Chapter 1: ACI Interface Library

1-1 Introduction

This library is intended for those system programmers who wish to interface to
CRS robots through the ACI protocol. The library contains all of the procedures
required to exchange information with CKS controllers.

The ACI protocol is a serial based communication package that transfers bytes
of data between a host computer and a robot controller. The protocol software
in the host computer and the robot controller makes use of timeout checking and
data checksum testing to ensure complete data integrity and proper error recovery
during communication. In applications where a lot of data communication is
required, and the consequences of data corruption is severe, this method of
communication is highly recommended.

The ACI library will be a constantly expanding resource of procedures that will
help programmers to interface to the robot controller to provide complete access
+0 robot controller data as a means of providing higher levels of programmability
and data analysis in robot workcells.

This instruction manual describes the components of the ACI library as well as
how the various components fit into an operational system. A test application,
complete with 'C° source code, will be provided. This application will provide
a robot memory report facility that will print the contents of the controller
memory to the computer console, or to a disk file.

lges t

The following is a brief list of the useful possibilities for this ACI software

package :

i) Transferring robot programs to and from a host computer, providing mass
storage capabilities on a remote computer. This provides the ability to
accomplish all robot programming away from the robot controller itself
using word processors for fast program generation. A simple serial link
to the robot controller either directly or through a modem will then
download the information to the robot.

ii) Transferring data between a system controller and a robot controller. The
robot controller may transfer process data to a system controller which
can modify its controlling strategy so that subsequent events can be
scheduled properly.

iii) Modifying, saving and re-loading custom robot control parameters. This
technique permits customized adjustment of the robot controller’'s
characteristics for specialized applications. The ACI interface can be used
to extract this information from the controller memory, and to replace it
with new information. .

iv) Transferring robot locations to and from a host computer. The accuracy of
CRS robots and motion controllers permits the application of off-line
programming in some cases. Downloading locations that have been generated
off-line can best be accomplished using the ACI interface.

v) Provide a robot memory reporting facility, where robot memory can e

1-1

uploaded and examined for use in production reports, maintenance repcrts
and the like.

1-2 Level of Programming Experience

It is suggested that any programmer wishing to use this manual must have a
working knowledge of both the ‘C° language and IRM-DOS,, or MSDOS,, operating
systems. : ‘

1-3 Suggested Reading

This document is not intended to provide descriptions of the robot memory or of
the robot’s ACI protocol. This information is available in the CRS technical
manual, Appendix G and Appendix B respectively.

The ACI library is written in the 'C” language, using ANSI standard procedures
that will simplify portability to other compilers and operating systems. The C
Erogramming Language by Kernighan and Ritchie is suggested reading for novice
‘C’ programmers. '

1-4 Distribation Diskette

It is recommended that the programmer make immediate copies of the CRS
distribution diskette to prevent accidental loss of data. The distribution
diskette contains the following programs;

List Files
ACIO00.LST
UTILO0O.LST
TEST2.LST
TEST.LST
IBM00.LST

"C’” Source Files
ACI00.C
UTILOO.C
TEST2.C
TEST.C
IBM00.C

Executable Files
TESTZ2.EXE
TEST.EXE

Library Files
ACI.LIB

1~2

Batch Files
ACIVAK.H
GEN.H
ACIFTR.H
EXTERN.H

Header Files

COMPILE . BAT
LINKACI.BAT

1-5 Module Structure

There are four types of procedures available in the ACI library:

i)

(=] A
These batch file tools are provided which will enable the system
programmer to more easily modify the library procedures which exist.
These batch files contain compilation and linker directives that were used
during library development. Also, the header file "GEN.H® is included.
This include file has data type declarations and general #define types
that are utilized by the "C" source programs. ACIPTR.H is a header file
that contains literal definitions of the pointers in the RAPL pointer
list. ACIVAR.H defines structures and "typedefs” that describe the layout
of the RAPL user memory. EXTERN.H defines all procedures in the ACI
library, and can be used by programmers to verify parameter passing. The
COMPILE.BAT batch file shown here is used with the LATTICE,, compiler. If
other compilers are used, then the programmer must build a suitable
compilation model. The LINKACI.BAT batch file will link an application
program with the ACI libraries for use in the DOS environment.
LINKACI .BAT
COMPILE.BAT
GEN.H
ACIPTR.H
ACIVAR.H
EXTERN.H

The remaining software procedures can be categorized into three layers, as shown
in Figure 1.

APPLICATION LAYER
Utilities for providing ease
of system integration for
existing application software

i

PROTOCOL LAYER
ACI Protocol Control
- Data transfer
- Error Recovery Logic

HARDWARE LAYER
Serial Communication
Channel initialization
and control

Figure 1

ii)

Those procedures which interface the protocol layer with the system
hardware. This software is changed whenever new hardware systems are
implemented. IBM-XT/AT machines are supported in the standard software
package. This layer must contain procedures that are accessed by the
higher levels. The names of these procedures and the return codes are
described later. Transmit and receive timeouts are identified here. In
all cases, the hardware must be configured to provide 8 data bits. Parity
bits are not necessary and are discouraged. Stop bits can be programmed
to match the selection made in the CONFIG command in the controller.

IBMOO.C

1
USER MUST PROVIDE PROCEDURES SHOWN WITH *

‘—l

CHARACTER INPUT/OUTPUT INITIALIZATION TIMING
I i | l

* *x * %
GET_ACI() SEND_ACI() INZ_ACI() RES_ACI()
1 ! f

ACI_RXEDY () ACI_TXRDY() * : *
CLEAN_ACI() MILLISECOND()

1-4

iii) Protocol Laver
This set of procedures actually drives the protocol software. Procedures
to transfer blocks of information to and from the robot are provided here.
Global parameters which are required to access the robot are defined here
as well. This layer utilizes the hardware layer for actual data transfer.
Protocol timecuts as well as most ACI errors are recognized at this level.

ACI00.C
|
ACI_XFR() ACI_XFRL()
l |
|
l [l |
SENDENQ() SEND_HEADER() DATA_OUT() DATA_READ()
i
HEADER()

ERROR_STATE()

iv) Application laver

Support routines which access wvarious parts of the robot memory
aatomatically will be contained here. This portion of the library will
be the one which grows over time, as CRS provides more access to memory
areas. The purpose of this level is to provide efficient interfacing
procedures for existing application software. Simple function calls will
provide most of the ACI programming requirements. Access to lower level
protocol software can then be made if certain conditions require it.

ACI00.C

WRITEROBOT() READROBOT() READPTRS()

UTIL00.C

i
RDPARAMS()

I

I 1 |

RDFROGTABLE() RDLOCTABLE() RDVARTABLE() RDPROGBUEF ()

1-6 Configuring the ACI Library for non-IBM PC Implementations

The system programmer would have to proceed through several steps in order to
implement the ACI library on other machines. The ACI library has been developed
with portability in mind by utilizing only ANSI standard ‘C° function calls. No
Lattice,, specific library procedures have been used. '

A typical development cycle would be as follows;

i}
14

iii)

iii)

iv)

v)

Copy all source, header and .BAT files to the development systenm.
Translate the .BAT files to the appropriate compiler and linker standards
required by the development system,

Substitute the hardware level procedures for procedures already developed
for the target system, as described in module IBM0OO.C. The procedures that
are required by the higher level procedures in the library are;
millisecond()

get_aci()

send_aci()

clean_aci()

inz_aci()

res_aci()

Make sure that the equivalent procedures make use of the global data
parameters aci_txto, aci_rxto, aci_baud, aci_slave, aci_err.
Re-compile all library files. These files are;

IBM0O.C (or equivalent)

ACI00.C

UTIL0O0.C

Assemble all of the object modules obtained from step ii) into the library
file ACI.LIB for future reference,

Compile the test procedure TEST.C and link with the ACI library. Run this
test to ensure that the software is working.

1-7 Standard Configuration

The ACI library can be used very simply with the default configuration provided
by the library, for the IBM/PC interface. The default values must be programmed
into the global parameters so that they become active when the application
software is loaded. The default settings are;

1-8

aci_slave = 1;

aci_txto, aci_rxto = 1000 milliseconds
aci_baud = 2400

commnication channel: COM1

The original source level software has been designed and tested on IRM XT/AT
series of machines and other compatible machines. Development language has been
Lattice,, 'C" versicn 3.0. The standard library has been compiled under the

Lattice,, "Large” model, meaning that the final software may contain up to 1
megabyte of code, with 64 kilobytes of data space. Any host software system

utilizing the same linkage configuration under DOS will be immediately linkable
with the ACI library modules. Other linkage conventions, or operating systems
other than DOS will require re-compilation of the individual modules and possibly
re-writing of the hardware related interface code.

For general robot memory access, the programmer need interface with only two
library procedures: ’readrobot”™ and “writerobot’. All data access can be
accomplished through these two procedures. An additional procedure called
‘rdparams”~ can be used when the RAFL parameter list need to be accessed. The
following example will show this.

1-8 Developing an Application — Robot Memory Reporting Otility

A common requirement for most robot controls is the ability to examine the
current contents of the robot controller, and to save it for future reference
and documentation requirements. Quite often, robot programs can change on the
shop floor due to changing application requirements. It is then necessary to save
the current state of the controller.

The test case provided is located in the file TESTZ.C, on the distribution
diskette.

Application Objective

The objective of the application is to read the contents of the robot memory,
and to display the programs, locations and variables on the computer console,
or to optionally save the data to a text file for inclusion into a robot
application document.

References

Appendix G of the Technical manual provides a list of RAPL parameter pointers
that can be accessed by the ACI protocol. This appendix also provides a
description of the RAFL user memory that is required for this application. Read
this document first of all, then proceed with this application.

Identification of Relevant Data

To fulfil the application objective, the following data from the robot controller
must be read:

i) Program Buffer,

ii) Program Table,

iii} Variable Table,

iv) Location Table,
From Appendix G, it is evident that all of this information is available in the
RAPL peinter list, so it should be a simple matter of reading parts of the robot
memory in tc the computer memory for future storage and display.

Collection of Data

The first task is to read the RAPL parameter list into the computer memory. The
ACI procedure "readptrs()” will read in the parameter list. Since all of the
pointers that are required by this application occur in the first 10 elements
of the list, only those elements must be read in. Remember that the readptrs()
procedure always starts at the beginning of the list.

Once the pointer list has been read into memory, the robot data must be read.
At this point, the robot user memory is still not directly accessible. This is
because the pointer list that has been read has only given us access to other
parameters which determine where the user memory is located, and its size.
Appendix G explains how the RAPL user memory is defined in the controller. The
pointers to the data must be read first, then the data itself. The following
block diagram illustrates the way that memory will be accessed.

READ IN THE FIRST 10
ELEMENTS OF THE RAFPL
POINTER LIST
ROBPTR[]

l

READ THE PROGRAM TABLE
POINTER AND SIZE
PT_PIR, PT_SIZE

l

READ THE PROGRAM TABLE
CONTENTS
PROG_TABLE

]

READ THE PROGRAM BUFFER
POINTER, AND THE SIZE OF
THE FILLED BUFFER
PB_FPTR, PB_CNT

[

READ THE PROGRAM BUFFER
CONTENTS
PROG_BUFF

l

READ THE LOCATION TAELE
POINTER AND SIZE
LT_PTR, LT_SIZE

I

READ THE LOCATION TABLE
CONTENTS
LOC_TABLE

READ THE VARTABLE TABLE
POINTER AND SIZE
VI_PIR, VT_SIZE

READ THE VARIABLE TABLE
CONTENTS
VAR_TABLE

Figure 2 - Complete Memory Upload to Computer

[y

w

Display of Robot Data

The display of the robot data can be handled once all data has been read, or as
each of the four memory areas have been read. The latter method will be chosen,
as it will provide screen activity during operation. This will provide an
indication of program activity. Delays involved in the serial communication of
the data may be considerable. (figure on a transfer rate of 250 bytes per second
with a baud rate of 2400).

Program Development
The following steps were made to generate the TEST? application program:

i) File TEST2.C was created using a standard text editor. Compiler bugs were
removed by using the COMPILE.BAT utility:
COMPILE TEST2 :
When all bugs were removed, the final object code file TESTZ.OBJ existed.
ii) Linkage of the program with the ACI library modules was accomplished using
the LINKACI.BAT utility; _
LINRACI TEST?2
iii) Execution of the application is made from the DOS prompt.

Extensions to the Basic Exercise

Programmers may extend this application to provide the ability to download robot
user memory to the robot. The sequence for accomplishing this phase is showm in
figure 3. It is assumed that valid data is available in the computer memory.
Either from manual data entry from the keyboard, or from data available on a disk
file. The latter is a more convenient means of providing this data. The
programmey must develop a file specification to store all of the robot data.

The program described by figure 3 will perform a complete memory download. 0Old
data will no longer exist; it will be over-written.

Take care to ensure that the following steps are taken:

i) Ensure that the data in the computer memory is valid data, and that all
checksums have been formulated correctly. The table data format is
discussed in detail in Appendix G.

ii) Ensure that the size of the program buffer to be transferred does not
exceed the limit specified by the PB_SIZE parameter (identified by item
#1 in the pointer list), and that the PB_CNT parameter accurately reflects
the size of the program buffer

iii) Ensure that blank table entries contain space characters in the name
field. This will leave the table entries available for new data.

1-10

READ IN THE FIRST 10
ELEMENTS CF THE RAFL
POINTER LIST ROBPTR[]

|

READ THE PROGRAM BUFFER
POINTER, AND THE MAXTMUM
SIZE OF THE BUFFER
PB_PTR, PB_SIZE

I

READ THE PROGRAM TABLE
POINTER AND SIZE
PT_PIR, PT_SIZE

READ THE LOCATION TABLE
POINTER AND SIZE
LT_PTR, LT _SIZE

f

READ THE VARIABLE TABLE
POINTER AND SIZE
VI_PTR, VT_SIZE

I

WRITE THE PROGRAM BUFFER
CONTENTS

PROG_BUFF

l

WRITE THE NEW PROGRAM BUFFER
FILLED SIZE
PB_CNT

|

WRITE THE PROGRAM TABLE
CONTENTS
PROG_TABELE

I

WRITE THE LOCATION TABLE
CONTENTS
LOC_TABLE

|

WRITE THE VARIABLE TABLE
CONTENTS
VAR_TABLE

Figure 3 - Complete Computer memory Download to Robot

1~11

	CH1_ACI_INT_LIB_0001.jpg
	CH1_ACI_INT_LIB_0002.jpg
	CH1_ACI_INT_LIB_0003.jpg
	CH1_ACI_INT_LIB_0004.jpg
	CH1_ACI_INT_LIB_0005.jpg
	CH1_ACI_INT_LIB_0006.jpg
	CH1_ACI_INT_LIB_0007.jpg
	CH1_ACI_INT_LIB_0008.jpg
	CH1_ACI_INT_LIB_0009.jpg
	CH1_ACI_INT_LIB_0010.jpg
	CH1_ACI_INT_LIB_0011.jpg
	CH1_ACI_INT_LIB_0012.jpg

