Chapter 2: Module Descriptions

2-1 LINKACI.BAT

This batch file will link a main module with the ACI library and other language
specific libraries.

tlink /c c:\tc\lib\cOl %1 %2 %3 %4 %5 %6 %7,%1,%1,aci emu mathl cl
where the emu, mathl and cl libraries are the Turbo C libraries either in the
current directory or with a library path set to the directory containing them.
This directory can of course be explicitly defined on the command line above.
2-2 COMPILE.BAT
This batch file will compile the source file

tcc -C -¢ -d -K -a -ml -N- %1 %2 %3 %4 %5 %6 %7 %8 %9

The compiler directives are:

-C Enable nested comments

-c Compile to .OBJ but do not link
-d Merge duplicate strings

=K Default character type is unsigned
-a Align on word boundaries

-ml Compile with large memory model -
1Mbyte of code, 1Mbyte of data space
-N- Disable stack overflow checking

2-3 UTILO0O0.C

This module will contain utility procedures that will be commonly used for robot
interfacing.

NOTE -

It is important that the procedure rdparams() be executed before any other
procedure in this module, as they depend upon the information returned by the
rdparams() procedure. These procedures will utilize the structure ‘mem’ as the
source for parameter values. In this way, the calling procedures do not have to
worry about them.

.

Global Procedures:
int rdparams(n)
e 70 A 4 1

This procdedure will read back the parameters and will update the ‘mem’ array.
Only the first "'n” parameters will be read back. This is so that time is not
wasted reading back those parameters that are not needed. :

rdprogtable(t)

p_table *t;
Read back the program table. The mem.pt_ptr must be valid, as well as
mem.pt_siz for this procedure work properly.

rdloctable(t)

1_table *xt;
Read back the location table. The mem.lt_ptr must be valid, as well as
mem. 1t_size for this procedure work properly. :

rdvartable(t)

v_table *t; _ :
Read back the program table. The mem.vt_ptr must be valid, as well as
mem.vt_size for this procedure work properly.

rdprogtable(b)

char xb;
Read back the valid program buffer. For this procedure to work, the values of
mem.pb_cnt, mem.pb_ptr must be valid.

Gichal Vaxdahlas:

params mem;
This structure of robot parameters is loaded by the rdparams() procedure, and
mist be valid when any of the other procedures in this module are used. The
‘params~ structure definition is provided in the °"ACIVAR.H® header file.

readrobot()
This procedure will extract the data from the robot contreller. It is defined
in the ACI00.C module.

readptrs()
This procedure is defined in the ACI00.C module. It is used to extract the RAPL
pointer list.

2-3

2-4 ACIO1.C

[Eerﬂr-jpxj on:
This module will provide all of the ACI protocol support routines. The
requirements for the ACI implementation can be divided into three procedurs
categories which are included in this module:
i) Utility routines,
ii) Protocol
iii) Application Level

Appendix B of the RAPL Technical reference manual discusses the ACI protocol
in detail. This information is not reproduced here.

Global Procedures:

All of the global procedures provided by this module are presented here, in the
appropriate hierarchys

1) Utilit
These procedures are utilized by the higher level procedures for string transfer
and comparison.

void aci_nstrout(str , n)

char str(];

int nh;
Send a string of characters out. The string is pointed to by “str”, and the
string is 'n” bytes long.

void aci_strin(tempstr,n)

char tempstr[]1;

int n; ‘
Fead a string of characters in from the serial interface. The number of
characters to be expected is 'n”, while the destination character array is
rointed to by "tempstr’.

int lobyte(i)
d1it: 413
Will return the low byte of the integer.
hibyte(i)
int i;
Will return the hi byte of the integer.

int string emp(1 , 82 , n)

byte *sl,*sZ;

int n;
Compare two binary strings, using the specified pointers to the two, and given
the length of the comparisorn.

ii) Protocol

These procedures actually drive the ACI protocel. Only two procedures are needed
to interface to the programmer. These are “readrobot”™ and “writerobot”™ which
will accept the communication parameters from the global data and the argument
list and will transfer the information.

The following two procedures will provide better access to the robot memory by
permitting all communication parameters to be set up as necessary.

aci_xfr(slave_dev, read_write, memofs, memseg, accesstype, bytes, mempir)

unsigned int slave_dev, read_write, memofs, memseg, bytes;

bvte *memptr;

char accesstype;
Main entry point for ACI protocol. All header parameters are entered here.
Communication channel is initialized before the communication starts, and the
charnel is restored after use. The ‘memptr parameter indicates the starting
location in the IBM memory for the data transfer. "'Bytes” is a word parameter
which indicates how many bytes will be transferred. All other parameters are
explained in the header block description, in the Technical manual, Appendix
B.

aci_xfri(slave_dev,read_write,memcfs,memseg,accesstype,bytes, remptr)

int slave_dev, read_write, memofs, memseg, bytes;

byte ¥memptr;

char accesstype;
Main entry point for ACI protocol. All header parameters are entered here.
The "“memptr parameter indicates the starting location in the IBM memory for
the data transfer. "Bytes’” is a word parameter which indicates how many bytes
will be transferred. All other parameters are explained in the header block
description, in the Technical manual, Appendix B. Unlike aci_xfr(), the
commanication channel is not initialized or restored after use.

The remainder of the protocol procedures are used by the four main procedures
declared above. They typically cannot be used by themselves.

void sendeng(slave_no)

int slave_no;
Initialize the communication with the target robot slave number. Send the
enquiry sequence. In a multi-drop environment, this sequence will alert the
target robot and will shut off the other units from the remainder of the ACI
communication cycle.

void data_out(n_bytes,data)

int n_bytes;

byte datal];
Send data to the slave device. The data is in the data[] array. Send the
specified number of bytes.

void data_read(n_bytes,data)
int n_bytes;
byte datal];

Read the specified number of bytes from the slave. Write it to the data[]
array.

void send_header(slave,memtype,memofs,memseg,rw,data_leng‘th)

int slave, memtype, memofs, memseg, data_length;

char rw;
Issue the header to the slave device. Performed after the communication is
successfully initialized.

void header(slave _no, nemtype , memofs , memseg , rorw, message_length)

int slave_no, memtype, memofs, memseg, message_length;

char rorw;
Formulate the header block to the slave. See technical description for the
correct format of the header block.

void enqout(slave_no)

int slave_no;
Issue the enquiry message to the slave. Expect to read back the correct
response.

F

void error_state(err)

int err;
‘Will set the global error flag “aci_err’. If the input error number is zero,
then the error condition will be removed.

{344 dmeld ; |
The following procedures assume that the global slave_device defines the robot
controller that we are talking to. It also assumes that a standard MEMOYY access,
specified by the 0" memory type qualifier is being attempted. This is the most
convenient robot memory access procedure, as it contains the fewest arguments ,
but assumes correct setup of the global parameter "aci_slave.

writerobot(offset , segment , srcptr, cont)

byte *srcptr;

unsigned int offset, cnt, segment;
Transfer the ‘cnt’ bytes of data from system memory at “srcptr’ to the robot
memory at the specified segment and offset. ‘

readrobot(offset , segment , destptr, ent)

byte *destptr;

unsigned int offset, cnt, segment;
Transfer the "cnt’ bytes of data to system memory at “destptr” from the robot
memory at the specified segment and offset.

readptrs(p, num)

char *p;

int num;
Will return the pointer list, using special hex code 0x40. “‘num’ refers to the
number of pointers that will be returned. This procedure always returns

2-6

pointers starting at the top of the list. Each pointer is a standard Intel
4 byte pointer wvalue. ‘P’ points to the arez of computer memory which will
contain the parameter list after the procedure has executed.

Variables:

The global parameters required by the ACI library are available to be adjusted
by the system programmer. It is recommended that these parameters assume a
default value that is present when the system is loaded for execution. Failing
this, they must be given initial values by the programmer before any ACI
communication can be attempted.

word aci_txto;
Timeout value for transmit character - in msec

word aci_rxto;
Timeout value for receive character - in msec

word aci_baud;
Baud rate for ACI communication - the default is 2400

word aci_slave;
Default is slave #1. Can assume a value of 1 to 127

int aci_err;
Global aci error number. Gets set to non-zero if any ACI error occurs. When
this happens, subsequent ACI programming is aborted.

int aci_channel
Global parameter which will determine the communication channel of the host.
This parameter is set mainly for the benefit of the hardware level interface
that decides how to issue and receive characters.

Error Codes:

All ACI shell programs must recognize the possible error codes, and should
determine a safe recovery strategy, depending upon the application.

04 An enquiry sequence was ignored 32 times.

12 A header was tried 4 times with no success. :

16 A header was responded to with neither an ACK nor NAK.

20 A data block read was attempted from the slave 4 times, with a LRC failure
each time.

22 A data block write was attempted to the slave 4 times, with a NAK
returning each time.

24 Invalid response to a data block write to the slave; neither an ACK nor
a NAK returned. ;
27 Invalid EOT response from the slave.

28 Invalid STX read in a data block read from the slave.
32 Invalid ETB read in a data block read from the slave.

34 Invalid ETX read in a data block read from the slave.
40 Timeout on receiving a character.

50 Timeout on Transmitting a character.

60 Operator pressed key at some time.

81 Bad baud rate selection.

External Procedures:

The ACI protocol module assumes that a hardware level interface exists. The
default interface supplied by this library is intended for use with an IBM-
PC/XT/AT series of computer, using the COM1 channel. 2400 baud is a recommended
communiication rate.

void clean_aci(); ;
Reset the communication channel. For interrupt driven communications, this
procedure would typically clean out the character buffers.
void send_aci();
Send a byte to the communication channel
int inz_aci();
Initialize the communication channel. Set up interrupt vectors if necessary,
and save old communication status. Set the baud rate according to "aci_baud’.
void res_aci(); !
Restore the communication charnel to the pre-ACI state (if necessary).
char get_aci();
(Get the next byte from the interface.

2-8

	CH2_MOD_DESCR_0001.jpg
	CH2_MOD_DESCR_0002.jpg
	CH2_MOD_DESCR_0003.jpg
	CH2_MOD_DESCR_0004.jpg
	CH2_MOD_DESCR_0005.jpg
	CH2_MOD_DESCR_0006.jpg
	CH2_MOD_DESCR_0007.jpg
	CH2_MOD_DESCR_0008.jpg

