APPENDIX B
ADVANCED COMMUNICATION INTERFACE (ACI)

B-1 INTRODUCTION

The ACI permits external computer systems to communicate with one or more
robot controllers on a single RS232 1link,

In its basic configuration, this protocol is used to transfer raw data either
to or from the master device. The protocol allows any chunk of 8086 memory to
be the object of the communication in a segmented addressing technique.

The protocol permits error checking and automatic transmission retries in
order to establish a communication link.

B-2 FUNCTIONAL DESCRIPTION

The ACI is a master/slave protocol. All robot controllers are configured as
slaves in the network. Any external compter would then have to be a master.
Only a master can establish a communication. All the communication initiative
must be taken by the master unit.

B-3 MASTER PROTOCOL

The master device must establish a communication link by specifying a slave
device number as a target. It must then confirm to the target that it is
indeed requesting a communication. After the link has been established, the
master must then provide the slave with the information describing the data
transfer that is about to take place. After all of the particulars concerning
the communication has been transferred, the actual data is then sent. The data
is transferred in packages of 128 bytes. Each 'block' of data contains its own
start/stop characters and a checksum test byte to validate the data after
transfer. Finally, it is up to the master to close the communication link with
an EOT character.

A communication consists of four separate blocks. They are described in detail
in the following sections.




B-4 ENQUIRY SEQUENCE
The master issues a simple three byte code to the serial line. This code is;
'R' , slave ID + 20h , ENQ

The master must then follow this sequence with two character times of no
transmission. This will ensure that the slave has indeed read a valid enquiry
sequence, and not some random chunk of another communication. When the slave
has interpreted a correct enquiry, it will issue an appropriate response;

'R' , slave ID + 20h , ACK

When the master reads this response it has established the communication link
to the target device.

The slave id number is any number between O and 7F hexadecimal. Using the ACI
monitor command @@RN, the programmer can.configure each robot controller with
an appropriate slave id number.

Adding a value of 20 hex to the slave number provides security that the second
byte of this string does not resemble a control code in any way. This way, the
slave device will be able to distinguish an enquiry sequence and can establish
communications quickly.

The master should attempt to contact the slave only a limited number of times
before abandonning the communication. A failure to establish the commun-
ications with the slave after three attempts normally indicates a failure in
the link. Either the baud rates are not set correctly at either end, or a
physical problem exists with the interface wiring.

A delay of 2 character times should be included in the transmission of the
enquiry sequence., This delay is placed between the second and third characters
of the enquiry sequence. This time delay ensures that a three byte string from
a data block cannot be misconstrued as an enquiry sequence. The master control
must ensure that this time delay exists, or proper ACI operation cannot be
guaranteed. :

B-2



B—5 HEADER SEQUENCE

The header block consists of a description of the data transfer that will take
place. The header block is broken down into the following byte description;

1 SOH Start of header character

2 SLAVE ID + 20h Slave identification number

3 MASTER ID + 20h master identification number

A READ/WRITE data read or write selection

5 MEMORY TYPE memory access type (see special codes)
6 NUMBER OF FULL BLOCKS number of full blocks transferred

7 NUMBER OF BYTES IN LAST BLOCK number of byte in last data block

8 MEMORY OFFSET LOW target memory starting address

9 MEMORY OFFSET HI

10 MEMORY SEGMENT LO
11 MEMORY SEGMENT HI
12 ~ETX end of text character

13 LRC longitudinal redundancy check
Table B-1

A11 data values are expressed in hexadecimal notation.
The slave ID number is the same that appears in the enquiry sequence.
The Master ID number must be 01 hexadecimal.

The Read/Write byte identifies what type of operation is to be executed. A
write operation will transfer data from the slave device to the master. The
read operation is the opposite. It transfers data from the master to the
slave. The following codes are used:

READ O0lh
WRITE 00h

The memory access type specifier identifies specific areas of memory that the
data transfer can take place in. This eases the burden of programming on the
programmer in many cases.

The elementary code 'OOh' is the general purpose memory access code. This code
eneabled the programmer to read or write any byte in the 8086 memory space.
This makes the command a very powerful and also a potentially hazardous tool
to work with, CRS technical staff should be consulted when this command is
used.

A list of the special codes available appears in a later section.

The next two byte in the header identify the amount of data to be transferred.
This information is considered as the number of full data blocks to be
transferred, and the number of bytes which remain in the last data block. The
last data block cannot have 0 bytes in it. A full block contains 128 bytes of
data, If the number of bytes to be transferred is an exact multiple of 128,
then the 1ast block will contain 128 bytes (80 hex). The logic to determine
the number of blocks and the number of bytes in the last block is as follows;

B-3




let N be the total number of bytes to be transferred,
let B be the number of full blocks to be transferred,
let n be the number of bytes in the last block;

B N/ 128
n =N mod 128 ; (ie. the remainder of the division N/128)
if n = O then do
n 128
B B-1
endif

The memory address identified the starting address of the data transfer
operation. It defines (in Intel segment/offset format) where in the robot
memory the data will be transferred to or from during this operation.

Header Transfer Error Detection

The LRC byte is the longitudinal redundancy check character . It is the sum of
bytes 2 through 11 inclusive of the header block. The slave device sums the
values of all received characters and will accept the header block only if it
reads an LRC that is the same as its own computed value. If the LRC's do not
match, then the header block is not accepted, and the slave will issue a NAK
character in response so that the master control will know to re-try the
header block transfer. The master can only have three re-try attempts before
the slave device issues an error, and aborts the communication cycle. If the
header block is accpted, the slave device will issue an ACK character as a
response. The slave also expects the correct control codes SOH and ETX during
the transmission, and any deviation from this pattern will cause an error, and
the communication will be aborted. Timeout checks are made between the end of
the enquiry sequence, and the accpetance of the SOH character, and also the
length of time reuqired between sending an SOH and ETX character.

B-4




B-6 DATA BLOCK TRANSMISSION SEQUENCE

The data block transfer sequence is determined by the format specified in the
header block.

In a data write command, the slave will begin to write the specified data
blocks quickly after it issues an ACK in response to receiving the header
block. It expects ACK characters from the master after each block is transmit-
ted. Receiving a NAK will provoke a retry of the previous block. After the
last block is sent and acknowledged, the slave will issue an EOT. It expects
to receive a final EOT from the master, and then will close down the communi-
cation, The data blocks are configured in the following manner;

STX + [DATA BYTE #0] + ,....,+ [DATA BYTE 127] + ETB + LRC
for the full data blocks, and

STX + [DATA BYTE #0] + ,....,+ [DATA BYTE #n-1] + ETX + LRC
for the last data block.

The last data block uses an ETX character instead of an ETB character in order
to signal the very end of the transferred data,

The following diagram illustrates the flow of data between the master and
slave devices during a separate read and write cycle,

s[E S E[L n ] [E
Master R[N 0 |HEADER| T|R c cl lo
D|Q H x|c x| k| [T

s[a AlS E[L] [s E[L] [E]

Slave: RlI]C c|t|pata#1|T|R| |T|paTA#alTIR] O
D|K k|x|BLock |B|c| |x|BLock |xlc| |T

Similarly, in a read command, the slave will expect blocks of data after the
header is aknowledged. It will issue a NAK if it detects an error in
transmission. The master will issue an EOT after the last data block is read
and acknowledged.

S|E S E|L} |S E{L| |S EiL}] |E
Master: RIIIN O|HEADER|T|R| |T|DATA#1|T|R{ |T |[DATA#nlTIR| |O
D|Q H X|Cl |X BIC}] X XiCl T
F pres— fre—
S|A A A A
Slave: RII|C G C C
DK jﬂ K K

B-5




Data Transfer Error Detection

As in the header block transfer, the LRC byte is the sum of all data bytes in
the block. Control codes STX, ETX or ETB are not included in the summation. An
erroneous LRC check will cause the receiving end to issue a NAK character,
which will force a re-try of the entire block. Only three re-tries are
permitted, whereupon the recieving end should issue an EOT and abort the
sequence, Timeout checks are made for reception of an STX after a complete
header transfer, or a complete previous data block transfer, and also btween
accpeting the opening STX of a data block transfer, and reading the ETX or ETB
character. Once a data block has been accepted by the ACI in a read operation,
the data block is transferred to the target memory address.

B-7 EOT SEQUENCE

The EOT is the final sequence, and is shown in the timing charts above. In the
communication, the master ALWAYS has the last word, and the master ALWAYS has
the ability to abort the communication. The slave will never knowingly abort
the communication once it is started.

B-8 ERROR CHECKING AND RECOVERY

The ACI can handle a range of different communication errors. The two broad
classifications of errors are transmission inaccuracies, and character time
outs. Character time outs are used when a pending communication cycle has been
interrupted by an unforgivable time delay. After a time out condition, the
slave ACI issues an EOT then resets for another cycle. When a character is
transmitted incorrectly, two things may happen. First, if it results in a
checksum error, the data block is retried. This process continues for a pro-
grammed number of retries. If still no luck is encountered, then the slave
executes a complete cycle reset, ready for the next communication attempt. If
a control character is mis-read because of a transmission error, then the
cycle is aborted immediately, and the ACI is reset. A timeout error causes an
immediate reset of the ACI. '

B-6




Error
Number

1
2

10

11

Error Description, Cause, and recovery

Not used

No SOH character found to lead off the header sequence. The SOH
character must be the first character of the header. Any other
character will cause the ACI to terminate, and the commun-
ication cycle will be ended. The ACI will release an EOT char-
acter.

The ACI encountered a software error when reading in the header
block. This is an internal software failure. Contact your CRS
Plus representative. The ACI will be reset after this error.

A header retry failure was encountered. This means that the ACI
tried four times to obtain the header, and was unable to do so
due to repeated LRC failures. Usually, this is a sign of a bad
interface wiring, or incorrect master control software. If you
are using CRS Plus interface software for your host computer,
contact your CRS Plus representative.

No ETX, or ETB was read at the end of a data block transfer,
Remeber that the last data block must have ended with an ETX
character., All other data blocks end with an ETB character. The
ACI will immediately reset after detecting this error.

Not used
Not used

Data block read retry failure. The ACI terminated due to rep-
eated LRC check failures when reading a data block from the
Master.

Character timeout. The ACI expected a character, and did not
receive one in the allotted time. The ACI will be reset. Check
that the Master control did not hang up part way through a
transmission, or that the correct number of characters were
sent.

The ACI read a character other than an STX at the Btart of a
data block. The ACI will be reset. i

Data block write retry failure. The ACI was unable to deliver a
data block to the Master without getting a NAK responce four
consecutive times

Table B - 2 ACI Error Codes




Error
Number

12

13

14

15

16

17

18

19

20

B-8

Error Description, Cause, and recovery

A character other than an ACK or NAK was read in response to a
data block write. This error can occur on a spurious noise
injection into the line, but is a rare error type. If this
error persists, then the Master could be responding with an
incorrect code. Contact your CRS Plus representative. The ACI
will be reset.

Timeout error on transmission of a character. The ACI was not
able to transmit a character in the allotted time. This timeout
would have been caused by a failure in the DART chip (see
hardware description) to present a transmit ready signal. The
ACI will be reset after this error. Contact CRS Plus if the
problem persists.

Bad target Id match in header block. The header block must
contain the same slave device number that the enquiry sequence
had, or this error will be generated. The ACI will be reset.

Not used

Bad character received when EOT expected. The ACI expects the
Master to close all communication with an EOT character. This
error is generated if this does not happen, and another char-
acter is received instead. Since the communication is already
finished by this point anyway, the ACI will be reset.

A character other than an ETX was received at the end of a
header block. This character must be delivered to the ACI
immediately after the LRC character is sent.

Timeout on receiving the header SOH character. The Master
control, after establishing communications with the slave
during the enquiry sequence, has a limited time to send the
following header block. See the table of timeout values. A
timeout error always causes the ACI to reset.

Timeout of recieving the header ETX character. This timeout
measures the time it takes to complete the transmission of the
header block. Once the SOH has been received, the Master has
only a limited time to transmit the whole header block. The ACI
will be reset after this error.

Timeout on receiving the data block STX character. When the
header block has been completed, and the Master has programmed
a read cycle for the slave, the Master must deliver the first
data block within a time period. Failing to do so will reset
the ACI.

Table B - 2 ACI Error Codes




Error
Number

21

22

23

24

25
26

27

28

Error Description, Cause, and recovery

Timeout on data block ETB/ETX character. Similar to error #19,
the master has only a limited time to send the entire data
block before this error occurs. The ACI will be reset.

Timeout on receiving a data block ACK/NAK character. After the
slave has transmitted the data block to the Master, the Master
must respond with the ACK or NAK character within the preset
time limit, or the ACI will reset automatically.

Timeout on receiving the final EOT. The slave expects the
Master to close thecommunication within a specified time limit.
Failure to do so will set this error, and the ACI will be
reset.

Unexpected EOT character. This error will be set if any
expected control character turns out to be an EQT. The Master
can close off the communication prematurely by sending an EOT
instead of the accepted control code at any time in the
sequence,

Not used

Bad special read code. The read code provided in the header is
not supported.

Bad special write code. The write code provided in the header
is not supported.

Bad special memory access code. The memory access code provided
in the header is not supported.

Table B - 2 ACI Error Codes (cont'd)




B-9 ABORTING A COMMUNICATION CYCLE

Sending an EOT at any time that a normal control character is to be
issued will be interpreted by the slave as a signal to abort the commun-
ication. This function may be required at times were an abrupt termination of
the link is essential, for instance when attempting to quickly service another
slave.

B-10 INTERFACE REQUIREMENTS

The ACI has been tested at baud rates up to and inculding 2400 baud. Faster
baud rates may be possible, but are not recommended. Handshaking should be
disabled, and parity should be turned off. A data byte size of 8 bits is
required, with two stop bits. See the RAPL CONFIG command for setting up
serial channel 1 to service the ACI link.

B-11 PREPARING THE ROBOT CONTROLLER FOR A COMMUNICATION CYCLE

The robot controller must be set up to accept the communication. This commun-
ication is executed through serial port 1. When this is active, then any robot
references to device #1 will not respond, since this protocol takes priority
when it is activated.

B-10




B-12 ACI MONITOR COMMANDS

The programmer can access the ACI software through a set of commands available
at the terminal. These commands will allow the programmer to monitor any
communications to and from the controller, The programmer can also enable or
disable the ACI interface.

The commands are only available through the monitor level.

@@RI:

To force an initialization of the ACI interface. Any communication in
sequence will be aborted. This may cause a loss of synchronization bet-
ween the slave unit and the master control.

@GRN:
To select a slave device number for the robot controller. This value can
be any value between 1 and 127. The value of O is not permitted.

@@RS:

Display the current status of the ACI software. The number of retries,
the number of communication failures and the number of successful cycles
will be displayed in a continuous fashion on the terminal device. This is
a useful debugging tool.

@@RE:

Enable the ACI software. This will dedicate the serial port #1 to the ACI
software. No other normal serial input will be allowed on this channel.
Output is still allowed, but it will cause problems if an ACI cycle is
concurrently running.

@A@RD:
The ACI interface will be disabled. The serial port #1 will now be
considered as any other programmable serial channel.

@@RH:
The last header which was read in will be displayed. This will indicate
the type of the last (or current) conversation.

B-11



Character Hex Decimal

Code Code
STX 02 02
ETX 03 03
ETB 17 23
EOT 04 04
SOH 01 01
ENQ 05 05
ACK 06 06
NAK 15 21

Table B-3 ASCII control codes for the ACI

B-12




Event Timeout (in character times ++)

Enquiry timeout 300
Timeout used to test for characters
received during the enquiry
sequence,
SOH timeout 300
Time permitted between the recog-
nition of a successful enquiry
sequence, and the acceptance of the
header SOH character
Header ETX timeout 300
Time permitted between acceptance
of the header SOH character, and
the detection of the header ETX
character.,
ACK for data block 300
‘ Time permitted for waiting for an
‘ ACK or NAK from the master after
the transmission of a data block
} from the slave. :
STX data block timeout 300
Time permitted for waiting for the
data block STX from the master
after a successful acknowledgment
of either the header block, or the
the previous data block.
Data block ETX/ETB timeout 300
Timeout permitted for the complete
data block, from acceptance of the
STX to the recpetion of either the
ETB or ETX character.
Final EOT timeout 300
Time permitted between the acknow-
ledgement of the last data block
read and the final EOT response, or
the last data block write acknow-
ledge from the master, and its
i response to the slaves final EOT.
|
|
|

Table B-4 ACI timeout values

++ Timeouts are given in character times so that the baud rate does
| not affect the timeout strategy.

B-13




B-13 SPECIAL ACI ACCESS CODES

This chapter deals with the special functions available with the ACI version 2
software from CRS Plus. The extra functions located here explain how the
system porgrammer can interface to the robot control to obtain information
that was previously very difficult to obtain.

The functions explained here will permit the programmer to access robot I/0
ports, as well as position and command registers.

The special codes are separated into special write codes (codes 40h to 4Fh)
and special read codes (20h to 2Fh). These codes are placed in the access type
specifier in the header block.

1

Special Write Codes

With the exception for code 47h, it is not necessary to specify an address
with special write commands. It is important, however to specify the amount of
data to be transferred. This is important in all cases.

40h

This special write command will return the most relevant addresses within
the robot software. The addresses which are returned will enable the master
control to access user memory directly, thereby permitting program upload
and downloading. The use of this function will provide master control
software which can operate independently from the robot software version.
The buffer of information which is returned is in the form of memory
pointers ( 4 byte, segment, offset format) . The lowest byte contains the
least significant byte of the pointer. The addresses included in the buffer
of information point to the items in the robot memory as described in table
F-8, in Appendix F of the technical manual. The buffer of pointer infor-
mation is the same as that used by the RAPL-BIOS facility, and is not
reproduced here. With this special code, no address field need be
specified, but since the pointer ‘information consists of more than one full
block, any portion of the data can be returned for use, starting with the
first element,

B-14




41h
Send robot error codes. This special write code will send four bytes to the
master indicating the health of the robot control. The buffer of four bytes
includes, in this order:

1 AlarmStatus 00 indicates no alarmcondition
01 indicates that an alarm exists
RAPL error code NN See the RAPL error manual
ACI error 00 No ACI error in effect
01 ACI error is in effect
ACI error code NN See the ACI error list. This
is the last ACI error detected.

=~ W

42h
This command will force a write of the user input port images as captured
by the RAPL operating system. The memory address in the header block need
not be initialized, but the byte count must be specified. That is, it
should contain a value of 8. See the technical description of the robot I/0
space for a description of the inputs that can be read.

43h
This command will. force a write of the user output port images as created
by the RAPL operating system. The memory address in the header block need
not be initialized, but the byte count must be specified. That is, it
should contain a value of 8. See the technical description of the robot I/0
space for a description of the inputs that can be read.

44h
This command will cause a write to the host computer of the position
command data in the robot controller. The position command data exists as
an array of 8 double integer values in memory. No address need be specified

in the header block, but a data length of 32 bytes or less should be
specified.

45h
This command will cause a write to the host computer of the actual position
data in the robot controller. The actual position data exists as an array
of 8 double integer values in memory. No address need be specified in the
header block, but a data length of 32 bytes or less should be specified.

46h
This command will cause a write to the host computer of the end point of
path data in the robot controller. The end point position data exists as an
array of 8 double integer values in memory. No address need be specified in

the header block, but a data length of 32 bytes or less should be spec-
ified.

R
3



This command will transfer 8086 I/0 input port values to the host computer.
The I/0 address is specified by the offset portion of the data address
field in the header block. The segment field is not used. The number of
bytes specified will result in a read of all ports from the specified
address. This is a special command in that only one partial block of data
can be transferred. The number of bytes in the last block will then
correspond to the number of I/0 ports to be scanned.

Special Read Codes

Special read codes allow the programmer to load specific areas of the robot
memory with data.

20h
This special read command will load up to 128 bytes into the active command
input buffer. In this way, and external computer can simulate a data term-
inal entry. Only text characters will provide a valid response. Any attempt
to enter control codes as you would at the interactive level with the
terminal will produce a RAPL error. No echoing will be noticed, since all
aormal echoes will go to the terminal,

-

-~ :—u

B-16




Reprint of Technical Manual, Appendix G




APPENDIX G - RAFL CONTROL PARAMETER LIST

G-1 INTMHON .......................... 2
G—ZNGI‘EFORRAPLSOOANDLATERVERSIODB .............. 2
G—3RAPLPARAMEI‘ERPOINI’ERLIST s e e 2
G—4 RAPL USER MEMORY ALLOCATION ................... 10
Progrom Biffer - fimee sfecoro s WL L VA WO AR L
Progyam ‘Table: . oo s ova oo o o o PNELHE, LU ERNCBINERSES BB 10
Iocationy Table .- . .5\ ieiw 'y o Wl auii O T s RHgELE 1%
Vardable Table . . . . L-oiwru oo TR LERBLT JoBEE L ST 11
Trigaér Table © . i . o o oo U SRS IN SRR T R TR 12
Continuous Path Memory Allocation . . . . . . . . O e e SRR 12

SRS—M1A Technical Manual - Page G-1




G-1 INTRODOCTION

RAPL, software provides a list of pointers so that the user can access systenm
parameters in RAPL using the ACI interface. See Appendix B for a complete
description of the ACI interface. By providing this list of pointers, the
programmer can be isolated from version changes in the RAPL software that could
result in parameter address changes. This parameter list is accessible through
special ACI write command 40 hex. A pointer to this list of pointers is also
available at interrupt vector 60 decimal. The list of items is as follows.

Data found at the pointers indicated by this list are identified by type in the
left hand margin: B for bytes, I for integers W for words, DI for long integers,
R for real numbers, P. for pointers and DW for long words comprise the data type
specification. Arrays of types are shown with the appropriate array length.
Remember, the items in the list are pointers. Some of these may point to the
address of pointers (P type data) in the robot memory which then finally point
to the data in question. A pointer to this list of pointers resides in interrupt
vector 60 decimal.

G-2 NOTE FOR RAPL 5.00 AND LATER VERSIONS

Some system parameters have been replaced in this version. These obsolete
parameters are indicated below. When the pointer list is read in the robot
memory, these entries will appear as zero (NULL) pointers.

G-3 RAPL, PARAMETER POINTER LIST

Data |[|Offset |Item Description (This pointer points to..)

Type |in List

P 0] the work space pointer - Pointer to the RAPL user space. Also
the pointer to the RAPL program buffer. PROG_BUFF_PTR

W 1 the Program buffer size - the word register which tells us how
many bytes of program storage has been allocated. PROG_BUFF_SIZE

W 2 the Program buffer count register - the word register which
tells us how many bytes of program storage has been used.
PROG_BUFF_CNT

P 3 the Program table pointer - the Pointer to the location of the
program table in memory. PROG_TABLE_PTR

W 4 the program table size - the Word register which tells us how
long the program table. is in number of total program entry
locations. PROG_TABLE_SIZE

P 5 the Variable table pointer - the Pointer to the variable table.
VAR_TABLE_PTR

W 6 the Variable table size. Word register which tells us how big
the variable table is in the total number of entries.
VAR_TABLE_SIZE

P T the Location table pointer. Pointer to the location table.
LOC_TABLE_PTR

W 8 the Location table size. Word register which tells us how long

the location table is in the total number of table entries.

LOC_TABLE_SIZE
Table G-1

SRS—-M1A Technical Manual - Page G-2




Data |Offset |Item Description (This pointer points to..)
Type {in List

DIx8 9 the Calibration register pointer. Pointer to an array of 8
double integers which contain. the.robot..calibration. position.
CALTBRATION(8)

B 10 the Calibrateposition: checksum byte wThe byte additlon of all
valid calibration data for the 5 robot axes only.
CALITBRATE_CHECXSUM

B 1ltherobotisca11brat.ed dmeckbvbewhlchlssetaftera

.+ calibration:procedure has been.run. ROBOT_IS_CALIBRATED
Bx8 - 12 ‘the+Axis+*Begin¢Motion’~array.-An-array:of 8 bytes which signals
" each-axisrcommand-generator to start a new motion. It is reset
by the command generator when the path starts. BEGIN_MOTION
%k NOTE: DISCONTINUED FOR RAPL VERSION 5.00 AND LATER.

Bx8 13 the Axis "Done” array. An array  of: 8-bytes.which signals when
each of the axes has finished a motion. Set by the command
generator. DONE *rk NOTE: DIS(INI'INUED FOR RAPL VERSION 5.00

, AND LATER.

DI*8 14 the Actual Position array. An array of 8 double integers which
are the absolute position registers of the robot feedback
sub—-system. Every 4 milliseconds, these values are updated with
the incremental positions determined by the motor encoders.
POSITION ;

DI*8 15 the Position Command array. An array of 8 double integers which
represent the absolute position command to the robot motors. Any
path generation algorithm can create these values, and the servo
loop function will compare these registers to the actual
position registers and will create the appropriate commands.
POSITION_COMMAND

DI*8 16 the End point registers. An array of 8 double integers which
define the end point of the current motion command in motor
coordinates. If the robot is not moving, then these values equal
the position command registers. END_POINT(8)

B 17 the "Move type’ parameter. This flag is set by the path
generation selection. MOVE_TYPE The value can be:

1 - For joint interpoclated moves,
2 - reserved -
4 - manual mode.
- 5 - continuous path mode ( and straight line moves)

B 18 the Number of active axes. Byte value with value from 1 to 8.
NMBER_OF_AXES

Bx8 19 the Limp command array. Array of 8 bytes which selects the limp
mode for each motor. In the limp mode, the servo loop function
automatically overrides the command generation function, and
will force the position command to be the same as the actual
position registers. This supplies the motors with 0 voltage.
LIMP(8) ik NOTE: DISCONTINUED FOR RAPL. VERSION 5.00 AND
LATER.

Table G-1

SRS-M1A Technical Manual - Page G-3




Data

Offset
in List

Item Description (This pointer points to..)

Rx8

Wk8

Rx6

21

23

24

25

26
27

the Real time ticker. A double word quantity that is incremented
each I/0 update cycle (approximately 30.milliseconds). The value
of this counter is zeroced only at a teach start situation, so
it can accurately keep track of the total time that the
controller has been switched on. REAL_TIME

the Hold request flag byte. Abyte\}alue that, when set to 1,
will stop a RAPL path generation, and will cause allDONE flags

toregister a complete path..The end point registers-of the path -

will be updated to the commanded position of the axes when all

axes have been brought to a stop. In joint interpolated mode,

the axes are decelerated to a stop. In straight line, the axes
are stopped immediately. The hold request is reset when a new
move is commanded. HOLD_REQUEST

the Axis Lock out array. Pointer to an array of 8 bytes which
will selectively lockout individual motors from any subsequent
motion commands. LOCROUT(8) ok NOTE: DISCONTINUED FOR RAPL
VERSION 5.00 AND LATER.

the Millisecond counter. A word quantity which is used to derive
a millisecond delay from the system I/O clock update. Used to
time the DELAY function in RAPL. MILLISECOND_COUNTER

the Acceleration array. An array of 8 reals which determine the
acceleration of each motor during a joint interpolated motion.
ACCELERATION(8)

the Transmission Ratio array. An array of 8 real numbers which
equates the measurement units of the joint or motor with the
corresponding motor pulse resolution. It is dangerous to change
the first five values in this array, as it will change the robot
transformation. The @XRATIO command changes the other three.
the Alarm Number. A byte value that contains the last RAPL error
code to be generated. ALARM NUMBER

the Rotary Resolution array. An array of 8 integers which spec-
ifies the motor encoder resolution in encoder lmes~ per motor
revolution. ROTARY RESOLUTION(8)

the Tool Transform - an array of 6 réal numbers that specify the
current tool transform value. TOOL_TRANSFORM

Table G-1 (Ceont'd)

SRS—M1A Technical Manual - Page G-4

o




Data |Offset |Item Description (This pointer points to..)
Type |in List
Struct 29 the Input block structure - the RAPL character input buffer

R*64

Rx64

Bx3

Bx9

area. 'Ihe input buffers are specif:.ed in the following format:
" input_block(3) Btnx:tzn'e (
L buffsize. byte :
- in_ptr byte,
out_ptr byte,
buffer(128) byte)
The .first twostructure records keep track of data input from
<« mthettwo:.-serialsports: “The third is .used as an intermediate

' buffer:when-executing:from a program. "buffsize’ determines the

size of the input ring buffer, up to 128 bytes. “in_ptr’ points
to the 'next array element available for serial input, and

‘out_ptr” marks the next character that can be released from the

30

31

32

33

34

35

36

buffer, to be used by RAPL.

the Alarm status. A boolean byte value which specifies whether
or not a RAPL error has occurred. The byte is reset when a new
command .is attempted. ALARM_STATUS

the Motor to Joint transform matrix. An 8 by 8 real matrix which
transforms the motor coordinates into the joint coordinates.
Since the robot structure is not mechanically de-coupled,
several motors may have to move in order to provide a single
Joint motion. In a matrix equation, {j} = [J]{m}, where {j} is
the joint row matrix, and {m} is the joint motor matrix.

Joint to motor transformation matrix. An 8 by 8 real matrix
which determines motor coordinates from joint coordinates. It
is the matrix inverse of item #31 above. In a matrix equation,
{m} = [JJ]1{j}, where {j} is the joint row matrix, and {m} is
the joint motor matrix. The JJ matrix is the inverse of the J
matrix identified by item #31.

the Work space size. A word value which specifies the total user
area available. The user area can be represented as an array in
PL/m-86 as follows.

~.(User_Area based work_space_ptr)(work_space_size) byte;

the Extra axes calibrate checksums. A 3 byte array which
contains the checksums for the callbrate position of each extra
axis. XCALIBRATE_CHECKSUMS(3)

the Reserved work space size. This word contains the number of
bytes which are to be set aside from the routine RAPL user
memory. see section F-8 for a description of the RAPL user
space. This memory area can then be used for 8086 machine code
programs that can be loaded in from the terminal, or through the
ACI. This area is also used for -~ CIPATH - data.
RESERVED_WORK_SPACE_SIZE

the Digital Input Image buffer. A buffer of 72 bits which map
the robot input space. See figure F-5. DIGITAL_INPUT

Table G-1 (Cont’d)

SRS-M1A Technical Manual - Page G-5



Item Description (This pointer points to..)

the Digital Output Image buffer. A buffer of 56 bits which map
the robot output space. Since .the. robot digital output ports
cannot be read, then it is up to the software to remember what
was issued to the output port before updating single bits of
it; sothattheremalnmgbltgcanbeleftastheywere See
figure F-4. DIGITAL_OUTPUT

the Default character 1/0 device. The default character dev1ce
is either 0 or 1 or 2. 0 and 1 represent the,:two serial
channels. 2 represents a user program which is belng used for
character input. The default device is 2 only when:using the
controller without a terminal in the AUTOSTART mode. When a
program is executing, the default device represents the serial
channel that is to be used for any user input and output.
DEFAULT_DEVICE

the Device Select. Identifies the current device being used for
character input and output. DEVICE_SELECT

the Syntax Help function. This byte boolean value determines
whether or not the Syntax building function will be activated

" or not. HELP_ON

Data |Offset
Type |in List
BX7 37
B 38
B 39
B 40
Bx8 41
B 42
B 43
B 44
|
1
Bx128 45
B 46
|
B 47
W 48

the teach name template. An array of 8 bytes which contain the
current teach name. Only the first 5 characters are used when
the final point name is formulated. The rest is padded with
underscore characters. TEACH_NAME_TEMPLATE

the teach name count. The byte value which is encoded into the
final three character positions of the teach name when the point
is finally stored. TEACH_ NAME_COUNT

the Program pause flag. When a program is executing, setting
this byte to a 1" value will stop the program after the next
line is decoded. PROGRAM_PAUSE

the homing complete flag. This flag is set when the robot has
been homed after a power up. Do not confuse this with item #11,
which indicates whether or not the robot has been calibrated.
This flag must be set in order that all move functions that
access points will work. ROBOT IS _HOMED

the string buffer. The string buffer-is a buffer 128 bytes long,
that is divided evenly into 4 32 byte areas. These correspond
to the 4 string variables that are allowed by RAPL version 3.50
or later. STRING_BUFFER

the loss of feedback/collision detection byte. ThlS byte
indicates the status of this function. A boolean true means that
the function is turmed on. LOFB_CHECK

the flag indicating whether or not a program is completed or
not. PROGRAM_COMPLETED

the word counter that indicates the number of repetitions that
the current program has completed. PROGRAM_REPETITIONS

Table G-1 (Cont’'d)

SRS-M1A Technical Manual - Page G-6




Data |Offset |Item Description (This pointer points to..)

Type |in List
W 49 the word register which indicates the number of repetitions of
the program that have been requested. PROGRAM_REPEAT LIMIT
B 50 the flag which indicates that an infinite looping of the current

program has been requested. PROGRAM_LOOP_FOREVER

Rx250 51 the 1000 byte buffer which contains the data for the current
straight line move. Also used to contain the path parameters
for a CPATH. STRAIGHT LINE BUFFER

B 52 the flag which indicates whether or not the trigger table has
“been ‘enabled:"-“TRIGGER .TABLE - FIW g ol

B 53 the :flag which: mdicates whether or not editing is. permitted.
EDIT_ENABLE

I 54 integer containing the global robot speed value ROBOT_VELOCITY

RX6 55 the first element of the robot base shift registers. The shift
registers are arranged in this order: _ :
X _BASE_SHTFT, Y_BASE_SHIET, Z_BASE_SE[IET O_BASE_SHIFT
CO0S_O_BASE_SHIFT, SIN_O_BASE_ SHIFT

B 56 the flag which indicates whether or not a continuous path has
been interrupted with the HALT command, typically in an ONSIG
situation. CPATH_INTERRUPTED ;

DI*8 57 the 8 double integer registers used to save the path position
were the robot was interrupted from its continuous path.
HOLD_POSTITION

58  the register which describes the configuration of the robot arm
for all coordinate transformations. CONFIG

59 the pointer to the knots array for the current CPATH or straight
line move. P_KNOTS

60 the pointer to the time array for the current CPATH or straight
line move. P_TIME

61 the pointer to the acceleration array for the current CPATH or
straight line move. P_ACCEL

62 the pointer to the temporary array for the current CPATH or
straight line move. P_TEMP

63 the pointer to the knots array for the current CTPATH or
straight line move. TP_P_ENOTS

64 the pointer to the time array for the current CPATH or straight
line move. TP_P_TIME

65 the pointer to the acceleration array for the current CPATH or
straight line move. TP_P_ACCEL

66 the pointer to the temporary array for the current CPATH or
straight line move. TP_P_TEMP

67 the TIMER which increments as the continuous path proceeds. This
timer registers is compared to the knot timer array in order to
determine which path segment the path is currently in.

= SO ¢ BT @ S o MO o SRS + Sl o e o B o (A = «

Table G-1 (Cont’d)

SRS—M1A Technical Manual - Page G-7




Bx8 75
B 76
B8 77
B 78
B 79
B 80
B 81
B 82
B 83
B 84
B 85
B 86
B 87
B 88

Data |0ffset |Item Description (This pointer points to..)
Type |in List
W 68 the PATH SEG which determines which path segment the path is
currently in. '
W 69 the number of knots that are in the CTPATH. TP_N_ENOTS
W 70 the number of axes which are included in the current CTPATH.
TP_N_AXES
W 71  the number of knots that are in the last CPATH. N_EKNOTS ‘
W 72  the number of axes that are included in the last CPATH. N_AXES
B 13 the flag which indicates Whether a CI'PA‘IH is loaded:-and ready -
to go. PATH_LOADED
W T4 the register which determines the maximum number of-knots which -

will be used in the calculation of all straight line moves.

8 character buffer whlch :Ldentlfles t.he flrst location in a
CTPATH, used to send the robot under joint interpolated mode to
the start of the path. CPATH_START_NAME

Enable NULL positioning mode. In this mode, the finish criterion

is not complete until each axis has moved to within a preset

tolerance band of the end point. NULL_ON

The tolerance band for NULL positioning is set for each axis.
Byte wvalues allow for 127 pulse positioning error.
NULL_TOLERANCE

Enable the trigger events during the next CPATH, CTPATH.
TRIGGER_ENABLE

Enable outputs to be issued. Disabling the outputs is often
useful when debugging a program without wanting to switch
external devices. OUTPUT_ENABLE

Enables the ONSIG condition without changing the setup status
of the command. ONSIG_ENABLE

Enable the arm power watchdog. Disabling will mean that the arm
power will be switched off within 16 milliseconds. ARM_ENABLE
Enable the TRACE mode display. TRACE_ENABLE

Enable the FLASH function on the teach pendant LED. FLASH ENABLE
Enable the check for loss of arm power. ARM_POWER_CHECK_ENABLE
Enable the teach mode with the prescribed template name and
count number. TEACH_ENABLE

Enable the manual mode, under the currently active marual mode
type. MANUAL_MODE_ENABLE

Enable the cartesian velocity continuous path control. This flag
will ensure constant cartesian velocity control.
CARTESIAN_VELOCITY_ ENAELE :

Enable the SLEW velocity mode for joint interpolation. This mede
is faster than SPLINE mode, where the velocity chape has a
parabolic characteristic. TRAPEZOIDAL_ VELOCITY_ENABLE

Table G-1 (Cont’'d)

SRS—M1A Technical Manual - Page G-8



Data |Offset |Item Description (This pointer points to..)
Type |in List ‘
B 89 Stop any current motion and put the command generator in a
suspended mode. FEED_HOLD ENARLE
P 90 Pointer to the ava.llable user memory. This 1.8 a pointer to the
reserved space.  MEMORY = = .
W8 91 Array of 8 words which: defines the stams of the controller

axes. This array is organized as a bit array. It replaces the
old byte flag arrays: DONE, BEGIN_MOTION, LIMP, LOCKOUT.
AI[S_EAT[B%e bit allocation of thls word array is shown .

EEDCBA93765£321

0

operating system

calibrated.

5T

progress on the current axis.
NOTE: All unused bits are reserved by the RAPL operating system.
Also, modification of these registers is strictly not recommended,
as they are constantly updated by the RAPL communication software
with the smart axis cards. Use these registers as status indicators

only.

Table G-1 (Cont"d)

AXTIS OK. This bit will be set
to 1 when the axis card is
healthy.

LIMP. bit will be set to "1° when
the axis is under the limp mode.
L LOCKOUT. When this bit is 1, the axis will
‘be excluded from any future move commands.
L AXTS ERROR. When this bit is set, the axis
currently under test has an error condition.
L MOTOR FAULT. When this bit is set, the axis card
has detected a motor fault condition, and this
condition has been recognized by the RAPL

- L HOMED. When this bit is 1, the axis has been homed.
L CAL. When this bit is set to 1, the axis has been

L BEGIN MOTION. When this bit is set, the RAPL command
interpreter has requested a path start. This bit will
be reset when the path does start.

L DONE. When this bit is set to “1°, there is no path in

SRS-M1A Technical Manual - Page G-9




G-4 RAPL USER MEMORY ALIOCATION

Please note that addresses of pointers to items in the robot user memory can be
determined from the pointer list described in Table G-1. All references to “the
table" mean Table G-1.

The RAPL user memory is partitioned into 5 areas. These are listed according to
memory order. User memory is pointed to by the PROG_BUFF_PTR parameter, item #0
in the table. Since this is the bottom of user memory, this pointer is also
referred to as the work_space_ptr parameter. .

The reserved memory area is the first item in the user memory. It can be reserved
for any purpose so that RAPL program, location and data operations cannot affect
it. If the expanded mémory option is installed in the controller, This memory can
be used to store path data generated by the "CTPATH" command. The work_space_ptr
parameter is adjusted to point to the next byte beyond this area. All other RAPL
user memory items are addressed relative to the work_space_ptr parameter.

Program Buffer

The program buffer, which is a contiguous array of bytes is stored next. Each
program is stored immediately after one another. A “$° character separates one
program from. the next. The program buffer is addressed by the work_space_ptr
parameter (#0) since it appears first in memory.

The program table is next. It can best be described by the following 'C°
structure reference:

Program Table
struct p_table

{

char name{8];

int index;

int checksum;

} prog_table_ptr{prog_table_size];

And the pointer to the program table (item #3 in the table) can be calculated to
be: ;

prog_table_ptr = &work_space_ptr[prog buffer_size];
Each entry into the program table takes 12 bytes. The PROG_PTR element defines
the starting point in the program buffer for that particular program. The actual
location of the program is then at:

prog_address = &work_space_ptr[prog_table_ptr[i].index];
The checksum byte is the addition of all the program bytes up to the final “$°

character. The checksum is only a byte length addition, so the upper byte of the
checksum word is undefined and should be set to "0°.

SRS-M1A Technical Manual - Page G-10



Location Table

The location table is next. It can be described by the following "C° structure
reference: e

struct 1_table

{ .

char name[8]; § h)is

float data(8]; . 37 biw = Y2 L(\"w
int checksum; { 2 ’c{a(o

} loc_table_ptr{loc_table_size];

For a precision point, the:location:table would.':v-be described as:
struct 1_table

{

char name[8];

long pp_data(8];

int checksum;

} loc_table_ptr{loc_table_size];

Thus any entry in the location table requires 42 bytes of data: an 8-byte name,
8 real or long integer fields (4 bytes each) and a checksum word. The checksum
is the addition of all the bytes in the particular location. The checksum is only
a byte length addition, so as with the program table, the upper byte of the
checksum word is undefined.

The location table pointer can be calculated to be:

loc_table_ptr = &prog_table_ptr{prog_table_size];

Variable Table

The variable table is stored next. It can best be described by the following C-
structure reference:

struct v_table
{
char name(8];
float data;
int checksum; . '
} var_table_ptr{var_table_size];

An entry in the variable table requires 14 bytes: an 8 byte field for the name,
a 4 byte real value, and the two checksum bytes. As with the program and location
table entries, the checksum is the addition of all the bytes in the particular
location. The checksum is only a byte length addition, so the upper byte of the

checksum word is undefined.
The position of the variable table can be calculated as follows:

var_table_ptr = &loc_table_ptr{loc_table_size]l;

SRSM1A Technical Manual - Page G-11




Trigger Table

The trigger table is an item in the RAPL parameter memory. It is a structure of
8 elements called "triggers"” which define programmed output events which will
occur as the robot arm moves through locations (knots) during a CPATH or a CTPATH
motion. The trigger table saves the location name of the event, as well as the
output number and desired state of the ocutput at the event. If the cutput number
field is a zero, then no trigger event is loaded. A negative trigger number
indicates that the selected ocutput will be triggered to a LOW state. A positive
number will trigger the output to a HI state. Valid output numbers range from'1
to 40. The trigger table can be defined as the following structure:

struct trig table
{
char name(8];
int output_number_and_state;
} trig table(8];

Thus an entry in the trigger table takes 10 bytes: the location name field
consisting of an 8-byte entry and the integer state wvalue. No checksum is
provided as this data is not retained when the robot controller power is removed.

The data in the trigger table is used in execution of the CTPATH or CPATH
commands. As the path data is generated, the trigger table is scanned. If a
location is called for which a valid entry exists in the table, an entry is made
in the path data for that knot.

During execution of the path, RAPL scans two word values at each knot. Each
contains a map of the lower 16 user output line numbers. A "1" in a bit position
in the first word represents an output whose state changes at that knot. The
second word contains the desired state of that output after the change. The
change is made at I/0 scan rates so that the state will change within
approximately 40 milliseconds from the time the commanded position of the robot
reaches the knot.

Continuous Path Memory Allocation

The CTPATH command utilizes the reserved memory to store most of the path
information. The remainder of information is saved in RAPL parameters pointed to
by: TPRAIES, TPNKNOIS, TPPROIS, TPP.TIME, TR P ACCKL, TP P TRMP,
PATH_LOADED. These parameter pointers are shown in Table G-1 (items #63 to #66,
#69 and #70). A more detailed description of these parameters can be found in the
detailed discussion of the CPATH control strategy in the RAPL manual.

The first step in accessing the CPATH data is to determine the pointer to the
reserved memory. For RAPL version 5.00 and later, this item is #90 in the pointer
list. This pointer is not immediately accessible by any item in the pointer list
for RAPL version 4.99 and earlier, but a simple operation can derive it, since
it is accessible by taking the pointer to the workspace (item #0) and by

SRS-M1A Technical Manual - Page G-12




subtracting the reserved work space size (item #35) which would act as a negative
offset from the start of the user memory. The following code extraction, written
in “C,” will do Jjust that;

éhar xreserved_ptr, *work_space_ptr;
int reserved_space_size;
int *tp_n _jnots, *tp_n_axes;

i‘eserved_ptr = &work_space_ptr{-reserved_space_size];

Once the starting address to the data has been determined, the data elements for

continuous path are stored in the following order;

float tp_pknots[n_axes][n_knots]; :
The knots array is located at the start of reserved memory. The knots array
is actually a two dimensional array, bounded by the number of knots and the
number of axes as the two dimensions. The total array size is therefore,
nl = #knots * Haxes * 4, in bytes.

float tp_ptime{n_knots]
The time array is a float array that marks the elapsed path time at each
knot.

float tp_paccelln_axes][n_knots]
The acceleration array contains real numbers marking the acceleration of
each axis at each knot position.

float tp_ptemp(n_knots]
This array is used for temporary storage during the calculation of the path
parameters. It is then used to store the trigger setup information for the
path. When storing the trigger information, the format of the data are two
16 bit word masks for each knot. The lower order word containe the bits
which determine the outputs that are to be controlled at that particular
knot. A 1 bit will indicate that the corresponding output will be
controlled. The higher order word determines the state to which the
designated outputs will be placed. A 0 bit will turn an output on, and a
1 will tum it off.

With this information, all of the pointers can be formulated, as the following
code extraction demonstrates.

float *tp_pknots, *tp_paccel, tp_ptemp;

tp_pknots = reserved_ptr;

tp_ptime = &(tp_prknots{n_knots]l{n_axes]);
tp_paccel = &(tp_ptime[n_knots]);
tp_ptemp = &(tp_paccel{n_knots]l[n_axes]);

SRS—M1A Technical Manual - Page G-13



When it is time to execute a CPATH, using the GOPATH command, the pointer values
and all of the related parameters are loaded into the working registers (items
#236 to #248, #284 and #288) if the path loaded flag indicates that there is path
data available. .

SRS-M1A Technical Manual - Page G-14




ACI Librarv Procedures:

| The following is a list of library routines included in the TURBO PASCAL ACI library. All data
types and global variables requiring definition are also included. A simple example routine
is also included with the listings.

data_transfer (slave_device: byte;
MemType: byte;
MemOfs, MemSeg: integer;
AccessType: char;
bytes: integer );

This routine coordinates a data transfer. It is the basic call made for any transfer of
data using the ACI. Depending on whether a read or write is requested, it calls one of
the following routines: data_read_from_slave or data_out. Each of these two routines call
the Init_comm, header and send_header routines to initiate the communication. All of
these routines call upon the lower level communications procedures listed here.

data_read_from_slave (n_bytes: integer);
Coordinate the transfer of data from slave.

data_out (n_bytes: integer);
Coordinate the transfer of data to the slave.
Init_comm (slave_no: byte);
Initiate communications with a slave. Calls the ENQout procedure.
ENQout (slave_no: byte);
Send an enquiry string.
header (slave_no, MemType: byte;
MemOfs, MemSeg: integer;
RorW: char;

message_length: integer); 1
Generate the Header Block in preparation for transmission.
send_header (slave, Memtype: byte;
MemOfs, MemSeg: integer;
RW: char;
data_length: integer);

Send the Header Block. Calls the previous routine.

error_state (err: byte);
Set error status.

turn_on_interrupt;
Turn on the serial interrupt state.

turn_off_interrupt:
Turn off the serial interrupt state.




clean_aux:
Clean the input buffer and support.

send_aux (cha: char);
Send a character to the auxiliary port.

int_srv;
Service the serial on an interrupt basis.

init_8250 (rate: integer);
Set the baud rate for the RS-232 (COM1 device).

string_out (str: txt);
Send a s\tring to the aux device.

N_string_out (str: txt; N: byte);
Send a string of length N to the aux device.

Functions:

clr_to_sen: boolean;
Check for transmit ready.

aux_ready: boolean;
Test for aux port with a waiting character.

GET_aux: char;
Get a character from the aux port.

string_in (N: byte): txt; :
Receive a string of length N from the aux device.



ACI Librarv Procedures:

The following is a list of library routines included in the TURBO PASCAL ACI library. All data
types and global variables requiring definition are also included. A simple example routine
is also included with the listings.

data_transfer

(slave_device: byte;
MemType: byte;

MemOfs, MemSeg: integer;
AccessType: char;
bytes: integer );

This routine coordinates a data transfer. It is the basic call made for any transfer of
data using the ACI. Depending on whether a read or write is requested, it calls one of
the following routines: data_read_from_slave or data_out. Each of these two routines call
the Init_comm, header and send_header routines to initiate the communication. All of
these routines call upon the lower level communications procedures listed here.

data_read_from_slave

(n_bytes: integer);

Coordinate the transfer of data from slave.

data_out

(n_bytes: integer);

Coordinate the transfer of data to the slave.

Init_comm

(slave_no: byte);

Initiate communications with a slave. Calls the ENQout procedure.

ENQout

(slave_no: byte);

Send an enquiry string.

header

(slave_no, MemType: byte;
MemOfs, MemSeg: integer;
RorW: char;

message_length: integer):

Generate the Header Block in preparation for transmission.

send_header

(slave, Memtype: byte;
MemOfs, MemSeg: integer;
RW: char;

data_length: integer);

Send the Header Block. Calls the previous routine.

error_state

Set error status.

turn_on_interrupt:

(err: byte);

Turn on the serial interrupt state.

turn_off_interrupt:
Turn off the serial interrupt state.



clean_aux ‘
Clean the input buffer and support.

send_aux (cha: char);

Send a character to the auxiliary port.

int_srv;
Service the serial on an interrupt basis.

init_ 8250 (rate: integer);
Set the baud rate for the RS-232 (COM1 device).

string out (str; txt):
Send a s\tring to the aux device.

N_string_out (str: txt; N: byte);
send a string of length N to the aux device.

Functions:

clr_to_sen: boolean;
Check for transmit ready.

aux_ready: boolean;
Test for aux port with a waiting character.

GET_aux: char;
Get a character from the aux port.

string in (N: byte): txt;
Receive a string of length N from the aux device.



[

an

g
-

v

]
t
'
(]
'
1
[
]
1
]
'
]
'
]
'
]
'
l
'
!
[}
[}
'
'
1
]
1
'
]
]
1
[
'
[}
'
[}
'

inn
it

, [the 1

7]

(]
ct
sliad

w ]
E o L
- cn

w

1] 44
w [ =4
. -
“r
-~ L
= D1
DY i
w
)
£ o
0] =
"«
ol

w

-

=1 42

X 4

[}

L

4 L=
-t -
et o ]
A= o ]
= b 4t
oom
i —._
o e ed
. o~
>3 %
0 o
w o
() a:
o1 LU o )
L. L= B 1
ca [
3
mw ur
P oy 01 -ed
4t ur oo

ar o
A
e

"

i
a
=
o
e A
ks = SRRV |
c 3
o 3
cr
= b
L N
as
e SR S
-
£3 4t
o
L2 I et
+
cy o
(= -4
o, =
- 0
oo
=
o m
Lo 3%
L
o
"o
oo
. - -
o
— n =

out. The string ic pointad to by "str’, and the

racters

ring

et

00041

acters

ar

i

he nuzber of ch

i

ray

pcinted ta

m
ey

ar

&
)
e
w
o
s
o
4
L=
&
n
-
4t
m
oa
-
u




	SRS-M1A_Appendix-B_001
	SRS-M1A_Appendix-B_002
	SRS-M1A_Appendix-B_003
	SRS-M1A_Appendix-B_004
	SRS-M1A_Appendix-B_005
	SRS-M1A_Appendix-B_006
	SRS-M1A_Appendix-B_007
	SRS-M1A_Appendix-B_008
	SRS-M1A_Appendix-B_009
	SRS-M1A_Appendix-B_010
	SRS-M1A_Appendix-B_011
	SRS-M1A_Appendix-B_012
	SRS-M1A_Appendix-B_013
	SRS-M1A_Appendix-B_014
	SRS-M1A_Appendix-B_015
	SRS-M1A_Appendix-B_016
	SRS-M1A_Appendix-B_017
	SRS-M1A_Appendix-B_018
	SRS-M1A_Appendix-B_019
	SRS-M1A_Appendix-B_020
	SRS-M1A_Appendix-B_021
	SRS-M1A_Appendix-B_022
	SRS-M1A_Appendix-B_023
	SRS-M1A_Appendix-B_024
	SRS-M1A_Appendix-B_025
	SRS-M1A_Appendix-B_026
	SRS-M1A_Appendix-B_027
	SRS-M1A_Appendix-B_028
	SRS-M1A_Appendix-B_029
	SRS-M1A_Appendix-B_030
	SRS-M1A_Appendix-B_031
	SRS-M1A_Appendix-B_032
	SRS-M1A_Appendix-B_033
	SRS-M1A_Appendix-B_034
	SRS-M1A_Appendix-B_035
	SRS-M1A_Appendix-B_CODE

