACI write command 40 hex. A pointer to this list of pointers is also
available at interrupt vector 60 decimal. The list of items is as follows.

Data found at the pointers indicated by this list are identified by type in the
left hand margin: B for bytes, I for integers W for words, DI for long: integers,
R for real numbers, P. for pointers and DW for long words comprise the data type
specification. Arrays of types are shown with the appropriate array length.
Remember, the items in the list are pointers. Some of these may point to the
address of pointers (P type data) in the robot memory which then finally point
to the data in question. A pointer to this list of pointers resides in interrupt
vector 60 decimal.

G-2 NOTE FOR RAPL 5.00 AND LATER VERSIONS

Some system parameters have been replaced in this version. These obsolete
parameters are indicated below. When the pointer list is read in the robot
memory, these entries will appear as zero (NULL) pointers.

G-3 RAPL, PARAMETER POINTER LIST

Data |Offset |Item Description (This pointer points to..)

Type |in List
P 0 the work space pointer - Pointer to the RAPL user space. Also
' the pointer to the RAPL program buffer. PROG_BUFF_PTR

W 1 the Program buffer size - the word register which tells us how
many bytes of program storage has been allocated. PROG_BUFF_SIZE

W 2 the Program buffer count register - the word register which
tells us how many bytes of program storage has been used.
PROG_BUFF_CNT

P 3 the Program table pointer - the Pointer to the location of the
program table in memory. PROG_TABLE_PTR

W 4 the program table size - the Word register which tells us how

long the program table. is in number of total program entry
locations. PROG_TABLE_SIZE

P 5 the Variable table pointer - the Pointer to the variable table.
VAR_TAELE_PTR

W 6 the Variable table size. Word register which tells us how big
the wvariable table 1is in the total number of entries.
VAR_TABLE_SIZE

P 7 the Location table pointer. Pointer to the location table.
LOC_TABLE_PTR

W 8 the Location table size. Word register which tells us how long

the location table is in the total number of table entries.
LOC_TABLE_SIZE
Table G-1

SRS—M1A Technical Manual - Page G-2

Item Description (This pointer points to..)

Data |Offset

Type |{in List
DI¥8 9
B 10
B 5 o
B8 - - 12
Bk 13
DI*8 14
DI*8 15
DI*8 16
B 17
B 18
Bx8 19

the Calibration register pointer. Pointer to an array of 8
double integers which contain. the robot. calibration. position.
CALTEBRATICN(8)
the Calibrate position: checksum by‘be +~The byte a.ddit:.on of all
valid calibratim data for the 5 robot axes only.
CALTBRATE_CHECKSUM
the . mbotiscal:.bmted check byte which is set after a
' calibration:procedure has been.run.;ROBOT_IS CALIERATED

! ‘theAxis~*Begin«Motion ~array.-An-array: of 8 bytes which signals

each "axis-command generator to start a new motion. It is reset
by the command generator when the path starts. BEGIN_MOTION
%k NOTE: DISCONTINUED FOR RAPL VERSION 5.00 AND LATER.

the Axis "Done’ array. An array-of: 8:.bytes which signals when
each of the axes has finished a motion. Set by the command
generator. DONE %k NOTE: DIS(INTIM]ED FOR RAPL VERSION 5.00

AND LATER.

the Actual Position array. An array of 8 double integers which
are the absolute position registers of the robot feedback
sub-system. Every 4 milliseconds, these values are updated with
the incremental positions determined by the motor encoders.

POSITION

the Position Command array. An array of 8 double integers which
represent the absolute position command to the robot motors. Any
path generation algorithm can create these values, and the servo
loop function will compare these registers to the actual
position registers and will create the appropriate commands.
POSITION_COMMAND
the End point registers. An array of 8 double integers which
define the end point of the current motion command in motor
coordinates. If the robot is not moving, then these values equal
the position command registers. END_POINT(8)

the ‘Move type parameter. This flag is set by the path
generation selection. MOVE_TYPE The value can be:

1 - For joint interpolated moves,

LIMP(8)
LATER.

2 - reserved
4 - manual mode.

- 5 - continuocus path mode (and straight line moves)
the MNumber of active axes. Byte value with value from 1 to 8.
NOMBER_OF _AXES
the Limp command array. Array of 8 bytes which selects the limp
mode for each motor. In the limp mode, the servo loop function
automatically overrides the command generation function, and
will force the position command to be the same as the actual
position registers. This supplies the motors with 0 voltage.
sk NOTE: DISCONTINUED FOR RAPL VERSION 5.00 AND

Table G-1

SRS—M1A Technical Manual - Page G-3

Data

Offset
in List

Item Description (This pointer points to..)

Rx8

W8

Rx6

21

23

24

25

26
27

the Real time ticker. A double word gquantity that is incremented
each I/0 update cycle (approximately 30.milliseconds). The value
of this counter is zerced only at a teach start situation, so
it can accurately keep track of the total time that the
controller has been switched on. REAL_TIME

the Hold request flag byte. Aby'l'.evalue that, when set to 1
will stop a RAPL path generation, and will cause all-DONE flags

to register a complete path..The end point registers-of the path - -

will be updated to the commanded position of the axes when all

axes have been brought to a stop. In joint interpolated mode,

the axes are decelerated to a stop. In straight line, the axes
are stopped immediately. The hold request is reset when a new
move is commanded. HOLD_REQUEST

the Axis Lock out array. Pointer to an array of 8 bytes which
will selectively lockout individual motors from any subsequent
motion commands. < LOCKOUT(8) ok NOTE: DISCONTINUED FOR RAFL
VERSION 5.00 AND LATER.

the Millisecond counter. A word quantity which is used to derive
a millisecond delay from the system I/O clock update. Used to
tire the DELAY function in RAPL. MILLISECOND_ COUNTER

the Acceleration array. An array of 8 reals which determine the
acceleration of each motor during a joint interpolated motion.
ACCELERATION(8)

the Transmission Ratio array. An array of 8 real numbers which
equates the measurement units of the joint or motor with the
corresponding motor pulse resolution. It is dangerous to change
the first five values in this array, as it will change the rocbot
transformation. The @XRATIO command changes the other three.
the Alarm Number. A byte value that contains the last RAPL error
code to be generated. ALARM_NUMBER

the Rotary Resolution array. An array of 8 integers which spec-
ifies the motor encoder resolution in encoder lmes~ per motor
revolution. ROTARY RESOLUTION(S)

the Tool Transform - an array of 6 real numbers that specify the
current tool transform value. TOOL_TRANSFORM

Table G-1 (Ccont d)

SRS—MI1A Technical Manual - Page G-4

R

Data |[Offset |Item Description (This pointer points to..)
Type |in List '

Struct 29 the Input block structure - the RAPL character input buffer
area 'l'he input buffers are specified in the following format:
" input_block(3) st:mchne (
. buffsize byte,

by'te
hxffer(128) by‘be)

The fi.rst two: structure records keep track of data input from
Itheﬁtm .serialsports: - “The third is .used as an intermediate
' buffer:when-executing :from a program. “buffsize’ determines the
8ize of the input ring buffer, up to 128 bytes. “in_ptr’ points
to the next array element available for serial input, and

‘out_ptr” marks the next character that can be released from the
buffer, to be used by RAPL. '

B 30 the Alarm status. A boolean byte value which spec1fles whether
or not a RAFL error has occurred. The byte is reset when a new
command .is attempted. ALARM_STATUS

R¥64 31 the Motor to Joint transform matrix. An 8 by 8 treal matrix which
transforms the motor coordinates into the joint coordinates.
Since the robot structure is not mechanically de-coupled,
several motors may have to move in order to provide a single
Joint motion. In a matrix equation, {j} = [J]{m}, where {j} is
the Jjoint row matrix, and {m} is the joint motor matrix.

R*64 32 Joint to motor transformation matrix. An 8 by 8 real matrix
which determines motor coordinates from joint coordinates. It
is the matrix inverse of item #31 above. In a matrix equation,
{m} = [JJ1{j}, where {j} is the joint row matrix, and {m} is
the joint motor matrix. The JJ matrix is the inverse of the J
matrix identified by item #31.

W 33 the Work space size. A word value which specifies the total user
area avallable. The user area can be represented as an array in
PL/m-86 as follows.

- . (User_Area based work_space_ptr)(work_space_size) byte;

B%3 34 the Extra axes calibrate checksums. A 3 byte array which
contains the checksums for the calibrate position of each extra
axis. XCALIBRATE_ CHECKSUMS(3) ‘

W 35 the Reserved work space size. This word contains the number of
bytes which are to be set aside from the routine RAPL user
memory. see section F-9 for a description of the RAPL user
space. This memory area can then be used for 8086 machine code
programs that can be loaded in from the terminal, or through the
ACI. This area is alsc used for CTPATH datz.
RESERVED_WORK_SPACE_SIZE

Bx9 36 the Digital Input Image buffer. A buffer of 72 bits which map
the robot input space. See figure F-5. DIGITAL_INPUT

Table G-1 (Cont'd)

SRS-M1A Technical Manual - Page G-5

Item Description (This pointer points to..)

the Digital Output Image buffer. A buffer of 56 bits which map
the robot output space. Since .the. robot digital ocutput ports
cannot be read, then it is up to the software to remember what
was issued to the output port before updating single bits of
it, sothattheranalmngbltucanbeleftastheywere See
figure F-4. DIGITAL_OUTPUT

the Default character I/0 device. The default character devmce
is either 0 or 1 or 2. 0 and 1 represent the,two serial
channels. 2 represents a user program which is being used for
character input. The default device is 2 only when:using the
controller without a terminal in the AUTOSTART mode. When a
program is executing, the default device represents the serial
chanmel that is to be used for any user input and output.
DEFAULT_DEVICE

the Device Select. Identifies the current device being used for

- character input and output. DEVICE_SELECT

the Syntax Help function. This byte boolean value determines
whether or not the Syntax building function will be activated

" or not. HELP ON

Data |Offset

Type |in List
BXxT 37
B 38
B 39
B 40
Bx8 41
B 42
B 43
B 44
Bx128 45
B 46
B 47
W 48

the teach name template. An array of 8 bytes which contain the
current teach name. Only the first 5 characters are used when
the final point name is formulated. The rest is padded with
underscore characters. TEACH _NAME_TEMPLATE

the teach name count. The byte value which is encoded into the
final three character positions of the teach name when the point
is finally stored. TEACH_NAME_COUNT

the Program pause flag. When a program is executing, setting
this byte to a "1° value will stop the program after the next
line is decoded. PROGRAM_PAUSE

the homing complete flag. This flag is set when the robot has
been homed after a power up. Do not confuse this with item #11,
which indicates whether or not the robot has been calibrated.
This flag must be set in order that all move functions that
access points will work. ROBOT_IS_HOMED

the string buffer. The string buffer-is a buffer 128 bytes long,
that is divided evenly into 4 32 byte areas. These correspond
to the 4 string variables that are allowed by RAPL version 3.50
or later. STRING BUFFER

the loss of feedback/collision detection byte. 'I’hJ.s byte
indicates the status of this function. A boolean true means that
the function is turned on. LOFB_CHECK

the flag indicating whether or not a program is completed or
not. PROGRAM_CCMPLETED

the word counter that indicates the number of repetitions that
the current program has completed. PROGRAM_REPETTITIONS

Table G-1 (Cont d)

SRS-M1A Technical Manual - Page G-6

Data |Offset |Item Description (This pointer points to..)

Type |in List
W 49 the word register which indicates the number of repetitions of
the program that have been requested. PROGRAM_REPEAT [.IMIT
B 50 the flag which indicates that an infinite looping of the current

program has been requested. PROGRAM_LOCOP_FOREVER

Rx250 51 the 1000 byte buffer which contains the data for the current
straight line move. Also used to contain the path parameters
for a CPATH. STRAIGHT LINE_BUFFER

B 52 the flag which indicates ﬂhether or not the. trigger table has
‘been ‘enabled- “TRIGGER_.TABLE - G0 M

B 53 the flag ‘which: J.ndicates whe‘ther or not edit.ing is. permitted.
EDIT_ENAELE

I 54 integer containing the global robot speed value ROBOT_VELOCITY

R*6 55 the first element of the robot base shift registers. The shift
registers are arranged in this order: s
X_PBASE_SHTFT, Y_BASE_SHTFT, Z_BAS&SE[ET O_BASE_SHIFET
COS_O_BASE_SHIFT, SIN_O_BASE_ SHIFT

B 56 the flag which indicates whether or not a continuous path has
been interrupted with the HALT command, typically in an ONSIG
situation. CPATH_INTERRUPTED ‘

DI*8 57 +the 8 double integer registers used to save the path position
were the robot was interrupted from its continuous path.
HOLD_POSTITION

58 the register which describes the configuration of the robot arm
for all coordinate transformations. CONFIG

539 the pointer to the knots array for the current CPATH or straight
line move. P_ENOTS

60 the pointer to the time array for the current CPATH or straight
line move. P_TIME

61 the pointer to the acceleration array for the current CPATH or
straight line move. P_ACCEL

62 the pointer to the temporary array for the current CPATH or
straight line move. P_TEMP

63 the pointer to the knots array for the current CIPATH or
straight line move. TP_P_ENOTS

64 the pointer to the time array for the current CPATH or straight
line move. TP_P TIME

65 the pointer to the acceleration array for the current CPATH or
straight line move. TP_P_ACCEL

66 the pointer to the temporary array for the current CPATH or

" straight line move. TP_P_TEMP

67 the TIMER which increments as the continuous path proceeds. This
timer registers is compared to the knot timer array in order to
determine which path segment the path is currently in.

e O« SRS T I - R RS - L s B - TR o AU -

Table G-1 (Cont d)

SRS—M1A Technical Manual - Page G-7

Data |0ffset
Type |in List

Item Description (This pointer points to..)

-

68

69
70

72

W

W

W

W 71
W

B 73
W

74

the PATH SEG which determines which path segment the path is
currently in.

the number of knots that are in the CTPATH. TP_N_ENOTS

the number of axes which are included in the current CTPATH.
TP_N_AXES

the number of knots that are in the last CPATH. N_ENOTS '
the number of axes that are included in the last CPATH. N_AXES

the flag which indicates whether a CTPATH is loaded.and ready -

to go. PATH_LOADED

the register which determines the maximum number of -knots which -

will be used in the calculation of all straight line moves.

Bx8 75
B 76
Bk8 71
B 78
B 79
B 80
B 81
B 82
B 83
B 84
B 85
B 86
B 87
B 88

8 character buffer whlch 1dent1f1es t.he first location in a
CTPATH, used to send the robot under joint interpolated mode to
the start of the path. CPATH_START_NAME

Enable NULL positioning mode. In this mode, the finish criterion

is not complete until each axis has moved to within a preset

tolerance band of the end point. NULL_ON

The tolerance band for NULL positioning is set for each axis.
Brte wvalues allow for 127 pulse positioning error.
NULL_TOLERANCE

Enable the +trigger events during the next CPATH, CTPATH.
TRIGGER_ENABLE

Enable outputs to be issued. Disabling the outputs is often
useful when debugging a program without wanting to switch
external devices. OUTPUT_ENAELE

Enables the ONSIG condition without changing the setup status
of the command. ONSIG_ENABLE

Enable the arm power watchdog. Disabling will mean that the arm
power will be switched off within 16 milliseconds. ARM_ENABLE
Enable the TRACE mode display. TRACE_ENABLE

Enable the FLASH function on the teach pendant LED. FLASH ENABLE
Enable the check for loss of arm power. ARM_POWER_CHECK_ENABLE
Enable the teach mode with the prescribed template name and
count number. TEACH_ENABELE

Enable the manual mode, under the currently active manual mode
type. MANUAL MODE_ENAELE

Enable the cartesian velocity continuous path control. This flag
will ensure constant cartesian velocity control.
CARTESIAN_VELOCITY ENAELE '

Enable the SLEW velocity mode for joint interpolation. This mode
is faster than SPLINE mode, where the velocity cshape has a
parabolic characteristic. TRAPEZOIDAL_VELOCITY_ ENABLE

Table G-1 (Cont’'d)

SRS-M1A Technical Manual - Page G-8

Data |Offset |Item Description (This pointer points to..)
Type |in List
B 89 Stop any current motion and put the command generator in a
suspended mode. FEED_HOLD ENARLE
P 80 Pointer to the available user memory. This is a pointer to the
reserved space.: a7 il
W8 91 Array of 8 words: which definee the stams of the controller

axes. This array is organized as a bit array. It replaces the
old byte flag arrays: DONE, BBEGIN MOTION, LIMP, L[OQOCKOUT.
AXIS_&AT[B; Jme‘bit allocatim of th:l.s word array is shown .

FEDCBAB‘B? 6{5|413|2|1]0
- AXIS OR. This bit will be set
to 1 when the axis card is
healthy.

LIMP. bit will be set to "1° when

| the axis is under the limp mode.

S L LOCRKOUT. When this bit is 1, the axis will
‘be excluded from any future move commands.

L AXTS ERROR. When this bit is set, the axis

: currently under test has an error condition.

L MOTOR FAULT. When this bit is set, the axis card
has detected a motor fault condition, and this
condition has been recognized by the RAPL
operating system

- L BOMED. When this bit is 1, the axis has been homed.

L CAL. When this bit is set to 1, the axis has been
calibrated.

L BEGIN MOTION. When this bit is set, the RAPL command
interpreter has requested a path start. This bit will
be reset when the path does start.

L DONE. When this bit is set to "1°, there is no path in

progress on the current axis.

NOTE: All unused bits are reserved by the RAPL operating system.
Also, modification of these registers is strictly not recommended,
as they are constantly updated by the RAPL communication software
with the smart axis cards. Use these registers as status indicators

only.

Table G-1 (Cont"d)

G-4 RAPL USER MEMORY ALLOCATION

Please note that addresses of pointers to items in the robot Juser memory can be
determined from the pointer list described in Table G-1. All ‘references to “the
table” mean Table G-1.

The RAPL user memory is partitioned into 5 areas. These are listed according to
memory order. User memory is pointed to by the PROG_BUFF_PIR parameter, item #0
in the table. Since this is the bottom of user memory, this pointer is also
referred to as the work_,spaoe_ptr parameter.

The reserved memory area is the first item in the user memory. It can be reserved
for any purpose so that RAPL program, location and data operations cannot affect
it. If the expanded mémory option is installed in the controller, This memory can
be used to store path data generated by the "CTPATH" command. The work_space_ptr
parameter is adjusted to point to the next byte beyond this area. All other RAPL
user memory items are addressed relative to the work_space_ptr parameter.

Program Baffer

The program buffer, which is a contiguous array of bytes is stored next. Each
program is stored immediately after one another. A “$° character separates one
program from. the next. The program buffer is addressed by the work_space_ptr
parameter (#0) since it appears first in memory.

The program table is next. It can best be described by the following 'C°
structure reference:

Program Table

struct p_table
{
char name(8];
int index;
int checksum;
} prog_table_ptr{prog_table_size];

And the pointer to the program table (item #3 in the table) can be calculated to
be: n

prog_table_ptr = &work_space_ptr[prog buffer_size]l;
Each entry into the program table takes 12 bytes. The PROG_PTR element defines
the starting point in the program buffer for that particular program. The actual
location of the program is then at:

prog_address = &work_space_ptr[prog_table_ptr[i].index];
The checksum byte is the addition of all the program bytes up to the final "%’

character. The checksum is only a byte length addition, so the upper byte of the
checksum word is undefined and should be set to "0°.

SES-M1A Technical Manual - Page G-10

Location Table

The location table is next. It can be described by the following ‘C° structure
reference: ;

struct 1_table

{ S

char name[8]; § Al L
float data(8]; . 3¢ bity = 42 Ql*’-d
int checksum; { 2 ¢ i

} loc_table_ptr{loc_table_size];

For a precision point, the:location:table would:be described as:
struct 1_table

{

char name[8];

long pp_data(8];

int checksum;

} loc_table_ptr[loc_table_size];

Thus any entry in the location table requires 42 bytes of data: an 8-byte name,
8 real or long integer fields (4 bytes each) and a checksum word. The checksum
is the addition of all the bytes in the particular location. The checksum is only
a byte length addition, so as with the program table, the upper byte of the
checksum word is undefined.

The location table pointer can be calculated to be:

loc_table_ptr = &prog table_ptr[prog_table_size];

Variable Table

The variable table is stored next. It can best be described by the :Eollow:.ng e
structure reference:

struct v_table
{
char name[8];
float data;
int checksum; . ;
} var_table_ptr{var_table_size];

An entry in the variable table requires 14 bytes: an 8 byte field for the name,
a 4 byte real value, and the two checksum bytes. As with the program and location
table entries, the checksum is the addition of all the bytes in the particular
location. The checksum is only a byte length addition, so the upper byte of the
checksum word is undefined.

The position of the variable table can be calculated as follows:

var_table_ptr = &loc_table_ptr[loc_table s:.ze]
SRS-M1A Technical Manual - Page G-11

Trigger Table

The trigger table is an item in the RAPL parameter memory. It is a structure of
8 elements called "triggers"” which define programmed output events which will
occur as the robot arm moves through locations (knots) during a CPATH or a CTPATH
motion. The trigger table saves the location name of the event, as well as the
output number and desired state of the output at the event. If the cutput number
field is a zero, then no trigger event is loaded. A negative trigger number
indicates that the selected output will be triggered to a LOW state. A positive
number will trigger the output to a HI state. Valid output numbers range from 1
to 40. The trigger table can be defined as the following structure:

struct trig table
{
char name(8];
int ocutput_number_and_state;
} trig_table(8];

Thus an entry in the trigger table takes 10 bytes: the location name field
consisting of an 8-byte entry and the integer state wvalue. No checksum is
provided as this data is not retained when the robot controller power is removed

The data in the trigger table is used in execution of the CTPATH or CPATH
commands. As the path data is generated, the trigger table is scanned. If a
location is called for which a valid entry exists in the table, an entry is made
in the path data for that knot.

During execution of the path, RAPL scans two word values at each knot. Each
contains a map of the lower 16 user ocutput line numbers. A "1" in a bit position
in the first word represents an output whose state changes at that knot. The
second word contains the desired state of that output after the change. The
change is made at I/0 scan rates so that the state will change within
approximately 40 milliseconds from the time the commanded position of the robot
reaches the knot.

Continuous Path Memory Allocation

The CTPATH command utilizes the reserved memory to store most of the path
information. The remainder of information is saved in RAPL parameters pointed to
by: TP_N_AXES, TP_N_ENOTS, TP_P_ENOTS, TP _P_TIME, TP_P_ACCEL, TP_P_TEMP,
PATH_LOADED. These parameter pointers are shown in Table G-1 (items #63 to #66,
#69 and #70). A more detailed description of these parameters can be found in the
detailed discussion of the CPATH control strategy in the RAPL manual.

The first step in accessing the CPATH data is to determine the pointer to the
reserved memory. For RAPL version 5.00 and later, this item is #90 in the pointer
list. This pointer is not immediately accessible by any item in the pointer list
for RAPL version 4.99 and earlier, but a simple operation can derive it, since
it is accessible by taking the pointer to the workspace (item #0) and by

SRS-M1A Technical Manual - Page G-12

subtracting the reserved work space size (item #35) which would act as a negative
offset from the start of the user memory. The following code extraction, written
in "C,” will do just that;

ehar ¥reserved_ptr, *work_space_ptr;
int reserved_space_size;
int *tp_n_knots, *tp_n_axes;

i‘eserved_ptr = &work_space_ptr[-reserved_space_size];

Once the starting address to the data has been determined, the data elements for

contimous path are stored in the following order;

float tp_pknots[n_axes][n_knots]; |
The knots array is located at the start of reserved memory. The knots array
is actually a two dimensional array, bounded by the number of knots and the
number of axes as the two dimensions. The total array size is therefore,
nl = #knots * #axes * 4, in bytes.

float tp_ptime[n_knots]
The time array is a float array that marks the elapsed path time at each
knot.

float tp_paccelln_axes][n_knots]
The acceleration array contains real numbers marking the acceleration of
each axis at each knot position. -

float tp_ptemp[n_knots]
This array is used for temporary storage during the calculation of the path
parameters. It is then used to store the trigger setup information for the
path. When storing the trigger information, the format of the data are two
16 bit word masks for each knot. The lower order word contains the bits
which determine the outputs that are to be controlled at that particular
knot. A 1 bit will indicate that the corresponding output will be
controlled. The higher order word determines the state to which the
designated outputs will be placed. A 0 bit will turn an output on, and a
1 will tum it off.

With this information, all of the pointers can be formulated, as the following
code extraction demonstrates.

float *tp_pknots, *tp_paccel, tp_ptemp;

tp_pknots = reserved_ptr;

tp_ptime = &(tp_pknots{n_knots]in_axes]);
tr_paccel = &(tp_ptime(n_knots]);
tp_ptenp = &(tp_paccel(n_knots][n_axes]);

SRS—M1A Technical Manual - Page G-13

When it is time to execute a CPATH, using the GOPATH command, the pointer values

and all of the related parameters are loaded into the working registers (items

#2236 to #248, #284 and #288) if the path loaded flag indicates that there is path
data available. .

SRS-M1A Technical Manual - Page G-14

ACI Librarv Procedures:

The following is a list of library routines included in the TURBO PASCAL ACI library. All data
types and global variables requiring definition are also included. A simple example routine
is also included with the listings.

data_transfer (slave_device: byte;
MemType: byte;
MemOfs, MemSeg: integer;
AccessType: char;
bytes: integer);

This routine coordinates a data transfer. It is the basic call made for any transfer of
data using the ACI. Depending on whether a read or write is requested, it calls one of
the following routines: data_read_from_slave or data_out. Each of these two routines call
the Init_comm, header and send_header routines to initiate the communication. All of
these routines call upon the lower level communications procedures listed here.

data_read from_slave (n_bytes: integer);
Coordinate the transfer of data from slave.

data_out (n_bytes: integer);
Coordinate the transfer of data to the slave.
Init_comm (slave_no: byte);
Initiate communications with a slave. Calls the ENQout procedure.
ENQout (slave_no: byte);
Send an enquiry string.
header (slave_no, MemType: byte;
MemOfs, MemSeg: integer;
RorW: char;

message_length: integer);
Generate the Header Block in preparation for transmission.

send_header (slave, Memtype: byte;
MemOfs, MemSeg: integer;
RW: char;
data_length: integer);

Send the Header Block. Calls the previous routine.

error_state (err: byte);
Set error status.

turn_on_interrupt;
Turn on the serial interrupt state.

turn_off_interrupt
Turn off the serial interrupt state.

clean_aux:
Clean the input buffer and support.

send_aux (cha: char);
Send a character to the auxiliary port.

int_srv;
Service the serial on an interrupt basis.

init_ 8250 (rate: integer);
Set the baud rate for the RS-232 (COM1 device).

string out (str: txt);
Send a s\tring to the aux device.

N_string_out (str: txt; N: byte);
Send a string of length N to the aux device.

Functions:

clr_to_sen: boolean;
Check for transmit ready.

aux_ready: boolean;
Test for aux port with a waiting character.

GET_aux: char;
Get a character from the aux port.

string_in (N: byte): txt; _
Receive a string of length N from the aux device.

ACI Librarv Procedures:

The following is a list of library routines included in the TURBO PASCAL ACI library. All data
types and global variables requiring definition are also included. A simple example routine
is also included with the listings.

data_transfer (slave_device: byte;
MemType: byte;
MemOfs, MemSeg: integer;
AccessType: char;
bytes: integer);

This routine coordinates a data transfer. It is the basic call made for any transfer of
data using the ACI. Depending on whether a read or write is requested, it calls one of
the following routines: data_read_from_slave or data_out. Each of these two routines call
the Init_comm, header and send_header routines to initiate the communication. All of
these routines call upon the lower level communications procedures listed here.

data_read_from_slave (n_bytes: integer)
Coordinate the transfer of data from slave.

data_out (n_bytes: integer);
Coordinate the transfer of data to the slave.
Ihit_comm (slave_no: byte);
Initiate communications with a slave. Calls the ENQout procedure.
ENQout (slave_no: byte);
Send an enquiry string.
header (slave_no, MemType: byte:
MemOfs, MemSeg: integer;
RorW: char;

message_length: integer);
Generate the Header Block in preparation for transmission.
send_header (slave, Memtype: byte;
MemOfs, MemSeg: integer;
RW: char;
data_length: integer);

Send the Header Block. Calls the previous routine.

error_state (err: byte);
Set error status.

turn_on_interrupt:
Turn on the serial interrupt state.

turn_off_interrupt:
Turn off the serial interrupt state.

clean_aux _
Clean the input buffer and support.

send_aux (cha: char);
Send a character to the auxiliary port.

int_srv;
Service the serial on an interrupt basis.

init_8250 (rate: integer);
Set the baud rate for the RS-232 (COM1 device).

string out (str: txt);
Send a s\tring to the aux device.

N_string_out (str: txt; N: byte);
Send a string of length N to the aux device.

Functions:

clr_to_sen boolean;
Check for transmit ready.

" aux_ready: boolean;
Test for aux port with a waiting character.

GET_aux: char;
Get a character from the aux port.

string_in (N: byte): txt;
Receive a string of length N from the aux device.

	RAPL_Programming_0001.jpg
	RAPL_Programming_0002.jpg
	RAPL_Programming_0003.jpg
	RAPL_Programming_0004.jpg
	RAPL_Programming_0005.jpg
	RAPL_Programming_0006.jpg
	RAPL_Programming_0007.jpg
	RAPL_Programming_0008.jpg
	RAPL_Programming_0009.jpg
	RAPL_Programming_0010.jpg
	RAPL_Programming_0011.jpg
	RAPL_Programming_0012.jpg
	RAPL_Programming_0013.jpg
	RAPL_Programming_0014.jpg
	RAPL_Programming_0015.jpg
	RAPL_Programming_0016.jpg
	RAPL_Programming_0017.jpg
	RAPL_Programming_0018.jpg
	RAPL_Programming_0019.jpg
	RAPL_Programming_0020.jpg
	RAPL_Programming_0021.jpg
	RAPL_Programming_0022.jpg
	RAPL_Programming_0023.jpg
	RAPL_Programming_0024.jpg
	RAPL_Programming_0025.jpg
	RAPL_Programming_0026.jpg
	RAPL_Programming_0027.jpg
	RAPL_Programming_0028.jpg
	RAPL_Programming_0029.jpg
	RAPL_Programming_0030.jpg
	RAPL_Programming_0031.jpg
	RAPL_Programming_0032.jpg
	RAPL_Programming_0033.jpg
	RAPL_Programming_0034.jpg
	RAPL_Programming_0035.jpg
	RAPL_Programming_0036.jpg
	RAPL_Programming_0037.jpg
	RAPL_Programming_0038.jpg
	RAPL_Programming_0039.jpg
	RAPL_Programming_0040.jpg
	RAPL_Programming_0041.jpg
	RAPL_Programming_0042.jpg
	RAPL_Programming_0043.jpg
	RAPL_Programming_0044.jpg
	RAPL_Programming_0045.jpg
	RAPL_Programming_0046.jpg
	RAPL_Programming_0047.jpg
	RAPL_Programming_0048.jpg
	RAPL_Programming_0049.jpg
	RAPL_Programming_0050.jpg
	RAPL_Programming_0051.jpg
	RAPL_Programming_0052.jpg
	RAPL_Programming_0053.jpg
	RAPL_Programming_0054.jpg
	RAPL_Programming_0055.jpg
	RAPL_Programming_0056.jpg
	RAPL_Programming_0057.jpg
	RAPL_Programming_0058.jpg
	RAPL_Programming_0059.jpg
	RAPL_Programming_0060.jpg
	RAPL_Programming_0061.jpg
	RAPL_Programming_0062.jpg
	RAPL_Programming_0063.jpg
	RAPL_Programming_0064.jpg
	RAPL_Programming_0065.jpg
	RAPL_Programming_0066.jpg
	RAPL_Programming_0067.jpg
	RAPL_Programming_0068.jpg
	RAPL_Programming_0069.jpg
	RAPL_Programming_0070.jpg
	RAPL_Programming_0071.jpg
	RAPL_Programming_0072.jpg
	RAPL_Programming_0073.jpg
	RAPL_Programming_0074.jpg
	RAPL_Programming_0075.jpg
	RAPL_Programming_0076.jpg
	RAPL_Programming_0077.jpg
	RAPL_Programming_0078.jpg
	RAPL_Programming_0079.jpg
	RAPL_Programming_0080.jpg
	RAPL_Programming_0081.jpg
	RAPL_Programming_0082.jpg
	RAPL_Programming_0083.jpg
	RAPL_Programming_0084.jpg
	RAPL_Programming_0085.jpg
	RAPL_Programming_0086.jpg
	RAPL_Programming_0087.jpg
	RAPL_Programming_0088.jpg
	RAPL_Programming_0089.jpg
	RAPL_Programming_0090.jpg
	RAPL_Programming_0091.jpg
	RAPL_Programming_0092.jpg
	RAPL_Programming_0093.jpg
	RAPL_Programming_0094.jpg
	RAPL_Programming_0095.jpg
	RAPL_Programming_0096.jpg
	RAPL_Programming_0097.jpg
	RAPL_Programming_0098.jpg
	RAPL_Programming_0099.jpg
	RAPL_Programming_0100.jpg
	RAPL_Programming_0101.jpg
	RAPL_Programming_0102.jpg
	RAPL_Programming_0103.jpg
	RAPL_Programming_0104.jpg
	RAPL_Programming_0105.jpg
	RAPL_Programming_0106.jpg
	RAPL_Programming_0107.jpg
	RAPL_Programming_0108.jpg
	RAPL_Programming_0109.jpg
	RAPL_Programming_0110.jpg
	RAPL_Programming_0111.jpg
	RAPL_Programming_0112.jpg
	RAPL_Programming_0113.jpg
	RAPL_Programming_0114.jpg
	RAPL_Programming_0115.jpg
	RAPL_Programming_0116.jpg
	RAPL_Programming_0117.jpg
	RAPL_Programming_0118.jpg
	RAPL_Programming_0119.jpg
	RAPL_Programming_0120.jpg
	RAPL_Programming_0121.jpg
	RAPL_Programming_0122.jpg
	RAPL_Programming_0123.jpg
	RAPL_Programming_0124.jpg
	RAPL_Programming_0125.jpg
	RAPL_Programming_0126.jpg
	RAPL_Programming_0127.jpg
	RAPL_Programming_0128.jpg
	RAPL_Programming_0129.jpg
	RAPL_Programming_0130.jpg
	RAPL_Programming_0131.jpg
	RAPL_Programming_0132.jpg
	RAPL_Programming_0133.jpg
	RAPL_Programming_0134.jpg
	RAPL_Programming_0135.jpg
	RAPL_Programming_0136.jpg
	RAPL_Programming_0137.jpg
	RAPL_Programming_0138.jpg
	RAPL_Programming_0139.jpg
	RAPL_Programming_0140.jpg
	RAPL_Programming_0141.jpg
	RAPL_Programming_0142.jpg
	RAPL_Programming_0143.jpg
	RAPL_Programming_0144.jpg
	RAPL_Programming_0145.jpg
	RAPL_Programming_0146.jpg
	RAPL_Programming_0147.jpg
	RAPL_Programming_0148.jpg
	RAPL_Programming_0149.jpg
	RAPL_Programming_0150.jpg
	RAPL_Programming_0151.jpg
	RAPL_Programming_0152.jpg
	RAPL_Programming_0153.jpg
	RAPL_Programming_0154.jpg
	RAPL_Programming_0155.jpg
	RAPL_Programming_0156.jpg
	RAPL_Programming_0157.jpg
	RAPL_Programming_0158.jpg
	RAPL_Programming_0159.jpg
	RAPL_Programming_0160.jpg
	RAPL_Programming_0161.jpg
	RAPL_Programming_0162.jpg
	RAPL_Programming_0163.jpg
	RAPL_Programming_0164.jpg
	RAPL_Programming_0165.jpg
	RAPL_Programming_0166.jpg
	RAPL_Programming_0167.jpg
	RAPL_Programming_0168.jpg
	RAPL_Programming_0169.jpg
	RAPL_Programming_0170.jpg
	RAPL_Programming_0171.jpg
	RAPL_Programming_0172.jpg
	RAPL_Programming_0173.jpg
	RAPL_Programming_0174.jpg
	RAPL_Programming_0175.jpg
	RAPL_Programming_0176.jpg
	RAPL_Programming_0177.jpg
	RAPL_Programming_0178.jpg
	RAPL_Programming_0179.jpg
	RAPL_Programming_0180.jpg
	RAPL_Programming_0181.jpg
	RAPL_Programming_0182.jpg
	RAPL_Programming_0183.jpg
	RAPL_Programming_0184.jpg
	RAPL_Programming_0185.jpg
	RAPL_Programming_0186.jpg
	RAPL_Programming_0187.jpg
	RAPL_Programming_0188.jpg
	RAPL_Programming_0189.jpg
	RAPL_Programming_0190.jpg
	RAPL_Programming_0191.jpg
	RAPL_Programming_0192.jpg
	RAPL_Programming_0193.jpg
	RAPL_Programming_0194.jpg
	RAPL_Programming_0195.jpg
	RAPL_Programming_0196.jpg
	RAPL_Programming_0197.jpg
	RAPL_Programming_0198.jpg
	RAPL_Programming_0199.jpg
	RAPL_Programming_0200.jpg
	RAPL_Programming_0201.jpg
	RAPL_Programming_0202.jpg
	RAPL_Programming_0203.jpg
	RAPL_Programming_0204.jpg
	RAPL_Programming_0205.jpg
	Appendix_B_0001.jpg
	Appendix_B_0002.jpg
	Appendix_B_0003.jpg
	Appendix_B_0004.jpg
	Appendix_B_0005.jpg
	Appendix_B_0006.jpg
	Appendix_B_0009.jpg
	Appendix_B_0010.jpg
	Appendix_B_0011.jpg
	Appendix_B_0012.jpg
	Appendix_B_0013.jpg
	Appendix_B_0014.jpg
	Appendix_B_0015.jpg
	Appendix_B_0016.jpg
	Appendix_B_0017.jpg
	Appendix_B_0018.jpg
	Appendix_B_0019.jpg
	Appendix_B_0020.jpg
	Appendix_B_0021.jpg
	Appendix_B_0022.jpg
	Appendix_B_0023.jpg
	Appendix_B_0024.jpg
	Appendix_B_0025.jpg
	Appendix_B_0026.jpg
	Appendix_B_0027.jpg
	Appendix_B_0028.jpg
	Appendix_B_0029.jpg
	Appendix_B_0030.jpg
	Appendix_B_0031.jpg
	Appendix_B_0032.jpg
	Appendix_B_0033.jpg
	Appendix_B_0034.jpg
	Appendix_B_0035.jpg
	Appendix_B_0036.jpg
	Appendix_B_0037.jpg
	Appendix_B_0038.jpg

