
Power Aware User’s Manual
ModelSim® SE

Software Version 10.1

© 2011 Mentor Graphics Corporation
All rights reserved.

This document contains information that is proprietary to Mentor Graphics Corporation. The original recipient of this
document may duplicate this document in whole or in part for internal business purposes only, provided that this entire
notice appears in all copies. In duplicating any part of this document, the recipient agrees to make every reasonable
effort to prevent the unauthorized use and distribution of the proprietary information.

This document is for information and instruction purposes. Mentor Graphics reserves the right to make
changes in specifications and other information contained in this publication without prior notice, and the
reader should, in all cases, consult Mentor Graphics to determine whether any changes have been
made.

The terms and conditions governing the sale and licensing of Mentor Graphics products are set forth in
written agreements between Mentor Graphics and its customers. No representation or other affirmation
of fact contained in this publication shall be deemed to be a warranty or give rise to any liability of Mentor
Graphics whatsoever.

MENTOR GRAPHICS MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE.

MENTOR GRAPHICS SHALL NOT BE LIABLE FOR ANY INCIDENTAL, INDIRECT, SPECIAL, OR
CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING BUT NOT LIMITED TO LOST PROFITS)
ARISING OUT OF OR RELATED TO THIS PUBLICATION OR THE INFORMATION CONTAINED IN IT,
EVEN IF MENTOR GRAPHICS CORPORATION HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

RESTRICTED RIGHTS LEGEND 03/97

U.S. Government Restricted Rights. The SOFTWARE and documentation have been developed entirely
at private expense and are commercial computer software provided with restricted rights. Use,
duplication or disclosure by the U.S. Government or a U.S. Government subcontractor is subject to the
restrictions set forth in the license agreement provided with the software pursuant to DFARS 227.7202-
3(a) or as set forth in subparagraph (c)(1) and (2) of the Commercial Computer Software - Restricted
Rights clause at FAR 52.227-19, as applicable.

Contractor/manufacturer is:
Mentor Graphics Corporation

8005 S.W. Boeckman Road, Wilsonville, Oregon 97070-7777.
Telephone: 503.685.7000

Toll-Free Telephone: 800.592.2210
Website: www.mentor.com

SupportNet: supportnet.mentor.com/
Send Feedback on Documentation: supportnet.mentor.com/doc_feedback_form

TRADEMARKS: The trademarks, logos and service marks ("Marks") used herein are the property of
Mentor Graphics Corporation or other third parties. No one is permitted to use these Marks without the
prior written consent of Mentor Graphics or the respective third-party owner. The use herein of a third-
party Mark is not an attempt to indicate Mentor Graphics as a source of a product, but is intended to
indicate a product from, or associated with, a particular third party. A current list of Mentor Graphics’
trademarks may be viewed at: www.mentor.com/trademarks.

http://www.mentor.com
http://supportnet.mentor.com/
http://supportnet.mentor.com/doc_feedback_form
http://www.mentor.com/trademarks

Power Aware User’s Manual, v10.1 3

Table of Contents

Chapter 1
Getting Started With Low-Power Analysis . 13

ModelSim Power Aware Simulation . 13
Where Is Power Aware in Your Design Flow? . 14
Documentation—Scope and Organization . 16
Contents of This Manual . 17
How to Use This Manual . 17

Related Documentation. 18

Chapter 2
Concepts for Using Power Aware . 19

Power Specification File . 19
Power Aware Modeling . 20

Modeling Corruption . 21
Corruption Values . 21
Corruption Extent . 22

Modeling Isolation . 24
Modeling Retention . 24

Edge-sensitive and Level-sensitive Control of Retention Models 25
Modeling Bias. 27

Bias Mode 1: Corrupt on Change/Bias. 27
Bias Mode 2: Corrupt All on Activity . 27

Chapter 3
Power Aware Simulation . 29

Commands Used For Power Aware Simulation . 29
General Steps for Running Power Aware. 30

Standard Flow For RTL. 31
Compile . 31
Optimize . 31
Simulate . 33

Alternate Flows For RTL. 33
Optimize DUT Separately. 34

Compile . 34
Optimize . 34
Simulate . 35

Delay Optimization. 35
Compile . 35
Optimize . 35
Simulate . 36

Implicit Optimization . 36
Compile . 36

Table of Contents

4 Power Aware User’s Manual, v10.1

Optimize . 36
Simulate . 36

Inhibit Optimization . 37
Compile . 37
Optimize . 37
Simulate . 38

PDU-Based Simulation. 38
Compile . 38
Optimize . 38
Simulate . 39

Standard Flow for Gate-Level Simulation. 39
Gate-Level Simulation . 40
UPF in Gate-Level Simulation . 40
General Steps for Power Aware Gate-Level Simulation . 40
Liberty Library Models. 41
Delay Optimization. 42

Compile . 42
Optimize . 42
Simulate . 43

Delay Optimization Using Liberty Models. 43
Compile . 44
Optimize . 44
Simulate . 44

Using a Liberty Database . 45
Usage Notes on Creating a Liberty Dump . 46
Loading Liberty Dumps . 46
Debugging Designs Containing Liberty Cells . 46

Automatic Detection of Power Management Cells . 47

Chapter 4
Power Aware Reports. 49

Generating Reports for Power Aware . 49
How to Generate a Report with vopt -pa_genrpt . 49

UPF Reports. 50
UPF Power Intent Report . 52

Example of UPF File and Power Intent Report . 54
UPF Static Report . 56

Power Domain . 56
Power Switch . 58
Retention Strategy . 59
Isolation Strategy . 60
Level Shifter Strategy. 62
Power State Tables . 63
Example of UPF Static Report File . 65

Static Checking UPF Reports . 66
Dynamic UPF Report . 67
Architecture Report. 68

Power Domain . 68

Table of Contents

Power Aware User’s Manual, v10.1 5

Power Switch . 70
Retention Strategy . 72
Isolation Strategy . 73
Level Shifter Strategy. 75
Power State Tables (PSTs) . 77
Sample Power Architecture Report . 79

Design Elements Report . 80
Design Element Scopes and Power Domains. 81
Corrupted Signals . 81
State Elements . 82
Retention Signals . 83
Working With A Design Element Report . 83

PCF Reports . 86
PCF Power Intent Report . 87
PCF Always-On Report . 87
PCF Corruption Report . 88
PCF Isolation Report . 89
PCF Static Checking Report . 89

Behavioral Element Reporting. 90

Chapter 5
Automatic Checking . 91

Static Checking in Power Aware . 91
Usage Notes for Static Checking . 92
Debugging Static Checks . 92
Static Isolation Checks . 93
Static Level Shifter Checks. 96

Reporting for a Valid Level Shifter . 99
Dynamic Checking in Power Aware . 100

Usage Notes . 100
Dynamic Retention Checking . 101
Dynamic Isolation Checking. 103
Dynamic Level Shifter Checking . 106

Operating Voltage for Dynamic Checking. 106
Miscellaneous Dynamic Checking . 107

Implementing Checking at Gate Level . 109
Level Shifting for Gate-Level Checking. 110
Isolation for Gate-Level Checking . 110

Chapter 6
Visualization of Power Aware Operations . 113

Power Aware in the Graphical User Interface . 113
Power Aware Schematic Display. 113

Top-Down Debugging (From the Test Bench). 113
Bottom-Up Debugging (From the Design Under Test) . 114

Usage Notes . 115
Schematic Window Visualization for Debugging . 116

Power Aware Waveform Display . 119

Table of Contents

6 Power Aware User’s Manual, v10.1

Using Power Aware Highlighting. 120
Power State and Transition Display. 121

Power Aware State Coverage . 121
Power State Table (PST) States . 122

Visualization of Power Aware States . 122
Power Aware State Machines (PASM) . 123
DIfferences Between Conventional RTL FSMs and PASMs . 123
Undefined States in Power Aware State Machines . 123
Example of PASM in a UPF File . 123
Using Power Aware State Coverage . 125

Visualization Of Power Aware State Machines . 125
Power Aware State Machine Viewer Window. 126

Appendix A
Power Aware Commands and Options. 131

ModelSim Commands Used for Power Aware . 132
Using -pa_enable and -pa_disable . 133

Additional Commands You Can Use with Power Aware . 135
Power Aware Messages . 139

Usage . 139
Excluding Design Elements from Power Aware . 140
Voltage Level-Shifting (Multi-Voltage Analysis) . 142

Power State Tables . 143
Example . 143

Level Shifter Specification . 143
Reporting . 143
Threshold Control for Level Shifters . 144
Level Shifter Instances . 144

Limitations on Level Shifting . 144
Restricting Isolation and Level Shifting on a Port. 145

Isolation and Level Shifting Behavior . 145
How to Apply the -source and -sink Arguments . 146

Simulating Designs Containing Macromodels . 150
Using UPF Commands . 150
Attributes in RTL . 152
Liberty File . 152
Example of Power Intent on a Hard Macro . 152

UPF Commands . 153
RTL Attributes . 153
Liberty File Attributes . 154

Creating Feedthrough For RTL Conversion Functions . 155

Appendix B
Power Aware Checking Specifications . 157

Level Shifter Checking . 157
Isolation Checking . 157
Additional Information on Checking . 158

Table of Contents

Power Aware User’s Manual, v10.1 7

Appendix C
Model Construction for Power Aware Simulation . 163

Guidelines for Writing HDL Models. 163
Assumptions and Advantages. 163

Basic Model Structure. 163
Named Events in Power Aware . 164

Usage Note for Sequence Requirements . 166
Attributes. 166

Retention Cells and Memories . 166
Isolation Cells . 167
Level Shifters . 167

Model Interface Ports . 167
Example—Register Model . 168
Example—Corrupt Model . 171

Appendix D
UPF Commands and Reference. 173

Unified Power Format (UPF). 173
Using a UPF File as Part of Power Aware Simulation . 174

UPF Standards . 174
Version 1.0 of the UPF Standard . 175
Version 2.0 of the UPF Standard: IEEE Std 1801-2009. 175

Supported UPF Commands . 176
add_domain_elements. 178
add_port_state . 179
add_power_state . 180
add_pst_state. 184
associate_supply_set . 185
connect_logic_net . 186
connect_supply_net. 187
connect_supply_set . 188
create_composite_domain. 189
create_hdl2upf_vct . 196
create_logic_net . 197
create_logic_port. 198
create_power_domain . 199
create_power_switch. 201
create_pst . 202
create_supply_net . 203
create_supply_port . 204
create_supply_set . 205
create_upf2hdl_vct . 206
load_simstate_behavior. 207
load_upf . 210
load_upf_protected . 211
map_isolation_cell . 212
map_level_shifter_cell . 215
map_retention_cell . 216

Table of Contents

8 Power Aware User’s Manual, v10.1

name_format . 217
save_upf . 218
set_design_attributes. 219
set_design_top. 220
set_domain_supply_net. 221
set_isolation . 222
set_isolation_control . 226
set_level_shifter . 227
set_partial_on_translation . 230
set_pin_related_supply . 233
set_port_attributes. 234
set_power_switch . 236
set_retention . 237
set_retention_control. 240
set_scope . 241
set_simstate_behavior . 242
upf_version . 247

Supported UPF Package Functions . 248
Accessing Generate Blocks in UPF . 249

Limitation . 249
Supported UPF Attributes . 249

Specifying Attributes . 250
Limitations . 251
Attributes in VHDL or SystemVerilog . 251
Specifying Supply Nets in UPF . 251

Format of Assigned Net Values . 251
Changing the Default Supply State Values for VHDL Models . 252

Supported UPF Extensions . 253
Using -pa_upfextensions. 253

UPF Supply Connections. 256
Implicit Connections. 256
Explicit Connections. 256

Explicit Connections to HDL Ports . 257
Examples . 257
Explicit Connections to 1-bit HDL Ports . 257
Explicit Connections to Supply Ports of Power Switch . 258

Automatic Connections. 258
Automatic Connections for Supply Nets . 259
Automatic Connections for Supply Sets. 260

Power State Composition . 261
Determining State Dependency with add_power_state Arguments 263
Power State Reporting . 265

Value Conversion Tables. 266
Using VCT Commands. 266

Examples . 266
Limitations . 267

Predefined VCTs Supported from the UPF Standard . 267
Connections Using Value Conversion Tables (VCTs) . 271
Simulation Semantics for UPF Supply Connections . 273

Table of Contents

Power Aware User’s Manual, v10.1 9

Supply Nets . 273
Resolving Drivers on a Supply Net . 274

Example . 274
Defining Isolation . 275

Method 1: Isolation is already explicitly present . 275
Method 2: Isolation needs to be added . 276
Specifying Isolation Cells. 276
Limitations . 278

Defining Retention . 278
-retention_supply_set . 278
-no_retention. 279
-use_retention_as_primary . 282

Appendix E
Power Configuration File Reference. 285

Power Specification File . 285
Formats . 285

Using a PCF as Part of Power Aware Verification. 286
PCF Syntax and Contents . 287

Basic PCF Statement Types . 287
Statement Termination . 287

Header Statement . 287
Context Statements. 289
Scope Statement . 289
Variable Statement . 290
Include Statement . 290
Corruption Extent Statement . 291

Power Statements . 291
Region Definitions . 292
Power Model Mapping Statement . 296

Mapping Statement Precedence . 299
Specifying Default Model Mappings . 300

Retention Statement . 300
Corruption Semantics . 301
Voltage Domains . 301
Comments . 302

Regular Expressions and Variables . 302
Rule Precedence. 303

Appendix F
Supplemental Information . 305

Power Aware Verification of ARM-Based Designs . 305
Abstract . 305
Introduction. 306
Active Power Management. 306
Power Management Techniques . 306
Power Management Specification . 307
Power Management Architecture . 308

Table of Contents

10 Power Aware User’s Manual, v10.1

Operating Modes . 308
Power Domains . 309
Power Distribution . 310
Power States . 312
Isolation and Level Shifting . 312
State Retention . 314

Power Managed Behavior. 314
Power Control Logic. 315
Power Aware Verification Flow . 315

Verifying the Power Management Architecture. 316
Verifying Power Managed Behavior . 317
Verifying Power Control Logic . 318

Summary . 318
Acknowledgements. 319
References. 319

Table of Contents

Power Aware User’s Manual, v10.1 11

List of Tables

12 Power Aware User’s Manual, v10.1

List of Tables

Table 2-1. Corruption Extents and Behaviors . 22
Table 4-1. Generating UPF Reports for Power Aware . 51
Table 4-2. Generating PCF Reports for Power Aware . 87
Table 5-1. Static Isolation Checks . 93
Table 5-2. Static Level Shifter Checks . 96
Table 5-3. Dynamic Retention Checks . 101
Table 5-4. Dynamic Isolation Checks . 103
Table 5-5. Dynamic Level Shifter Checks . 106
Table 5-6. Miscellaneous Dynamic Checks . 108
Table A-1. Power Aware Arguments for vopt . 132
Table A-2. Power Aware Arguments for vsim . 133
Table A-3. Power Aware Actions for vopt -pa_enable and -pa_disable 134
Table B-1. Static and Dynamic Checks for Power Domain Characteristics 158
Table D-1. Supported UPF Commands . 176
Table D-2. UPF Commands Not Currently Supported . 176
Table D-3. Supported UPF Package Functions for VHDL . 248
Table D-4. Supported UPF Package Functions for SystemVerilog 248
Table D-5. Supported UPF Attributes . 249
Table D-6. Power Aware Actions for vopt -pa_upfextensions . 254

Power Aware User’s Manual, v10.1 13

Chapter 1
Getting Started With Low-Power Analysis

ModelSim Power Aware Simulation
Note
The functionality described in this chapter requires an additional license feature for
ModelSim SE. Refer to the section "License Feature Names" in the Installation and
Licensing Guide for more information, or contact your Mentor Graphics sales
representative.

Some designs require that you minimize dynamic and static power consumption. A common
low-power design technique—power gating—involves switching off certain portions of the
design when their operation is not needed and restoring power when operation is needed again.
ModelSim provides Power Aware analysis for VHDL or Verilog designs by using power gating
for both register transfer level (PA-RTL) and gate-level (PA-GL) analysis.

To apply Power Aware analysis, you use your conventional ModelSim simulation flow, along
with some power-specific options to the vopt and vsim commands and a power configuration
side file that identifies the low-power design intent.

With Power Aware, you can perform functional verification of the use of power gating with or
without retention capability. Different types of power gating design structures can be verified,
such as:

• Multiple switchable power domains with a single voltage

• Multiple switchable power domains with different (fixed) voltages per domain

These power gating structures reduce the static/leakage power.

To verify these structures, you create a side file (Power Specification File) that defines the low-
power design intent, which includes the following:

• Element instances that belong to a power domain and control expressions that turn the
power domain ON and OFF.

• The retention mapping information and the retention controls that specify when to save
and when to restore data in storage and sequential elements within a power domain that
has retention capabilities.

Power Aware User’s Manual, v10.114

Getting Started With Low-Power Analysis
Where Is Power Aware in Your Design Flow?

Where Is Power Aware in Your Design Flow?
Before you begin to use Power Aware to perform a low-power analysis on your RTL design,
you should evaluate where you are in your overall design flow. Figure 1-1 shows an
approximation of a typical design sequence and where Power Aware might occur in that
sequence.

Before running Power Aware, you should have worked through the following stages of your
design flow:

• Design creation

• RTL architecture

• Formal verification

• Definition of power intent

After running a Power Aware RTL simulation, you would typically use the results to make
appropriate topology or performance changes to your power-sensitive design blocks. After a
gate-level simulation(GLS), you would typically make library cell changes based on
performance characteristics.

The scope of Power Aware as a low-power solution spans multiple manifestation of design
architecture.

• Power Aware Simulation — Simulation that includes active power management
elements and their behavior. The power management architecture is typically specified
in UPF; the behavior of those elements is inferred from the UPF specification. This
relates specifically to Questa Power Aware Simulation (PASim).

• Power Aware Verification — Collaborative usage of various products and methods for
verifying that a design operates correctly under active power management. These
include power aware simulation (for verifying the correct operation of the power
management architecture), formal verification (for verifying correct operation of power
control logic), and hardware/software co-verification (for verifying that software power
control interacts correctly with power control logic). This relates to all of the
components of the Questa Verification Platform that can be used for Power Aware
Verification, including Questa PASim, Questa ADMS, Questa Formal, Questa
Codelink, and Questa VM.

• Power Efficient Design — Design of hardware that involves active power management.
This includes design decisions involved in allocating power budget, partitioning the
design into power domains, and defining the power management architecture, the power

Getting Started With Low-Power Analysis
Where Is Power Aware in Your Design Flow?

Power Aware User’s Manual, v10.1 15

control logic, and the power control software, as well as products used for verification
and implementation of such designs. This relates to the entire range of Mentor products
that are involved in the design, verification, and implementation of low power IP, chips,
and systems.

Figure 1-1. Typical Location of Power Aware Simulation in Design Flow

Design Capture

RTL Architecture

Formal Verification

RTL Power Aware

Definition of
Power Intent

Layout

Design Coverage

GLS Power Aware

Synthesis

Power Aware User’s Manual, v10.116

Getting Started With Low-Power Analysis
Documentation—Scope and Organization

Documentation—Scope and Organization
Power Aware simulation augments normal HDL simulation capabilities with the ability to
specify, model, and simulate the effects of active power management logic that will be added to
the design during implementation.

The success of applying Power Aware depends on understanding the structure of your design
and having the ability to run ModelSim, plus—more generally—your goals of using simulation
and verification software products (such as ModelSim).

The main purpose of this manual is to provide basic usage and reference information on how to
run a Power Aware simulation in ModelSim. The primary focus is on how to define the power
intent of your design and then apply your conventional ModelSim simulation flow to verify
power gating behavior.

Note that there are some areas related to Power Aware operation that this manual is not intended
to cover:

• UPF standards — The UPF Commands and Reference appendix lists the UPF
commands and arguments that are currently supported for both v1.0 and v2.0. However,
complete usage information from those standards is not duplicated in this manual.

• Basic and advanced ModelSim usage — Please refer to the other manuals of ModelSim
documentation for information on operations related to Power Aware simulation, such
as: command usage, the graphical user interface (GUI), design optimization, waveform
analysis, and finite state machines.

• Power design — Reporting power estimation or creating an RTL architecture for
optimized power implementation.

Specifically, the scope of this manual falls into the following broad areas:

Usage

• Terminology definitions

• Basic operating instructions for Power Aware simulation

• ModelSim commands specific to Power Aware

• Differences between RTL and GLS

• UPF commands for the power specification file

• Reporting of results

Getting Started With Low-Power Analysis
Contents of This Manual

Power Aware User’s Manual, v10.1 17

Design

• General discussion of low-power design and analyis

• HDL models used for Power Aware analysis

Flow

• General discussion of low-power analysis as part of overall design flow

• The distinctions between RTL and gate-level simulations, and the advantages of each at
different places in the flow

Contents of This Manual
This manual contains both an introductory overview of the Power aware simulation capabilities
and detailed reference information about power aware simulation features and usage.

• Chapters 2 through 6 provide an introductory overview of basic usage.

• Appendices A through F provide more detailed reference information.

How to Use This Manual
If you are just beginning to learn about power aware simulation, read the following chapter:

• Concepts for Using Power Aware

If you are looking for an overview of Power Aware simulation capabilities and how they are
used, read the following chapter:

• Power Aware Simulation

If you are looking for an overview of the information provided by Questa Sim during power
aware simulation, to help you understand how active power management is working in your
design, identify problem areas, and track what has been verified, read the following chapters:

• Power Aware Reports

• Automatic Checking

• Visualization of Power Aware Operations

• UPF Commands and Reference

For more detailed reference information about specific topics such as UPF and its use, Power
Aware simulation commands and flows, report formats, messages, read the appropriate
appendices of this manual.

Power Aware User’s Manual, v10.118

Getting Started With Low-Power Analysis
How to Use This Manual

Related Documentation
Other documents that may be useful for understanding Power Aware simulation include the
following:

• ModelSim User’s Manual

This manual explains how to use ModelSim for simulation of hardware designs. It
contains descriptions of basic Questa SIM usage, especially simulation, optimization,
debugging, assertions, and GUI visualization of design source, schematics, waveforms.

• ModelSim Reference Manual

This manual contains a comprehensive listing and description of ModelSim commands,
arguments, and values.

• ModelSim Tutorial

This manual presents an introductory tutorial on the use of ModelSim for Power Aware
simulation. It provides a simple exercise on how to run a Power Aware simulation on
RTL design data for the Interleaver example provided as part of the ModelSim
installation. This exercise includes creating a UPF power specification file, defining
isolation and retention for the power domain, and evaluating simulation results
(waveforms and reports).

• IEEE 1801™-2009 Standard for Design and Verification of Low Power Integrated
Circuits

This IEEE standard defines the Unified Power Formal (UPF), a notation used for
specifying power intent for HDL designs.

Power Aware User’s Manual, v10.1 19

Chapter 2
Concepts for Using Power Aware

This chapter provides a brief description of basic usage elements for running Power Aware
simulation in the following sections:

• Power Specification File

• Power Aware Modeling

• Modeling Corruption

• Modeling Isolation

• Modeling Retention

• Modeling Bias

Power Specification File
To perform Power Aware verification, you need to provide a power specification file that
defines the low-power specification of the design. A power specification file can be written in
either of the following formats:

• Unified Power Format (UPF) — The Accellera standard format for low-power
specification, proposed by P1801 Low Power Working Group of the IEEE. This is the
recommended format for low-power specification for Power Aware simulations. For
more information on this format, refer to Unified Power Format (UPF).

• Power Configuration File (PCF) — A preliminary file format specific to ModelSim that
was developed to meet the specific needs of various customers and semiconductor
companies. For more information on this format, refer to PCF Syntax and Contents.

The power specification file is the key to the verification flow using Power Aware. This file
provides the following information required to overlay verification with the power control
network and Power Aware functionality:

• Power regions, voltage domains, and power islands

• Retention sequential models, their type, and the regions they are in
(including nodebug, encrypted, and protected regions)

• State and output corruption behavior in power-down situations

• Power control signals and the portions of the design they control

Power Aware User’s Manual, v10.120

Concepts for Using Power Aware
Power Aware Modeling

The power specification file is designed to capture all Power Aware characteristics of the design
at the RTL (or higher) in a compact form that can be easily used by the simulator.

Power Aware Modeling
Verilog and VHDL both make the fundamental assumption that all logic is powered on at the
beginning of the simulation and remains powered on throughout the simulation. Power Aware
simulation removes this assumption. To do so, additional logic is included in the simulation
model. This additional logic does the following:

• Defines the power management architecture to be imposed on the design

• Implements the behavior of power management elements

• Adapts the behavior of the design itself to reflect changes in power

To run Power Aware simulation, the normal build process for constructing the simulation model
is modified so that this additional logic can be added.

ModelSim provides default Verilog models for the behavior of power management elements
and the behavior of the design under active power management. The default models are
provided in your installation directory at the following location:

<install_dir>/verilog_src/upf_pack

With the model mapping capability defined in the power specification file, you can simulate
power on/ power off and retention using a model that accurately describes the power
down/power up sequence, power down/up behavior, as well as the save and restore sequence
and behavior based on actual silicon. ModelSim provides Power Aware analysis for both
Register Transfer Level (RTL) and Gate-Level simulation (GLS). Simulation at both levels uses
the standard Unified Power Format (UPF) power specification file to represent the power intent.

Note that a Power Aware model does not contribute to the normal functioning of the circuit,
which is what the RTL or Gate-Level model does. Instead, the Power Aware model overlays
Power Aware behavior over normal operations, based on inputs to the Power Aware control
signals (PWR, RET, or SAVE/RESTORE).

It is also possible for you to construct custom models for these behaviors. Refer to
Appendix C, Model Construction for Power Aware Simulation for more information on
Power Aware modeling.

Concepts for Using Power Aware
Power Aware Modeling

Power Aware User’s Manual, v10.1 21

Modeling Corruption
Corruption means the change of a signal from its current value to a corrupted value when a
power domain changes to the OFF state.

Corruption refers to the situation where the value of a signal becomes unpredictable when the
power supply for the element driving that signal is disconnected, changes to OFF, or drops
below some threshold. Corruption of a signal is represented by assigning a particular value to
the signal. The corruption value depends upon the type of the signal and is user-definable.
Depending upon the power intent format used and other control settings, the extent to which
corruption is applied may also vary.

When a design element is turned off, every sequential element within the powered-down
element and every signal driven from within the powered-down element is corrupted. As long
as the power remains off, no additional activity takes place within the powered down instance—
all processes within the powered down element become inactive, regardless of their original
sensitivity list. Events that were scheduled before the power was turned off and whose target is
inside a powered down instance have no effect.

When a design element is turned on (restored), corruption of sequential elements and signals
within the powered down element ends.

Continuous assignments once again become sensitive to changes to their righthand side
expressions, and other combinational processes (such as an always_comb block in
SystemVerilog) resume their normal sensitivity list operation. All continuous assignments and
other combinational processes are evaluated at power-up time to ensure that constant values and
current input values are properly propagated. Sequential elements will be re-evaluated on the
next clock cycle after power up.

Corruption Values
Signals are corrupted by assigning them their default initial value (such as X for 4-state types).
Default corruption values for Verilog and SystemVerilog are:

• 4-state logic types: ‘X

• 2-state logic types: ‘0

• SystemVerilog user-defined types: SystemVerilog default value

Default corruption values for VHDL are:

• Logic types: ‘X’

• Real types: 0.0

• User-defined types: `LEFT

Power Aware User’s Manual, v10.122

Concepts for Using Power Aware
Power Aware Modeling

Corruption Extent
You can specify corruption extent for a Power Aware analysis to any of the following:

• Outputs only

• Outputs and sequential elements

• Outputs, sequential elements, and internal wires

• Sequential and combinational elements

Caution
Changing the default corruption semantics may alter the simulation behavior and is not
recommended—you should make changes to corruption semantics only if you are sure
about the power domain requirements of your design.

The following are examples of observable changes in simulation behavior:

· Changing from -pa_ce=sc (default) to -pa_ce=o will not corrupt the sequential
elements. This will result in immediate re-evaluation, even in cases where a port is driven
by a register deep within hierarchy.

· Changing from -pa_ce=sc (default) to -pa_ce=osw will corrupt feed-throughs as
well and may give a false impression to insert isolation cells.

· Changing from -pa_ce=sc (default) to -pa_ce=os will not corrupt combinatorial
logic. This means if an isolated port is internally driven by a combinatorial logic, then it
will give a false impression that isolation may not be required at that port, since it is not
corrupted.

Table 2-1 gives a summary of these extents and their behavior for power off and on (restored).

Table 2-1. Corruption Extents and Behaviors

Corruption Extent Power Level Behavior

Outputs only Off Corrupt output ports of the instances that are at
domain boundary.

Use vopt -pa_ce o to force all domains to have
output only corruption extent.

On Release the output ports of the instance at domain
boundary. The signals that act as combinational
logic or latches will be re-evaluated at power-up.
The signals that act as flip flops will be
re-evaluated at next active clock edge.

Concepts for Using Power Aware
Power Aware Modeling

Power Aware User’s Manual, v10.1 23

Outputs and Sequential Off Corrupt outputs of the instances and all sequential
elements within a power domain.

Use vopt –ce os to create_power_domain in UPF
whose corruption extent is outputs and sequential
elements.

Use vopt –pa_ce os or vopt –pa_all to force all
power domains to this corruption mode.

On Release all corrupted values.

Re-evaluation of the combinational signal and
latches must occur.

Register evaluation occurs on the next control
edge of clock

Outputs, Sequential,
Wires

Off Corrupt outputs of the instances and all internal
wires and sequential elements within a power
domain.

On Release all corrupted values.

Re-evaluation of the combinational signal and
latches must occur.

Register evaluation occurs on the next control
edge of clock.

Sequential and
Combinational

Off Corrupt all signals, wires, registers that act as a
sequential and combinational logic in the power
domain.

On Release all signals, wires, registers that are
corrupted, as specified for Off.

These signals that act as a combinational logic and
latches will be re-evaluated at power-up.

These signals that act as a flip-flop will be re-
evaluated at next active edge.

Table 2-1. Corruption Extents and Behaviors (cont.)

Corruption Extent Power Level Behavior

Power Aware User’s Manual, v10.124

Concepts for Using Power Aware
Power Aware Modeling

Modeling Isolation
Isolation is used to separate signals that originate in a design element with power off from a part
of the design that has power on and that can still read the signals from the powered down
element.

Note
If the power net is turned off for a specified isolation portion of the design, the isolation
output is corrupted regardless of power domain states.

A particular domain may be powered off while another domain is operating in normal mode.
Isolation ensures the following:

• Powered-down regions do not drive unknown values into the rest of the design (isolation
on outputs).

• The rest of the design receives values that are functionally correct (isolation on inputs).

The UPF Specification of isolation strategy includes

• Specification of clamp value

• Isolation Power net(s)

• Isolation control

In UPF, you specify the conditions under which isolation is required as well as the clamp value:

• Use set_isolation and set_isolation_control commands to determine which ports are
to be isolated and where in the logic hierarchy the resulting isolation cells are to be
created.

• Clamp value can be 1, 0, Z, latch, any, or <value>—only 0, 1, Z, and latch are
supported in ModelSim.

• Control port can be active high or low.

Modeling Retention
Retention consists of saving the value of a design element in a power domain prior to switching
off the power to that element, then restoring that value after power to the element is switched
back on.

The set_retention and set_retention_control UPF commands determine which registers in a
power domain need to be retention registers and set the corresponding save and restore signals
for the retention registers.

Concepts for Using Power Aware
Power Aware Modeling

Power Aware User’s Manual, v10.1 25

In UPF, you specify a retention strategy where state preservation is required:

• Latch, Flip-flop, or Memory retention

• Retention power supply

• Retention controls to trigger retention

The general sequence for specifying retention in UPF is:

1. Define your power domains

create_power_domain

2. Specify the retention strategy—a set of registers in the domain requiring retention

set_retention

3. Specify the retention control signals for the strategy

set_retention_control

During simulation, each register that is to be retained creates two additional processes: one is
sensitive to the save signal in accordance to the save sense and the second process is sensitive to
the restore signal in accordance to the restore sense. A retention memory is also created for each
sequential element that needs to be retained.

The set_retention and set_retention_control commands determine which registers in a power
domain need to be retention registers and sets the corresponding save and restore signals for the
retention registers.

Edge-sensitive and Level-sensitive Control of Retention Models
ModelSim provides default Verilog models for retention cells that support both edge-sensitive
and level-sensitive detection of input control signals for save and restore functions. Note that
there are separate models for single and dual control signals:

• Single control signal — uses opposite (inverted) edge or level of one input signal to
initiate save and restore.

• Dual control signals — uses edge or level of two different input signals to initiate save
and restore.

The level-sensitive model accurately duplicates the behavior of a level-sensitive Liberty cell:
based on the save/restore level, the retention register switches between normal and retention
operations.

• When save is active, normal register behavior occurs—a balloon latch keeps latching the
output of the register.

Power Aware User’s Manual, v10.126

Concepts for Using Power Aware
Power Aware Modeling

• when restore is active, the retention behavior occurs—the data value (D) of the register
has no impact on output and the retained value (in the balloon latch) is transferred to the
register output. The balloon latch does not save any new value during this interval.

Automatic Model Selection

Based on how you specify retention controls in the UPF file, ModelSim automatically selects
edge-sensitive or level-sensitive model for retention. Automatic selection occurs according to
the following conditions:

• If both save_signal and restore_signal are level-sensitive and same signal is used for
both: use Single control, level-sensitive model.

• If both save_signal and restore_signal are level-sensitive and two different signals are
used for save and restore: use Dual control, level-sensitive model.

• If any control signal (save or restore) is edge-sensitive and same signal is used for both
save and restore: use Single control, edge-sensitive model.

• If any control signal (save or restore) is edge-sensitive and two different signals are used
for save and restore: use Dual control, edge-sensitive model.

Level-sensitive Retention Model Protocol

For the following UPF retention command with level-sensitive controls:

set_retention -domain PD1 -save_signal {save_restore high}
-restore_signal {save_resore low}

According to v2.0 of the UPF standard for level-sensitive UPF control, the save or restore
events are defined as trailing edge of the level-sensitive event. So, for this command, the
register output will be saved when save_restore goes from high to low (save event). And the
retained value will be transferred to register output at the low to high (restore event) transition
of save_restore signal.

Following protocol is followed by level-sensitive model:

• In save phase, normal register operation happen (D - > Q at clock edges). At save event
(defined above), register output gets latched.

• In restore phase, D has no effect on Q, so Q gets the retained value. At restore event,
normal operation resumes and Q will get new value of D from next active edge of clock.

• Register output gets corrupted when the primary power or retention power goes off.

Concepts for Using Power Aware
Power Aware Modeling

Power Aware User’s Manual, v10.1 27

• On primary power up (and also if retention power is on), retention behavior or normal
behavior of register resumes.

• Retention power off corrupts the register output and the retained value, regardless of the
primary power.

• For dual control signals, the retained value and register value both get corrupted when
save and restore signals are simultaneously active.

Modeling Bias
ModelSim provides support for different bias modes that allow for multi-voltage designs. In the
power specification file, you can specify bias control signals on a power domain to simulate
bias functionality. When you use a bias mode, the power domain is powered on but running
with reduced functionality. Any activity inside the domain will corrupt the contents of the
domain.

Implementing a bias mode performs retention behavior without inserting explicit retention
registers. This saves in area usage and also helps to reduce the leakage power. However, the
electrical characteristics of the domain during this period prohibit normal logic functioning and
thus the timing closure is not met. Therefore, you would want to catch any activity in the
domain and see the corrupted values of the logic cone in the Wave window.

There are two modes of bias operation, as described below.

Bias Mode 1: Corrupt on Change/Bias
In this mode, only the cone of logic that is driven by the active signal gets corrupted. Basically,
ModelSim corrupts the signal on which activity is detected, then that corruption gets propagated
to the logic cone driven by that signal.

You can specify the boolean expression that indicates when the bias mode is entered by using
the 'BIAS (boolean_expr)' keyword in your UPF file with the create_power_domain -bias
{boolean_expr} command.

Example

create_power_domain -bias pdd /tb/top, /tb/pg BIAS (/tb/bias)

Bias Mode 2: Corrupt All on Activity
In this mode, all the signals of the domain get corrupted when there is any activity on any of the
signal or the inputs to the domain.

Power Aware User’s Manual, v10.128

Concepts for Using Power Aware
Power Aware Modeling

Example

create_power_domain -bias pdd /tb/top, /tb/pg CORRUPT_ALL_ON_ACT (/tb/bias
)

Power Aware User’s Manual, v10.1 29

Chapter 3
Power Aware Simulation

This chapter describes how to use ModelSim commands to run optimization and simulation for
a Power Aware analysis.

Commands Used For Power Aware Simulation
You invoke Power Aware simulation with the same commands used for conventional
ModelSim simulation, although the optimization (vopt) and simulation (vsim) commands have
additional arguments.

For conventional ModelSim simulation, you use the following commands:

• vlog or vcom — Used to compile Verilog, SystemVerilog, or VHDL source code. For
Power Aware simulation, these commands are used in the same manner.

• vopt — Used to enable or disable optimization in the HDL design. For Power Aware
simulation, the vopt command also processes the power intent defined in a power
specification (UPF) file.

• vsim — Used to run simulation on the HDL design. For Power Aware simulation, the
vsim command also applies power aware simulation semantics to the HDL design.

For Power Aware simulation, you use the same commands, but with certain additional
arguments for vopt to turn on power intent processing and for vsim to enable Power Aware
simulation:

• vopt — For Power Aware, the vopt command elaborates a supplemental, alternate top-
level design in Verilog. This alternate design contains the Power Aware information that
you apply to simulation using the vsim command.

Note that you can still use vopt to enable or disable optimization on the actual design (in
conjunction with vsim).

• vsim — For Power Aware, the vsim command uses the additional files created by the
vopt run, including the synthesized top. However, because vsim knows the names of
these files and they are loaded automatically, you do not need to specify them when
running vsim. Thus, there is no relationship between the optimized top generated by
vopt and the top-level design unit used by vsim.

Power Aware User’s Manual, v10.130

Power Aware Simulation
Commands Used For Power Aware Simulation

For a listing of the Power Aware arguments provided for these commands, refer to
ModelSim Commands Used for Power Aware.

As shown in Figure 1-1, you can run a Power Aware simulation at two different points in your
design development:

• RTL level (before synthesis)

• Gate-level (after synthesis)

Moreover, by varying the arguments for the vopt and vsim commands, you can run a different
Power Aware analysis that is specific to each level. This matches the Power Aware analysis to
the level of abstraction of your design (see Where Is Power Aware in Your Design Flow?). For
example, you would use gate-level simulation (PA-GLS) to quickly verify the Power Aware
functionality after synthesis in order to identify functional defects that were not detected at the
RTL level.

Related Topic

General Steps for Running Power Aware
1. Map your libraries:

vlib <library_name>
vmap work <library_name>

2. Compile vendor-supplied Verilog models:

vlog <vendor_model_files>

These models contain Power Aware information supplied by
your vendor.

3. Compile your VHDL or Verilog design files (ignore
statements within translate_off/on and synthesis_off/on
pragmas):

vcom <design_files>
vlog <design_files>

4. Elaborate your top-level design to detect sequential elements,
such as flip-flops, latches, and memories:

vopt <design_top> -pa_upf <upf_file>

Where Is Power Aware in Your Design Flow?

1. Map Libraries

2. Compile Vendor
Models

3. Compile Design
Files

4. Elaborate Design

5. Simulate

Power Aware Simulation
Standard Flow For RTL

Power Aware User’s Manual, v10.1 31

This creates a special supplemental copy of your top-level design, specifically intended
for use with Power Aware. In addition, there are multiple methods of using the vopt
command to determine how to optimize a Power Aware simulation. Refer to Optimize
for information on different ways of using vopt and vsim.

5. Simulate the Power Aware version of your design.

vsim -pa <design_top>

Standard Flow For RTL
This section describes the standard command flow used to perform Power Aware simulation for
RTL designs. This flow consists of the following sequence of operations:

1. Compile

2. Optimize

3. Simulate

Compile
Compile your design by running either the vcom (for VHDL) or the vlog (for Verilog)
command as you would for any VHDL or Verilog/SystemVerilog design.

Note
Do not use the -novopt argument with either vcom or vlog when you compile for Power
Aware simulation.

For more information on using vcom, refer to “Compiling a VHDL Design—the vcom
Command” in the User’s Manual.

For more information on using vlog , refer to “Invoking the Verilog Compiler” in the User’s
Manual.

Usage

vcom <files>
vlog <files>

Optimize
After you compile the design, use the vopt command with the following arguments:

Power Aware User’s Manual, v10.132

Power Aware Simulation
Standard Flow For RTL

-pa_upf Specifies the name of the UPF file containing the power intent specification.
ModelSim reads the UPF file and generates information required to run
Power Aware simulation. You can write the UPF file in one of two ways:
either with respect to the top of the design-under-test (DUT), or with respect
to the top of the testbench (TB). If the UPF file is written with respect to the
DUT top, then you must specify vopt –pa_top <pathname> to specify the
path from the top module down to and including the DUT instance. See
Example 1 and Example 2, below.

-o Specifies the name for the resultant optimized design.

Note that you can also specify any other vopt arguments for conventional optimization to create
the optimized design. This sequence is similar to the conventional three-step optimization flow.

Example 1

If the UPF file is written with respect to the top of the design-under-test (DUT), and this module
is instantiated in the testbench top module TB as TB.dut, then you need to invoke vopt as
follows:

vopt TB –pa_top TB/dut –pa_upf DUT.upf [other vopt args]

where

• TB — the name of the top-level module of the test bench.

• TB/dut — the path from the test bench top down to the design top instance.

• DUT.upf — the name of the UPF file written with respect to the DUT top-level module.

• [other args] — any other vopt arguments used to control optimization.

Example 2

If the UPF file is written with respect to the TB top, then you need to invoke vopt as follows:

vopt TB_top –pa_upf TB.upf –o SimModel [other vopt args]

where

• TB_top — the name of the top-level module of the test bench.

• TB.upf — the name of the UPF file written with respect to TB_top.

• SimModel — the name of the simulation-ready output file to be generated .

• [other args] — any other vopt arguments used to control optimization.

Power Aware Simulation
Alternate Flows For RTL

Power Aware User’s Manual, v10.1 33

Note
To use a PCF file instead of UPF file for these examples, use the vopt -pa_cfg argument
instead of vopt -pa_upf.

Usage Notes

Power Aware simulation involves register/latch detection in order to identify state elements in
the design that need to be corrupted and may need to have their state retained during power
down. However, your design may contain code that is not at the appropriate level of abstraction
for register/latch detection, so you may need to exclude such code from power intent
processing. Also, you may want to exclude parts of the design from Power Aware simulation
for other reasons (see “Excluding Design Elements from Power Aware” in Appendix A).

ModelSim provides additional vopt arguments for Power Aware that you can use when
generating the optimized design. For more information on these arguments, refer to “Using vopt
for Power Aware Simulation” in the Reference Manual.

A simulation model created for Power Aware simulation contains specific Power Aware
simulation artifacts and cannot be used for normal simulation.

Simulate
After you compile and optimize the design, run the vsim command on the optimized design
using the -pa argument to perform Power Aware simulation on it.

Example

vsim SimModel -pa [other vsim args]

where

• SimModel — the name of the simulation-ready output file generated by vopt.

• -pa — invokes simulation in Power Aware mode.

• [other args] — any other vsim arguments used to control simulation.

Alternate Flows For RTL
This section describes alternate command flows that you can use for Power Aware simulation:

• Optimize DUT Separately

• Delay Optimization

• Inhibit Optimization

Power Aware User’s Manual, v10.134

Power Aware Simulation
Alternate Flows For RTL

• PDU-Based Simulation

Optimize DUT Separately
In conventional simulation, it is often desirable to optimize the design-under-test (DUT)
separately from the test bench, so that you can use the same optimized DUT model with
multiple test benches. This approach can also be applied to Power Aware simulation, provided
that the DUT appears at the same location in each test bench.

Note
This flow is not compatible with Power Aware debugging.

Compile
There are no compilation differences for this flow, so you can run the vcom or vlog command
on your design as with any other simulation.

Optimize
To implement this flow, run the vopt command with the following arguments to elaborate and
optimize the DUT and apply power intent to it:

• -pa_prefix

• -pa_upf

• -o

Example

vopt DUT_top \
–pa_prefix <TB_path> \
–pa_upf DUT.upf \
–o SimModel \
[other vopt args]

where

• DUT_top — is the name of the top-level module of the design under test.

• <TB_path> — is the path from the test bench top down to the design top instance.

• DUT.upf — is the name of the UPF file written with respect to the DUT top-level
module.

• SimModel — the name of the simulation-ready output file to be generated.

• [other vopt args] — any other vopt arguments used to control optimization.

Power Aware Simulation
Alternate Flows For RTL

Power Aware User’s Manual, v10.1 35

Simulate
To implement simulation for this flow, run the vsim command on the test bench using the -pa
argument to invoke Power Aware simulation.

Example

vsim SimModel -pa [other vsim args]

where

• SimModel — the name of the simulation-ready output file generated by vopt.

• -pa — invokes simulation in Power Aware mode.

• [other vsim args] — any other vsim arguments used to control simulation.

Delay Optimization
In conventional simulation, you can perform what is referred to as a two-step optimization flow.
In this flow, you do not use the -o argument for vopt, so that optimization is not performed
(delayed) until you invoke the vsim command, at which point it is done implicitly. This delayed
optimization flow is also supported for Power Aware simulation—primarily to satisfy backward
compatibility with previous releases where it was the only flow available.

Compile
There are no compilation differences for this flow, so you can run the vcom or vlog command
on your design as with any other simulation.

Optimize
To implement this flow, run the vopt command on the test bench top with the -pa_upf argument
and TB.upf but without the -o argument. ModelSim reads and processes the UPF file without
generating an optimized output.

Example

vopt TB_top \
–pa_upf TB.upf \
[other vopt args]

where

• TB_top — is the name of the top-level module of the test bench.

• TB.upf — is the name of the test bench file written with respect to the test bench
top-level module.

Power Aware User’s Manual, v10.136

Power Aware Simulation
Alternate Flows For RTL

• [other vopt args] — any other vopt arguments used to control the simulation.

Simulate
To implement simulation for this flow, run the vsim command on the test bench using only the
-pa argument to invoke Power Aware simulation. When you invoke vsim on the test bench top
module rather than on an optimized simulation model, it will implicitly optimize the design
before running Power Aware simulation.

Example

vsim TB_top -pa [other vsim args]

where

• TB_top — is the name of the top-level module of the test bench.

• -pa — invokes simulation in Power Aware mode.

• [other vsim args] — any other vsim arguments used to control simulation.

Implicit Optimization
In conventional simulation, you can perform simulation without optimizing the design at all.
This inhibited optimization flow is also supported for Power Aware simulation. In this flow,
you do not invoke separate vopt step for UPF processing or optimization—it is implicitly
invoked from vsim using the -voptargs argument.

Compile
There are no compilation differences for this flow, so you can run the vcom or vlog command
on your design as with any other simulation.

Optimize
There is no explicit optimization step (you do not invoke the vopt command).

Simulate
To implement simulation for this flow, run the vsim command on the test bench using the -pa
argument, along with the -voptargs argument (specifying a UPF file) to invoke Power Aware
simulation. When you invoke vsim on the test bench top module, it implicitly performs UPF
processing and optimizes the design before beginning the Power Aware simulation.

Power Aware Simulation
Alternate Flows For RTL

Power Aware User’s Manual, v10.1 37

Example

vsim TB_top -pa -voptargs="-pa_upf test.upf <other vopt args>"
<other vsim args>

where

• TB_top — is the name of the top-level module of the test bench.

• -pa — invokes simulation in Power Aware mode.

• -voptargs — instructs ModelSim to apply arguments for the vopt command. For this
flow, you specify -pa_upf <filename> to invoke vopt. Note that the -pa_prefix and
-pa_bbox arguments are meaningless here and have no effect.

• [other vsim args] — any other vsim arguments used to control simulation.

Inhibit Optimization
In conventional simulation, you can perform simulation without optimizing the design at all.
This inhibited optimization flow is also supported for Power Aware simulation.

In this flow, you do not use the -o argument for vopt, so that optimization is not performed until
you invoke the vsim command, at which point you can use the -novopt argument to prevent
optimization from being performed for the simulation session.

Compile
There are no compilation differences for this flow, so you can run the vcom or vlog command
on your design as with any other simulation.

Optimize
To implement this flow, run the vopt command on the test bench top with the -pa_upf argument
and TB.upf but without the -o argument. ModelSim reads and processes the UPF file without
generating an optimized output.

Example

vopt TB_top \
–pa_upf TB.upf \
[other vopt args]

where

• TB_top — is the name of the top-level module of the test bench.

Power Aware User’s Manual, v10.138

Power Aware Simulation
Alternate Flows For RTL

• TB.upf — is the name of the test bench file written with respect to the test bench
top-level module.

• [other vopt args] — any other vopt arguments used to control the simulation.

Simulate
To implement simulation for this flow, run the vsim command on the test bench using the -pa
and -novopt arguments to invoke Power Aware simulation with no optimization on the design.

Example

vsim TB_top -pa -novopt [other vsim args]

where

• TB_top — is the name of the top-level module of the test bench.

• -pa — invokes simulation in Power Aware mode.

• -novopt — instructs ModelSim to disable optimization.

• [other vsim args] — any other vsim arguments used to control simulation.

PDU-Based Simulation
In conventional simulation, it is often desirable to optimize the design-under-test (DUT)
separately from the test bench, so that you can use the same optimized DUT model (pre-
optimized design unit, PDU) with multiple test benches. You can also apply this approach to
Power Aware simulation, provided that the DUT appears at the same location in each test
bench.

Compile
There are no compilation differences for this flow, so you can run the vcom or vlog command
on your design as with any other simulation.

Optimize
To implement this flow, run the vopt command with the following arguments to elaborate the
DUT and apply power intent to it:

• -pa_defertop

• -pa_upf

Power Aware Simulation
Standard Flow for Gate-Level Simulation

Power Aware User’s Manual, v10.1 39

Example

vopt DUT_top \
-pa_defertop \
-pa_upf DUT.upf
[other vopt args]

where

• DUT_top — is the name of the top-level module of the design under test.

• DUT.upf — is the name of the UPF file written with respect to the DUT top-level
module.

• [other vsim args] — any other vsim arguments used to control simulation.

Simulate
To implement simulation for this flow, run the vsim command on the test bench using the
-pa_top and -pa arguments to invoke Power Aware simulation.

Example

vsim TB_top -pa_top <DUT_path> -pa [other vsim args]

where

• TB_top — is the name of the top-level module of the test bench.

• <DUT_path> — is the path from the test bench top to the design top instance.

• -pa — invokes simulation in Power Aware mode.

• [other vsim args] — any other vsim arguments used to control simulation.

Standard Flow for Gate-Level Simulation
This section outlines general steps for using ModelSim to perform Power Aware gate-level
simulation (PA-GLS). In addition, ModelSim supports the use of Liberty libraries for gate-level
Power Aware analysis.

• Gate-Level Simulation

• General Steps for Power Aware Gate-Level Simulation

• Liberty Library Models

Power Aware User’s Manual, v10.140

Power Aware Simulation
Standard Flow for Gate-Level Simulation

• Delay Optimization Using Liberty Models

• Using a Liberty Database

Gate-Level Simulation
Power Aware Gate-Level Simulation (PA-GLS) provides verification of a gate-level functional
netlist using a power specification file to represent the power intent (that is, the supply network
and information regarding the power control signals and their connectivity).

Power Aware GLS performs the verification by properly connecting the supplies to the cells
present in the netlist and simulating the supply network defined in your power specification file
(usually a UPF file). This results in proper corruption semantics of the netlist and exposes the
potential bugs that could be present in the design.

Typically, a gate-level netlist already contains partial power intent, while the remaining intent is
present in the UPF file. Power Aware GLS currently targets the post- synthesis gate-level netlist
(without timing characteristics).

The objective is to quickly verify the Power Aware functionality after synthesis, with the
intention of catching functional defects that could not be detected at RTL.

In addition to the power intent information in your UPF file and the netlist, ModelSim also
utilizes accompanying Liberty models of the instantiated cells when performing the Power
Aware simulation. For more information on Liberty models, refer to Liberty Library Models.

UPF in Gate-Level Simulation
To represent the power intent for GLS, ModelSim supports the use of a gate-level functional
netlist using a UPF file. Typically, a gate-level netlist already contains partial power intent,
while the remaining intent is present in the UPF file.

General Steps for Power Aware Gate-Level Simulation
The command flows for Power Aware GLS are two variations on the Delay Optimization flow
for Power Aware RTL Simulation. However, to enable gate-level simulation you need to
specify the -pa_gls argument for both the vopt and vsim commands. Additionally, any Liberty
library model information that you want to include is passed to Power Aware processing using
Liberty-specific options (see “Liberty Library Models,” below).

This section describes the standard command flow used to perform Power Aware simulation for
gate-level designs. This flow consists of the following sequence of operations:

1. Compile

2. Optimize

Power Aware Simulation
Standard Flow for Gate-Level Simulation

Power Aware User’s Manual, v10.1 41

3. Simulate

Figure 3-1 shows a more graphical representation of these steps.

Figure 3-1. Basic Usage Model for PA-GLS

Liberty Library Models
The Liberty library modeling standard is a library delivery system specially architected for
current-source models. The open source Liberty library modeling format is widely supported as

VSIM
Simulate and Optimize

• Performs PA
simulation on the
design

• Optimizes the
design

VOPT
Analyze and Elaborate

• Takes generated
UPF as input

• Uses Liberty
information

• Generates PA
information dump

VLOG or VCOM
Compile

• Analyzes and
compiles the design

1.

2.

3.

Power Aware User’s Manual, v10.142

Power Aware Simulation
Standard Flow for Gate-Level Simulation

a standard throughout the semiconductor industry. Liberty is supported by numerous
semiconductor vendors, EDA vendors, and production EDA tools.

The Open Source Liberty web site is a comprehensive online resource for the Liberty library
modeling standard:

 http://www.opensourceliberty.org/

This site also provides the latest news and information regarding Liberty and the Liberty
Technical Advisory Board (LTAB).

Power Aware GLS uses the information present in the Liberty library to create proper
connection of the supplies and the control signals that are defined in the UPF file. Liberty uses
attributes to define this connectivity.

Delay Optimization
The standard command flow for PA-GLS is the delayed optimization, which is similar to that
for RTL. This flow is based on the two-step optimization flow of conventional simulation—
you do not use the -o argument for vopt, so that optimization is not performed until you invoke
the vsim command, at which point it is done implicitly.

Compile
Compile the netlist, cells, and testbench by running either the vcom (for VHDL) or the vlog (for
Verilog) command as you would for any VHDL or Verilog/SystemVerilog design.

Example

vlog -f compile_gls.f

Note
Do not use the -novopt argument with either vcom or vlog when you compile for Power
Aware simulation.

For more information on using vcom, refer to “Compiling a VHDL Design—the vcom
Command” in the User’s Manual.

For more information on using vlog , refer to “Invoking the Verilog Compiler” in the User’s
Manual.

Optimize
After you compile the design, use the vopt command with the following arguments (without the
-o argument, Questa SIM reads and processes the UPF file without generating an optimized
output.):

http://www.opensourceliberty.org/

Power Aware Simulation
Standard Flow for Gate-Level Simulation

Power Aware User’s Manual, v10.1 43

-pa_gls Instucts ModelSim to perform gate-level optimization on the design.

-pa_upf Specifies the name of the UPF file, which contains a gate-level netlist with
partial power intent. The remaining intent is provided as UPF commands, as
with RTL.

-pa_lib Specifies a destination library for dumping the Power Aware information.
Note that you must use the vlib command to create the library, then use the
library name as the value for this argument (pa_lib_name).

Usage

vopt -pa_gls -pa_upf netlist.upf <netlist top> -pa_lib <pa_lib_name>

Simulate
To implement simulation for this flow, run the vsim command on the test bench using the -pa
and -novopt arguments to invoke Power Aware simulation with no optimization on the design.

-pa_gls Instucts ModelSim to perform gate-level simulation on the design.

-L Instucts ModelSim to use a library of precompiled Power Aware behavioral
models (specify mtiPA, which is the default library defined in your
modelsim.ini file).

-pa_lib Instructs ModelSim to load Power Aware information from library
(pa_lib_name).

Usage

vsim -L mtiPA -pa_gls <testbench top> -pa_lib <pa_library_dump>

Delay Optimization Using Liberty Models
Once you have the Liberty model files that characterize the cells used in your gate-level netlist,
the basic command sequence for using them in a Power Aware simulation is shown below.

This sequence is similar to the Power Aware GLS described in Delay Optimization. However,
this flow, you use the vopt command two separate times to do the following:

1. Parse the Liberty files and create a database with Power Aware cell information

2. Configure the simlation

This flow is generally better when you are working with a design and a set of Liberty files that
are very large.

Power Aware User’s Manual, v10.144

Power Aware Simulation
Standard Flow for Gate-Level Simulation

Compile
Use the vlog command to compile the netlist, cells, and testbench.

Example

vlog -f compile_gls.f

Optimize
1. Use the vopt command to parse the Liberty files and create a database with Power

Aware cell information. Note that you can specify multiple files with the -pa_libertyfiles
argument by separating file names with a comma.

Example 1

vopt –pa_libertyfiles=a.lib,b.lib \
 -pa_dumplibertydb=lib_db

2. Use the vopt command again with other Power Aware arguments to configure the
gate-level simulation.

Example 2

vopt -pa_gls \
 -pa_prefix "/interleaver_tester/" \
 -pa_replacetop "dut" \
 -pa_excludefile exclude_gls.dat \
 -pa_loadlibertydb=lib_db \
 -pa_upf compile.upf \
 -pa_lib work \
 +nowarnTFMPC \
 design_top

where

-pa_gls determines a gate-level simulation

“interleaver tester” testbench name

“dut” design instance name

lib_db loads the information in the Liberty database

compile.upf post-synthesis UPF file

Simulate
Use the vsim command to run the Power Aware gate-level simulation (PA-GLS). ModelSim
then compiles the model information into an internal database that is used by Power Aware
processing. At the end of processing, ModelSim deletes this database by default.

Power Aware Simulation
Standard Flow for Gate-Level Simulation

Power Aware User’s Manual, v10.1 45

Example

vsim interleaver_tester \
 -pa_gls \
 -pa_lib work \
 -L mtiPA

Using a Liberty Database
You can specify one or more Liberty files to use with the vopt command with the -libertyfiles
argument. By default, using Liberty files creates an internal database, where library data is
dumped. You can customize how to use this database with the following vopt arguments:

• -pa_dumplibertydb

• -pa_libertyupdate

• -pa_libertyrefresh

• -pa_loadlibertydb

In the following examples, consider two liberty files, a.lib and b.lib, each with its own library
(A and B, respectively).

Example 3-1. Use the Default Database to Create a Liberty Dump

The following command

vopt -libertyfiles=a.lib,b.lib

analyzes a.lib and b.lib files and creates the dumps for A and B in an internal database. These
dumps are used for Liberty data in a Power Awere analysis; the internal database is deleted at
the end of vopt run.

Example 3-2. Reuse a User-Defined Database to Create a Liberty Dump

The following command

vopt -libertyfiles=a.lib,b.lib -pa_dumplibertydb=/home/user/libdumps/LVT

analyzes a.lib and b.lib files and creates the dumps for A and B are created in
/home/user/libdumps/LVT, which is used in the Power Awere analysis. You can then reuse the
LVT databse in a future vopt run by specifying the -pa_loadlibertydb argument.

Power Aware User’s Manual, v10.146

Power Aware Simulation
Standard Flow for Gate-Level Simulation

Example 3-3. Replace an Existing Database to Create a Liberty Dump

If the cache directory already contains a dump for a Liberty library, you can replace the existing
dump with a new one using -pa_libertyupdate argument. First, run the following:

vopt -libertyfiles=a.lib,b.lib -pa_dumplibertydb=/home/user/libdumps/LVT

This analyzes the a.lib and b.lib files as before, but /home/user/libdumps/LVT already contains
the dumps for A and B, so the old dumps are used in the Power Aware flow.

When you run the following:

vopt -libertyfiles=a.lib,b.lib -pa_dumplibertydb=/home/user/libdumps/LVT
-pa_libertyupdate

the a.lib and b.lib files are analyzed and dumped in /home/user/libdumps/LVT as before, and
LVT already contains the dumps for A and B. But now, because of the -pa_libertyupdate
argument, the old dumps are replaced with the new dumps, which are used in the Power Aware
analysis.

Usage Notes on Creating a Liberty Dump
• To refresh old library dumps in the cache directory created with -pa_loadlibertydb or

-pa_dumplibertydb, use the -pa_libertyrefresh argument.

• You can use dumps created with one vopt run in subsequent vopt runs.

• You can enable debugging of designs containing Liberty cells (Debugging Designs
Containing Liberty Cells, below).

Loading Liberty Dumps
When you run vopt, ModelSim loads the current liberty dump from the internal database or
from the directory that you specify with the -pa_dumplibertydb argument.

You can also load additional liberty dumps created in a previous vopt run using
-pa_loadlibertydb argument, as follows:

vopt -pa_loadlibertydb=/home/user/libdumps/LVT

Debugging Designs Containing Liberty Cells
To enable debugging of designs containing Liberty cells, you need to specify the location of the
Liberty library file using the -debugdb argument as part of the vopt command. For example:

vopt -libertyfiles=a.lib,b.lib -debugdb

Power Aware Simulation
Standard Flow for Gate-Level Simulation

Power Aware User’s Manual, v10.1 47

This enables schematic viewing and causality analysis using Liberty logic cell definitions.

Note
You can also enable debugging and schematic viewing by setting the
MTI_LIBERTY_PATH environment variable to the directory location containing
Liberty library files.

Automatic Detection of Power Management Cells
Gate-level netlists may have some of the Power Management cells (isolation, level-shifter, or
retention) corresponding to the UPF strategy already instantiated in the netlist. Some of these
cells may already be specified as a value for the –instance argument of the set_isolation,
set_level_shifter, or set_retention commands of the UPF strategy in UPF file.

For the rest of the cells that are not specified in the UPF file, ModelSim automatically detects
the right UPF strategy to which they belong and treats them in a similar way to cells of that
strategy specified with an -instance argument.

By default, ModelSim implements automatic detection of Power Management cells when you
run vopt -pa_gls.

Auto detection of Power Management cells leverages the following information for:

• Liberty attributes

o is_isolation_cell

o is_level_shifter

o retention_cell

• lib_cells specified with the following UPF commands:

o map_isolation_cell

o map_level_shifter cell

• Arguments for the UPF name_format command

o -level_shift_prefix

o -level_shift_suffix

o -isolation_prefix

o -isolation_suffix

• Synopsys pragmas

Power Aware User’s Manual, v10.148

Power Aware Simulation
Standard Flow for Gate-Level Simulation

o isolation_upf

o retention_upf

Reports

The cells detected as an instance of some strategy are reported in report.upf.txt. For example:

Power Domain: A, File: ./src/case1/test.upf(11).
 Creation Scope: /tb/dut
 ...
 Isolation Strategy: ISO1, File: ./src/case1/test.upf(22).
 Isolation Supplies:
 power : /tb/dut/VDD_0d99
 ground : /tb/dut/VSS_0d99
 Isolation Control (/tb/dut/restore), Isolation Sense (HIGH), Clamp
Value (0), Location (fanout)
 Signals with -instance isolation cells:
 1. Signal : /tb/dut/instA/out, isolation cell :
/tb/dut/iso_1_UPF_ISO

Messages

When ModelSim is unable to detect the UPF strategy of an isolation/level shifter cell, Power
Aware simulation semnatics are disabled and the cell is treated as always ON. The following
message is displayed:

** Warning: (vopt-9768) Power aware simulation semantics disabled for
’/tb/dut/instA/ls_0_UPF_LS’ as its power aware strategy could not be
identified.

For a cell identified as retention cell, ModelSim flags a warning if the cell is also identified as
level-shifter or isolation cell. ModelSim then processes it as either a retention or an
isolation/level-shifter cell, and the following message is displayed:

** Warning: UPF: (vopt-9823) Power aware cell ’/tb/dut/iso_1’ identified
as both ’isolation’ cell and ’retention’ cell. Assuming it to be a
’isolation’ cell

Power Aware User’s Manual, v10.1 49

Chapter 4
Power Aware Reports

You can use the vopt command to generate reports for a Power Aware simulation run, and then
examine them to validate the application of the power intent on your design. Power Aware
reports are generated by the vopt command using the -pa_genrpt argument.

Running vopt -pa_genrpt generates a Power Aware report containing the following:

• The intent of the low-power defined in the power specification file.

• For UPF, either static or dynamic information on the current Power Aware simulation
(including connections to supply and ground nets). See UPF Reports.

• For PCF, a count of the power aware elements in the design with respect to the power
domains. See PCF Reports.

• Any additions you may need to make to the specification file to achieve correct Power
Aware functionality. For example, certain sections of the design that are non-
synthesizable (such as a test bench) should not be inside a power domain. The report
may suggest that you put this section of the design inside an always-on power domain.

• Behavioral constructs that must be in an always-on power domain.

Generating Reports for Power Aware
You can use different values with the -pa_genrpt argument of vopt to generate a variety of
Power Aware reports:

• Table 4-1 lists the values for -pa_genrpt and their corresponding reports for UPF.

• Table 4-2 lists the values for -pa_genrpt and their corresponding reports for PCF.

How to Generate a Report with vopt -pa_genrpt
Syntax

vopt -pa_genrpt=[[nv | v][+{ud | us | u}][+b] [+pa] [+de]]

Description

• The -pa_genrpt argument generates report files listed in Table 4-1 and Table 4-2.

• If you do not specify a value for the -pa_genrpt argument, all reports are generated.

Power Aware User’s Manual, v10.150

Power Aware Reports
UPF Reports

• The default location for Power Aware reports is the current working directory. To
change the location where report files are saved, use the following command:

vopt -pa_reportdir <pathname>

• Specify one value for -pa_genrpt from one or more of the following sets:

o nv, v

o ud, us, u

o b

o pa

o de

• To specify more than one reporting value for -pa_genrpt, use the + operator between
values. For example:

vopt -pa_genrpt=nv+us+de

For additional reference information on the -pa_genrpt argument, refer to the vopt
command in the ModelSim Reference Manual.

UPF Reports
If you are using a UPF file for your Power Aware analysis, you can obtain the following reports
by specifying values for vopt -pa_genrpt described in Table 4-1:

• UPF Power Intent Report (report.mpsa.txt)

• UPF Static Report (report.upf.txt)

• Static Checking UPF Reports (report.static.txt, report.nretsyncff.txt)

• Dynamic UPF Report (displayed in transcript window)

• Architecture Report (report.pa.txt)

• Design Elements Report (report.de.txt)

Power Aware Reports
UPF Reports

Power Aware User’s Manual, v10.1 51

Table 4-1. Generating UPF Reports for Power Aware

Report Type Command Syntax Description Report Output

Power Intent:
Non-verbose
(default)

vopt
-pa_genrpt=nv

Displays a count of the
Power Aware elements
in the design with respect
to power domains, along
with additional
information on power
intent. This is the default
if you do not specify nv
or v.

report.mpsa.txt

Power Intent:
Verbose

vopt
-pa_genrpt=v

Displays the hierarchical
path of individual Power
Aware elements.

report.mpsa.txt

Dynamic vopt
-pa_genrpt=ud

Includes time and
polarity of controls (such
as control port of a
power switch, retention
save and restore signals,
isolation enable signal),
plus Power Domain
Status in the form of
<Power Domain name>,
<Strategy name>,
<Control signal names>,
<Active Sense>,
<Current polarity
value>.

Transcript window (no file)

Static vopt
-pa_genrpt=us

Static reporting. Includes
power domains and their
supplies, power
switches, retention,
isolation, level-shifting
strategies, and power
state tables.

report.upf.txt
report.static.txt

Dynamic and
Static

vopt
-pa_genrpt=u

Combined dynamic and
static reporting.

Transcript window (dynamic)
report.upf.txt (static)

Bitwise
expanded port
data

vopt
-pa_genrpt=b

Writes bitwise expanded
information for isolated
and level shifted ports.

report.upf.txt

Power Aware User’s Manual, v10.152

Power Aware Reports
UPF Reports

UPF Power Intent Report
Report Output: report.mspa.txt

Command: vopt -pa_genrpt=nv | v

This report file contains the information related to the power intent that has been applied on the
user design. File contents are structured according to power domains and provide hierarchical
path names of the signals and instances that are affected by the power intent. This report also
contains the count of retention and non-retention cells. The report.mspa.txt file does not report
on objects/hierarchy/instances that are excluded from Power Aware.

The structure of this report file is described below.

• First entry in the report file is the keyword Total followed by the top design module
specified in parentheses. Example:

 Total (/tb/top)

• The next entry is the consolidated count of all the types of cells in the design, in the
format CELL_TYPE # Count, where CELL_TYPE could be any of the following:

o NPM_FF: These represent non-power management flip-flops or corrupt flip-flops,
which do not have retention associated with them. During simulation, they get
corrupted only when power domain is switched off. Example:

NPM_FF # 1

Architecture vopt
-pa_genrpt=pa

Lists all information
related to Power Aware
architecture in the
design.

report.pa.txt

Design
Elements

vopt
-pa_genrpt=de

Contains information on
power design elements in
the design.

report.de.txt

Isolation Cell
Information

vopt -
pa_genrpt=u+c

Dumps hierarichal path
of isolation cells placed
for a candidate port.

report.upf.txt

Table 4-1. Generating UPF Reports for Power Aware (cont.)

Report Type Command Syntax Description Report Output

Power Aware Reports
UPF Reports

Power Aware User’s Manual, v10.1 53

o NPM_LA: These represent non-power management latches or corrupt latches,
which do not have retention behavior associated with them. During simulation, they
get corrupted only when power domain is switched off. Example:

NPM_LA # 3

o OUTPUT: These represent combinatorial logic that belong to the power domain.
During simulation, they get corrupted only when power domain is switched off.
Example:

OUTPUT # 3

o USER_DEFINED: For any user-defined retention models, the names of the model
will be printed. Example:

upf_retention_ret # 2

Example excerpt

Total (tb)
upf_retention_ret # 2
NPM_FF # 1
NPM_LA # 3
OUTPUT # 3

• After the consolidated counts, all the power domains are then listed in the following
format <PD_NAME> sub_total (<Instance hierarchial paths> separated by space). The
instance hierarchical paths are the paths of those instances that contain objects that are
affected by the current power domain. Example:

pd sub_total (/tb/top_vh /tb/top_vl)

• Listed next are the individual CELL_TYPEs for that power domain. The hierarchical
paths of objects belonging to those CELL_TYPEs are then listed below the keyword
CELL_TYPE # Count followed by the individual count.

Note
The difference between verbose (-pa_genrpt=v) and non-verbose mode (
-pa_genrpt=nv) is the reference to hierarchical paths of the objects. This difference is
shown in the following report excerpts.

Example excerpt—verbose mode

pd sub_total (/tb/top_vh /tb/top_vl)

Power Aware User’s Manual, v10.154

Power Aware Reports
UPF Reports

upf_retention_ret # 2
 /tb/top_vh/q_regvh 1
 /tb/top_vl/q_regvl 1

 NPM_LA # 2
 /tb/top_vh/q_latvh 1
 /tb/top_vl/q_latvl 1

 OUTPUT # 2
 /tb/top_vh/q_combvh 1
 /tb/top_vl/q_combvl 1

Example excerpt—non-verbose mode

pd sub_total (/tb/top_vh /tb/top_vl)

 upf_retention_ret # 2

 NPM_LA # 2

 OUTPUT # 2

Example of UPF File and Power Intent Report
Example 4-1 shows an excerpt from a UPF specification file that defines power domains,
supply ports, switching behavior, retention strategy, and isolation strategy.

Example 4-2 shows an excerpt of a power intent report.

Example 4-1. UPF File Excerpt

upf_version 1.0

set_scope tb
create_power_domain pd_aon -include_scope
create_supply_port vdd_port -domain pd_aon
create_supply_port gnd_port -domain pd_aon
create_supply_net vdd_net -domain pd_aon
create_supply_net gnd_net -domain pd_aon
connect_supply_net vdd_net -ports { vdd_port }
connect_supply_net gnd_net -ports { gnd_port }
set_domain_supply_net pd_aon -primary_power_net vdd_net -
primary_ground_net gnd_net

#####################
#pd Power Domain
#####################
create_power_domain pd -elements { top_vl top_vh }
create_supply_port V_pd_port -domain pd
create_supply_port G_pd_port -domain pd
create_supply_net V_pd_net -domain pd
create_supply_net G_pd_net -domain pd
create_supply_net pd_pwr -domain pd
######################################

Power Aware Reports
UPF Reports

Power Aware User’s Manual, v10.1 55

connect supply ports to supply nets
######################################
connect_supply_net V_pd_net -ports { V_pd_port }
connect_supply_net G_pd_net -ports { G_pd_port }
set_domain_supply_net pd -primary_power_net pd_pwr -
primary_ground_net G_pd_net
######################################
Header switch for pd
######################################
create_power_switch pd_sw \
 -domain pd \
 -output_supply_port { out_sw_pd pd_pwr } \
 -input_supply_port { in_sw_pd V_pd_net } \
 -control_port { ctrl_sw_pd pwr } \
 -on_state { normal_working in_sw_pd { ctrl_sw_pd } } \
 -off_state { off_state {!ctrl_sw_pd} }
###############################
Retention Strategy for pd
###############################
set_retention pd_retention -domain pd -retention_power_net
V_pd_net
set_retention_control pd_retention -domain pd -save_signal { ret posedge }
-restore_signal { ret negedge }
map_retention_cell pd_retention -domain pd -lib_model_name
upf_retention_ret -lib_cell_type FF_CKHI

###############################
isolation Strategy for pd
###############################
set_isolation pd_isolation -domain pd -isolation_power_net
V_pd_net -clamp_value 1 -applies_to outputs
set_isolation_control pd_isolation -domain pd -isolation_signal iso
-isolation_sense high -location parent

Example 4-2. UPF Power Intent Report

----- QuestaSim Power Aware Report File -----

Total (tb)

 upf_retention_ret # 2

 NPM_FF # 1

 NPM_LA # 3

 OUTPUT # 3

pd sub_total (/tb/top_vh /tb/top_vl)

 upf_retention_ret # 2
 /tb/top_vh/q_regvh 1
 /tb/top_vl/q_regvl 1

Power Aware User’s Manual, v10.156

Power Aware Reports
UPF Reports

 NPM_LA # 2
 /tb/top_vh/q_latvh 1
 /tb/top_vl/q_latvl 1

 OUTPUT # 2
 /tb/top_vh/q_combvh 1
 /tb/top_vl/q_combvl 1

pd_aon sub_total (/tb/top_aon)

 NPM_FF # 1
 /tb/top_aon/q_regvl 1

 NPM_LA # 1
 /tb/top_aon/q_latvl 1

 OUTPUT # 1
 /tb/top_aon/q_combvl 1

-- NPM_FF => Denotes all Non Power Management Flip Flops of a Power
Domain.
-- NPM_LA => Denotes all Non Power Management Latches of a Power Domain.

UPF Static Report
Report Output: report.upf.txt

Command: vopt -pa_genrpt=us | u [+b]

The UPF static report typically contains the information that was specified in the specification
file and how ModelSim has processed that information. You can use this report to statically
validate the power intent (specified by UPF) and check whether it is properly applied by
ModelSim.

This report file contains information regarding the power domain, power supplies, power
switches and their characteristics, retention, isolation and level shifter strategies and
information regarding the power states and power state tables (PSTs).

Specifying a value of b writes bitwise expanded information for isolated and level shifted ports
into this report file.

Power Domain
The power domains are listed under the "Power Domain:" section of the report. This section
contains the name of the power domain and the reference to the UPF file that contains the UPF
command that created the power domain. All the other characteristics are listed in the following
lines shifted by a tab space and starting with the property name (such as Creation Scope,
Primary Supplies, Retention Strategy).

Power Aware Reports
UPF Reports

Power Aware User’s Manual, v10.1 57

UPF Command for Power Domain

create_power_domain pd -include_scope

Report File Sections and Subheadings

Definition

Power Domain: pd, File: ./src/supply1_prefix/test.upf(7)

Creation Scope

The creation scope of the power domain is listed in a subheading that defines the full
hierarchical path of the scope.

Power Domain: pd, File: ./src/supply1_prefix/test.upf(7).
Creation Scope: /tb/top

Primary Supplies

The primary supplies of the power domain are listed next under the subheading “Primary
Supplies.”

Power Domain: pd, File: ./src/supply1_prefix/test.upf(7).
Creation Scope: /tb/top
Primary Supplies:

power : /tb/top/pd_pwr
ground : /tb/top/G_pd_net

When a power domain is not connected to a primary supply, a warning message such as the
following is displayed and that domain is treated as always-on:

** Warning: test.upf(7): (vopt-9665) Power domain: 'pd' created in scope
'/top_vl' doesn't have a primary power/ground supply. Ignoring it.

Supply Set Handles

The supply set handles associated with the power domain are listed under the subheading
"Supply Set handles:" This provides the names of all handles and the absolute hierarchical path
of the supply set associated with them.

Supply Set handles:
1. primary: /tb/ss

The supply set functions are listed below the handle name under the heading "Functions:" and
the individual functions and associated supply nets are listed in the following lines:

Supply Set handles:
 1. primary: /tb/ss
 Functions:
 1. power : /tb/vdd_sw
 2. ground : /tb/gnd_net

Power Aware User’s Manual, v10.158

Power Aware Reports
UPF Reports

Note
If a handle is left unassociated with a supply set or supply net, the report will display
<Anonymous> in the relevant field.

Supply Set handles:
1. dummy_ss_handle: < Anonymous >
2. primary: /tb/ss

Functions:
1. power : /tb/snet_pwr
2. ground : < Anonymous >

Reference Ground

The reference ground specified in the supply set is listed after the handle name followed by
comma and "Ref Gnd:"

Supply Set handles:
1. primary: /tb/my_second_ss, Ref Gnd: /tb/gnd_net

Functions:
1. power : /tb/vdd_net

Power Switch
The power switches associated with the power domain are listed in the “Power Switch:” section
of the report. This listing contains the name of the power switch and the reference to the UPF
source file where that switch was created. All the output and input supply ports are listed in this
section, followed by control ports and the switch states mentioned in the UPF file.

UPF Command for Power Switch

create_power_switch pd_sw \
 -domain pd \
 -output_supply_port { out_sw_pd pd_pwr } \
 -input_supply_port { in_sw_pd1 V_pd_net1 } \
 -input_supply_port { in_sw_pd2 V_pd_net2 } \
 -control_port { ctrl_sw_pd1 pwr1 } \
 -control_port { ctrl_sw_pd2 pwr2 } \
 -on_state { normal_working1 in_sw_pd1 { (ctrl_sw_pd1 && !ctrl_sw_pd2)
} } \
 -on_state { normal_working2 in_sw_pd2 { (ctrl_sw_pd2 && !ctrl_sw_pd1)
} } \
 -off_state { off_state {(!ctrl_sw_pd1 && !ctrl_sw_pd2)} }

Report File Sections and Subheadings

Definition

Port information appears in the format of:

<formal_port_name> (<externally_connected_net>

Power Aware Reports
UPF Reports

Power Aware User’s Manual, v10.1 59

Output Supply Port

The output supply port of the switch is listed under the "Output Supply port:" heading.

out_sw_pd(/tb/top/pd_pwr)

Input Supply Port

The input supply ports are listed under Input Supply ports subheading.

1. in_sw_pd1(/tb/top/V_pd_net1)
2. in_sw_pd2(/tb/top/V_pd_net2)

Control Ports

1. in_sw_pd1(/tb/top/V_pd_net1)
2. in_sw_pd2(/tb/top/V_pd_net2)

Switch States

The specified states of the switch are listed under Switch States: heading. It lists each state in
the following format: <state_name> (<switch state>): <Boolean_expression>

1. normal_working2(ON) : ((ctrl_sw_pd2 && !ctrl_sw_pd1))
2. normal_working1(ON) : ((ctrl_sw_pd1 && !ctrl_sw_pd2))
3. off_state(OFF) : ((!ctrl_sw_pd1 && !ctrl_sw_pd2))

UPF Static Report Excerpt for Power Switch

Power Switch: pd_sw, File: test.upf(35).
 Output Supply port:
 out_sw_pd(/tb/top/pd_pwr)
 Input Supply ports:
 1. in_sw_pd1(/tb/top/V_pd_net1)
 2. in_sw_pd2(/tb/top/V_pd_net2)
 Control Ports:
 1. ctrl_sw_pd1(/tb/top/pwr1)
 2. ctrl_sw_pd2(/tb/top/pwr2)
 Switch States:
 1. normal_working2(ON) : ((ctrl_sw_pd2 && !ctrl_sw_pd1))
 2. normal_working1(ON) : ((ctrl_sw_pd1 && !ctrl_sw_pd2))
 3. off_state(OFF) : ((!ctrl_sw_pd1 && !ctrl_sw_pd2))

Retention Strategy
Report information for the retention strategies is listed under the subheading: "Retention
Strategy:" followed by the name of the strategy and the reference to the UPF source file where
the strategy was created.

UPF Commands for Retention

set_retention pd_retention -domain pd -retention_power_net V_pd_net

set_retention_control pd_retention -domain pd -save_signal { ret posedge }
-restore_signal { ret negedge }

Power Aware User’s Manual, v10.160

Power Aware Reports
UPF Reports

Report File Sections and Subheadings

Definition

Retention Strategy: pd_retention, File: ./src/supply1_prefix/test.upf(39)

Supplies

The retention supplies are listed in the next line with the full hierarchical path of the supply nets.

Retention Supplies:
power : /tb/top/V_pd_net
ground : /tb/top/G_pd_net

Control Signals and Sense

Retention control signals and the retention sense are listed as:

Retention SAVE (/tb/top/ret), Retention Sense (posedge)
Retention RESTORE (/tb/top/ret), Retention Sense (negedge)

UPF Static Report Excerpt for Retention

Retention Strategy: pd_retention, File: test.upf(39).
 Retention Supplies:
 power : /tb/top/V_pd_net
 ground : /tb/top/G_pd_net
 Retention SAVE (/tb/top/ret), Retention Sense (posedge)
 Retention RESTORE (/tb/top/ret), Retention Sense (negedge)

Isolation Strategy

 UPF Commands for Isolation

set_isolation pd_isolation -domain pd -isolation_power_net V_pd_net
-clamp_value 1 -applies_to outputs

set_isolation_control pd_isolation -domain pd -isolation_signal iso
-isolation_sense high -location parent

Report File Sections and Subheadings

Definition

Report information for the isolation strategy is listed under the subheading "Isolation Strategy:"
followed by the name of the strategy and the reference to the UPF source file where the strategy
was created.

Isolation Strategy: pd_isolation, File: test.upf(45).

Supplies

The isolation supplies are listed in the following line with the full hierarchical path name of the
supply nets as:

Power Aware Reports
UPF Reports

Power Aware User’s Manual, v10.1 61

Isolation Supplies:
power : /tb/top/V_pd_net
ground : /tb/top/G_pd_net

Control, Sense, or Clamp

Other information related to the isolation strategy (such as Isolation control and its sense, the
clamp value information and its location) are specified in the next line separated by comma in
the following format:

<Property>(Value), ...

where Property can be any of the following:

Isolation Control — The control signal triggering the isolation clamp value.

Isolation Sense — The sense of the control signal at which the clamp value is applied on
the isolated port.

Clamp Value — The clamp value specified.

Location — The location specified in the isolation strategy.

Isolation Control (/tb/top/iso), Isolation Sense (HIGH), Clamp Value (1),
Location (parent)

Ports

The list of candidate ports for isolation are listed in the next line with full hierarchical path
names of the port.

Isolated Signals:
1. Signal : /tb/top/q_combvl
2. Signal : /tb/top/q_latvl
3. Signal : /tb/top/q_regvl

UPF Static Report Excerpt for Isolation

Isolation Strategy: pd_isolation, File: test.upf(45).
 Isolation Supplies:
 power : /tb/top/V_pd_net
 ground : /tb/top/G_pd_net
 Isolation Control (/tb/top/iso), Isolation Sense (HIGH),
Clamp Value (1), Location (parent)
 Isolated Signals:
 1. Signal : /tb/top/q_combvl
 2. Signal : /tb/top/q_latvl
 3. Signal : /tb/top/q_regvl

Power Aware User’s Manual, v10.162

Power Aware Reports
UPF Reports

Level Shifter Strategy

UPF Command for Level Shifting

set_level_shifter pd_ls -domain pd -applies_to both

Report File Sections and Subheadings

Definition

The information regarding the level shifter strategy is specified under the sub-heading, "Level
Shifter Strategy:" followed by the strategy name and UPF file reference.

Level Shifter Strategy: pd_ls, File: test.upf(51).

Direction, Threshold, Filter, Location

Other information related to the level shifting strategy, such as shift direction, threshold,
-applies_to filter and location are listed in the following line in the format:

<Property>(Value), ...

where Property can be any of the following:

Rule — Shift Direction.

Threshold — Threshold value in volts.

Applies_to — The value of the -applies_to argument specified in the set_level_shifter
command.

Location — The location specified with the set_level_shifter command.

 Rule (both), Threshold (0), Applies_to (both), Location (automatic).

Ports

The list of candidate ports for level shifting are listed in the next line with full hierarchical path
names of the port.

Level Shifted Candidate Ports:
 1. Signal : /tb/top/q_combvl
 2. Signal : /tb/top/q_latvl
 3. Signal : /tb/top/q_regvl
 4. Signal : /tb/top/set
 5. Signal : /tb/top/reset
 6. Signal : /tb/top/clk
 7. Signal : /tb/top/d

UPF Static Report Excerpt for Level Shifting

Level Shifter Strategy: pd_ls, File: test.upf(51).
 Rule (both), Threshold (0), Applies_to (both), Location (automatic).
 Level Shifted Candidate Ports:

Power Aware Reports
UPF Reports

Power Aware User’s Manual, v10.1 63

 1. Signal : /tb/top/q_combvl
 2. Signal : /tb/top/q_latvl
 3. Signal : /tb/top/q_regvl
 4. Signal : /tb/top/set
 5. Signal : /tb/top/reset
 6. Signal : /tb/top/clk
 7. Signal : /tb/top/d

Power State Tables

 UPF Command for Power State Table

create_pst MyPowerStateTable -supplies {PD_ALU_primary_power
PD_RAM_sw/out_sw_PD_RAM}

Report File Sections and Subheadings

Definition

Report information for a power state tables (PST) is listed under the subheading, "Pst:"
followed by the name of the PST and the reference to the UPF source file where the PST was
created according to the create_pst command.

Pst: MyPowerStateTable, File:prototype.upf(80).

Scope

Hierarchical path of scope where the PST is created.

Scope /tb

Header

PST Header contains hierarchical paths of the supply nets/ports that form the columns of the
PST. The hierarchical paths are relative to the Scope of PST.

Header: PD_ALU_primary_power PD_RAM_sw/out_sw_PD_RAM

The lines that follow contain the rows of the PST as mentioned in the UPF and the
corresponding states of the supply nets/ports mentioned in the PST header. At the end, a list of
all possible states present on the objects mentioned in the header is shown. This includes
detailed information of the states listed with the voltage information.

For example:

Reboot prototype.upf(84) : s_state ram_s
Sleep prototype.upf(85) : r_state ram_s
Hibernate prototype.upf(86) : r_state ram_r
Complete_on prototype.upf(87) : o_state ram_o

In the end, a list of all possible states present on the objects mentioned in the header is also
reported. The detailed information of the states is listed with the voltage information as well.

Power Aware User’s Manual, v10.164

Power Aware Reports
UPF Reports

This information is similar to what was specified in corresponding add_port_state UPF
command. The source supply port mentioned in [] is the name of the supply port on which the
add_port_state command is called or its the supply net/port which is directly connected to the
port on which add_port_state command was called. The UPF file reference corresponds the file
and line number of the add_port_state command.

 List of possible states on:

PD_ALU_primary_power [source supply port: PD_ALU_primary_power,
 File:prototype.upf(12)]
 1. o_state: 4.20
 2. r_state: 3.20
 3. s_state: 2.20

out_sw_PD_RAM [source supply port: out_sw_PD_RAM, File:prototype.upf(65)]
 1. ram_s : 3.80,4.20,4.80
 2. ram_r : 5.20
 3. ram_o : 6.20
 4. off_state: OFF

UPF Command Excerpt

add_port_state PD_ALU_sw/out_sw_PD_ALU \
-state {s_state 2.2}\
-state {r_state 3.2}\
-state {o_state 4.2}\
-state {off_state off}

add_port_state PD_RAM_sw/out_sw_PD_RAM \
-state {ram_s 3.8 4.2 4.8 }\
-state {ram_r 5.2}\
-state {ram_o 6.2}\
-state {off_state off}

create_pst MyPowerStateTable -supplies {PD_ALU_primary_power
PD_RAM_sw/out_sw_PD_RAM}
add_pst_state Reboot -pst MyPowerStateTable -state {s_state ram_s}
add_pst_state Sleep -pst MyPowerStateTable -state {r_state ram_s}
add_pst_state Hibernate -pst MyPowerStateTable -state {r_state ram_r}
add_pst_state Complete_on -pst MyPowerStateTable -state {o_state ram_o}

UPF Static Report Excerpt for PST

Pst MyPowerStateTable, File:prototype.upf(80).
 Scope => /tb
 Header ==> : PD_ALU_primary_power
PD_RAM_sw/out_sw_PD_RAM
 Reboot prototype.upf(84): s_state ram_s
 Sleep prototype.upf(85): r_state ram_s
 Hibernate prototype.upf(86): r_state ram_r
 Complete_on prototype.upf(87): o_state ram_o

Power Aware Reports
UPF Reports

Power Aware User’s Manual, v10.1 65

 List of possible states on:
 PD_ALU_primary_power [source supply port: out_sw_PD_ALU,
File:prototype.upf(12)]
 1. o_state: 4.20
 2. r_state: 3.20
 3. s_state: 2.20
 out_sw_PD_RAM [source supply port: out_sw_PD_RAM,
File:prototype.upf(65)]
 1. ram_s : 3.80,4.20,4.80
 2. ram_r : 5.20
 3. ram_o : 6.20
 4. off_state: OFF

Example of UPF Static Report File

Example 4-3. Example File for Static UPF Reporting (report.upf.txt)

----- Questa Power Aware UPF Report File -----

Power Domain: pd, File: ./src/supply1_prefix/test.upf(7).
 Creation Scope: /tb/top
 Primary Supplies:
 power : /tb/top/pd_pwr
 ground : /tb/top/G_pd_net
 Power Switch: pd_sw, File: ./src/supply1_prefix/test.upf(35).
 Output Supply port:
 out_sw_pd(/tb/top/pd_pwr)
 Input Supply ports:
 1. in_sw_pd1(/tb/top/V_pd_net1)
 2. in_sw_pd2(/tb/top/V_pd_net2)
 Control Ports:
 1. ctrl_sw_pd1(/tb/top/pwr1)
 2. ctrl_sw_pd2(/tb/top/pwr2)
 Switch States:
 1. normal_working2(ON) : ((ctrl_sw_pd2 &&
!ctrl_sw_pd1))
 2. normal_working1(ON) : ((ctrl_sw_pd1 &&
!ctrl_sw_pd2))
 3. off_state(OFF) : ((!ctrl_sw_pd1 && !ctrl_sw_pd2))

 Retention Strategy: pd_retention, File:
./src/supply1_prefix/test.upf(39).
 Retention Supplies:
 power : /tb/top/V_pd_net
 ground : /tb/top/G_pd_net
 Retention SAVE (/tb/top/ret), Retention Sense (posedge)
 Retention RESTORE (/tb/top/ret), Retention Sense (negedge)

 Isolation Strategy: pd_isolation, File:
./src/supply1_prefix/test.upf(45).
 Isolation Supplies:
 power : /tb/top/V_pd_net
 ground : /tb/top/G_pd_net

Power Aware User’s Manual, v10.166

Power Aware Reports
UPF Reports

 Isolation Control (/tb/top/iso), Isolation Sense (HIGH),
Clamp
Value (1), Location (parent)
 Isolated Signals:
 1. Signal : /tb/top/q_combvl
 2. Signal : /tb/top/q_latvl
 3. Signal : /tb/top/q_regvl
 Level Shifter Strategy: pd_ls, File:
./src/supply1_prefix/test.upf(51).
 Rule (both), Threshold (0), Applies_to (both), Location
(automatic).
 Level Shifted Candidate Ports:
 1. Signal : /tb/top/q_combvl
 2. Signal : /tb/top/q_latvl
 3. Signal : /tb/top/q_regvl
 4. Signal : /tb/top/set
 5. Signal : /tb/top/reset
 6. Signal : /tb/top/clk
 7. Signal : /tb/top/d
 8. Signal : /tb/top/iso
 9. Signal : /tb/top/ret
 10. Signal : /tb/top/pwr2
 11. Signal : /tb/top/pwr1

Static Checking UPF Reports
Report Output: report.static.txt

Command: vopt -pa_checks=us

In Power Aware, you can perform a static check of the design using the power intent specified
in the UPF file.

For Static checking, ModelSim verifies the design for the defined power intent without doing
actual simulation. This static analysis uses the power intent definition report any missing
power-related information or inconsistencies. Because a simulation run is not required, you only
need to run vopt run to perform static checking. Results from static checking are written to the
report.static.txt report file.

Report Output: report.nretcyncff.txt

Command: vopt -pa_checks=npu

This report file is generated only when you specify vopt -pa_checks=npu. It contains a list of
hierarchical paths of those flip-flops in the design that do not have an asynchronous control
signal, so they are affected by this check.

Power Aware Reports
UPF Reports

Power Aware User’s Manual, v10.1 67

Dynamic UPF Report
Report Output: Transcript window

Command: vopt -pa_genrpt=ud | u [+b]

Specifying a value of ud or u displays dynamic UPF information to the Transcript window.

The dynamic report display includes time and polarity of controls (such as control port of a
power switch, retention save and restore signals, isolation enable signal), plus Power Domain
Status in the form of:

<Power Domain name>, <Strategy name>, <Control signal names>, <Active Sense>,
<Current polarity value>

Specifying a value of b for this argument (vopt -pa_genrpt=ud+b) writes bitwise expanded
information for isolated and level shifted ports into this report display.

Example of UPF Dynamic Report

** Note: (vsim-8916) MSPA_UPF_RET_CTRL_INFO: Time: 15 ns, Retention
Strategy (PD_BOT_retention), Retention SAVE (/tb/ret_bot_reg), Retention
Sense (posedge), switched to polarity (1). Power Domain: PD_BOT

** Note: (vsim-8902) MSPA_PD_STATUS_INFO: Time: 20 ns, Power domain
’PD_BOT’ is powered down.

** Note: (vsim-8913) MSPA_UPF_SWITCH_CTRL_INFO: Time: 20 ns, Power
Switch (PD_BOT_sw), Control Signal (/tb/pg_bot), switched to polarity
 (0), Power Switch state (OFF). Power Domain: PD_BOT

** Note: (vsim-8902) MSPA_PD_STATUS_INFO: Time: 35 ns, Power domain
’PD_BOT’ is powered up.

** Note: (vsim-8913) MSPA_UPF_SWITCH_CTRL_INFO: Time: 35 ns, Power
Switch (PD_BOT_sw), Control Signal (/tb/pg_bot), switched to polarity
 (1), Power Switch state (ON). Power Domain: PD_BOT

** Note: (vsim-8916) MSPA_UPF_RET_CTRL_INFO: Time: 40 ns, Retention
Strategy (PD_BOT_retention), Retention RESTORE (/tb/ret_bot_reg),
Retention Sense (negedge), switched to polarity (0). Power Domain:
PD_BOT

** Note: (vsim-8914) MSPA_UPF_ISO_CTRL_INFO: Time: 65 ns, Isolation
Strategy (PD_BOT_isolation), Isolation Control (/tb/iso_bot), Isolation
Sense (HIGH), switched to polarity (1). Power Domain: PD_BOT
** Note: (vsim-8902) MSPA_PD_STATUS_INFO: Time: 70 ns, Power domain
’PD_BOT’ is powered down.

** Note: (vsim-8913) MSPA_UPF_SWITCH_CTRL_INFO: Time: 70 ns, Power
Switch (PD_BOT_sw), Control Signal (/tb/pg_bot), switched to polarity
 (0), Power Switch state (OFF). Power Domain: PD_BOT
** Note: (vsim-8902) MSPA_PD_STATUS_INFO: Time: 85 ns, Power domain
’PD_BOT’ is powered up.

Power Aware User’s Manual, v10.168

Power Aware Reports
UPF Reports

** Note: (vsim-8913) MSPA_UPF_SWITCH_CTRL_INFO: Time: 85 ns, Power
Switch (PD_BOT_sw), Control Signal (/tb/pg_bot), switched to polarity
 (1), Power Switch state (ON). Power Domain: PD_BOT

** Note: (vsim-8914) MSPA_UPF_ISO_CTRL_INFO: Time: 90 ns, Isolation
Strategy (PD_BOT_isolation), Isolation Control (/tb/iso_bot), Isolation
Sense (HIGH), switched to polarity (0). Power Domain: PD_BOT

Architecture Report
Report Output: report.pa.txt

Command: vopt -pa_genrpt=pa

This report contains information related to Power Aware architecture that results from the
power intent defined in the UPF file, as applied to the design being simulated. The content and
structure of this report is same as that of report.upf.txt and includes all objects that are either
added or modified by applying power intent to the design.

This report file contains information regarding the following:

• Power Domain (including supplies)

• Power Switch (including supplies)

• Retention Strategy (including supplies)

• Isolation Strategy(including supplies)

• Level Shifter Strategy

• Power State Tables (PSTs)

Power Domain
The power domains are listed under the Power Domain section of the report. This section
contains the name of the power domain and a reference to the UPF file that contains the UPF
command that created the power domain. All other characteristics are listed in the following
lines shifted by a tab space and starting with the property name (such as Creation Scope,
Primary Supplies, Retention Strategy).

UPF Command

The information in the Power Domain section of the report results from the
create_power_domain command defined in your UPF file. For example:

create_power_domain pd -include_scope

Power Aware Reports
UPF Reports

Power Aware User’s Manual, v10.1 69

Sections and Subheadings

Definition

The Power Domain section identifies the power domain defined in the UPF file. For example:

Power Domain: pd, File: ./src/supply1_prefix/test.upf(7)

Creation Scope

The creation scope of the power domain is listed next in a subheading that defines the full
hierarchical path of the scope. For example:

Creation Scope: /tb/top

Primary Supplies

The primary supplies of the power domain are listed next in a subheading with hierarchical
paths to the power and ground nets. For example:

Primary Supplies:
power : /tb/top/pd_pwr
ground : /tb/top/G_pd_net

When a power domain is not connected to a primary supply, a warning message is displayed
and that domain is treated as always-on. For example:

** Warning: test.upf(7): (vopt-9665) Power domain: ’pd’ created in scope
’/top_vl’ doesn’t have a primary power/ground supply. Ignoring it.

Supply Set Handles

The supply set handles associated with the power domain are listed under the subheading
"Supply Set handles:" This provides the names of all handles and the absolute hierarchical path
of the supply set associated with them. For example:

Supply Set handles:
1. primary: /tb/ss.

The supply set functions are listed below the handle name under the heading "Functions:" and
the individual functions and associated supply nets are listed in the following lines:

Supply Set handles:
1. primary: /tb/ss

Functions:
1. power : /tb/vdd_sw
2. ground : /tb/gnd_net

Power Aware User’s Manual, v10.170

Power Aware Reports
UPF Reports

Note
If a handle is left unassociated with a supply set or supply net, the report will display
<Anonymous> in the relevant field.

Reference Ground

The reference ground specified in the supply set is listed after the handle name followed by a
comma and Ref Gnd. For example:

Supply Set handles:
1. primary: /tb/my_second_ss, Ref Gnd: /tb/gnd_net

Functions:
1. power : /tb/vdd_net

Power Switch
The power switches associated with the power domain are listed in the Power Switch section of
the report. This listing contains the name of the power switch and the reference to the UPF
source file where that switch was created. All the output and input supply ports are listed in this
section, followed by control ports and the switch states mentioned in the UPF file.

UPF Command

The information in the Power Switch section of the report results from the create_power_switch
command defined in your UPF file. For example:

create_power_switch pd_sw \
-domain pd \
-output_supply_port { out_sw_pd pd_pwr } \
-input_supply_port { in_sw_pd1 V_pd_net1 } \
-input_supply_port { in_sw_pd2 V_pd_net2 } \
-control_port { ctrl_sw_pd1 pwr1 } \
-control_port { ctrl_sw_pd2 pwr2 } \
-on_state { normal_working1 in_sw_pd1 { (ctrl_sw_pd1 && !ctrl_sw_pd2)

} } \
-on_state { normal_working2 in_sw_pd2 { (ctrl_sw_pd2 && !ctrl_sw_pd1)

} } \
-off_state { off_state {(!ctrl_sw_pd1 && !ctrl_sw_pd2)} }

Sections and Subheadings

Definition

The Power Switch section contains port information defined in the UPF file in the following
format:

<formal_port_name> (<externally_connected_net>

Power Aware Reports
UPF Reports

Power Aware User’s Manual, v10.1 71

Output Supply Port

The output supply port of the switch is listed under the Output Supply port heading.

Output Supply port:
out_sw_pd(/tb/top/pd_pwr)

Input Supply Port

The input supply ports are listed under Input Supply ports subheading.

Input Supply ports:
1. in_sw_pd1(/tb/top/V_pd_net1)
2. in_sw_pd2(/tb/top/V_pd_net2)

Control Ports

The control ports of the switch is listed under the Control Ports heading.

Control Ports:
1. in_sw_pd1(/tb/top/V_pd_net1)
2. in_sw_pd2(/tb/top/V_pd_net2)

Switch States

The specified states of the switch are listed under Switch States: heading. It lists each state in
the following format:

<state_name> (<switch state>): <Boolean_expression>

Example:

Switch States:
1. normal_working2(ON) : ((ctrl_sw_pd2 && !ctrl_sw_pd1))
2. normal_working1(ON) : ((ctrl_sw_pd1 && !ctrl_sw_pd2))
3. off_state(OFF) : ((!ctrl_sw_pd1 && !ctrl_sw_pd2))

Example: Power Architecture Report Excerpt for Power Switch

Power Switch: pd_sw, File: test.upf(35).
Output Supply port:

out_sw_pd(/tb/top/pd_pwr)
Input Supply ports:

1. in_sw_pd1(/tb/top/V_pd_net1)
2. in_sw_pd2(/tb/top/V_pd_net2)

Control Ports:
1. ctrl_sw_pd1(/tb/top/pwr1)
2. ctrl_sw_pd2(/tb/top/pwr2)

Switch States:
1. normal_working2(ON) : ((ctrl_sw_pd2 && !ctrl_sw_pd1))
2. normal_working1(ON) : ((ctrl_sw_pd1 && !ctrl_sw_pd2))

Power Aware User’s Manual, v10.172

Power Aware Reports
UPF Reports

3. off_state(OFF) : ((!ctrl_sw_pd1 && !ctrl_sw_pd2))

Retention Strategy
Report information for a retention strategy is listed under the Retention Strategy section of the
report. This listing contains the name of the strategy and the reference to the UPF source file
where the strategy was created.

UPF Commands

The information in the Retention Strategy section of the report results from the set_retention
and set_retention_control commands defined in your UPF file. For example:

set_retention pd_retention -domain pd -retention_power_net V_pd_net

set_retention_control pd_retention -domain pd -save_signal { ret posedge
} -restore_signal { ret negedge }

Sections and Subheadings

Definition

The Retention Strategy section identifies the retention specification in the UPF file. For
example:

Retention Strategy: pd_retention, File: ./src/supply1_prefix/test.upf(39)

Supplies

The retention supplies are listed next with the full hierarchical path of the power and ground
supply nets. For example:

Retention Supplies:
power : /tb/top/V_pd_net
ground : /tb/top/G_pd_net

Control Signals and Sense

Retention control signals and their corresponding retention sense values are listed together on
the same line. For example:

Retention SAVE (/tb/top/ret), Retention Sense (posedge)
Retention RESTORE (/tb/top/ret), Retention Sense (negedge)

Power Aware Reports
UPF Reports

Power Aware User’s Manual, v10.1 73

Signals with Retention Applied

Signals that have retention applied are listed under the subheading Retained Signals. For
example:

Retained Signals:
1. Scope: /tb/top_vh, File: reg_vh.vhdl(12)

Model: Default UPF Retention
1. /tb/top_vh/q_regvh
2. /tb/top_vh/q_latvh

2. Scope: /tb/top_vl, File: reg_vl.v(1)
Model: Default UPF Retention

1. /tb/top_vl/q_regvl
2. /tb/top_vl/q_latvl

Note that the Model subheading identifies whether default retention is used or if a user-defined
model is applied from a map_retention_cell command.

Example: Power Architecture Report Excerpt for Retention

Retention Strategy: pd_retention, File: test.upf(41).
Retention Supplies:

power : /tb/V_pd_net
ground : /tb/G_pd_net

Retention SAVE (/tb/ret), Retention Sense (posedge)
Retention RESTORE (/tb/ret), Retention Sense (negedge)
Retained Signals:

1. Scope: /tb/top_vh, File: reg_vh.vhdl(12)
Model: Default UPF Retention

1. /tb/top_vh/q_regvh
2. /tb/top_vh/q_latvh

2. Scope: /tb/top_vl, File: reg_vl.v(1)
Model: Default UPF Retention

1. /tb/top_vl/q_regvl
2. /tb/top_vl/q_latvl

Isolation Strategy
Report information for an isolation strategy is listed under the Isolation Strategy section of the
report. This listing contains the name of the strategy and the reference to the UPF source file
where the strategy was created.

UPF Commands

The information in the Isolation Strategy section of the report results from the set_isolation and
set_isolation_control commands defined in your UPF file. For example:

set_isolation pd_isolation -domain pd -isolation_power_net V_pd_net
clamp_value 1 -applies_to outputs

set_isolation_control pd_isolation -domain pd -isolation_signal iso
isolation_sense high -location parent

Power Aware User’s Manual, v10.174

Power Aware Reports
UPF Reports

Sections and Subheadings

Definition

The Isolation Strategy section identifies the retention specification in the UPF file. For example:

Isolation Strategy: pd_isolation, File: test.upf(45).

Supplies

The isolation supplies are listed next with the full hierarchical path of the power and ground
supply nets. For example:

Isolation Supplies:
power : /tb/top/V_pd_net
ground : /tb/top/G_pd_net

Control, Sense, Clamp

Retention control signals and their corresponding retention sense values are listed together on
the same line.

Other information related to the isolation strategy (such as Isolation control and its sense, the
clamp value information and its location) are specified in the next line separated by comma in
the following format:

<Property>(Value), ...

where Property can be any of the following:

Isolation Control — The control signal triggering the isolation clamp value. Example:

Isolation Control (/tb/top/iso)

Isolation Sense — The sense of the control signal at which the clamp value is applied on
the isolated port. Example:

Isolation Sense (HIGH)

Clamp Value — The clamp value specified. Example:

Clamp Value (1)

Location — The location specified in the isolation strategy. Example:

Location (parent)

Power Aware Reports
UPF Reports

Power Aware User’s Manual, v10.1 75

Ports

The list of candidate ports for isolation are listed next with full hierarchical path names of each
port. For example:

Isolated Signals:
1. Signal : /tb/top/q_combvl
2. Signal : /tb/top/q_latvl
3. Signal : /tb/top/q_regvl

Example: Power Architecture Report Excerpt for Isolation

Isolation Strategy: pd_isolation, File: test.upf(45).
Isolation Supplies:

power : /tb/top/V_pd_net
ground : /tb/top/G_pd_net

Isolation Control (/tb/top/iso), Isolation Sense (HIGH), Clamp Value
(1), Location (parent)

Isolated Signals:
1. Signal : /tb/top/q_combvl
2. Signal : /tb/top/q_latvl
3. Signal : /tb/top/q_regvl

Level Shifter Strategy
Report information for level shifting strategy is listed under the Level Shifter Strategy section
of the report. This listing contains the name of the strategy and the reference to the UPF source
file where the strategy was created.

UPF Command

The information in the Level Shifter Strategy section of the report results from the
set_level_shifter command defined in your UPF file. For example:

set_level_shifter pd_ls -domain pd -applies_to both

Sections and Subheadings

Definition

The Level Shifter Strategy section identifies the retention specification in the UPF file,
including the strategy name and UPF file reference.

Level Shifter Strategy: pd_ls, File: test.upf(51).

Power Aware User’s Manual, v10.176

Power Aware Reports
UPF Reports

Direction, Threshold, Filter, Location

Other information related to the level shifting strategy (such as shift direction, threshold,
applies_to filter and location) are specified in the next line separated by comma in the following
format:

<Property>(Value), ...

where Property can be any of the following:

Rule — Shift direction. Example:

Rule (both)

Threshold — Threshold value in volts. Example:

Threshold (0)

Applies_to — The value of the -applies_to argument specified in the set_level_shifter
command. Example:

applies_to (both)

Location — The location specified with the set_level_shifter command. Example:

Location (automatic)

Ports

The list of candidate ports for level shifting are listed next with full hierarchical path names of
each port.

Level Shifted Candidate Ports:
1. Signal : /tb/top/q_combvl
2. Signal : /tb/top/q_latvl
3. Signal : /tb/top/q_regvl
4. Signal : /tb/top/set
5. Signal : /tb/top/reset
6. Signal : /tb/top/clk
7. Signal : /tb/top/d

Example: Power Architecture Report Excerpt for Level Shifting

Level Shifter Strategy: pd_ls, File: test.upf(51).
Rule (both), Threshold (0), Applies_to (both), Location (automatic).
Level Shifted Candidate Ports:

1. Signal : /tb/top/q_combvl
2. Signal : /tb/top/q_latvl
3. Signal : /tb/top/q_regvl
4. Signal : /tb/top/set
5. Signal : /tb/top/reset
6. Signal : /tb/top/clk

Power Aware Reports
UPF Reports

Power Aware User’s Manual, v10.1 77

7. Signal : /tb/top/

Power State Tables (PSTs)
Report information for a power state tables (PST) is listed under the Pst section of the report,
followed by the name of the PST and the reference to the UPF source file where the PST was
created.

UPF Command

The information in the Pst section of the report results from the create_pst command defined in
your UPF file. For example:

create_pst MyPowerStateTable -supplies {PD_ALU_primary_power
PD_RAM_sw/out_sw_PD_RAM}

Sections and Subheadings

Definition

The Pst section identifies the power state table specification in the UPF file, including the
strategy name and UPF file reference. For example:

Pst: MyPowerStateTable, File:prototype.upf(80).

Scope

Lists the hierarchical path of the scope where the PST is created. For example:

Scope /tb

Header

The PST Header contains hierarchical paths of the supply nets/ports that form the columns of
the PST. The hierarchical paths are relative to the Scope of the PST. For example:

Header: PD_ALU_primary_power PD_RAM_sw/out_sw_PD_RAM

The lines that below this contain the rows of the PST as mentioned in the UPF and the
corresponding states of the supply nets/ports mentioned in the PST header. At the end, a list of
all possible states present on the objects mentioned in the header is shown. This includes
detailed information of the states listed with the voltage information. For example:

Reboot prototype.upf(84) : s_state ram_s
Sleep prototype.upf(85) : r_state ram_s
Hibernate prototype.upf(86) : r_state ram_r
Complete_on prototype.upf(87) : o_state ram_o

Power Aware User’s Manual, v10.178

Power Aware Reports
UPF Reports

In the end, a list of all possible states present on the objects mentioned in the header is also
reported. The detailed information of the states is listed with the voltage information as well—
this information is similar to what was specified in corresponding add_port_state UPF
command. The source supply port mentioned in [] is the name of the supply port on which the
add_port_state command is called, or it is the supply net/port that is directly connected to the
port on which add_port_state command was called. The UPF file reference corresponds the file
and line number of the add_port_state command. For example:

List of possible states on:
PD_ALU_primary_power [source supply port: PD_ALU_primary_power,
File:prototype.upf(12)]

1. o_state: 4.20
2. r_state: 3.20
3. s_state: 2.20

out_sw_PD_RAM [source supply port: out_sw_PD_RAM,
File:prototype.upf(65)]

1. ram_s : 3.80,4.20,4.80
2. ram_r : 5.20
3. ram_o : 6.20
4. off_state: OFF

Example: Excerpt of UPF Commands for PST

add_port_state PD_ALU_sw/out_sw_PD_ALU \
-state {s_state 2.2}\
-state {r_state 3.2}\
-state {o_state 4.2}\
-state {off_state off}
add_port_state PD_RAM_sw/out_sw_PD_RAM \
-state {ram_s 3.8 4.2 4.8 }\
-state {ram_r 5.2}\
-state {ram_o 6.2}\
-state {off_state off}
create_pst MyPowerStateTable -supplies {PD_ALU_primary_power
PD_RAM_sw/out_sw_PD_RAM}
add_pst_state Reboot -pst MyPowerStateTable -state {s_state ram_s}
add_pst_state Sleep -pst MyPowerStateTable -state {r_state ram_s}
add_pst_state Hibernate -pst MyPowerStateTable -state {r_state ram_r}
add_pst_state Complete_on -pst MyPowerStateTable -state {o_state ram_o}

Example: Power Architecture Report Excerpt for PST

Pst MyPowerStateTable, File:prototype.upf(80).
Scope => /tb
Header ==> : PD_ALU_primary_power

PD_RAM_sw/out_sw_PD_RAM
Reboot prototype.upf(84): s_state ram_s
Sleep prototype.upf(85): r_state ram_s
Hibernate prototype.upf(86): r_state ram_r
Complete_on prototype.upf(87): o_state ram_o

Power Aware Reports
UPF Reports

Power Aware User’s Manual, v10.1 79

List of possible states on:
PD_ALU_primary_power [source supply port: out_sw_PD_ALU,
File:prototype.upf(12)]

1. o_state: 4.20
2. r_state: 3.20
3. s_state: 2.20

out_sw_PD_RAM [source supply port: out_sw_PD_RAM,
File:prototype.upf(65)]

1. ram_s : 3.80,4.20,4.80
2. ram_r : 5.20
3. ram_o : 6.20
4. off_state: OFF

Sample Power Architecture Report

----- QuestaSim Power Aware Architecture Report File -----

-- QuestaSim Version: DEV-main 2294369 2011.01
-- Generated on : Tue Jan 25 09:37:28 2011

-- This report file contains information about all
-- the Power Aware Architecture elements in the design.
--

Power Domain: pd_aon, File: test.upf(4).
Creation Scope: /tb
Primary Supplies:

power : /tb/vdd_net
ground : /tb/gnd_net

Power Domain: pd, File: test.upf(16).
Creation Scope: /tb
Primary Supplies:

power : /tb/pd_pwr
ground : /tb/G_pd_net

Power Switch: pd_sw, File: test.upf(37).
Output Supply port:

out_sw_pd(/tb/pd_pwr)
Input Supply ports:

1. in_sw_pd(/tb/V_pd_net)
Control Ports:

1. ctrl_sw_pd(/tb/pwr)
Switch States:

1. normal_working(ON) : (ctrl_sw_pd)
2. off_state(OFF) : (!ctrl_sw_pd)

Retention Strategy: pd_retention, File: test.upf(41).
Retention Supplies:

power : /tb/V_pd_net
ground : /tb/G_pd_net

Retention SAVE (/tb/ret), Retention Sense (posedge)

Power Aware User’s Manual, v10.180

Power Aware Reports
UPF Reports

Retention RESTORE (/tb/ret), Retention Sense (negedge)
Retained Signals:

1. Scope: /tb/top_vh, File: reg_vh.vhdl(12)
Model: upf_retention_ret

1. /tb/top_vh/q_regvh
2. Scope: /tb/top_vl, File: reg_vl.v(1)

Model: upf_retention_ret
1. /tb/top_vl/q_regvl

Isolation Strategy: pd_isolation, File: test.upf(48).
Isolation Supplies:

power : /tb/V_pd_net
ground : /tb/G_pd_net

Isolation Control (/tb/iso), Isolation Sense (HIGH), Clamp Value (1),
Location (parent)

Isolated Signals:
1. Signal : /tb/top_vh/q_combvh
2. Signal : /tb/top_vh/q_latvh
3. Signal : /tb/top_vh/q_regvh
4. Signal : /tb/top_vl/q_combvl
5. Signal : /tb/top_vl/q_latvl
6. Signal : /tb/top_vl/q_regvl

Design Elements Report
Report Output: report.de.txt

Command: vopt -pa_genrpt=de

This report contains all the information related to elements present in user design and its
corresponding Power Aware information. The contents of this report are similar to that provided
in the report.mspa.txt file, but it is presented in a different format that makes it easier to extract
information from the report. Report information is listed in single-line records that contain
keywords indicating the specific Power Aware characteristics.

This report file contains information regarding the following:

• Design Element Scopes and Power Domains

• Corrupted Signals

• State Elements

• Retention Signals

Power Aware Reports
UPF Reports

Power Aware User’s Manual, v10.1 81

Design Element Scopes and Power Domains
This information indicates the extent of power domains, such that all scopes in the design
belonging to a particular power domain are listed in this report.

Format

The report format for listing domains, scopes, and elements is the following:

PD: {PathN} = scope E

where

PD — represents the name of the power domain.

{PathN} — shorthand notation to denote the hierarchical path of the scope in the rest of
the report.

scope — a keyword that indicates that this line is a design element scope (to assist in
using a grep search).

E — represents the full hierarchical path of the design element (its scope).

Example: Excerpt of UPF Commands

set_scope tb
create_power_domain pd_aon -include_scope
create_power_domain pd -elements {top_vl top_vh}

Example: Design Elements Report Excerpt for Scopes and Power Domains

pd_aon: {Path1} = scope /tb/top_aon
pd: {Path2} = scope /tb/top_vh <>
pd: {Path3} = scope /tb/top_vl <>

Note
The <> symbol after the Element path name identifies scopes in the design that are
present at the power domain boundary.

Corrupted Signals
The signals inside the power domain corrupted when the supply of the power domain is
switched off are listed in the report with a hierarchical path to the name of the corrupted signal.

Format

The report format for listing corrupted signals is the following:

Power Aware User’s Manual, v10.182

Power Aware Reports
UPF Reports

PD: {PathN}/S

where

PD — represents the name of the power domain.

{PathN} — shorthand notation to denote the hierarchical path of the scope.

S — represents the name of the signal.

Example: Design Elements Report Excerpt for Corrupted Signals

pd_aon: {Path1}/q_combvl
pd: {Path2}/q_latvh NPM_LA
pd: {Path3}/q_regvl R

State Elements
The signals in the design acting as state elements are listed in the same way as Corrupted
Signals, along with a special keyword that identifies the kind of state element.

Format

The report format for listing corrupted signals is the following:

PD: {PathN}/S <KEYWORD>

where

PD — represents the name of the power domain.

{PathN} — shorthand notation to denote the hierarchical path of the scope.

S — represents the name of the signal.

KEYWORD — is one of the following values, indicating whether the signal is acting as
a state element or a retention element:

NPM_LA — Non-retention Latch

NPM_FF — Non-retention Flip-Flop

MEM — Non-retention Memory

UDP_LA — Non-retention UDP Latch

UDP_FF — Non-retention UDP Flip-Flop

R — Retention element

<no keyword> — Combinatorial logic

Power Aware Reports
UPF Reports

Power Aware User’s Manual, v10.1 83

Example: Design Elements Report Excerpt for State Elements

pd: {Path3}/q_combvl
pd: {Path3}/q_regvl R
pd: {Path3}/q_latvl NPM_LA
pd_aon: {Path1}/q_regvl NPM_FF

Retention Signals
The signals in the design performing retention behavior are marked with a special keyword R
after the signal name.

The signals in the design performing retention behavior are listed in the same way as Corrupted
Signals, along with the keyword R after the signal name.

Format

The report format for listing corrupted signals is the following:

PD: {PathN}/S R

where

PD — represents the name of the power domain.

{PathN} — shorthand notation to denote the hierarchical path of the scope.

S — represents the name of the signal.

R — indicates a retention signal.

Example: Excerpt of UPF Commands

set_retention pd_retention -domain pd -retention_power_net V_pd_net

set_retention_control pd_retention -domain pd -save_signal { ret posedge }
-restore_signal { ret negedge}

Example: Design Elements Report Excerpt for Retention Signals

pd: {Path3}/q_regvl R
pd: {Path2}/q_regvh R

Working With A Design Element Report

General Information

The name of the report and other information are presented as commented text at the top of the
report. Comments are marked with double hyphens (--) at the beginning of a line. For example:

Power Aware User’s Manual, v10.184

Power Aware Reports
UPF Reports

--
----- Questa Sim Power Aware Design Element Report File -----
--
-- QuestaSim Version: DEV-10.0 2238002 2010.11
-- Generated on : Mon Nov 22 13:44:03 2010
--

Extracting Information from a Design Element Report

The structure and keywords of a Power Aware design element report allows you to extract the
information related to power intent easily and effectively using any string matching utility, such
as the Linux grep command.

The following examples show how to use the grep command to extract specific details of your
power intent.

List all instances in the design belonging to a power domain

Function: Search all scopes belonging to power domain pd_aon.

Command:

grep pd_aon report.de.txt | grep scope

Output:

pd_aon: {Path1} = scope /tb/top_aon

List all retention signals in the design

Command:

grep " R" report.de.txt | grep -v "^--"

Output:

pd: {Path2}/q_regvh R
pd: {Path3}/q_regvl R

Expand the Path Id

Command:

grep "{Path2} =" report.de.txt

Output:

pd: {Path2} = scope /tb/top_vh <>

Search a particular signal for power intent

Command 1:

grep "/tb/top_vh\>" report.de.txt

Power Aware Reports
UPF Reports

Power Aware User’s Manual, v10.1 85

Output 1:

pd: {Path2} = scope /tb/top_vh <>

Command 2:

grep "{Path2}/q_regvh" report.de.txt

Output 2:

pd: {Path2}/q_regvh R

(implies that /tb/top_vh/q_regvh is a retention register inside power domain pd)

Identify instances at power domain boundary

Command:

grep "<>" report.de.txt

Output:

pd: {Path2} = scope /tb/top_vh <>
pd: {Path3} = scope /tb/top_vl <>

Sample Power Aware Design Element Report

--
----- QuestaSim Power Aware Design Element Report File -----
--
-- QuestaSim Version: DEV-main 2294369 2011.01
-- Generated on : Tue Jan 25 09:37:28 2011
--
-- This report file contains PA information about all the elements in user
-- design.
-- The information is present in single line records of following format:
-- PD : {PathN} = scope E <>
-- PD : {PathN}/S < KEYWORD >
-- where
-- PD => Power Domain Name
-- {PathN} => Shorthand notation for the hierarchical path of scope
-- scope => keyword to indicate that this line is a design element
-- scope, this defines {PathN} value
-- E => Full hierarchical path of Design Element (scope)
-- <> => indicates that this line corresponds to scope at power
-- domain boundary.
-- S => Name of the signal
-- <KEYWORD> => The keywords indicate whether its acting as a state-
-- element or retention element, and can be following types:
-- NPM_LA => Non Retention Latch
-- NPM_FF => Non-retention Flip-Flop
-- MEM => Non-retention Memory
-- UDP_LA => Non-retention UDP latch
-- UDP_FF => Non-retention UDP Flip-Flop

Power Aware User’s Manual, v10.186

Power Aware Reports
PCF Reports

-- R => Indicates retention element
-- <No keyword> => Indicates a combinatorial logic

pd_aon: {Path1} = scope /tb
pd_aon: {Path2} = scope /tb/top_aon
pd: {Path3} = scope /tb/top_vh <>
pd: {Path4} = scope /tb/top_vl <>

pd_aon: {Path1}/tie_high_low
pd_aon: {Path1}/q_combaon
pd_aon: {Path1}/q_latchaon
pd_aon: {Path1}/q_regaon
pd_aon: {Path1}/q_combvh
pd_aon: {Path1}/q_latchvh
pd_aon: {Path1}/q_regvh
pd_aon: {Path1}/q_combvl
pd_aon: {Path1}/q_latchvl
pd_aon: {Path1}/q_regvl
pd_aon: {Path1}/ret
pd_aon: {Path1}/iso
pd_aon: {Path1}/pwr
pd_aon: {Path1}/set
pd_aon: {Path1}/rst
pd_aon: {Path1}/clk
pd_aon: {Path1}/d
pd_aon: {Path2}/q_combvl
pd_aon: {Path2}/q_regvl NPM_FF
pd_aon: {Path2}/q_latvl NPM_LA
pd: {Path3}/q_combvh
pd: {Path3}/q_regvh R
pd: {Path3}/q_latvh NPM_LA
pd: {Path4}/q_combvl
pd: {Path4}/q_regvl R
pd: {Path4}/q_latvl NPM_LA

PCF Reports
If you are using a PCF file, you can obtain the following Power Aware reports by specifying
vopt -pa_genrpt=nv or vopt -pa_genrpt=v (described in Table 4-2).

• PCF Power Intent Report (report.mpsa.txt)

• PCF Always-On Report (report.alwayson.txt)

• PCF Corruption Report (report.corruption.txt)

• PCF Isolation Report (report.isolation.txt)

• PCF Static Checking Report (report.nretsyncff.txt)

Power Aware Reports
PCF Reports

Power Aware User’s Manual, v10.1 87

PCF Power Intent Report
Report Output: report.mspa.txt

Command: vopt -pa_genrpt=nv | v

This report file contains the information related to the power intent that has been applied on the
user design. File contents are structured according to power domains and provide hierarchical
path names of the signals and instances that are affected by the power intent. This report also
contains the count of retention and non-retention cells.

Refer to UPF Static Report for more information on report.mpsa.txt.

PCF Always-On Report
Report Output: report.alwayson.txt

Command: vopt -pa_genrpt=nv | v

Signals are in an always-on power domain. They should never get corrupted due to any power
activity.

PCF Command Excerpt

POWER pd_aon /tb, 1
POWER pd /tb/top_vl, /tb/top_vh, /tb/pwr
MAP upf_retention_ret FF_CKHI /tb/ret, /tb/top_vl, /tb/top_vh

PCF Static Report Excerpt for Always-On

Table 4-2. Generating PCF Reports for Power Aware

Report Type Command Syntax Description Report Outputs

Power Intent:
Non-verbose
(default)

vopt
-pa_genrpt=nv

Additional information
on power intent. This is
the default if you do not
specify nv or v.

report.alwayson.txt
report.corruption.txt
report.isolation.txt
report.nretsyncff.txt
report.mpsa.txt

Power Intent:
Verbose

vopt
-pa_genrpt=v

Displays the hierarchical
path of individual power
aware elements.

report.alwayson.txt
report.corruption.txt
report.isolation.txt
report.nretsyncff.txt
report.mpsa.txt

Power Aware User’s Manual, v10.188

Power Aware Reports
PCF Reports

----- QuestaSim Power Domain Report File(ALWAYS ON) -----

pd_aon sub_total (/tb/top_aon)

 NPM_FF # 1
 /tb/top_aon/q_regvl 1

 NPM_LA # 1
 /tb/top_aon/q_latvl 1

 OUTPUT # 1
 /tb/top_aon/q_combvl 1

where

NPM_FF — denotes all non-power-management flip-flops of a power domain
NPM_LA — denotes all non-power-management latches of a power domain
OUTPUT — denotes outputs and power signals (that are not sequential elements)
of a power domain

PCF Corruption Report
Report Output: report.corruption.txt

Command: vopt -pa_genrpt=nv | v

This report is a subset of report.mspa.txt that contains only those power domain are NOT
always on.

PCF Command Excerpt

POWER pd_aon /tb, 1
POWER pd /tb/top_vl, /tb/top_vh, /tb/pwr
MAP upf_retention_ret FF_CKHI /tb/ret, /tb/top_vl, /tb/top_vh

PCF Static Report Excerpt for Corruption

--
----- QuestaSim Power Domain Report File(CORRUPTION) -----
--

pd sub_total (/tb/top_vh /tb/top_vl)

 upf_retention_ret # 2
 /tb/top_vh/q_regvh 1
 /tb/top_vl/q_regvl 1

 NPM_LA # 2
 /tb/top_vh/q_latvh 1
 /tb/top_vl/q_latvl 1

Power Aware Reports
PCF Reports

Power Aware User’s Manual, v10.1 89

 OUTPUT # 2
 /tb/top_vh/q_combvh 1
 /tb/top_vl/q_combvl 1

-- NPM_FF => Denotes all Non Power Management Flip Flops of a Power
Domain.
-- NPM_LA => Denotes all Non Power Management Latches of a Power
Domain.
-- OUTPUT => Denotes all outputs and power signals,which are not
sequential elements, of a Power Domain.

where

NPM_FF — denotes all non-power-management flip-flops of a power domain
NPM_LA — denotes all non-power-management latches of a power domain
OUTPUT — denotes outputs and power signals (that are not sequential elements)
of a power domain

PCF Isolation Report
Report Output: report.isolation.txt

Command: vopt -pa_genrpt=nv | v

This report is a subset of report.mspa.txt that contains only those power domain are NOT
always on.

PCF Command Excerpt

ISO_id: iso_bot2 , extent: /tb/top , enable: (/tb/iso1) , reset:
!(/tb/iso1)

ports:
/tb/top/output2
/tb/top/in_sl

PCF Static Checking Report
Report Output: report.nretcyncff.txt

Command: vopt -pa_checks=npu

This report file is generated only when you specify vopt -pa_checks=npu (common to both UPF
and PCF). It contains the list of hierarchical paths of those flip-flops in the design that do not
have an asynchronous control signal, so they are affected by this check.

Power Aware User’s Manual, v10.190

Power Aware Reports
Behavioral Element Reporting

Behavioral Element Reporting
Use the -pa_behavlogfile argument to generate a report on behavioral constructs in the design
that need to be in an always-on power domain.

Usage

vopt -pa_behavlogfile=<filename>

Description

This argument writes a listing of all the non-synthesizable constructs found in design to a text
file, specified by <filename>. The purpose of this report is to identify all the constructs that
have to be put in an always-on power domain.

The format for the constructs of this argument is the following:

I: hierarchical path of instance (for non-synthesizable instances)

P: hierarchical path of block process/always/initial (for non-synthesizable
process/always/initial blocks)

S: hierarchical path of signals (for signals (writers) falling in non-synthesizable
unnamed process/always/initial block)

The corresponding expected PCF updates from the user are:

POWER pd1 -i <hier path1>, 1
POWER pd1 -p <hier path2>, 1
POWER pd1 -s <hier path3>, 1

Example Excerpt from a Behavioral Log File

S : /top/out
P : /top/l1
P : /top/l2
S : /top/out
I : /top/bot

Power Aware User’s Manual, v10.1 91

Chapter 5
Automatic Checking

This chapter describes how to perform static and dynamic checking as part of Power Aware
simulation. To implement either mode of checking, you use the -pa_checks argument of the
vopt command. This argument takes on a variety of values, which are listed and described in the
folowing sections:

• Static Checking in Power Aware

• Dynamic Checking in Power Aware

• Implementing Checking at Gate Level

Static Checking in Power Aware
Use the -pa_checks argument of the vopt command to perform static checking to validate the
behavior of power intent and specification in the designs. The values you specify for the
-pa_checks argument activate static checking of signals for these power conditions:

• Static Isolation Checks

• Static Level Shifter Checks

The -pa_checks argument does the following:

• Displays a vopt summary related to all the checks performed and the result.

• Generates a detailed report file (named report.static.txt) containing the result of static
checks. This file contains information dumped in two formats:

o Domain-wise dumping — all the ports are identified and collect with respect to
connectivity between power domains.

o Level-shifter-strategy-wise dumping — the same information is now displayed with
respect to individual level shifting strategy. It helps to correlate easily with the list of
candidate ports dumped in the UPF report file, report.upf.txt.

For all static (isolation or level shifter) checks, ModelSim analyzes specified Power State
Tables (PSTs) and power states added on power domains and supply sets in the UPF file. The
purpose of this is to detect the power domain relative OFF/ON condition and relative operating
voltages.

Power Aware User’s Manual, v10.192

Automatic Checking
Static Checking in Power Aware

If state dependencies between two connected power domains are not present in
PST/add_power_state, then ModelSim cannot determine power domain relative ON/OFF states
statically. In this case, static isolation checking will report isolation strategies as “Not
Analyzed.”

Usage Notes for Static Checking
The -pa_checks argument of the vopt command has numerous possible values that you can
assign to enable either dynamic or static checking for Power Aware simulation.

• For a quick listing of all values for the -pa_checks argument, refer to Table A-1.

• For additional reference information on the -pa_checks argument, refer to the vopt
command in the ModelSim Reference Manual.

• For a listing of static and dynamic checks according to elements defined for a given
power domain, refer to Table B-1.

• To specify more than one checking value for -pa_checks, use the + operator between
values. For example:

vopt -pa_checks=sni+sdi

Related Topics

Debugging Static Checks
You can perform debugging on static checking for isolation or level shifters by using the vopt
-pa_dbgstatic command. The available values for the -pa_dbgstatic argument determine the
debugging behavior performed, as described below.

Specified by: -pa_dbgstatic=rsn

Function: ModelSim appends information at the end of a report following the phrase
"Possible reason" to help pinpoint the cause of the check.

Report File dump (report.static.txt):

Inferred type:’Not inserted’[count: 1], Source port :
/tb/TOP/bot4/bot5/out1_bot [connected mask: "1"] [LowConn] { Domain:
pd_bot } -> Sink port: /tb/TOP/bot4/out1_bot [connected mask: "0001"] [
HighConn] { Domain: pd_top }
 Possible reason:’Level shifter is specified as -no_shift’

Voltage Level-Shifting (Multi-Voltage
Analysis)

Modeling Isolation

Automatic Checking
Static Checking in Power Aware

Power Aware User’s Manual, v10.1 93

Specified by: -pa_dbgstatic=msk

Function: Captures the connection mask of the signal taken in a particular path. For
example, if there is a vector taking different path, the phrase "connected
mask" provides information about which bits are used in connecting the
particular source and sink.

Report File dump (report.static.txt):

Inferred type:’Incorrect’[count: 0], Source port : /tb/TOP/bot4/out1_bot
[connected mask: "0100"] [LowConn] { Domain: pd_aon } -> Sink port:
/tb/TOP/bot4/out1_bot
[connected mask: "0100"] [HighConn] { Domain: pd_top }

Static Isolation Checks
Table 5-1 lists a summary of the various static isolation checks you can apply by specifying
different values for the vopt -pa_checks command. All static isolation check results are written
to the report file, report.static.txt.

Table 5-1. Static Isolation Checks

Check Usage Syntax Description Example Message

Static
Missing

vopt -pa_checks=smi For domain crossings
where source domain is
relatively OFF with
respect to sink domain.
For any isolation
strategies not specified
for such crossings,
missing isolation cells
will be reported.

** Warning: (vopt-9750) [
UPF_ISO_STATIC_CHK]
Found Total 1 Missing
isolation cells.

Power Aware User’s Manual, v10.194

Automatic Checking
Static Checking in Power Aware

Static
Redundant

vopt -pa_checks=sri If power domain
crossings where isolation
strategies are specified,
but isolation is not
required for power
domain crossing, then
these strategies will be
reported as redundant.
Redundant isolation cells
will be reported when
isolation is not required
from driving power
domain to sink power
domain and isolation cell
is placed for the power
domain crossing.

** Warning: (vopt-9750) [
UPF_ISO_STATIC_CHK]
Found Total 3 Redundant
isolation cells.

Static
Incorrect

vopt -pa_checks=sii Incorrect isolation cells
will be reported when
isolation is required for
power domain crossing
but isolation strategy is
specified with
set_isolation
-no_isolation.

** Warning: (vopt-9750) [
UPF_ISO_STATIC_CHK]
Found Total 3 Incorrect
isolation cells.

Static
Valid

vopt -pa_checks=svi Isolation is required for a
power domain crossing
and valid isolation
strategies are specified
for domain crossing.

** Note: (vopt-9750) [
UPF_ISO_STATIC_CHK]
Found Total 1 Valid isolation
cells.

Static
Not
Analyzed

vopt -pa_checks=sni For power domain
crossing—if power state
table (PST) information
is not sufficient to
analyze whether
isolation is required or
not for input and output
power domains of an
isolation strategy, then
such isolation strategies
will be flagged as Not
analyzed.

** Warning: (vopt-9750) [
UPF_ISO_STATIC_CHK]
Found Total 1 Not analyzed
isolation cells.

Table 5-1. Static Isolation Checks (cont.)

Check Usage Syntax Description Example Message

Automatic Checking
Static Checking in Power Aware

Power Aware User’s Manual, v10.1 95

Isolation Cell Instance Checking

If you have used the set_isolation -instance command in a UPF file to instantiate RTL isolation
cells, ModelSim will detect those cells and perform the following isolation checks on them
(instance checking results are written to report.static.txt):

• Incorrect Isolation Check

Total 1 Incorrect isolation cells.
Source power domain : PD_mid1 -> Sink power domain: PD_mid2

[Total count: 1]
1. ISO(count: 1): Candidate Port: /tb/TOP/mid1/out1_bot

[connected mask: "0001"], count:1, Isolation cell :
/tb/TOP/isoinst1_0(ISO_AND), Domain: PD_mid1,

Source port : /tb/TOP/mid1/out1_bot [connected mask:
"0001"], count:1 [LowConn] -> Sink port: /tb/TOP/mid2/in1_bot
[connected mask: "0001"], count:1 [LowConn]

• Valid Isolation

PD_mid2 [Total count: 1]
1. ISO(count: 1): Candidate Port: /tb/TOP/mid1/out1_bot

[connected mask: "0010"], count:1, Isolation cell :
/tb/TOP/isoinst1_1(ISO_AND), Domain: PD_mid1,

Source port : /tb/TOP/mid1/out1_bot [connected mask:
"0010"], count:1 [LowConn] -> Sink port: /tb/TOP/mid2/in1_bot
[connected mask: "0010"], count:1 [LowConn]

• Redundant Isolation

Total 1 Redundant isolation cells.
Source power domain : PD_mid1 -> Sink power domain: PD_mid2

[Total count: 1]

Static
Not Inserted

vopt -pa_checks=sdi Isolation strategies will
be flagged as Not
inserted when isolation is
not required for a power
domain crossing and
isolation strategies
specified with
set_isolation
-no_isolation.

** Warning: (vopt-9750) [
UPF_ISO_STATIC_CHK]
Found Total 1 Not inserted
isolation cells.

All Static
Isolation
Checks

vopt -pa_checks=si Perform all static
isolation checks (smi, sri,
sii, svi, sni, sdi)

Table 5-1. Static Isolation Checks (cont.)

Check Usage Syntax Description Example Message

Power Aware User’s Manual, v10.196

Automatic Checking
Static Checking in Power Aware

1. ISO(count: 1): Candidate Port: /tb/TOP/mid2/in1_bot
[connected mask: "0100"], count:1, Isolation cell :
/tb/TOP/isoinst2_0(ISO_AND), Domain: PD_mid2,

Source port : /tb/TOP/mid1/out1_bot [connected mask:
"0100"], count:1 [LowConn] -> Sink port: /tb/TOP/mid2/in1_bot [
connected mask: "0100"], count:1 [LowConn]

• Not Analyzed Isolation

Source power domain : PD_mid1 -> Sink power domain: PD_mid2
[Total count: 1]

1. ISO(count: 1): Candidate Port: /tb/TOP/mid2/in1_bot
[connected mask: "1000"], count:1, Isolation cell :
/tb/TOP/isoinst2_1(ISO_AND), Domain: PD_mid2,

Source port : /tb/TOP/mid1/out1_bot [connected mask:
"1000"], count:1 [LowConn] -> Sink port: /tb/TOP/mid2/in1_bot
[connected mask: "1000"], count:1 [LowConn]

Static Level Shifter Checks
You can apply various static checking functions for level shifters by using the vopt -pa_checks
command. The value you specify for the -pa_checks argument determines the checking function
performed, as shown in Table 5-2.

Table 5-2. Static Level Shifter Checks

Check Usage Syntax Description Example Message or Report

Missing
Level Shifter

vopt -pa_checks=sml Checks that if level
shifter is required at
domain crossing and
level shifter strategy is
not specified.

** Warning: (vopt-9693) [
UPF_LS_STATIC_CHK]
Found Total 1 Missing level
shifters.

Incorrect
Level Shifter

vopt -pa_checks=sil Checks that if direction
of level shifters specified
for domain crossing does
not match with direction
as per voltage difference
of domain crossing. For
example: domain
crossing requires
low_to_high level shifter
and level shifter
specified is high_to_low,
then it will be reported as
incorrect.

** Warning: (vopt-9693) [
UPF_LS_STATIC_CHK]
Found Total 1 Incorrect level
shifters.

Automatic Checking
Static Checking in Power Aware

Power Aware User’s Manual, v10.1 97

Level Shifter Cell Instance Checking

If you have used the set_level_shifter -instance command in a UPF file to instantiate RTL level
shifter cells, ModelSim will detect those cells and perform the following level shifting checks
on them (instance checking results are written to report.static.txt):

Redundant
Level Shifter

vopt -pa_checks=srl Checks for any level
shifter whose source and
sink power domains have
no voltage difference.
ModelSim flags this as a
redundant level shifter.

** Warning: (vopt-9693) [
UPF_LS_STATIC_CHK]
Found Total 1 Redundant level
shifters.

Unanalyzed
Level Shifter

vopt -pa_checks=snl Reports level shifter
strategies that are not
analyzed because of
insufficient information,
such as a power state
table is not specified or is
incomplete.

** Warning: (vopt-9693) [
UPF_LS_STATIC_CHK]
Found Total 1 Not analyzed
level shifters.

Valid Level
Shifter

vopt -pa_checks=svl Indicates the valid level
shifters that have
matching voltage
information and proper
direction of shift. (Also,
see Reporting for a Valid
Level Shifter.)

** Note: (vopt-9693) [
UPF_LS_STATIC_CHK]
Found Total 2 Valid level
shifters

Uninserted
Level Shifter

vopt -pa_checks=sdl Reports level shifter
strategies that are
defined with the
set_level_shifter
-no_shift command in
UPF file, but are not
inserted.

Inferred type:’Not inserted’[
count: 1], Source port :
/tb/TOP/bot4/bot5/out1_bot [
LowConn] { Domain: pd_bot
} -> Sink port:
/tb/TOP/bot4/out1_bot [
HighConn] { Domain: pd_top
}

All Static
Level Shifter
Checks

vopt -pa_checks=sl Enables all static level
shifter checks. Writes
Static Checks report to
report.static.txt file.

All Static
Checks

vopt -pa_checks=s Enables all static level
shifter and static
isolation checks.

Table 5-2. Static Level Shifter Checks (cont.)

Check Usage Syntax Description Example Message or Report

Power Aware User’s Manual, v10.198

Automatic Checking
Static Checking in Power Aware

• Incorrect Level Shifter Check

Total 1 Incorrect level shifters
Source power domain : PD_mid1 -> Sink power domain: PD_mid2 [

Total count: 1]
1. LS(count: 1): Candidate Port: /tb/TOP/mid1/out1_bot [

connected mask: "0001"], count:1, level shifter cell :
/tb/TOP/lsinst1_0(ls_buf), Domain: PD_mid1,

Source port : /tb/TOP/mid1/out1_bot [connected mask:
"0001"], count:1 [LowConn] -> Sink port: /tb/TOP/mid2/in1_bot [
connected mask: "0001"], count:1 [LowConn]

• Valid Level Shifter

Total 1 Valid level shifters
Source power domain : PD_mid1 -> Sink power domain: PD_mid2 [

Total count: 1]
1. LS(count: 1): Candidate Port: /tb/TOP/mid1/out1_bot [

connected mask: "0010"], count:1, : level shifter cell :
/tb/TOP/lsinst1_1(ls_buf), Domain: PD_mid1,

Source port : /tb/TOP/mid1/out1_bot [connected mask:
"0010"], count:1 [LowConn] -> Sink port: /tb/TOP/mid2/in1_bot [
connected mask: "0010"], count:1 [LowConn]

• Redundant Level Shifter

Total 1 Redundant level shifter.
Source power domain : PD_mid1 -> Sink power domain: PD_mid2 [

Total count: 1]
1. LS(count: 1): Candidate Port: /tb/TOP/mid2/in1_bot [

connected mask: "0100"], count:1, level shifter cell :
/tb/TOP/lsinst2_0(ls_buf), Domain: PD_mid2,

Source port : /tb/TOP/mid1/out1_bot [connected mask:
"0100"], count:1 [LowConn] -> Sink port: /tb/TOP/mid2/in1_bot [
connected mask: "0100"], count:1 [LowConn]

• Not Analyzed Level Shifter

Total 1 Not Analyzed level shifters.
Source power domain : PD_mid1 -> Sink power domain: PD_mid2 [

Total count: 1]
1. LS(count: 1): Candidate Port: /tb/TOP/mid2/in1_bot [

connected mask: "1000"], count:1, level shifter cell :
/tb/TOP/lsinst2_1(ls_buf), Domain: PD_mid2,

Source port : /tb/TOP/mid1/out1_bot [connected mask:
"1000"], count:1 [LowConn] -> Sink port: /tb/TOP/mid2/in1_bot [
connected mask: "1000"], count:1 [LowConn]

Automatic Checking
Static Checking in Power Aware

Power Aware User’s Manual, v10.1 99

Reporting for a Valid Level Shifter
Specified by: -pa_checks=svl

Function: Indicates the valid level shifters that have matching voltage information and
proper direction of shift.

Message from vopt:

** Note: (vopt-9693) [UPF_LS_STATIC_CHK] Found Total 2 Valid level
shifters

Report File dump (for the power domain): (report.static.txt)

Total 2 Valid level shifters.
 Source power domain: pd_bot -> Sink power domain: pd_aon [Total count: 1]
 1. LS(count: 1): Candidate Port: /tb/TOP/bot1/out1_bot, count:1,
level shifting strategy : my_ls [PD: pd_bot],
 Source port : /tb/TOP/bot1/out1_bot, count:1 [LowConn] ->
 Sink port: /tb/TOP/bot2/in2_bot, count:1 [LowConn]

 2. LS(count: 0): Candidate Port: /tb/TOP/bot1/out1_bot, count:1,
level shifting strategy : my_ls [PD: pd_bot],
 Source port : /tb/TOP/bot1/out1_bot, count:1 [LowConn] ->
 Sink port: /tb/TOP/bot3/in2_bot, count:1 [LowConn]

 3. LS(count: 0): Candidate Port: /tb/TOP/bot1/out1_bot, count:1,
level shifting strategy : my_ls [PD: pd_bot],
 Source port : /tb/TOP/bot1/out1_bot, count:1 [LowConn] ->
 Sink port: /tb/TOP/bot4/in2_bot, count:1 [LowConn]

 Source power domain: pd_aon -> Sink power domain: pd_top [Total count: 1]
 1. LS(count: 1): Candidate Port: /tb/TOP/bot2/out1_bot, count:1,
level shifting strategy : my_ls [PD: pd_aon],
 Source port : /tb/TOP/bot2/out1_bot, count:1 [LowConn] ->
 Sink port: /tb/TOP/bot2/out1_bot, count:1 [HighConn]

 Report File dump (for the level shifter strategy):

Total 2 Valid level shifters
 Level shifting strategy: my_ls, Power domain: pd_aon
 1. Candidate port: /tb/TOP/bot2/out1_bot [count: 1]
 Inferred type:’Valid’[count: 1], Source port :
/tb/TOP/bot2/out1_bot [LowConn] { Domain: pd_aon } -> Sink port: /tb/TO
P/bot2/out1_bot [HighConn] { Domain: pd_top }

 Level shifting strategy: my_ls, Power domain: pd_bot
 3. Candidate port: /tb/TOP/bot1/out1_bot [count: 1]
 Inferred type:’Valid’[count: 0], Source port :
/tb/TOP/bot1/out1_bot [LowConn] { Domain: pd_bot } -> Sink port: /tb/TO
P/bot4/in2_bot [LowConn] { Domain: pd_aon }
 Inferred type:’Valid’[count: 0], Source port :
/tb/TOP/bot1/out1_bot [LowConn] { Domain: pd_bot } -> Sink port: /tb/TO
P/bot3/in2_bot [LowConn] { Domain: pd_aon }

Power Aware User’s Manual, v10.1100

Automatic Checking
Dynamic Checking in Power Aware

 Inferred type:’Valid’[count: 1], Source port :
/tb/TOP/bot1/out1_bot [LowConn] { Domain: pd_bot } -> Sink port: /tb/TO
P/bot2/in2_bot [LowConn] { Domain: pd_aon }

Note
Sometimes, you may find the level shifter count for a particular source-to-sink path may
be 0. This happens when there is only one level shifter identified for insertion at that
boundary (even though there are multiple fanouts possible), but the value for
set_level_shifter -location is not specified as fanout. In that case, the level shifter
insertion is counted for only one of the paths, while the other paths will have level shifter
counts reported as 0.

Dynamic Checking in Power Aware
Use the -pa_checks argument of the vopt command to perform more comprehensive dynamic
rule checking to validate the behavior of power intent and specification in the designs. The
values you specify for the -pa_checks argument activate dynamic checking of signals for
various power conditions:

• Dynamic Retention Checking

• Dynamic Isolation Checking

• Dynamic Level Shifter Checking

• Miscellaneous Dynamic Checking

o Toggle

o Control Signal Corruption Checking

o Always-On Power Domain Checking

o Power Domain Status

Usage Notes
The -pa_checks argument of the vopt command has numerous possible values that you can
assign to enable either dynamic or static checking for Power Aware simulation.

• For a quick listing of all values for the -pa_checks argument, refer to Table A-1.

• For additional reference information on the vopt -pa_checks, refer to the vopt command
in the ModelSim Reference Manual.

• For a listing of static and dynamic checks according to elements defined for a given
power domain, refer to Table B-1.

Automatic Checking
Dynamic Checking in Power Aware

Power Aware User’s Manual, v10.1 101

• To specify more than one checking value for -pa_checks, use the + operator between
values. For example:

vopt -pa_checks=rop+cp+a

• To enable all dynamic checks, do not specify a value for -pa_checks.

Dynamic Retention Checking
You can specify any of the following values for -pa_checks to provide retention checking:

• rop

• rpo

• rcs

• rsa

Note
To enable retention checking performed by all these values, specify the following:

vopt -pa_checks=r

Table 5-3. Dynamic Retention Checks

Check Usage Syntax Description Example Message

Power off vopt -pa_checks=rop States that there were
retention signals mapped
to the power domain.
However, these signals
were not asserted when
the power was switched
off.

#** Error: (vsim-8903)
MSPA_RET_OFF_PSO:
Time: 35 ns, Retention control
(x) for the following retention
elements of power domain
’PD’ is not asserted during
power shut down:
#/tb/top/mid1/bot_latch1.
File: ./src/pa_all_checks/pcf,
Line: 2, Power Domain:PD

Power Aware User’s Manual, v10.1102

Automatic Checking
Dynamic Checking in Power Aware

Power on vopt -pa_checks=rpo States that there was an
error in the sequence of
triggering of the
retention and power
signal. For retention to
succeed, the power
should be high.
However, this check is
triggered when that is not
the case.

** Error: (vsim-8904)
MSPA_RET_PD_OFF: Time:
85 ns, Power for domain: ’PD’
is not ON (0) when retention is
enabled for retention elements:
/tb/top/mid1/bot_latch1.
File: ./src/pa_all_checks/pcf,
Line: 2, Power Domain:PD

Clock/Latch
enable

vopt -pa_checks=rcs Certain Power Aware
models require that the
clock/latch enable must
be at a certain value
when retention takes
place. These checks
display error when this
condition is not satisfied.
If latch is enabled and
can change its value,
triggering retention can
potentially cause race in
the stored value. This is
also a check against such
conditions.

** Error: (vsim-8905)
MSPA_RET_CLK_STATE:
Time: 85 ns, LatchEn is not at
proper level: ’LOW’ (1) for the
retention element(s) of type:
AHRLA of power domain: PD.
/tb/top/mid1/bot_latch1.
File: pcf, Line: 2, Power
Domain:PD

** Error: (vsim-8905)
MSPA_RET_CLK_STATE:
Time: 207 ns, Clock is not at
proper level: ’LOW’ (1) for the
retention element(s) of type:
CLRFF of power domain: PD.
/tb/top/mid1/bot_ff.
File: pcf, Line: 3, Power
Domain:PD

Clock toggle vopt -pa_checks=rsa Some Power Aware
models require that the
clock not toggle when
the power is down. This
check helps in
monitoring this
condition.

** Error: (vsim-PA-8908)
MSPA_RET_SEQ_ACT:
Time: 208 ns, clock toggled
during retention period for
retention element(s):
/tb/top/mid1/bot_ff

All vopt -pa_checks=r

Table 5-3. Dynamic Retention Checks (cont.)

Check Usage Syntax Description Example Message

Automatic Checking
Dynamic Checking in Power Aware

Power Aware User’s Manual, v10.1 103

Dynamic Isolation Checking
Isolation checks trigger messages when a particular isolation strategy has failed or a noise has
been detected in isolating a particular hierarchy.

Table 5-4. Dynamic Isolation Checks

Check Usage Syntax Description Example Message

Isolation
Clamp Value
Check

vopt -pa_checks=icp Ensures isolation cell is
clamping to correct
clamp value specified in
UPF file. Catches any
functional issue in
isolation cell inserted in
RTL or applied isolation.
Perfomed during active
isolation period.

** Error: (vsim-8930)
MSPA_ISO_CLAMP_CHK:
Time: 40 ns, Isolated port for
isolation cell (strategy:
iso_PD_mid2_2) on port
’/tb/TOP/mid2/in2_bot’ having
value (x) is different from
clamp value (1) during
isolation period.
File: test.upf, Line: 125,
Power Domain:PD_mid2

Isolation
Enable
Protocol
Check

vopt -pa_checks=iep Flags violation if
isolation control of
isolation cell/strategy is
not enabled when source
power domain (power
domain of driving ports)
is switched OFF and sink
power domain ON.

 ** Error: (vsim-8918)
MSPA_ISO_EN_PSO: Time:
358 ns, Isolation control (0) is
not enabled when power is
switched OFF for the
following:
Port: /tb_25/FA4_inst/
FA_inst2/d.

Isolation
Disable
Protocol
Chec

vopt -pa_checks=idp Flags violation if
isolation control of
isolation cell/strategy is
disabled during power
shut OFF of source
power domain (power
domain of driving ports)
and sink power domain
ON.

** Error: (vsim-8919)
MSPA_ISO_DIS_PG: Time:
250 ns, Isolation control is
disabled during power shut
OFF (0) for the following:
Port:
/tb/TOP/mid3/in2_bot[3:2].
File: test.upf, Line: 113,
Power Domain:PD_mid3

Power Aware User’s Manual, v10.1104

Automatic Checking
Dynamic Checking in Power Aware

Isolation
Function-
ality Check

vopt -pa_checks=ifc Ensures that when
isolation is not applied,
the value at isolation
cell’s output is same as
that at its input. It is to
catch any functional
error because of applied
isolation cell. Performed
during in-active isolation
period. During inactive
isolation period, it will
catch occurrences where
value of isolated port is
different than the ports’
value.

 ** Error: (vsim-8931)
MSPA_ISO_FUNC_CHK:
Time: 100 ns, Isolated port for
isolation cell (strategy:
iso_PD_mid2) on port
’/tb/TOP/mid2/in2_bot’ having
value (x) is different from port
value (1) during non-isolation
period.
File: test.upf, Line: 111,
Power Domain:PD_mid2

Isolation
Race Check

vopt -pa_checks=irc The value on isolated
ports should not change
when isolation is enabled
(at the time of assertion
of isolation control) and
when isolation is
disabled (at the de-
assertion of isolation
control). This check
flags any toggling of
isolated port’s value at
assertion/de-assertion of
isolation control signal.

** Error: (vsim-8910)
MSPA_ISO_PORT_TOGGLE
: Time: 50 ns, Isolated port for
isolation cell
(strategy: iso_PD_mid1) on
port ’/tb/TOP/mid1/out2_bot’
toggled when its control signal
is activated.
File: test.upf, Line: 70,
Power Domain:PD_mid1

Isolation
Toggle
Check

vopt -pa_checks=it Catches any change in
isolated ports’ value
during isolation period
(i.e in between the period
when isolation is enabled
till isolation is disabled).
Perfomed during active
isolation period.

** Error: (vsim-PA-8908)
MSPA_ISO_ON_ACT : Time:
60 ns, /tb/TOP/mid1/out1_bot
toggled when
isolation signal was active

Table 5-4. Dynamic Isolation Checks (cont.)

Check Usage Syntax Description Example Message

Automatic Checking
Dynamic Checking in Power Aware

Power Aware User’s Manual, v10.1 105

Reset clamp
(PCF only)

vopt -pa_checks=isa Some isolation strategies
require that reset value
and isolation value must
be same. This check
ensures that the isolated
value is the same at
posedge of reset and at
posedge of isolation
enable signal.

** Error: (vsim-8909)
MSPA_ISO_PORT_INVALI
D: Time: 40 ns, (iso_bot2) Port
’/tb/top/output2’ isolated value
(0110) is different from reset
value (xxxx).
#File: ./src/iso_checks/pcf1,
Line: 2, Power Domain: PD2

Power on
(UPF only)

vopt -pa_checks=upc Catches switching off of
retention/isolation
supplies during active
retention/isolation
period.

** Error: (vsim-8920)
MSPA_UPF_PG_CHK: Time:
0 ns, Power for Isolation
strategy: ’ISO_FA4_1_3’ of
power domain: ’PD_FA4_1’ is
switched OFF during isolation.
File: test.upf, Line: 121,
Power Domain:PD_FA4_1

Missing
Isolation
Cell
(UPF only)

vopt -pa_checks=umi Catches failure occurring
whenever source domain
is OFF and sink domain
is ON for a power
domain crossing and
isolation strategy is not
specified for that domain
crossing.

** Error: (vsim-8929)
MSPA_UPF_MISSING_ISO_
CHK: Time: 130 ns, Missing
isolation cell for domain
boundary, PD_mid1 =>
PD_wrapper2 for following:
Source port :
/tb/TOP/mid1/out1_bot [
connected mask: "1"] [
LowConn] -> Sink port:
/tb/TOP/mid2/wrapper1/wrapp
er2/in1 [connected mask: "1"]
[LowConn],
File: test.upf, Line: 25,
Power Domain:--

All vopt -pa_checks=i Enable isolation
checking performed by
all arguments available
to either UPF or PCF.
For UPF, this value
enables only iep, idp, irc,
icp, ifc, and it.

Table 5-4. Dynamic Isolation Checks (cont.)

Check Usage Syntax Description Example Message

Power Aware User’s Manual, v10.1106

Automatic Checking
Dynamic Checking in Power Aware

Dynamic Level Shifter Checking
You enable dynamic checking functions for level shifters by using the vopt -pa_checks
command. The value you specify for the -pa_checks argument determines the checking function
performed, as shown in Table 5-5.

Operating Voltage for Dynamic Checking
It is recommended to change the operating voltages of those domains during simulation. In
some cases, the dynamic checks report the operating voltage of one of the domains as 0—this
happens when you have not changed the voltage on the primary power and ground pin of the
domain and you are operating with default unknown voltage levels. You can change the
operating voltages by using the supply_on or supply_off commands defined in the UPF
SystemVerilog package.

Table 5-5. Dynamic Level Shifter Checks

Check Usage Syntax Description Example Message

Missing
Level Shifter

vopt -pa_checks=uml During simulation,
checks if level shifter is
required between domain
crossing and reports if
level shifter strategy is
not specified.

Also, strategies specified
with set_level_shift
-no_shift in the UPF file
are checked for any
missing level shifters.

** Error:
MPSA_UPF_MISSING_LS_C
HK: Missing level shifters for
domain boundary, pd_aon (
Operating Voltage: 2.000000
V) => pd_top (Opera
ting Voltage: 1.000000 V) for
the following:

Source port :
/tb/TOP/bot4/out1_bot [
LowConn] -> Sink port:
/tb/TOP/bot4/out1_bot [
HighConn]
Time: 90 ns Scope:
mspa_top.mspa_upf_top.mspa
0_pd_tb.mspa3_pd_top.
mspa5_pd_aon.
MPSA_UPF_MISSING_LS_C
HK_0 File:
src/inc_ls_dyn_check1/top.upf
Line: 4

Automatic Checking
Dynamic Checking in Power Aware

Power Aware User’s Manual, v10.1 107

Miscellaneous Dynamic Checking
Table 5-6 lists values you can specify for vopt -pa_checks that perform the following checking
operations:

• Toggle

• Control Signal Corruption

• Always-On Power Domain

• Power Domain Status

Incorrect
Level Shifter

vopt -pa_checks=uil Checks if direction of
level shifters specified
for domain crossing does
not match direction of
the voltage difference at
domain crossing. For
example: domain
crossing requires
low_to_high level shifter
but level shifter specified
is high_to_low, then it
will be reported as
incorrect.

 # ** Error:
MPSA_UPF_MISSING_LS_C
HK: Missing level shifters for
domain boundary, pd_aon (
Operating Voltage: 2.000000
V) => pd_top (Opera
ting Voltage: 1.000000 V) for
the following:

Source port :
/tb/TOP/bot4/out1_bot [
LowConn] -> Sink port:
/tb/TOP/bot4/out1_bot [
HighConn]
Time: 90 ns Scope:
mspa_top.mspa_upf_top.mspa
0_pd_tb.mspa3_pd_top.
mspa5_pd_aon.
MPSA_UPF_MISSING_LS_C
HK_0 File:
src/inc_ls_dyn_check1/top.upf
Line: 4

All vopt -pa_checks=ul Enables all dynamic
level shifter checks.

Table 5-5. Dynamic Level Shifter Checks (cont.)

Check Usage Syntax Description Example Message

Power Aware User’s Manual, v10.1108

Automatic Checking
Dynamic Checking in Power Aware

Table 5-6. Miscellaneous Dynamic Checks

Check Usage Syntax Description Example Messages

Toggle vopt -pa_checks=t Enables the simulator to
catch a condition where
inputs to the power
domain toggle even
when the power domain
is turned off.

** Error: (vsim-PA-8908)
MSPA_PD_OFF_ACT: Time:
36 ns, /tb/top/clk toggled
during power down of power
domain: PD

Control
Signal
Corruption

vopt -pa_checks=cp During simulation, this
check helps catch
conditions when the
power signal to any
power domain gets
corrupted.

For UPF, this check is
applicable to control
ports of a switch,
isolation enable signal of
an isolation strategy,
retention save and
restore signals of a
retention strategy.

** Error: (vsim-8901)
MSPA_CTRL_SIG_CRPT:
Time: 240 ns, Control Signal
’/tb/pg_array[1]’ is corrupted.
(Current Value: x)
#File: test.upf, Line: 29, Power
Domain:PD_TOP

Always-On
Power
Domain
(PCF only)

vopt -pa_checks=a It is possible that certain
blocks of an RTL might
be in an always-on
power domain.
Corrupting signals in this
domain will result in
corrupting other Power
Aware blocks. This
check helps to determine
if all the signals in an
always-on power domain
are ever corrupted.

** Error: (vsim-8911)
MSPA_ALWS_ON_CRPT:
Time: 0 ns, Signal
/top/bot1/alw_on is
corrupted.(’xxz’)
#File: pcf, Line: 2, Power
Domain:padd3

Automatic Checking
Implementing Checking at Gate Level

Power Aware User’s Manual, v10.1 109

Implementing Checking at Gate Level
For Power Aware simulation on gate-level designs (PA-GLS), you can generate various level
shifter and isolation checks.

Related Topics

Power
Domain
Status

vopt -pa_checks=p This check identifies
when each power
domain is switched on or
off.

MSPA_PD_STATUS_INFO:
Power domain 'PD' is powered
down at time 20.

MSPA_PD_STATUS_INFO:
Power domain 'PD' is BIASED
down at time 20.
(CORRUPT_ON_CHANGE)

MSPA_PD_STATUS_INFO:
Power domain 'PD' is BIASED
up at time 24.
(CORRUPT_ALL_ON_ACT)

Glitch
Detection

vopt -pa_checks=ugc Catches any spurious
spikes (glitches) on
control lines so that it
does not cause false
switching of control
ports of various control
logic (such as
isolation/power switch
and retention).

You can use pa msg
-glitch_window
command to specify time
window for glitch
checking.

** Warning: (vsim-PA-8921)
MSPA_CTRL_SIG_GLITCH
: Time: 14 ns, Glitch (* -> 1 ->
0) detected for signal(/tb/ctrl2)
acting as isolation control for
(/tb/TOP/mid1/PD_mid1,iso_P
D_mid1_1)

Voltage Level-Shifting (Multi-Voltage
Analysis)

Modeling Isolation

Table 5-6. Miscellaneous Dynamic Checks (cont.)

Check Usage Syntax Description Example Messages

Power Aware User’s Manual, v10.1110

Automatic Checking
Implementing Checking at Gate Level

Level Shifting for Gate-Level Checking
You can create a gate-level instance of a model that will be recognized as a level shifter instance
by either of the methods given below. This type of level shifter instance will be recognized for
static and dynamic Level Shifter Checks.

Method 1

Specify the Liberty is_level_shifter attribute as part of the module definition to identify the
level shifter cell.

Example

(* is_level_shifter = 1 *)
module ls_buf(
 (*pg_type = "primary_power"*) input logic pwr_rail,
 (*pg_type = "primary_ground"*)input logic gnd_rail,
 (* level_shifter_data_pin = 1 *)input data,
 output logic out);
assign out = (data);
endmodule

Method 2

Assign a level-shifting prefix or suffix string to the instance, as specified by the UPF
name_format command.

Example

LVLHLD1BWP lsinst2_UPF_LS(.I(w2), .Z(w4));

Isolation for Gate-Level Checking
A gate-level instance of a model that will be recognized as an isolation instance can occur by
any of the methods given below.

Method 1

Create this instance by specifying the Liberty is_isolation_cell attribute as part of the module
definition to identify the isolation cell. Also, set the isolation_cell_enable_pin = "TRUE" on the
instance enable pin.

Example

(* is_isolation_cell = 1 *)
module ISO_AND(
 (*pg_type = "primary_power"*) input logic pwr_rail,
 (*pg_type = "primary_ground"*)input logic gnd_rail,
 (*isolation_cell_enable_pin = "TRUE"*) input logic en,
 (*isolation_cell_data_pin = "TRUE"*) input data,
 output logic out);

Automatic Checking
Implementing Checking at Gate Level

Power Aware User’s Manual, v10.1 111

assign out = (data & ~en);
endmodule

Method 2

Pragma information to the instantiation is generated by the synthesis application.

Example

ISOLOD1BWP isoinst1(.I(o1), .Z(w1), .ISO(ctrl)); //synopsys isolation_upf
iso_PD_mid1+PD_mid1

where iso_PD_mid1 is the UPF strategy for this isolation cell instance, and PD_mid1 is the
Power domain for which strategy has been specified.

Method 3

Create this instance by assigning an isolation prefix or suffix string to it, as specified by the UPF
name_format command.

Example

ISO isoinst2_UPF_ISO(.I(o1), .Z(w1), .ISO(ctrl));

Power Aware User’s Manual, v10.1112

Automatic Checking
Implementing Checking at Gate Level

Power Aware User’s Manual, v10.1 113

Chapter 6
Visualization of Power Aware Operations

Power Aware in the Graphical User Interface
You can use ModelSim GUI windows to visualize aspects of your Power Aware design and
simulation. The following sections describe the ModelSim windows provided for Power Aware
vizualization:

• Power Aware Schematic Display — The Schematic window provides color coding of
design elements in different power domains.

• Power Aware Waveform Display — The Wave window provides highlighting of bias,
corruption, and isolation.

• Power State and Transition Display — The FMS List and FSM Viewer windows
provides finite state machine information on power state tables, multi-state transitions.

Power Aware Schematic Display
You can perform debugging at the same time you run a Power Aware simulation by using the
-debugdb argument of the vopt and vsim commands. The results of both the Power Aware
analysis and the debug operation are provided as Power Aware schematic in the Schematic
window. You can also view a correlation between the UPF power intent and the design display
in the Schematic window.

Note
Debugging in Power Aware is supported for RTL usage flow only—it is not available for
gate-level simulation (GLS).

Top-Down Debugging (From the Test Bench)
You can run Power Aware analysis and debugging from the top of the design (test bench) with
or without specifying an optimized design unit. These methods resemble the conventional two-
step and three-step optimization flows.

• No optimized design unit — This flow resembles conventional two-step flow, where
you use the vopt command to specify a Power Aware simulation and debugging only; no
optimization is performed. When you run the vsim command, it performs debugging
and runs vopt internally to perform optimization (see Delay Optimization).

Power Aware User’s Manual, v10.1 114

Example:

 vlog design.v
 vcom design.vhdl
 vopt -pa_upf <config_file> -debugdb tb
 vsim tb -pa -debugdb [-vopt]

• Optimized design unit — This flow resembles conventional three-step flow, where you
use the vopt command to specify a Power Aware simulation, the name of the design unit
to be optimized, and debugging,. When you run the vsim command, it begins simulation
on the optmized design unit and runs debugging (General Steps for Running Power
Aware).

Example:

 vlog design.v
 vcom design.vhdl
 vopt -o optdu -pa_upf <config_file> -debugdb tb
 vsim optdu -pa -debugdb

Bottom-Up Debugging (From the Design Under Test)
You can run Power Aware analysis from the DUT hierarchy and debugging on the complete
design. Running vopt -pa_top captures the DUT hierarchy for Power Aware analysis

• No optimized design unit — This flow resembles conventional two-step flow, where
you use the vopt command to specify a Power Aware simulation and debugging without
optimization. Use the -pa_top argument to capture the DUT hierarchy for Power Aware
analysis. When you run the vsim command, it performs debugging and runs vopt
internally to perform optimization (see Delay Optimization).

Example:

vlog design.v
vcom design.vhdl
vopt -pa_upf <config_file> tb -debugdb -pa_top /tb/dut
vsim tb -pa -debugdb [-vopt]

Power Aware User’s Manual, v10.1 115

Note
If you want implement debugging with the -pa_prefix argument and a PCF file, the
following example shows the command sequence:

vlog design.v

vcom design.vhdl

vopt -pa_cfg <config_file> dut -pa_prefix "/tb/dut" -pa_replacetop

<string>

vsim tb -pa -debugdb

• Optimized design unit — This flow resembles conventional three-step flow, where you
use the vopt command to specify a Power Aware simulation, the name of the design unit
to be optimized, and debugging,. Use the -pa_top argument to capture the DUT
hierarchy for Power Aware analysis.

Example:

vlog design.v
vcom design.vhdl
vopt -o optdu -pa_upf <config_file> tb -debugdb -pa_top /tb/dut
vsim optdu -pa -debugdb

This DUT-based flow with an optimized design unit not only does common analysis for
Power Aware and debugging, but also provides flexibility to enable Power Aware
analysis from specific hierarchy and do code generation in one step.

Usage Notes
• The -pa_top argument is used to specify hierarchy of UPF root scope. This supports

Power Aware analysis of UPF from hierarchy other than the vopt TOP hierarchy. If vopt
is run from testbench (tb) and UPF scope is starting from DUT (which is instantiated in
testbench as dut_inst), then you need to specify vopt -pa_top /tb/<dut_inst>.

• If -pa_top is specifying the hierarchy other than UPF root scope then an Error message
will be displayed:

** Error: ./src/ss_error_1/test.upf(2): UPF: (vopt-9782) PA Top
’/tb/top/dut_inst/top_inst’ is specifying incorrect hierarchy for
UPF scope ’DUT’.

• Do not use the vopt -pa_prefix and -pa_relacetop arguments with -pa_top. If you do, the
-pa_prefix and -pa_relacetop arguments are ignored and a Warning message is
displayed:

** Warning: UPF: (vopt-9780) Option "-pa_prefix/-pa_replacetop" is
not applicable with option "-pa_top". Ignoring option "-pa_prefix/-
pa_replacetop".

Power Aware User’s Manual, v10.1 116

Schematic Window Visualization for Debugging
You can open the Schematic window to view debugging results from a Power Aware analysis.
In particular, these results are shown as follows:

• Power Domain — All design elements are colored and highlighted according to their
respective power domains (see Figure 6-1).

o All design elements, such as mux, flip-flops, and gates would be colored according
to the power domain specification.

o The granularity of power doman visualization is at instance level.

o Any simulation-only power domains that are specified on a process or signal are not
highlighted.

• Excluded Domains — shown as default schematic color.

o You can define a power domain to be excluded.

• Power Aware exclude file support (vopt -pa_excludefile)

• Currently, PG-type connected instances are excluded. There is no analysis
information to decide whether they inherit the parent power domain, create their
own, or have multiple power domains (like memories)

• Both would be supported with instance level granularity, signal and process level
exclusion would not be visualized.

• UPF Source Viewing — You can display the source text of the UPF file for power
domain specifications. Power domain information can be viewed for a design element in
either of the following ways:

o Right-click and select power domain — Displays UPF source code (see Figure 6-2).

o Hover the mouse cursor — Displays a Tool Tip that concatenates the HDL source
file with the appropriate line number in the UPF source file (see Figure 6-3).

Example 6-1. UPF FIle to Demonstrate Schematic Visualization for Debugging

set_design_top top

create_power_domain P1 -elements {dut1}
#---
create_supply_port VDD -domain P1
create_supply_net VDD_NET -domain P1
connect_supply_net VDD_NET -ports { VDD }
#---
create_supply_port GND -domain P1
create_supply_net GND_NET -domain P1

Power Aware User’s Manual, v10.1 117

connect_supply_net GND_NET -ports { GND }
#---
create_supply_net VDD_PRI -domain P1
set_domain_supply_net P1 -primary_power_net VDD_PRI -primary_ground_net
GND_NET
#-- #

create_power_switch P1_SW \
-domain P1 \
-output_supply_port {VDD_SW VDD_PRI} \
-input_supply_port {VDD_SW_In1 VDD_NET} \
-control_port {ctrl1 dut_sleep } \
-on_state {full_s1 VDD_SW_In1 {!ctrl1}} \
-off_state {off_s0 {ctrl1}}

create_power_domain P2 -elements {dut2}
#---
create_supply_port VDD_P2 -domain P2
create_supply_net VDD_N -domain P2
connect_supply_net VDD_N -ports { VDD_P2 }
#---
create_supply_port GND_P2 -domain P2
create_supply_net GND_N -domain P2
connect_supply_net GND_N -ports { GND_P2 }
#---
create_supply_net VDD_P -domain P2
set_domain_supply_net P2 -primary_power_net VDD_P -primary_ground_net
GND_NET

create_power_switch P1_SW2 \
-domain P2 \
-output_supply_port {VDD_SW VDD_PRI} \
-input_supply_port {VDD_SW_In1 VDD_NET} \
-control_port {ctrl1 dut_sleep } \
-on_state {full_s1 VDD_SW_In1 {!ctrl1}} \
-off_state {off_s0 {ctrl1}}

create_power_domain P3 -elements {dut3}
#---
create_supply_port VDD_P3 -domain P3
create_supply_net VDD_NE -domain P3
connect_supply_net VDD_NE -ports { VDD_P3 }
#---
create_supply_port GND_P3 -domain P3
create_supply_net GND_NE -domain P3
connect_supply_net GND_NE -ports { GND_P3 }
#---
create_supply_net VDD_PR -domain P3
set_domain_supply_net P3 -primary_power_net VDD_PR -primary_ground_net
GND_NE
create_power_switch P1_SW3 \
-domain P3 \
-output_supply_port {VDD_SW VDD_PRI} \

Power Aware User’s Manual, v10.1 118

-input_supply_port {VDD_SW_In1 VDD_NET} \
-control_port {ctrl1 dut_sleep } \
-on_state {full_s1 VDD_SW_In1 {!ctrl1}} \
-off_state {off_s0 {ctrl1}}

Example 6-2. ModelSim Commands to Run Power Aware Debugging

vlog -sv mid.v top.v
vopt -pa_upf test.upf top -debugdb
vsim -debugdb -pa -L mtiPA -vopt -do test.do top

Example 6-3. Schematic Displays for Power Aware Debugging

Figure 6-1. Color-Coded HDL Design Elements

Figure 6-2. UPF Source File: Right-Click and Choose Power Domain

Power Aware User’s Manual, v10.1 119

Figure 6-3. UPF Source File: Hover the Mouse and View Tool Tip

Power Aware Waveform Display
When using the conventional Wave window display, it can be difficult to see the effects of
Power Aware simulation. For example, a zero on a signal may represent normal simulation
behavior, it may be the result of an isolated port clamped to zero, or it could be corruption on a
bit type.

In particular, isolation has been difficult to confirm through simulation that the intent has been
met. Typically, you would want results to show isolation buffer placement and clamping,
identify the corrupted and clamp values associated with that buffer, and confirm that isolation
happens at the proper time.

To do this, you can activate Power Aware highlighting in the Wave window, which provides
visual indicators for the isolation, corruption, and biasing behavior in your simulation results.
These waveform inidicators provide valuable information by visually distinguishing values
caused by Power Aware activity. This should help quickly determine if their power intent is
correctly applied.

The visual indicators provided by Power Aware highlighting show the power state of signals
viewed in the Wave window. Highlighting on waveforms appears during the interval when they
are corrupted, isolated, or biased.

Figure 6-4 show an example of waveform highlighting, where:

• Bias mode is indicated by blue highlighting

• Corruption is indicated by red cross-hatch highlighting

Power Aware User’s Manual, v10.1 120

• Isolation is indicated by green highlighting

Tip: When you hover the mouse cursor over an isolation highlight region, a balloon
popup appears. This indicates the clamp value and location, along with he actual signal
value.

Also, when you click to expand an isolation highlighted signal (on the + to the left of the
signal name), associated signals are displayed that provide more information about the
isolation.

Figure 6-4. Power Aware Highlighting in the Wave Window

Using Power Aware Highlighting
To turn on Power Aware highlighting, you use -pa_highlight argument for the vsim command.
This argument enables the generation of the WLF data used by the Wave window to display the
highlighting.

To turn highligting on or off, you select or unselect Power Aware waveform highlighting from
the Wave Windows Preferences dialog box, which you display by choosing the following from
the main menu:

Wave > Tools > Wave Preferences... > [Display tab] > PA waveform highlighting

Isolation (green)Corruption (red)Bias mode (blue)

Power Aware User’s Manual, v10.1 121

To view Power Aware activity in post-simulation debug, use the -view argument of the vsim
command, as follows:

vsim -view vsim.wlf

Power State and Transition Display
Because power domains are no longer limited to two states (ON or OFF) and multi-voltage
capability allows designs to assign different voltage levels to different states, tracking
combinations of states in different power domains has become increasingly difficult.

Power Aware State Coverage
Because ModelSim generates code coverage data for Power Aware state transitions, you can
collect this data in a Unified Coverage Data Base (UCDB).

For more information on coverage and Unified Coverage Data Base, refer to Saving Code
Coverage in the UCDB in the User’s Manual.

Power State coverage data is provided for power states added on:

• Supply port/net

• Power State Table (PST) States

This coverage data also shows the occurrence of undefined states.

State tracking has the following requirements:

• Coverage data

• State value at any simulation time of:

o Ports

o Power state tables

o Power domains

o Supply sets

o Switches

Power Aware User’s Manual, v10.1 122

Power Aware coverage data can be reported in all the modes with this UCDB. For example,
during simulation, you can run the following command to view Power Aware state coverage
data:

coverage report -pa <-detail>

You can use coverage data stored in UCDB from the coverage save pa.ucdb command to view
Power Aware coverage data in post simulation runs with either of the following methods:

• viewcov mode

 vsim -viewcov pa.ucdb
 coverage report -pa

• vcover mode

 vcover report pa.ucdb -pa

Power State Table (PST) States
A power state table (PST) defines the allowable combinations of power states of supply ports
and nets—those combinations of states that can exist at the same time during simulation of the
design. As a result, changing the power state supply port/nets changes the state of PST.

You can define power state tables (PSTs) to capture these combinations,

Visualization of Power Aware States
You can use the FSM Viewer Window to display Power Aware states in a state machine bubble
diagram for each of the following objects:

• Port

• Net

• Power state table (PST)

States shown in green represent the current active states; states shown in yellow represent the
previous states.

For more information on finite state machines , refer to Finite State Machines, FSM List
Window, and FSM Viewer Window in the User’s Manual.

Power Aware User’s Manual, v10.1 123

Power Aware State Machines (PASM)
In UPF, you can add states on the following objects and model a Power Aware state machine
(PASM) corresponding to each:

• Supply port

• PST

You can use these PASMs to obtain the Power Aware state coverage data and run time state
visualization.

DIfferences Between Conventional RTL FSMs and PASMs
Some conceptual differences between conventional RTL FSMs and Power Aware state
machines are:

• Power Aware State machines are asynchronous in nature—there use no concept of
clock.

• Power Aware state machines can reach multiple states at a time(Nondeterministic
Situation).

• Power Aware state machines are modeled by ModelSim.

• There are a few interdependent Power Aware state machines. For example, a PST state
machine runs in accordance to supply port/net Power Aware state machines.

Undefined States in Power Aware State Machines
There will always be an ’undefined’ state associated with each of Power Aware State machines
(PASMs). If PASM is in none of the defined states (defined by add_port_state or add_pst_state)
at a given simulation time, then PASM is considered to be in ’undefined’ state. State coverage
data for these PASMs will show the occurrence (coverage) of ’undefined’ states.

Example of PASM in a UPF File
The following UPF file defines two power domains, PD_ALU and PD_RAM.

Port States have been added (with the add_port_state command) on ports out_sw_PD_ALU
and out_sw_PD_RAM. These ports are connected to primary supplies of these power domains.

PST states have been added(with the add_pst_state command) to a PST created for the primary
supplies of PD_ALU and PD_RAM.

Power Aware state machines are modeled for two ports (out_sw_PD_ALU and
out_sw_PD_RAM) and one PST (/MyPowerStateTable). These two port state machines are
running concurrently; the PST state machine is running in conjunction with two port state
machines.

Power Aware User’s Manual, v10.1 124

Example 6-4. Adding PST States to Power Domains in UPF File

upf_version 1.0
set_scope tb
create_power_domain PD_ALU -elements { CPU1/ALU1 }
create_supply_port VDD_port -domain PD_ALU
create_supply_port GND_port -domain PD_ALU
create_supply_net GND_net -domain PD_ALU
create_supply_net VDD_net -domain PD_ALU
create_supply_net PD_ALU_primary_power -domain PD_ALU
connect_supply_net GND_net -ports { GND_port }
set_domain_supply_net PD_ALU -primary_power_net PD_ALU_primary_power
-primary_ground_net GND_net
create_power_switch PD_ALU_sw \
 -domain PD_ALU \
 -output_supply_port { out_sw_PD_ALU PD_ALU_primary_power } \
 -input_supply_port { in_sw_PD_ALU VDD_net } \
 -input_supply_port { in2_sw_PD_ALU VDD_net } \
 -control_port { ctrl_sw_PD_ALU pwr_alu } \
 -on_state { NORMAL_WORKING in_sw_PD_ALU {
ctrl_sw_PD_ALU } } \
 -off_state { OFF_STATE {!ctrl_sw_PD_ALU} }
add_port_state PD_ALU_sw/out_sw_PD_ALU \
-state {full_on 4.2}\
-state {alu_norm 3.2}\
 -state {off off}

#PD_RAM Power Domain
#####################
create_power_domain PD_RAM -elements { CPU1/RAM1 }
create_supply_port VDD_PD_RAM_port -domain PD_RAM
create_supply_port GND_PD_RAM_port -domain PD_RAM
create_supply_net VDD_PD_RAM_net -domain PD_RAM
create_supply_net GND_PD_RAM_net -domain PD_RAM
create_supply_net PD_RAM_primary_power -domain PD_RAM
######################################
connect supply ports to supply nets
######################################
connect_supply_net GND_PD_RAM_net -ports { GND_PD_RAM_port }
set_domain_supply_net PD_RAM -primary_power_net PD_RAM_primary_power
-primary_ground_net GND_PD_RAM_net
######################################
Header switch for PD_RAM
######################################
create_power_switch PD_RAM_sw \
 -domain PD_RAM \
 -output_supply_port { out_sw_PD_RAM PD_RAM_primary_power } \
 -input_supply_port { in_sw_PD_RAM VDD_PD_RAM_net } \
 -control_port { ctrl_sw_PD_RAM pwr_ram } \
 -on_state { normal_working in_sw_PD_RAM { ctrl_sw_PD_RAM } } \
 -off_state { off_state {!ctrl_sw_PD_RAM} }

#############################
Adding states for output port of the switch
#############################
add_port_state PD_RAM_sw/out_sw_PD_RAM \
-state {full_on 4.2 }\

Power Aware User’s Manual, v10.1 125

-state {ram_norm 3}\
-state {off off}

#Creating pst for ALU and RAM combination for Design/PST FSM
create_pst MyPowerStateTable -supplies {PD_ALU_primary_power
PD_RAM_primary_power}
add_pst_state Reboot -pst MyPowerStateTable -state {off ram_norm}
add_pst_state Sleep -pst MyPowerStateTable -state {alu_norm off}
add_pst_state Hibernate -pst MyPowerStateTable -state {alu_norm ram_norm}
add_pst_state Complete_on -pst MyPowerStateTable -state {full_on full_on}

Using Power Aware State Coverage
To enable Power Aware state coverage and visualization, you would run the following
command sequence for the two-step flow:

vopt dut -pa_upf test.upf
vsim -pa dut -L mtiPA -cover

To obtain the Power Aware state coverage data, run either of the following commands with the
-pa argument:

coverage report -pa
vcover report -pa

Visualization Of Power Aware State Machines
State machine information is displayed in the GUI within the following windows:

• Power Aware State Machine List Window

• Power Aware State Machine Viewer Window

For more information on the display of finite state machines in the GUI, refer to FSM List
Window and FSM Viewer Window in the User’s Manual.

Power Aware User’s Manual, v10.1 126

Power Aware State Machine List Window

After running a Power Aware simulation, you can display the FSM List window by choosing
the following from the main menu:

View > PA State Machine List

Figure 6-5 shows an example of a PASM list in this window.

Figure 6-5. FSM List Window for Power Aware

This window has the list of all the Power Aware State Machines in the design with the
hierarchical path of their creation.

For example, if a PST has been created in dut/top, then this PST will be visible in scope
dut/top/pa_coverageinfo.

Power Aware State Machine Viewer Window
To display a state diagram of a PASM appearing in the FSM List Window, double-click on its
listing.

State diagrams of the FSM Viewer window have the following characterstics:

• Bubbles or blocks shown in green represent the current states (at simulation time shown
in the upper right corner of the window) of the Power Aware state machine.

Power Aware User’s Manual, v10.1 127

• Bubbles or blocks shown in yellow represent the previous states of the Power Aware
State machine.

• Power Aware state machines for PST s show a combined display of bubble and tabular
representation.

• Hovering the mouse over a cell with truncated text will display the full text in a popup
window.

• There is a set of previous/next toolbar buttons associated with each of the Power Aware
state machine.These toolbar buttons display all the next/previous events of
corresponding Power Aware state machine.These tool bar buttons for Power State Table
(PST) Power Aware state machine will show all the next/prev events including
next/prev events constituting Power Aware State machines of concerned supply
ports/nets. Note that with PST table hidden, these tool bar buttons will show next/prev
events of PST Power Aware State machine only.

Figure 6-6 shows the FSM Viewer window with a combined (tabular and bubble) representation
of a power state table.

Figure 6-6. FSM Viewer Window for Power State Table PASM

Supply ports in the design are assigned Power Aware states by the add_port_state command in
UPF. Power Aware state machines for supply ports are represented in a state machine bubble
diagram.

Figure 6-7 shows the Power Aware state machine for the out_sw_PD_ALU supply port.

Simulation time

Power Aware User’s Manual, v10.1 128

Figure 6-7. PASM Display for ALU Supply Port

Power Aware User’s Manual, v10.1 129

Figure 6-8 shows the Power Aware state machine for the out_sw_PD_RAM supply port.

Figure 6-8. PASM Display for RAM Supply Port

Power Aware User’s Manual, v10.1 130

Power Aware User’s Manual, v10.1 131

Appendix A
Power Aware Commands and Options

Note
The functionality described in this chapter requires an additional license feature for
ModelSim SE. Refer to the section "License Feature Names" in the Installation and
Licensing Guide for more information or contact your Mentor Graphics sales
representative.

This appendix provides reference information on the following:

• ModelSim Commands Used for Power Aware — a summary of the arguments for the
vopt and vsim commands that you use to implement a Power Aware simulation.

• Additional Commands You Can Use with Power Aware — a summary of Tcl
commands that you can use to control a Power Aware simulation.

• Power Aware Messages — basic information on message handling for Power Aware
simulation.

• Excluding Design Elements from Power Aware — a description of how to use vopt
-pa_excludefile to skip Power Aware processing for any module, its instances in a
particular hierarchical path in the design, or signals in the design.

• Voltage Level-Shifting (Multi-Voltage Analysis)

• Restricting Isolation and Level Shifting on a Port

• Simulating Designs Containing Macromodels

• Creating Feedthrough For RTL Conversion Functions

Power Aware User’s Manual, v10.1132

Power Aware Commands and Options
ModelSim Commands Used for Power Aware

ModelSim Commands Used for Power Aware
Tables A-1 and A-2 list the arguments for the vopt and vsim commands that you use to run a
Power Aware simulation. Refer to the ModelSim Reference Manual for a more comprehensive
description of these commands and their arguments.

Table A-1. Power Aware Arguments for vopt

vopt Argument Argument Value(s)

-pa_all none

-pa_out none

-pa_behavlogfile <filename>

-pa_ce o | os | osw | sc | scb

-pa_cfg <filename>

-pa_connectpgpin i | a | e

-pa_dbgstatic msk | rsn

-pa_defertop none

-pa_checks= rop | rpo | rcs | rsa | r |
icp | iep | idp | irc | ifc | it | isa | upc | umi | i |
uml | uil | ul |
t | cp | a | p | npu | ugc |
smi | sri | sii | svi | sni | sdi | si |
sml | sil | srl | snl | svl | sdl | sl | s

-pa_checkseq= "<t1> [<unit>] [...<tn>]"

-pa_disable= lowerboundary | detectiso | detectls | detectret |
insertiso | insertls | relatedsupplies | sourcesink
| anonupfobjects | 10.1features

-pa_dbgstatic msk | rsn

-pa_dumpupf <filename>

-pa_enable= lowerboundary | detectiso | detectls | detectret |
insertiso | insertls | relatedsupplies | sourcesink
| anonupfobjects | 10.1features

-pa_excludedelayedbuffer none

-pa_excludefile <filename>

-pa_genrpt= [{nv | v}] [{us | ud | u}] [b] [pa] [de]

-pa_gls none

-pa_hiersep <alphanum_character>

-pa_intcrptval0 none

Power Aware Commands and Options
ModelSim Commands Used for Power Aware

Power Aware User’s Manual, v10.1 133

Using -pa_enable and -pa_disable
The values for the -pa_enable and -pa_disable arguments to the vopt command listed in
Table A-1 allow you to enable or disable certain actions that ModelSim performs during Power
Aware simulation. Because these actions (features) were first provided for Release 10.1, you
can use these arguments to control compatibility with previous releases.

-pa_lib <library_pathname>

-pa_libertylibs <database_pathname>

-pa_lsthreshold <real>

-pa_modeltype= 2

-pa_nopcfctrlcheck none

-pa_prefix <hier_path>

-pa_replacetop <string>

-pa_reportdir <pathname>

-pa_reportfile <filename>

-pa_rtlinfo none

-pa_tclfile <filename>

-pa_top <pathname>

-pa_upf <filename>

-pa_upfextensions ignorepgports | ignorepgportsaon | relatedsnet
nonlrmstatenames | s | genblk | v |
nonameclash | altgenname | all | default

-pa_upfsyntaxchecks none

Table A-2. Power Aware Arguments for vsim

vsim Argument Argument Value

-pa none

-pa_gls none

-pa_lib <pathname>

-pa_top= <pathname>

-pa_zcorrupt none

Table A-1. Power Aware Arguments for vopt (cont.)

vopt Argument Argument Value(s)

Power Aware User’s Manual, v10.1134

Power Aware Commands and Options
ModelSim Commands Used for Power Aware

Syntax

vopt -pa_enable=[lowerboundary][detectiso][detectls] [detectret] [insertiso] [insertls]
[relatedsupplies] [sourcesink] [anonupfobjects] [10.1features]

vopt -pa_disable=[lowerboundary][detectiso][detectls] [detectret] [insertiso] [insertls]
[relatedsupplies] [sourcesink] [anonupfobjects] [10.1features]

Description

• Each argument uses the same set of values, which means using a value with either
argument toggles that action from its default state or from a previously specified state.

• Table A-3 lists each value, a brief description of the Power Aware action that ModelSim
performs, and which argument ModelSim uses for that value by default.

• You can specify one or more values for either argument—there is no order dependency
when specifying multiple values.

• To specify more than one value for either argument, use the + operator between values.
For example:

vopt -pa_enable=lowerboundary+insertiso
vopt -pa_disable=sourcesink+relatedsupplies

• To enable all values, specify the following:

vopt -pa_enable=10.1features

• To disable all values, specify the following:

vopt -pa_disable=10.1features

Table A-3. Power Aware Actions for vopt -pa_enable and -pa_disable

Value Action Default

lowerboundary Perform isolation on the ports present in
lower boundary of power domain.

-pa_disable

detectiso Detect isolation cells present in the design. -pa_disable

detectls Detect level-shifter cells present in the
design.

-pa_disable

detectret Detect retention cells present in the design. -pa_disable

insertiso Insert isolation cells. -pa_enable

Power Aware Commands and Options
Additional Commands You Can Use with Power Aware

Power Aware User’s Manual, v10.1 135

Additional Commands You Can Use with Power
Aware

Questa SIM supports the following additional Tcl commands that are not UPF commands,
which that you specify in either a UPF file (vopt -pa_upf) or a Tcl file (vopt -pa_tclfile).

• set_corruption_extent

• set_feedthrough_object

• set_related_supply_net

insertls Inserts level-shifter cells. -pa_enable

relatedsupplies Define related supplies attributes on the
boundary ports (accessible pins of hard
macros).

-pa_enable

sourcesink Apply pathwise analysis of isolation or
level-shifting.

-pa_enable

anonupfobjects Create anonymous supply sets or nets for
future replacement by associated objects.

-pa_disable

10.1features Enable or disable all actions (features) —

Table A-3. Power Aware Actions for vopt -pa_enable and -pa_disable (cont.)

Value Action Default

Power Aware User’s Manual, v10.1136

Power Aware Commands and Options
Additional Commands You Can Use with Power Aware

set_corruption_extent

Syntax

set_corruption_extent -domains {<domain_name> [<domain_name> ...]}
-ce o|os|osw|sc|scb

where

domain_name — the name of any power domain in the current scope

-ce — corruption extent, which takes one of the following values:

o — sets the corruption extent to outputs only.

os — sets the corruption extent to outputs and sequential elements.

osw — sets the corruption extent to outputs and sequential and non-sequential wires.

sc — sets the corruption extent to sequential and combination logic (based on UPF
corruption semantics honoring all sequential and combination logic for corruption—
excluding any buffers in the path for corruption).

scb — sets the corruption extent to sequential, combination, and buffer logic.

Description

Specify in either a UPF file (vopt -pa_upf) or a Tcl file (vopt -pa_tclfile).

Changes the corruption extent of the power domains created by the UPF file.

Example

Change the corruption semantics of domains P1 and P2 created in the scope tb to outputs only.

set_scope tb
set_corruption_extent -domains {P1 P2} -ce o

Power Aware Commands and Options
Additional Commands You Can Use with Power Aware

Power Aware User’s Manual, v10.1 137

set_feedthrough_object

Syntax

set_feedthrough_object -function <function_list> [-package <package_name>]

where

-function <function_list> — a required list of one or more function names (you must
specify at least one function name).

-package <package_name> — detects only functions from the specified package,
package_name. Optional.

Description

Allows conversion functions to be treated as feedthroughs for UPF-based corruption. The
objective is to detect conversion functions in the PA-RTL and treat them as feedthrough paths.

Specify in either a UPF file (vopt -pa_upf) or a Tcl file (vopt -pa_tclfile).

Power Aware User’s Manual, v10.1138

Power Aware Commands and Options
Additional Commands You Can Use with Power Aware

set_related_supply_net

Syntax

set_related_supply_net -object_list <objects> -reset -power <power_net_name>
-ground <ground_net_name>

where

-object_list <objects> — List of ports or pins that is to have a related power or ground
supply defined. Pins or ports are referenced relative to the active scope.

-power <power_net_name> — The related supply power net, referenced relative to the
active scope.

-ground <ground_net_name> — The related supply ground net, referenced relative to
the active scope.

-reset — not currently supported.

Description

Allows associating an instance signal pin or a hierarchial port with specific supply nets. Thus,
you can create a supply net based on supply pins so you can specify your related supplies of
cells.

Specify with vopt -pa_upfextensions (see Using -pa_upfextensions).

ModelSim internally maps this command to the set_port_attributes command that you specify
in the UPF file, specifically the following arguments:

-related_power_pin <power_net_name>

-related_ground_pin <ground_net_name>

Note that v2.0 of he UPF standard interprets the related_power_net and related_ground_net
attributes as defining the driver supply set of an output port or the receiver supply set of an
input port. The standard also declares that it is an error if the actual driving logic is present and
its supply is not the same as the driver supply, or if the actual receiving logic is present and its
supply is not the same as the receiver supply.
As a result, use of set_related_supply_net for any purpose other than specifying the driver
supply set of a macro model output or the receiver supply set of a macro model input may
generate errors.

Specifically, ModelSim gives a vopt error message (vopt-9814). You can use the -warning
argument of vopt to change the severity of this message to a warning so that simulation may
continue:

vopt -warning 9814

Refer to Power Aware Messages for more information on changing the level of message
severity.

Power Aware Commands and Options
Power Aware Messages

Power Aware User’s Manual, v10.1 139

Power Aware Messages
You can use the following vopt arguments to suppress or control the severity of messages that
occur while running Power Aware:

• -suppress <msg_num>
Suppresses a particular message by its ID number (msg_num).
Messages are not displayed and processing continues.

• -warning <msg_num>
Changes the severity of a particular message to Warning.
Messages are displayed and processing continues.

• -error <msg_num>
Changes the severity of a particular message to Error.
Messages are displayed and processing stops.

• -note <msg_num>
Changes the severity of a particular message to Note.
Messages are displayed and processing continues.

Applying diffferent severity levels allows you to prevent stoppage of vopt operation or
inconsistent behavior in processing and resolve phases when the error is encountered. An
example of this is when vopt stops for errors in the processing phase, while continuing when the
same errors occur in the resolve phase.

When you suppress or lower the severity of an error message, you may not see the desired
result, since the corresponding UPF command behavior gets bypassed or ignored.

Usage
• Use vopt to suppress or change the severity of a single message:

 vopt -pa_upf top.upf -o t tb -suppress <msg_num>

• Use vopt to suppress or change the severity of multiple messages:

 vopt -pa_upf top.upf -o t tb -warning <msg_num1>, <msg_num2>,
<msg_num3>

Power Aware User’s Manual, v10.1140

Power Aware Commands and Options
Excluding Design Elements from Power Aware

Excluding Design Elements from Power Aware
You can exclude Power Aware processing for any module, instance, or signal within a
particular hierarchical path in a design.

Usage

vopt -pa_excludefile <filename> [-pa_enhexclude]

Description

This argument skips Power Aware processing for any module, its instances in a particular
hierarchical path in the design, or signals in the design, which you specify in an exclude file,
<filename>. To exclude instances or signals, use the -pa_enhexclude option to this argument.

<filename> — The name of a text file that specifies modules, instances, or signals you
want to exclude from Power Aware verification. Each entry in the file must be of the
following form:

<module_name> [-a] <hier_path>

where

module_name can be any regular expression (enclosed in quotation marks).

-a is an optional switch that enables recursive exclusion of module_name.

hier_path is the full pathname to the instance of the module you want to exclude.
When a module instance is skipped, ModelSim displays the following message:

** Note: (vopt-9691) Excluding power aware module ’<module_name>’
in path ’<hier_path>’.

When used with -a, specifying hier_path limits the recursive exclusion to a
particular scope.

-pa_enhexclude — Uses the exclude file to specify a signal or an instance in a given
module in a particular hierarchical path in the design (signal names and instance path
names can be a regular expression enclosed in quotation marks). To exclude a design
element in the whole hierarchy, do not specify an instance path name. For signal or
instance exclusion, each entry in the exclude file must be of the following form:

<module_name> [instance_pathname] [[-s | -r] signal_name {, signal_name...}]

where -s specifies signal exclusion, -r specifies recursion (applied to s, where all
occurrences inside only that module scope will be excluded).

Examples—Excluding a Module

The following examples show entries in the exclude file not using the -pa_enhexclude option.

Power Aware Commands and Options
Excluding Design Elements from Power Aware

Power Aware User’s Manual, v10.1 141

1. Directs Power Aware processing to skip all instantiation of bot_mod found within the
top hierarchy.

• Entry in the exclude file:

bot_mod

• Log messages for the vopt command:

** Note: (vopt-9691) Excluding power aware module ’bot_mod’ in path ’/top/t1’.

** Note: (vopt-9691) Excluding power aware module ’bot_mod’ in path ’/top/t1/t2’.

2. Directs Power Aware processing to skip all instantiation of bot_mod2 and bot_mod3
found within the top hierarchy.

• Entry in the exclude file:

bot_mod[2-3] /top/mid

• Log messages for the vopt command:

** Note: (vopt-9691) Excluding power aware module ’bot_mod2’ in path ’/top/inst1’.

** Note: (vopt-9691) Excluding power aware module ’bot_mod3’ in path ’/top/inst2’. "

Examples—Excluding Signals/Nets

The following examples show entries in the exclude file using the -pa_enhexclude option.

1. Directs Power Aware processing to skip signal/net sig, present in all instantiations of
bot_mod found within the instance /top/t1.

• Entry in the exclude file:

bot_mod /top/t1 -s sig

• Log messages for the vopt command:

** Note: exclude.txt(1): (vopt-9013) Excluding signal ‘sig’ in power aware module ’bot_mod’ in
path ’/top/t1/sig’.

A warning message will be reported if there was no match found in exclude file, for
signal sig in module bot_mod in instance /top/t1:

** Warning: exclude.txt(1): (vopt-9014) No match found in exclude file, for signal ’sig’ in
module ’bot_mod’ in instance path ’/top/t1’.

2. Directs Power Aware processing to skip signals or nets sig2, sig3, sig4, present in all
instantiation of bot_mod found within the instance /top/t1.

• Entry in the exclude file:

Power Aware User’s Manual, v10.1142

Power Aware Commands and Options
Voltage Level-Shifting (Multi-Voltage Analysis)

bot_mod /top/t1 -s sig[2-4]

• Log messages for the vopt command:

** Note: exclude.txt(1): (vopt-9013) Excluding signal ’sig3’ in power aware module ’bot_mod’
in path ’/top/t1/sig3’.

** Note: exclude.txt(1): (vopt-9013) Excluding signal ’sig4’ in power aware module ’bot_mod’
in path ’/top/t1/sig4’.

** Note: exclude.txt(1): (vopt-9013) Excluding signal ’sig2’ in power aware module ’bot_mod’
in path ’/top/t1/sig2’.

3. Directs Power Aware processing to skip signal or net, sig, present in the scope of all
instantiations of bot_mod found within the instance /top/t1.

• Entry in the exclude file:

bot_mod /top/t1 -sr sig

• Log messages for the vopt command:

** Note: exclude.txt(1): (vopt-9013) Excluding signal ’sig’ in power aware module ’bot_mod’ in
path ’/top/t1/blk/fg__5/sig’.

** Note: exclude.txt(1): (vopt-9013) Excluding signal ’sig’ in power aware module ’bot_mod’ in
path ’/top/t1/blk/fg__4/sig’.

** Note: exclude.txt(1): (vopt-9013) Excluding signal ’sig’ in power aware module ’bot_mod’ in
path ’/top/t1/blk/fg__3/sig’.

** Note: exclude.txt(1): (vopt-9013) Excluding signal ’sig’ in power aware module ’bot_mod’ in
path ’/top/t1/blk/fg__2/sig’.

** Note: exclude.txt(1): (vopt-9013) Excluding signal ’sig’ in power aware module ’bot_mod’ in
path ’/top/t1/blk/fg__1/sig’.

** Note: exclude.txt(1): (vopt-9013) Excluding signal ’sig’ in power aware module ’bot_mod’ in
path ’/top/t1/blk/sig’.

** Note: exclude.txt(1): (vopt-9013) Excluding signal ’sig’ in power aware module ’bot_mod’ in
path ’/top/t1/sig’.

Voltage Level-Shifting (Multi-Voltage Analysis)
This section describes voltage level-shifting capability of Power Aware, which is primarily
implemented as Unified Power Format (UPF) commands and Power Aware arguments to the
ModelSim vopt command.

The supply network state provides information about the possible power states of the network.
ModelSim uses that information to detect level shifters wherever a signal crosses from a power
domain operating at a voltage level that may be different than the voltage level of another power
domain to which it connects (also known as multi-voltage analysis).

Power Aware Commands and Options
Voltage Level-Shifting (Multi-Voltage Analysis)

Power Aware User’s Manual, v10.1 143

Power State Tables
ModelSim can use information from a Power State Table (PST) in Power Aware analysis. PSTs
are also parsed and dumped to the UPF report file (report.upf.txt). It is assumed that the PST is
complete; any domains that are not mentioned in PST will not be used for analysis.

The traversal does not skip any power switches encountered in the supply network path. The
traversal goes only behind direct connectivity of supply ports and supply nets that are created in
UPF. It does not go behind a supply net present in the design or the UPF supply net/port that is
directly connected to an HDL supply net or port.

Example
Pst top_pst, File:../UPF/rtl_top.upf(127).
 Header ==> : VDD_0d99 VDD_0d81 VSS
 ON ../UPF/rtl_top.upf(133): ON ON ON
 OFF ../UPF/rtl_top.upf(134): ON ON ON

 List of possible states on:
 VDD_0d99 [source supply port: VDD_0d99, File:../UPF/rtl_top.upf(21)]
 1. ON: 0.99,1.10,1.21

 VDD_0d81 [source supply port: VDD_0d81, File:../UPF/rtl_top.upf(22)]
 1. ON: 0.81,0.90,0.99

 VSS [source supply port: VSS, File:../UPF/rtl_top.upf(23)]
 1. ON: 0.00,0.00,0.00

Level Shifter Specification

Reporting
ModelSim parses the set_level_shifter command in the UPF file and selects a list of candidate
ports for level shifter insertion. These ports are also dumped into the UPF report file
(report.upf.txt) as in the following example:

Report file dump (report.upf.txt):

Level Shifter Strategy: my_ls, File: ./src/simple_mv7/test.upf(63).
 Rule (high_to_low), Threshold (0), Applies_to (outputs).
 Level Shifted Candidate Ports:
 1. Signal : /tb/TOP/bot2/out1_bot

Level Shifter Strategy: my_ls_bot3, File: ./src/simple_mv7/test.upf(69).
 Rule (low_to_high), Threshold (0), Applies_to (outputs).
 Level Shifted Candidate Ports:
 1. Signal : /tb/TOP/bot3/out1_bot

Power Aware User’s Manual, v10.1144

Power Aware Commands and Options
Voltage Level-Shifting (Multi-Voltage Analysis)

Threshold Control for Level Shifters
You can set a global threshold level for a Power Aware analysis containing multiple voltage
levels using the following command:

vopt -pa_lsthreshold <real>

where <real> is any numerical value that specifies a voltage threshold.

You can use this argument with the vopt command when you know that level shifting is not
required for particular range of voltage differences. You can then specify a global threshold—
otherwise ModelSim will flag missing level shifter errors even if the potential difference
between two domains is within an acceptable range.

Level Shifter Instances
If you have used the set_level_shifter -instance command in a UPF file to instantiate level
shifters, ModelSim will detect those instances and perform level shifting checks on them (see
Static Checking in Power Aware).

An instance is recognized as a level shifter instance in any of the following cases:

• The level shifter instance is specified with -instance argument of set_level_shifter
command.

• For GLS design, any of the following:

o The is_level_shifter attribute is specified for the module. Example:

(* is_level_shifter = 1 *)
module ls_buf(
 (*pg_type = "primary_power"*) input logic pwr_rail,
 (*pg_type = "primary_ground"*)input logic gnd_rail,
 (* level_shifter_data_pin = 1 *)input data,
 output logic out);
assign out = (data);
endmodule

o Instantiation has prefix or suffix string for level shifter specified with name_format
UPF command. Example:

LVLHLD1BWP lsinst2_UPF_LS(.I(w2), .Z(w4));

Limitations on Level Shifting
• Support for VHDL and Verilog synthesizable data types. Restricted support for

SystemVerilog (array, struct).

Power Aware Commands and Options
Restricting Isolation and Level Shifting on a Port

Power Aware User’s Manual, v10.1 145

• Level shifters not specified at the power-domain boundary are not considered for multi-
voltage checks.

Restricting Isolation and Level Shifting on a Port
The set_isolation and set_level_shifter UPF commands each have -source and -sink arguments,
which you can use to apply isolation or level shifting only to certain paths of a specific port in
your design. When you specify either or both of these arguments, ModelSim identifies all the
paths through given port and applies isolation or level shifting to only those paths whose driver
and receiver supplies match the specified source and sink supplies.

Isolation and Level Shifting Behavior
Using the -source and -sink arguments affects Isolation and Level Shifter insertion behavior in
the following ways:

• All the paths passing through a given port are determined.

To determine the path, all the buffers , isolation cells, and level shifter cells are treated
as feed through and actual drivers and receivers are determined.

• Isolation or level shifter cell is inserted after matching source or sink supplies, if
specified. To match equivalent supplies, the driver nets of primary power and ground
nets are matched.

• The -location argument (for both commands) determines the placement of an isolation
or level shifter cell. You can specify any of the following values for set_isolation
-location or set_level_shifter -location:

o Fanout — isolation or level shifter cell is placed at all fanout locations (sinks) of the
port.

o Fanin — isolation or level shifter cell is placed at all fanin locations (sources) of the
port.

o Faninout — isolation or level shifter cell is placed at all fanout locations (sinks) for
each output port, or at all fanin locations (sources) for each input port.

o Parent — isolation or level shifter cell is placed in the parent of the domain whose
interface port is being isolated or shifted.

o Automatic — same as Parent.

o Self — isolation or level shifter cell is placed inside the domain whose interface port
is being isolated or shifted.

Power Aware User’s Manual, v10.1146

Power Aware Commands and Options
Restricting Isolation and Level Shifting on a Port

o Sibling — same as Self.

Note
Level shifter cells are not currently inserted in RTL—their effect will not be present in
simulation. Only Power Aware checking (vopt -pa_checks) will validate these cells.

How to Apply the -source and -sink Arguments
Figure A-1 shows a block diagram of power domains, ports, and paths for use in the examples
that follow.

Example A-1. UPF Commands That Define Power Domains

The following list shows fragments of UPF commands used to define the diagram of
Figure A-1:

create_supply_set PD1_SS ...
create_power_domain PD1 ...
associate_supply_set PD1_SS -handle PD1.primary
create_supply_set PD2_SS ...
create_power_domain PD2 ...
associate_supply_set PD2_SS -handle PD2.primary
create_power_domain PD3 ...

Figure A-1. Supply Paths to Power Domains

Source Examples

• Isolation cell will be placed at Port C , and isolates Path A-C.

set_isolation iso1 -domain PD3 -source PD1_SS -location parent ...

Power Aware Commands and Options
Restricting Isolation and Level Shifting on a Port

Power Aware User’s Manual, v10.1 147

• Isolation cell will be placed at Port B, and isolates Path B-D.

set_isolation iso2 -domain PD3 -source PD2_SS -location fanin ...

Sink Examples

• Isolation cells will be placed at Port G and Port H, and isolate Path E-G and F-H .

 set_isolation iso1 -domain PD3 -sink PD4_SS -location fanout ...

• Isolation cell will be placed at Port H, and isolate Path F-H.

 set_isolation iso2 -domain PD3 -elements {F} -sink PD4_ss
-location fanout ...

• Isolation cell will be placed at Port F, and isolate Path F-H.

 set_isolation iso3 -domain PD3 -elements {F} -sink PD4_ss
-location parent ...

Differential Supply Examples

The set_isolation command provides an argument (-diff_supply_only) that prevents applying
isolation into the path from the driver to the receiver for an isolation strategy defined on a port.

For these examples, assume that PD2 , PD3 and PD4 all have same supply sets:

create_supply_set PD2_SS ...
create_power_domain PD2 ...
associate_supply_set PD2_SS -handle PD2.primary
associate_supply_set PD2_SS -handle PD3.primary
associate_supply_set PD2_SS -handle PD4.primary

• Isolation cells will be placed at Port C and Port F , and isolate Path A-C and F-I.
Path F-H will not be isolated.

 set_isolation iso1 -domain PD3 -applies_to both -diff_supply_only TRUE
-location parent ..

• Isolation cells will be placed at Port A and Port I, and isolate Path A-C and F-I.

 set_isolation iso2 -domain PD3 -applies_to both -diff_supply_only TRUE
-location faninout ..

• Isolation cell will be placed at Port A, and isolates Path A-C.

 set_isolation iso3 -domain PD3 -applies_to both -source PD1_SS
-diff_supply_only TRUE -location faninout ..

Power Aware User’s Manual, v10.1148

Power Aware Commands and Options
Restricting Isolation and Level Shifting on a Port

Multiple Strategies Example

• Same port F is isolated with different Sinks. Here, Port H will be isolated with iso1 and
port I with iso2.

 set_isolation iso1 -domain PD3 -elements {F} -sink PD4_SS
-location fanout -clamp 1 ...

set_isolation iso2 -domain PD3 -elements {F} -sink PD5_SS
-location fanout -clamp 0 ...

Multiple Isolation Cells Examples

Refer to Figure A-2 for the following examples on using multiple isolation cells.

• Since only source is specified. All output port paths will be isolated and Isolation cells
will be placed at Port G , H and I. Two Isolation cells at Port H and I will be placed for
same port F.

 set_isolation iso1 -domain PD3 -source PD3_SS -location fanout ...

• Since only source is specified. Isolation cells will be placed at Port E and F.
Only one Isolation Cell will be placed at Port F which will isolate both Paths F-H and F-
I.

 set_isolation iso2 -domain PD3 -source PD3_SS -location parent ...

• For both strategies, Isolation will be placed at Port G. Relative ordering will be
maintained with iso3 cell in front of iso4 cell, means Iso3 -> iso4 -> port G.

 set_isolation iso3 -domain PD3 -elements {E} -location fanout
-clamp 1 ...

set_isolation iso4 -domain PD4 -elements {G} -location parent
-clamp 0 ...

Power Aware Commands and Options
Restricting Isolation and Level Shifting on a Port

Power Aware User’s Manual, v10.1 149

Figure A-2. Multiple Isolation Cells

Multiple Strategies in a Path Examples

Refer to Figure A-2 for the following examples on using multiple strategies in a path.

• Isolation cell will be placed at Port H and isolates path M-F-H.

 set_isolation iso1 -domain PD7 -sink PD4 -location fanout ...

• Isolation cell will be placed at Port M, and only path M-F-H will isolate. This means the
clamp value will be seen at Port H. All other ports M , F and I will not have clamp value
during power down.

 set_isolation iso2 -domain PD7 -sink PD4 -location parent ...

• Three isolation cells will be placed at Port H , with relative ordering as follows:

iso3->iso4->iso5->port H

 set_isolation iso3 -domain PD7 -sink PD4 -location fanout ...

set_isolation iso4 -domain PD3 -elements {F} -sink PD4
-location fanout ...

set_isolation iso5 -domain PD4 -elements {H} -location parent ..

• Two isolation cells will be placed at Port F and only port H will be isolated, with relative
ordering as follows:

Power Aware User’s Manual, v10.1150

Power Aware Commands and Options
Simulating Designs Containing Macromodels

Port F ->iso6->iso7

This means the clamp value (o/p of iso7) will be seen at Port H. All other ports (M , F
and I) will not have clamp value during power down.

 set_isolation iso6 -domain PD7 -sink PD4 -location fanout ...

set_isolation iso7 -domain PD3 -elements {F} -sink PD4
-location parent ...

Simulating Designs Containing Macromodels
A macromodel is a block-level model in a design that has been optimized for power, area, or
timing and silicon-tested. Defining the power intent for a macromodel depends on whether you
have access to its internal structure (logic and topology). If internal access is not available, you
can specify power intent only on its external pins—this is referred to as a “hard macro.”

To specify power intent for a hard macro, you define related supplies attributes on these
accessible pins as boundary ports. Similarly, you can isolate a hard macro from the rest of the
design by applying the isolation on its boundary ports.

Specifying power intent for a hard macro is available by any of the following methods:

• In a UPF file with the following commands:

o set_port_attributes

o set_pin_related_supply

• Related supplies attributes in RTL

• Using a Liberty file in GLS

Using UPF Commands
To specify hard macro power intent, use the UPF commands and their arguments described
below.

Power Aware Commands and Options
Simulating Designs Containing Macromodels

Power Aware User’s Manual, v10.1 151

Command

set_port_attributes

Arguments

• -receiver_supply

When -receiver_supply is attributed on a port, it specifies the supply of the logic reading the
port. If the receiving logic is not within the logic design starting at the design root, it is
presumed the receiver supply is the supply for the receiving logic.

• -driver_supply

When -driver_supply is attributed on a port, it specifies the supply of the logic driving the port.
If the driving logic is not within the logic design starting at the design root, it is presumed the
driver supply is the supply for the driver logic and the port is corrupted when the driver supply
is in a simstate other than NORMAL.

• -related_power_port

• -related_ground_port

• -related_bias_ports

If any of these arguments is specified, an implicit supply set is created containing the supply
nets connected to the ports. If the port being attributed is in mode, the implicitly created supply
set is treated as the -receiver_supply set. If the port being attributed is out mode, the implicitly
created supply set is treated as the -driver_supply set. If the port being attributed is inout mode,
the implicitly created supply set is treated as both the -receiver_supply and -driver_supply set.

• -receiver_supply

If you use this argument and if the receiving logic is within the logic design starting at the
design root, it shall be an error if its supply is not the receiver supply.

• -driver_supply

If you use this argument and if the driver logic is within the logic design starting at the design
root, it shall be an error if its supply is not the driver supply.

Command

set_pin_related_supply

This command provides the ability to define the related power and ground pins for signal pins
on a library cell. This command conveys information similar to related_power_pin and
related_ground_pin in Liberty, but it may override them. This command is restricted to only
leaf-library cells and not synthesizable hierarchical modules.

Power Aware User’s Manual, v10.1152

Power Aware Commands and Options
Simulating Designs Containing Macromodels

Attributes in RTL
You can define the following attributes in RTL to specify the power intent of hard macros:

• UPF_related_power_pin

• UPF_related_ground_pin

System Verilog Example

(* UPF_related_power_pin = "my_Vdd" *) output my_Logic_Port;

VHDL Example

attribute UPF_related_power_pin of my_Logic_Port : signal is "my_Vdd";
(* UPF_related_power_pin = "my_Vdd" *) output my_Logic_Port;

Liberty File
You can define the following attributes at the pins in a Liberty file:

• related_power_pin

• related_ground_pin

The related_power_pin and related_ground_pin attributes are defined at the pin level for output,
input, and inout pins. These attributes associate a predefined power and ground pin with the
corresponding signal pins under which they are defined. A default related_power_pin and
related_ground_pin will always exist in any cell.

Example of Power Intent on a Hard Macro
Figure A-3 shows an example of a block diagram of hard macro power domains, using the
following top-level UPF definition:

set_scope top

create_power_domain PD_top -include_scope

create_power_domain PD_HM1 -elements { HM1 }

set_domain_supply_net PD_top -primary_power_net VDD
-primary_ground_net GND

set_domain_supply_net PD_HM1 -primary_power_net VDD_HM_P1

Power Aware Commands and Options
Simulating Designs Containing Macromodels

Power Aware User’s Manual, v10.1 153

-primary_ground_net GND_HM_P1

Figure A-3. Design Consisting of Hard Macros

The following sections show how to define the hard macro power intent for each method.

UPF Commands
Constraints are specified on pins.

set_pin_related_supply HM1 -pins { i4 } -related_power_pin VDD_HM_P1
-related_ground_pin GND_HM_P1

set_port_attributes -ports { HM2/i7 } -related_power_port VDD_HM_P1
-related_ground_port GND_HM_P1

set_port_attributes -ports { HM2/i8 HM/o2 HM1/i5 } -related_power_port
VDD_HM_P2 -related_ground_port GND_HM_P2

RTL Attributes
For HM1 —

(* UPF_related_power_pin = "VDD_HM_p1", UPF_related_ground_pin =
"GND_HM_p1" *) input in4;

(* UPF_related_power_pin = "VDD_HM_p2", UPF_related_ground_pin =
"GND_HM_p2" *) input in5;

For HM2 —

Power Aware User’s Manual, v10.1154

Power Aware Commands and Options
Simulating Designs Containing Macromodels

(* UPF_related_power_pin = "VDD_HM_p1", UPF_related_ground_pin =
"GND_HM_p1" *) input in7;

(* UPF_related_power_pin = "VDD_HM_p2", UPF_related_ground_pin =
"GND_HM_p2" *) input in8;

(* UPF_related_power_pin = "VDD_HM_p2", UPF_related_ground_pin =
"GND_HM_p2" *) output o2;

Liberty File Attributes
library (PALIB) {
cell (HM) {
pg_pin (VDD_HM_P1) {
pg_type : primary_power;
user_pg_type : "abc";
voltage_name : COREVDD1;
}

pg_pin (GND_HM_P1) {
pg_type : primary_ground;
voltage_name : COREGND1;
}

pg_pin (VDD_HM_P2) {
pg_type : backup_power;
user_pg_type : "abc";
voltage_name : COREVDD1;
}

pg_pin (GND_HM_P2) {
pg_type : backup_ground;
voltage_name : COREGND1;
}

pin(in1) {
direction : input;
related_ground_pin : GND_HM_P1;
related_power_pin : VDD_HM_P1;
}

pin(in2) {
direction : input;
related_ground_pin : GND_HM_P2;
related_power_pin : VDD_HM_P2;
}

pin(out1) {
direction : input;
related_ground_pin : GND_HM_P2;
related_power_pin : VDD_HM_P2;
}
}
}

Power Aware Commands and Options
Creating Feedthrough For RTL Conversion Functions

Power Aware User’s Manual, v10.1 155

Creating Feedthrough For RTL Conversion
Functions

In RTL logic, a function call normally creates a driver in the design, to which Power Aware will
attempt to apply the specified power intent. However, functions that are intended only to
convert or assign data types should not be considered as part of the power intent—they do not
require isolation, retention, or corruption.

You can create a Tcl file to identify such functions in your design so that they are excluded from
your power intent. These are referred to as a “feedthrough” functions. In the Tcl file, you use the
set_feedthrough_object command for each function you want to exclude.

Example

set_feedthrough_object
 -function {function_list} \
 [-package package_name]

where

-function {function_list} is a list of function name. This is a mandatory option and at
least one function name should be specified.

-package package_name is optional and if specified, will detect only functions from the
specified package only.

When you run Power Aware, use vopt -pa_tclfile to specify the name of this Tcl file.

Power Aware User’s Manual, v10.1156

Power Aware Commands and Options
Creating Feedthrough For RTL Conversion Functions

Power Aware User’s Manual, v10.1 157

Appendix B
Power Aware Checking Specifications

This chapter describes some of the details for Power Aware checking according to elements
defined for a given power domain (such as level shifting, isolation, retention, and supplies).

Level Shifter Checking
A level shifter cell is present in the design description if a set_level_shifter -instance command
in your UPF file identifies that cell in the design description as a level shifter cell.

A level shifter cell is implied by a level shifting strategy if the set_level_shifter command exists
with the appropriate options for the appropriate power domain.

Level shifting is statically required for a power domain crossing if the source and sink domains
can be both powered on at the same time and the difference between the maximum voltages
exceeds a certain threshhold. Level shifting is dynamically required for a power domain
crossing if the source and sink domains are both powered on at the same time and the difference
between the maximum voltages exceeds a certain threshhold.

The directionality of a level shifter must be high_to_low if the maximum voltage powering the
source domain is higher than the maximum voltage powering the sink domain. The
directionality of a level shifter must be low_to_high if the maximum voltage powering the
source domain is lower than the maximum voltage powering the sink domain.

Isolation Checking
An isolation cell is present in the design description if a set_isolation -instance command in
your UPF file identifies that cell in the design description as an isolation cell.

An isolation cell is implied by an isolation strategy if a set_isolation command exists with the
appropriate options for the appropriate power domain.

Isolation is statically required for a power domain crossing if the source domain can be off
when the sink domain is on. Isolation is dynamically required for a power domain crossing if
the source domain is off when the sink domain is on.

Power Aware User’s Manual, v10.1158

Power Aware Checking Specifications
Additional Information on Checking

Related Topics

Additional Information on Checking
Some checks are performed both statically (during UPF processing) and dynamically (during
simulation). Other checks are performed either statically or dynamically, but not both.

Additional information messages are issued when a given isolation or level shifting cell in
either of the following cases:

• It is confirmed to be valid

• It has not been analyzed due to insufficient data

An information message is also issued when an isolation or level shifting cell is not inserted at a
given power domain crossing, when you have specified either of the following UPF commands
and arguments

• set_isolation -no_isolation

• set_level_shifter -no_shift

Table B-1 provides a summary of static and dynamic checks according to whether they apply to
level shifting, isolation, retention, supplies, or registers. All checks are static unless otherwise
indicated.

Chapter 5, Automatic Checking Voltage Level-Shifting (Multi-Voltage
Analysis)

Table B-1. Static and Dynamic Checks for Power Domain Characteristics

Check Usage Syntax Description

Missing Level Shifter -pa_checks=sml
-pa_checks=uml (dynamic)

Checks that a level shifter is present
or implied by a level shifting
strategy for a power domain
crossing where level shifting is
required.

Redundant Level Shifter -pa_checks=srl Checks that no level shifter is
present or implied by a level
shifting strategy for a power
domain crossing where level
shifting is not required.

Power Aware Checking Specifications
Additional Information on Checking

Power Aware User’s Manual, v10.1 159

Incorrect Level Shifter -pa_checks=sil
-pa_checks=uil (dynamic)

Checks that a level shifter that is
present or implied by a level
shifting strategy for a given power
domain crossing has the
appropriate directionality to
correctly convert from the
maximum voltage level powering
the source domain to the maximum
voltage level powering the sink
domain.

Missing Isolation Cell -pa_checks=smi
-pa_checks=umi (dynamic)

Checks that an isolation cell is
present or implied by an isolation
strategy for a power domain
crossing where isolation is
required.

Redundant Isolation Cell -pa_checks=sri Checks that no isolation cell is
present or implied by an isolation
strategy for a power domain
crossing where isolation is not
required.

Incorrect Isolation Cell -pa_checks=sii Checks that you have not specified
set_isolation -no_isolation for a
power domain crossing for which
isolation is required.

Isolation Enable Protocol -pa_checks=iep (dynamic) Checks that isolation is enabled at a
power domain crossing when the
source power domain driving that
power domain crossing is powered
down.

Isolation Disable Protocol -pa_checks=idp (dynamic) Checks that the source power
domain is powered up when
isolation is disabled for a power
domain crossing driven by that
source power domain.

Isolation Race Check -pa_checks=irc (dynamic) Flags any toggling of isolated
port’s value at assertion/
de-assertion of isolation control
signal.

Table B-1. Static and Dynamic Checks for Power Domain Characteristics

Check Usage Syntax Description

Power Aware User’s Manual, v10.1160

Power Aware Checking Specifications
Additional Information on Checking

Isolation Functionality
Check

-pa_checks=ifc (dynamic) Ensures that when isolation is not
applied, the value at isolation cell’s
output is same as that at its input.

Isolation Clamp Value
Check

-pa_checks=icp (dynamic) Ensures isolation cell is clamping
to correct clamp value specified in
UPF file.

Isolation Toggle Check -pa_checks=it (dynamic) Catches any change in isolated
ports’ value during isolation period.

Retention Enable Protocol -pa_checks=rop (dynamic) Checks that the retention enable
signal is asserted when a power
domain with retention is powered
down.

Retention Enable/Disable
Protocol

-pa_checks=rpo (dynamic) Checks that transitions on the
retention enable signal for a power
domain with retention occur only
when the power domain is powered
up.

Latch Enable/Clock Level
Protocol

-pa_checks=rcs (dynamic) Checks that latch enable and clock
signals have a specified value when
retention is enabled for a power
domain with retention.

Latch Enable/Clock Toggle
Protocol

-pa_checks=rsa (dynamic) Checks that latch enable or clock
signals do not toggle while a power
domain is powered down.

Primary Supply -pa_checks=cp (dynamic) Checks that the primary supply for
a power domain is always well-
defined (does not become
corrupted).

Isolation and Retention
Supply

 -pa_checks=upc (dynamic) Checks that isolation or retention
supplies are on when isolation or
retention, respectively, is enabled.

Table B-1. Static and Dynamic Checks for Power Domain Characteristics

Check Usage Syntax Description

Power Aware Checking Specifications
Additional Information on Checking

Power Aware User’s Manual, v10.1 161

Non-Retention Register
Reset

-pa_checks=npu Checks that non-retention registers
are reset when the power domain
containing them is powered up.

Glitch Detection -pa_checks=ugc Catches any spurious spikes on
control lines so that it does not
cause false switching of control
ports of various control logic.

Table B-1. Static and Dynamic Checks for Power Domain Characteristics

Check Usage Syntax Description

Power Aware User’s Manual, v10.1162

Power Aware Checking Specifications
Additional Information on Checking

Power Aware User’s Manual, v10.1 163

Appendix C
Model Construction for Power Aware

Simulation

Guidelines for Writing HDL Models
Power Aware verification uses Verilog behavioral models of Power Aware cells. These models
encapsulate the Power Aware behaviors of various types of design state, such as clock-low
retention flip-flops and active-high retention latches.

Verilog HDL constructs and attributes for Power Aware models provided by a silicon (or
library) vendor. These models trigger relevant events for the simulator to modify the runtime
behavior of the design. Typically, these modifications consist of corrupting states and output
values and storing or restoring state values based on power control network activity.

Typically, your UPF power specification file relates inferred registers or latches to these
models. However, it is possible to capture Power Aware functionality in combination with
register and latch functionality in a single model. Because of this, you can create Power Aware
models in Verilog to specify Power Aware behavior for inferred registers and latches, as well as
provide the functionality directly through direct instantiation of the Power Aware models.
Combining both of these functional descriptions in a single model facilitates the testing of the
model for use in Power Aware verification.

Assumptions and Advantages
• The silicon foundry is responsible for the specification of these models to match the

behavior of their Power Aware cell technology.

• Capturing the Power Aware behavior in standard Verilog gives the vendor the flexibility
to add new cell types and behaviors without creating additional simulation requirements
for those cells.

• Foundries providing Power Aware models have control over the protection of their
intellectual property (IP).

Basic Model Structure
Model vendors can implement the Verilog model in any style. The cells communicate important
events to the simulator using named events. Power Aware verification defines a standard set of

Power Aware User’s Manual, v10.1164

Model Construction for Power Aware Simulation
Guidelines for Writing HDL Models

named event identifiers that are used in the model. Each named event corresponds to a
particular action to be taken by the simulator.

The simulator communicates with the model by connecting the model to the clock, reset, power
(on/off) and power retention signals. Through events on these signals, the model determines
when the Power Aware events are triggered, notifying the simulator that the normal RTL
behavior must be modified to reflect power control network activity. Because the only inputs
are single bit inputs and the only "output" to the simulator is the triggering of named events, the
models (at the RTL or higher abstraction level) are general purpose and can work with inferred
registers and latches of any data type (for VHDL and SystemVerilog support).

The model communicates with the simulator only by triggering the defined named events. The
simulator will then map the event trigger into the appropriate Power Aware behavior for the
inferred register or latch that the Power Aware model is associated (using the Power
Specification File).

The port interface to the Power Aware model can contain additional port declarations. For
example, a Power Aware latch model might define enable, data in and data out ports. For the
purpose of Power Aware RTL verification, these additional ports are ignored and will not be
connected to the design's functional network.

As additional ports are permitted (but ignored), it is feasible to define a Power Aware model
that can be verified as functionally correct as it can be instantiated into a test circuit and
exercised to ensure it triggers the Power Aware events at the appropriate time and that saved
and restored values match what is expected.

A benefit of this approach is that a single Power Aware model can be created for both gate-level
verification and Power Aware RTL verification. The gate-level functionality can be used in gate
level simulations and would include the cell's Power Aware functionality but not the triggering
of the Power Aware events that are designed for use in RTL (or higher) abstraction level
simulations. The Power Aware events can be used without the overhead of the gate-level
functionality, for RTL and higher abstraction simulations. Together, both sets of functionality
can be used to verify the correctness of the model. The example below shows the use of
conditional compilation to control inclusion of functional code, the Power Aware code or both
in a simulation.

Modeling using conditional compilation implies that the model would be compiled twice into
different libraries for use in gate-level and RTL simulations. An alternative would be the use of
parameters and conditional generates to control the inclusion of functionality. In any case, the
ability to specify a single model for use at multiple abstraction levels simplifies the support and
maintenance associated with the development and deployment of Power Aware IP models.

Named Events in Power Aware
The following declarations of named events in a Power Aware Verilog model control simulator
activity as indicated.

Model Construction for Power Aware Simulation
Guidelines for Writing HDL Models

Power Aware User’s Manual, v10.1 165

event pa_store_value

The simulator stores the current value of the inferred registers or latches that the Power
Aware model is associated within the power specification file.

event pa_store_x

The simulator stores a corruption value for the inferred registers or latches. Corruption
values depend on the type of data inferring the register or latch. A table mapping
corruption values to data types is specified separately.

event pa_restore_value

The simulator restores the value previously saved for the inferred registers or latches to
the corresponding signal(s) in the design. Restoration of a value results in an event on
the corresponding signal to facilitate propagation of known, good states throughout a
block that has had power restored.

event pa_restore_x

The simulator restores (re-initializes) the inferred registers or latches to an unknown
state specified by the corruption value for the signal's data type. The simulator
propagates an event on the restored corruption value.

event pa_corrupt_register; // corrupt the register

The simulator corrupts the current value of the signal corresponding to the inferred
registers or latches. The corruption value used is determined by the data type/corruption
value table specified separately. No event is propagated due to the corruption. NOTE:
See Usage Note for Sequence Requirements (below).

event pa_set_register; // set the register

The simulator sets the current value of the signal corresponding to the inferred register
or latch to a set value, which is inferred from the RTL code. The simulator propagates an
event on the set signal value.

event pa_reset_register; // reset the register

The simulator sets the current value of the signal corresponding to the inferred register
or latch to a reset value, which is inferred from the RTL code. The simulator propagates
an event on the reset signal value.

event pa_restore_hold_register

The simulator restores the value previously saved and holds that value until a
pa_release_register event is raised. NOTE: See Usage Note for Sequence Requirements
(below).

event pa_release_register

Power Aware User’s Manual, v10.1166

Model Construction for Power Aware Simulation
Guidelines for Writing HDL Models

The simulator releases any forced values on a register. If the register is combinational,
the simulator re-evaluates the register. NOTE: See Usage Note for Sequence
Requirements (below).

event pa_release_reeval_register

The simulator re-evaluates a latch at powerup. Forces the register to be re-evaluated if
the latch enable is active when power is restored.

event pa_iso_on

The simulator is notified that an isolation period has begun. Use pa_release_register
event to identify the end of an isolation period.

The model is responsible for raising the named event when the model of the Power Aware cell
is in the appropriate state.

For instance, when the retention signal goes high and the clock is in the proper state in a CLRFF
(clock-low, retention flip-flop), the model should raise the pa_store_value event. When the
power goes low, the pa_corrupt_register event should be raised.

Usage Note for Sequence Requirements
When you use a pa_restore_hold_register or pa_corrupt_register event, you must include a
corresponding pa_release_register or pa_release_reeval_register event in the model in the next
sequence. The release event can be in a different always block (for example), but it must be next
in the sequence.

Attributes
To assist in the identification of Power Aware cells and facilitate their mapping inferred
sequential elements, attributes are placed within the module to provide easily located
information. The attributes names and allowed values, as well as contexts in which they are
used, are as specified.

Retention Cells and Memories
The attribute name is is_retention and the allowed attribute values are the strings
corresponding to the pacell_type specified in the section Power Model Mapping Statement.

(* is_retention = <pacell_type_string> *)

Where pacell_type_string is one of:

"FF_CKHI"
"FF_CKLO"
"FF_CKFR"
"LA_ENHI"

Model Construction for Power Aware Simulation
Guidelines for Writing HDL Models

Power Aware User’s Manual, v10.1 167

"LA_ENLO"
"LA_ENFR"
"RETMEM_CKHI"
"RETMEM_CKLO"
"RETMEM_CKFR"

Note that within this context, the pacell types of ANY_CKHI, ANY_CKLO and ANY_CKFR
have no meaning as these types are used to map any inferred register or latch. Within the
context of attributing a retention cell, that cell will be either a register or latch and that
information will be known at the time of attribution.

Example

(* is_retention = "FF_CKFR" *) // Clock free register
(* is_retention = "RETMEM_CKHI" *) // Retention memory sensitive

// on posedge of clock

Isolation Cells
The behavior of isolation cells is automatically introduced at the RTL or higher levels through
specification of output corruption. However, it is necessary to attribute the gate level library
isolation cell models to ensure that the gate level design matches the verified and specified RTL
(or higher) functionality. The is_isolation_cell attribute is Boolean.

Example

(* is_isolation_cell *) // According to IEEE 1364, this
// is equivalent to:

(* is_isolation_cell = 1 *)

Level Shifters
Level shifters imply no functional behavior at RTL or higher. However, they are required to
ensure proper operation and scaling of signal values from one voltage domain to another. The
PCF contains voltage domain definitions, refer to the section Voltage Domains. Attributing
level shifter cells in the gate level library ensures the gate level design matches the verified and
specified RTL (or higher) design specification. The is_level_shifter attribute is Boolean.

Example

(* is_level_shifter *) // According to IEEE 1364, this
// is equivalent to:

(* is_level_shifter = 1 *)

Model Interface Ports
The model must define the necessary ports using the names as specified in this section. All ports
are required even if the optional functionality does not apply to a specific inferred register or

Power Aware User’s Manual, v10.1168

Model Construction for Power Aware Simulation
Guidelines for Writing HDL Models

latch. This port interface specification allows generic models that can be applied to a variety of
inferred registers and latches.

All ports specified below are input ports. The simulator will connect the ports to the
corresponding functional and power control network signals by name. Verilog is case sensitive.

• PWR — Power control network signal that indicates whether power is on or off for the
power island that this model is associated with. This port is always connected.

• Retention port(s) — One of the following must be defined by the module and the
retention port(s) will always be connected:

o RET — Power control network signal that indicates whether or not the state of the
inferred register or latch must be saved (or restored).

o SAVE, RESTORE — Separate ports to signal save and restore separately.

• CLK — Functional network data in enable signal. For registers, this would be a clock
signal. For latches, this will be the enable signal. This port will always be connected.

• SET — Functional network control signal indicating that the inferred sequential model's
value should be set or preset. The functionality of this port is optional and the port will
not be connected if there are no inferred set or preset conditions. This port needs to be
modeled active high or active posedge. The tool infers the control signal and its polarity
and will automatically negate the signal's value when it is connected to the model if it is
active low or active negedge.

• RESET — Functional network control signal indicating that the inferred sequential
model's value should be reset or clear. The functionality of this port is optional and the
port will not be connected if there are no inferred reset or clear conditions. The tool
infers the control signal and its polarity and will automatically negate the signal's value
when it is connected to the model if it is active low or active negedge.

Power and retention ports may be connected to an expression involving two or more signals
(each). For example, if power on is determined by a master power signal being on and a specific
power island power signal being on, then you can use the following expression in the PCF as the
input expression connected to the PWR port:

(global_pwr & local_pwr)

Example—Register Model
The following Verilog code represents a behavioral model of a Clock Free Retention Flip Flop
(CFRFF) modified to use many of the listed named events. The RTL verification event
generation functionality is separated from the "gate-level" cell functionality to demonstrate how
a single model can be defined for use at both RTL and gate levels for Power Aware verification
as well as facilitate the verification of both functional aspects of the model.

Model Construction for Power Aware Simulation
Guidelines for Writing HDL Models

Power Aware User’s Manual, v10.1 169

module CFRFF (
 PWR, RET, CLK, SET, RESET
`ifdef PA_GLS_FUNC // Extra ports would be left unconnected
 , D, Q // It isn't necessary to conditionally
`endif // compile them out for RTL PA
) ;

 input PWR;
 input RET;
 input CLK;
 input SET; // Not used in this model
 input RESET;
`ifdef PA_GLS_FUNC
 input D;
 output Q;

 reg Q;

 reg reg_q;
 reg reg_q_ret;
 reg ret_value;
 reg restore_value;
 reg posedge_power_w_reset;
 reg negedge_ret_w_reset;
 reg reset_active;
`endif // PA_GLS_FUNC

 // MG event declarations
`ifdef PA_RTL_FUNC // Would not be needed in GLS
 event pa_store_value;
 event pa_store_x;
 event pa_restore_value;
 event pa_restore_x;
 event pa_corrupt_register;
 event pa_reset_register;
`endif // PA_RTL_FUNC

`ifdef PA_GLS_FUNC
// Functionality in this section is used only in Gate Level
// simulations or in the verification of the PA RTL functionality
// (triggering of the appropriate events at the appropriate time).

 initial
 begin

Q = 0;
ret_value = 0;
restore_value = 0;
posedge_power_w_reset = 0;
negedge_ret_w_reset = 0;
reset_active = 0;

 end

 always @ (PWR, RESET,
 RET, reg_q, ret_value,
 posedge_power_w_reset, negedge_ret_w_reset)
 begin : output_mux

if(~PWR)
 begin

Power Aware User’s Manual, v10.1170

Model Construction for Power Aware Simulation
Guidelines for Writing HDL Models

 Q <= 1'bx;
 end
else if (posedge_power_w_reset)
 Q <= reg_q;
else if (negedge_ret_w_reset)
 Q <= reg_q;
else if (RET)
 begin
 Q <= reg_q_ret;
 end
else
 Q <= reg_q;

 end

 always @(RESET)
 begin

reset_active = RESET;
 end

 always @(posedge CLK or negedge RESET)
 begin : ff_process

if (RESET)
 reg_q <= 1'b0;
else
 reg_q <= D;

 end

 always @(posedge CLK)
 begin : ret_ff_process

if (~RET)
 reg_q_ret <= D;

 end

 always @(posedge RET)
 begin

ret_value <= reg_q;
 end

 always @(negedge RET)
 restore_value <= ret_value;

 always @(negedge PWR)
 begin

if (!RET)
 begin

 wait (PWR);
 if (~RESET) posedge_power_w_reset <= 1;
 wait (!CLK);
 wait (CLK);
 posedge_power_w_reset <= 0;

 end
 end

`endif // PA_GLS_FUNC

`ifdef PA_RTL_FUNC
// Functionality in this section is used for Power Aware RTL (or higher)

Model Construction for Power Aware Simulation
Guidelines for Writing HDL Models

Power Aware User’s Manual, v10.1 171

// abstraction verification. It can also be combined with the gate
// level functionality for the purpose of verifying both.

 always @(posedge RET)
 -> pa_store_value;

 always @(negedge RET)
 begin

if ((RESET) && PWR)
 -> pa_reset_register;

 end

 always @(posedge PWR)
 begin

if (RET)
 begin
 -> pa_restore_value;
 end

 end

 always @(negedge PWR)
 -> pa_corrupt_register;

`endif // PA_RTL_FUNC

endmodule

Example—Corrupt Model
The following Verilog code shows how to create a simple corruption model that initiates and
releases corruption on a register:

module CORRUPT(PWR);
 input PWR;
 event pa_corrupt_register;
 event pa_release_register;

 always @(negedge PWR)
 -> pa_corrupt_register;

 always @(posedge PWR)
 -> pa_release_register;

endmodule // corrupt

where

• The pa_corrupt_register statement causes the simulator to corrupt the current value of
the signal corresponding to the inferred registers or latches.

• The pa_release_register statement causes the simulator to release any forced values on a
register. If the register is combinational, the simulator re-evaluates the register.

Power Aware User’s Manual, v10.1172

Model Construction for Power Aware Simulation
Guidelines for Writing HDL Models

Power Aware User’s Manual, v10.1 173

Appendix D
UPF Commands and Reference

This appendix provides information on Unified Power Format (UPF), which is a standardized
set of low-power design specifications for use throughout design, analysis, verification, and
implementation.

• Unified Power Format (UPF)

• UPF Standards

• Supported UPF Commands

• Supported UPF Package Functions

• Accessing Generate Blocks in UPF

• Supported UPF Attributes

• Supported UPF Extensions

• UPF Supply Connections

• Value Conversion Tables

• Supply Nets

Unified Power Format (UPF)
You apply UPF as a user-defined file that specifies the Power Aware characteristics of a design
for use by the simulator. UPF file format adheres to v1.0 of the UPF standard by default. In
addition, Mentor also supports portions of v2.0 (IEEE Std1801-2009). Mentor supports the use
of the industry-wide standard known as Unified Power Format (UPF), which consists of
commands and statements in a Tcl text file that define the low-power intent for a design.

A UPF file is designed to capture all Power Aware characteristics of the design at the RTL or
gate level in a compact form that can be easily used by the simulator. The scope of the UPF file
is to provide a standardized format for specifying the supply network, switches, power isolation,
data retention, and other aspects relevant to power management of an electronic design.

The UPF file is the key to using Power Aware verification on your design. This file provides
the following information required to overlay RTL or gate-level verification with the power
control network and Power Aware functionality:

• Power regions, voltage domains, and power islands

Power Aware User’s Manual, v10.1174

UPF Commands and Reference
UPF Standards

• Retention sequential models, their type and the regions they are in

• State and output corruption behavior in power-down situations

• Power control signals and the portions of the design they control

Using a UPF File as Part of Power Aware Simulation
The following procedure describes how to use a UPF file as part of basic Power Aware
simulation (see Standard Flow For RTL).

1. Use a text editor to create a UPF file that contains commands that specify the Supply
Network over your design. These commands are TCL functions, as described in the
current UPF standard.

2. Specify this UPF file as part of the vopt command, using the -pa_upf switch, as follows:

vopt -o <opt_top> <Design Top> -pa_upf <upf_file>

Result: vopt creates a parallel hierarchy that contains the power supply network of the
design. This hierarchy also triggers the control signals that are used to control
corruption, retention, or isolation.

Also, Power Aware data is written to either the current working directory or to a library
that you can specify using the -pa_lib switch.

3. If you are importing a UPF package into a Verilog test bench or file, and the mtiUPF
variable is not defined in your modelsim.ini file, you must use the vlog command with
the -L argument to compile the test bench, as follows:

vlog <filename> -L mtiUPF

Note that this variable is defined by default, so you generally do not have to do this.

Alternatively, if you want to use a UPF package with VHDL, you must include it in your
VHDL file, as follows:

library IEEE;
use IEEE.UPF.all;

UPF Standards
At this time, two versions of the UPF standard have been published:

• Version 1.0 of the UPF Standard

• Version 2.0 of the UPF Standard: IEEE Std 1801-2009

UPF Commands and Reference
UPF Standards

Power Aware User’s Manual, v10.1 175

Mentor currently supports v1.0 of the UPF standard by default. In addition, Mentor also
supports portions of v2.0 (IEEE Std1801-2009), which you can implement in a given UPF file
by inserting the following text as the first line:

upf_version 2.0

Version 1.0 of the UPF Standard
The technological foundation for the UPF standard was originally developed by Accellera
Organization, Inc.1 UPF 1.0 was approved as an Accellera standard in February 2007. Version
1.0 of the standard was administered by the P1801 Low Power Working Group of the IEEE. For
more information on this working group, refer to the following web location:

http://www.accellera.org/activities/p1801_upf/

You can obtain a copy of v1.0 of the UPF standard (February 2007) in PDF format from the
following web location:

http://www.accellera.org/apps/group_public/download.php/989/upf.v1.0.pdf

By default, Mentor supports v1.0 of the UPF standard. In addition, Mentor also supports
portions of v2.0 (IEEE Std1801-2009),

Version 2.0 of the UPF Standard: IEEE Std 1801-2009
In May 2007, Accellera donated UPF v1.0 to the IEEE for the purposes of creating an IEEE
standard. The donation was assigned to the P1801 working group and was eventually developed
into a formal standard titled the IEEE Standard for the Design and Verification of Low Power
Integrated Circuits (IEEE Std1801-2009). Although this standard is the first official IEEE
version, it represents the second version of what is more informally referred to as UPF v2.0.

Currently, Mentor supports portions of IEEE Std1801-2009, which you can implement in a
given UPF file by inserting the following text as the first line:

upf_version 2.0

Note
By default, ModelSim uses UPF v1.0, unless you insert this upf_version command in the
UPF file.

When you use v2.0, ModelSim parses all UPF v2.0 commands and displays a warning message
for the following:

• Unsupported commands

1. http://www.accellera.org

http://www.accellera.org/
http://www.accellera.org/activities/p1801_upf
http://www.accellera.org/apps/group_public/download.php/989/upf.v1.0.pdf

Power Aware User’s Manual, v10.1176

UPF Commands and Reference
Supported UPF Commands

• Any unsupported arguments for a supported command

Supported UPF Commands
This section provides reference information on the UPF commands that you can use with
ModelSim. These commands are listed in Table D-1.

Note
Note that some commands in Table D-1 have arguments that are not supported, and some
commands or arguments are supported only if you implement the UPF file as v2.0.

Table D-2 lists UPF commands that are not supported for the current release of ModelSim.

Table D-1. Supported UPF Commands

Table D-2. UPF Commands Not Currently Supported

add_domain_elements create_pst set_design_top

add_port_state create_supply_net set_domain_supply_net

add_power_state create_supply_port set_isolation

add_pst_state create_supply_set set_isolation_control

associate_supply_set create_upf2hdl_vct set_level_shifter

connect_logic_net load_simstate_behavior set_partial_on_translation

connect_supply_net load_upf set_pin_related_supply

connect_supply_set load_upf_protected set_port_attributes

create_composite_domain map_isolation_cell set_power_switch

create_hdl2upf_vct map_level_shifter_cell set_retention

create_logic_net map_retention_cell set_retention_control

create_logic_port name_format set_scope

create_power_domain save_upf set_simstate_behavior

create_power_switch set_design_attributes upf_version

bind_checker map_power_switch use_interface_cells

describe_state_transition merge_power_domains

UPF Commands and Reference
Supported UPF Commands

Power Aware User’s Manual, v10.1 177

get_supply_net set_retention_elements

Power Aware User’s Manual, v10.1178

UPF Commands and Reference
add_domain_elements

add_domain_elements
Support for UPF Standard

v1.0 — yes

v2.0 — yes

Arguments

Usage Notes

This command adds design elements to the power domain.

Argument Name Comments/Restrictions

-elements

UPF Commands and Reference
add_port_state

Power Aware User’s Manual, v10.1 179

add_port_state
Support for UPF Standard

v1.0 — yes

v2.0 — yes

Arguments

Usage Notes

Adds state information to a supply port, which can represent off-chip supply sources that are not
driven by the test bench.

Argument Comments/Restrictions

-state

Power Aware User’s Manual, v10.1180

UPF Commands and Reference
add_power_state

add_power_state
Support for UPF Standard

v1.0 — no

v2.0 — yes

UPF Commands and Reference
add_power_state

Power Aware User’s Manual, v10.1 181

Arguments

Argument Comments/Restrictions

-state The name you specify here is simply an identifier; it has no
semantic meaning.

-supply_expr

-logic_expr

Power Aware User’s Manual, v10.1182

UPF Commands and Reference
add_power_state

-simstate Values:

• CORRUPT
The power level of the supply set is either off (one or more
supply nets in the set are switched off, terminating the flow of
current) or at such a low level that it cannot support switching
and the retention of the state of logic nets cannot be guaranteed
to be maintained even in the absence of changes or activity in
the elements powered by the supply.

• CORRUPT_ON_ACTIVITY
The power level of the supply set is insufficient to support
activity. However, the power level is sufficient that logic nets
retain their state as long as there is no activity within the
elements connected to the supply.

• CORRUPT_STATE_ON_ACTIVITY
The power level of the supply set is sufficient to support
combinational logic, but it is not sufficient to support activity
inside state elements, whether that activity would result in any
state change or not.

• CORRUPT_STATE_ON_CHANGE
The power level of the supply set is sufficient to support
combinational logic, but it is not sufficient to support a change
of state for state elements.

• NORMAL
The power level of the supply set is sufficient to support full
and complete operational (switching) capabilities with
characterized timing.

• NOT_NORMAL
This is a special, placeholder state. It allows early specification
of a non-operational power state while deferring the detail of
whether the supply set is in the CORRUPT,
CORRUPT_ON_ACTIVITY,
CORRUPT_STATE_ON_CHANGE, or
CORRUPT_STATE_ON_ACTIVITY simstate. If the supply
set matches a power state specified with simstate
NOT_NORMAL, the semantics of CORRUPT shall be applied,
unless overridden by a tool-specific option. NOT_NORMAL
semantics shall never be interpreted as NORMAL.

-legal | -illegal

-update

Argument Comments/Restrictions

UPF Commands and Reference
add_power_state

Power Aware User’s Manual, v10.1 183

Usage Notes

This command attributes one or more power states to a supply set or a power domain.
Supply set

A supply set is a grouping of supply nets that collectively define a complete power supply. The
power state of a supply set is specified in terms of the supply nets that constitute the set. It is the
combined states of the constituent supply nets that determine the following:

• Whether there is current available to power an element.

• The voltage level of the supply. Simstates are associated with power states of supply
sets.

Semantics for supply set simulation are applied to the elements connected to the supply set
when you enable simstate behavior.

You can also reference supply sets in add_power_state as handles. Here, only those handles
associated with some supply sets when add_power_state is invoked are valid.

Note
It is an error when there are no supply nets associated with the handles and the handles
are used in the expression

Power domain

The power state of a domain is determined by the state of supply sets associated with the
domain.

For example, the definition of a domain’s MY_DOMAIN_IS_ON power state would logically
require that the primary supply set be in a power state that is a NORMAL simstate (all supply
nets of the primary supply set are on and the current delivered by the power circuit sufficient to
support normal operation.)

Similarly, a SLEEP mode for the domain may require the primary supply set to be in power
state whose simstate is not NORMAL (perhaps CORRUPT), while appropriate retention and
isolation supplies are NORMAL.

You can define the power state for a domain directly in terms of supply nets using -supply_expr
in addition to the -logic_expr.

• If a domain’s power state -logic_expr specification includes comparison of another
domain’s active state to a power state defined on that domain, it is equivalent to
including the -logic_expr and -supply_expr specifications for that power state of the
referenced domain in the definition of the power state.

• If a domain’s power state -logic_expr specification includes comparison of a supply
set’s active state to a power state defined on that supply set, it is equivalent to including
the -logic_expr and -supply_expr specifications for that power state of the referenced
supply set in the definition of the power state.

Power Aware User’s Manual, v10.1184

UPF Commands and Reference
add_pst_state

add_pst_state
Support for UPF Standard

v1.0 — yes

v2.0 — yes

Arguments

Usage Notes

Allows specifying a power state table (PST) to define states on a supply net.

Argument Comments/Restrictions

-pst

-state

UPF Commands and Reference
associate_supply_set

Power Aware User’s Manual, v10.1 185

associate_supply_set
Support for UPF Standard

v1.0 — no

v2.0 — yes

Arguments

Usage Notes

Associates a supply set or supply_set_ref to a power domain, power switch, or strategy
supply_set_handle.

Argument Comments/Restrictions

-handle All predefined handles for supply set are
supported.

Power Aware User’s Manual, v10.1186

UPF Commands and Reference
connect_logic_net

connect_logic_net
Support for UPF Standard

v1.0 — no

v2.0 — yes

Arguments

Usage Notes

Connects a logic net to a logic port.

Argument Comments/Restrictions

-ports

UPF Commands and Reference
connect_supply_net

Power Aware User’s Manual, v10.1 187

connect_supply_net
Support for UPF Standard

v1.0 — yes (partial)

v2.0 — yes (partial)

Arguments

Usage Notes

Refer to “UPF Supply Connections”

Argument v1.0 v2.0 Comments/Restrictions

-ports Y Y

-pg_type Y Y Using an <element_list> is not supported.

-vct Y Y

-pins Y Y

-cells Y Y

-domain Y Y

-rail_connection N N Not supported.

Power Aware User’s Manual, v10.1188

UPF Commands and Reference
connect_supply_set

connect_supply_set
Support for UPF Standard

v1.0 — no

v2.0 — yes (partial)

Arguments

Usage Notes

Defines automatic connection semantics on supply sets. Supply nets of supply sets are
automatically connected to the supply ports of design elements based on the purpose of the
supply set in a given domain or strategy context and the function that a supply net performs in
the context of supply set.

Restrictions:

• Supply sets specified in strategy context are not automatically connected to design
elements.

• Supply nets in supply sets functioning as predefined supply set functions are not
automatically connected according to their predefined function. You must specify
explicit automatic connections.

Examples

connect_supply_set PD.primary \
-connect {power primary_power} \
-elements TOP

connect_supply_set PD.ISO.isolation_supply_set \
-connect {iso_power primary_power} \
-connect {iso_ground primary_ground} \

connect_supply_set PD.RET.retention_supply_set \
-connect {ret_backup_power backup_power} \
-connect {switchtable_supply primary_power}

Argument v1.0 v2.0 Comments/Restrictions

-connect N Y

-elements N Y

-exclude_elements N N Not supported

-transitive N N Not supported

UPF Commands and Reference
create_composite_domain

Power Aware User’s Manual, v10.1 189

create_composite_domain
Support for UPF Standard

v1.0 — no

v2.0 — yes

Arguments

Usage Notes

A composite power domain is a set of domains (referred to as subdomains), each of which has
a primary supply set as necessary common property.

A composite domain contains these attributes:

• primary supply set handles

• power states

Operations on a supply set

UPF v2.0 states that all operations performed on a composite domain are transitively applied to
each subdomain. This implies that many UPF commands may refer to a composite domain,
either directly using the -domain(s) argument or by using a handle name, in case of supply sets.

UPF commands applied on a composite domain are applied only to those domains that are
present at that time in the subdomain tree of that composite domain—they will not be applied to
the subdomains added later.

Implementation

• Checks

o If a composite domain with the given composite_domain_name exists in the current
scope, you must specify the -update argument, or it will be flagged as an error.
Similarly, if the composite domain is new and does not exist in the current scope, it
will be an error to use the -update argument.

Argument Comments/Restrictions

-subdomains

-supply

-update

Power Aware User’s Manual, v10.1190

UPF Commands and Reference
create_composite_domain

• Subdomains

o For each subdomain provided in the -subdomain list, it will be an error if any of
given rooted name does not match a power domain or composite domain in the
current scope.

o A domain can be a subdomain to multiple composite domains. However, this may
lead to conflicting commands being applied on that domain (UPF v2.0 is not clear on
this).

• Supply sets

o Each supply set handle name provided with the -supply argument is searched for in
the existing supply sets list for that composite domain. If found, the presence of
supply set reference is checked for that handle.

o A warning message is displayed if the reference is present but its name does not
match the current the supply set reference name.

o If the supply set handle did not contain a reference before, but now a reference name
has been provided, ModelSim searches the current scope and updates the handle
with this reference. It will be an error if any matching reference is not found.

o If the supply set handle does not exist, ModelSim creates a new handle and
populates the reference. ModelSim adds the new handle to the list of supply sets for
the current composite domain and adds it to each subdomain.

o You can add new subdomains and supply set handles to a composite domain subject
to the checks mentioned above.

• Power states

o The add_power_state command is supported, which means power states for
composite domains are available.

• Support for save_upf command

o In the interpreted mode, Power Aware dumps instances of the
create_composite_domain command once for each composite domain with all the
updates included.

o All the commands applied on a composite domain are applied to all the subdomains
down to the leaf-level power domains. Because a composite domain can contain
only subdomains, supply sets, and power states, ModelSim does not store strategies,
nets, or other objects on it. As a result, these commands appear as multiple
commands applied to each power domain that was a part of the subdomain hierarchy
of a composite domain.

o In uninterpreted mode, ModelSim saves the command texts as-is, and the
create_composite_domain command may appear multiple times with -update. Also,
the commands applied on a composite domain are directly dumped.

UPF Commands and Reference
create_composite_domain

Power Aware User’s Manual, v10.1 191

Interaction of composite domains with other UPF commands

• add_power_state

• associate_supply_set

In Section 6.15 of UPF v2.0:

It is valid to refer to the primary supply of a composite domain because there is exactly
one primary supply common to all subdomains. It is not valid to refer to other
supply_set_handles or strategies in the composite domain because they are not
necessarily common to all sub domains.

This statement asserts that you cannot refer to a supply set handle in a composite domain other
than primary supply set. Currently, the associate_supply_set command is supported only for the
primary supply. For other supplies, you can associate them by using either of the followng
ways:

o associate_supply_set on each sub power domain individually

o using create_composite_domain -update -supply {supply_set_handle
[supply_set_ref]

It will be an error if the primary supply handle already exists in a subdomain and points to a
different supply set.

Correct usage example:

create_composite_domain cd -subdomains {pd2 pd3} -supply {primary}
associate_supply_set pd_ss -handle cd.primary

Alternate correct usage example:

create_composite_domain cd -subdomains {pd2 pd3}
create_composite_domain cd -supply {ssh pd_ss}

Incorrect usage example

create_composite_domain cd -subdomains {pd2 pd3} -supply {ssh}
associate_supply_set pd_ss -handle cd.ssh

Error message:

** Error: ./test.upf(88): UPF: (vopt-9765) It is invalid to use the
’associate_supply_set’ command with any composite domain supply set handle
other than the primary handle.
Domain: ’cd’, supply set handle: ’pd_ss’

• create_power_switch

The power switch will be created in the creation scope of composite_domain.

Power Aware User’s Manual, v10.1192

UPF Commands and Reference
create_composite_domain

• create_supply_net

The supply net will be created in the creation scope of composite_domain. The command will
also be applied with a -reuse argument to each subdomain. If the subdomain belongs to a
different creation scope, the command will be applied without reuse.

• create_supply_port

The supply port will be created in the creation scope of composite_domain.

• map_isolation_cell

Not supported.

• map_level_shifter_cell

Not supported.

• map_power_switch

Not supported.

• map_retention_cell

Not supported.

• set_isolation

This command will be transitively applied to all the subdomains of a composite domain.

The following are also in effect:

o set_isolation -domain composite_domain cannot have -elements/-
exclude_elements/-instance argument. This may cause conflict in the subdomains.

o The elements can be individually updated for each strategy in all the sub power
domains.

o If any error occurred while transitively applying this command, it will not be applied
to that subdomain.

o If a strategy has already been applied on a subdomain, trying to set a strategy of that
same name directly on that subdomain without -update will be an error.

UPF Commands and Reference
create_composite_domain

Power Aware User’s Manual, v10.1 193

Correct usage example:

create_composite_domain cd -subdomains {pd2 pd3} -supply {primary
pdsub_ss}
set_isolation cd_iso1 -domain cd -clamp_value 0 -applies_to inputs -
isolation_signal iso -isolation_sense high -location parent
set_isolation cd_iso2 -domain cd -clamp_value 0 -applies_to outputs -
isolation_signal iso -isolation_sense high -location parent

Alternate correct usage:

create_composite_domain cd -subdomains {pd2 pd3} -supply {primary
pdsub_ss}
set_isolation cd_iso -domain cd -update -clamp_value 0 -applies_to outputs
-isolation_signal iso -isolation_sense high -location parent
set_isolation cd_iso -domain pd2 -update -elements
{hier_inst/leaf_inst2/localout_leaf}
set_isolation cd_iso -domain pd3 -update -elements
{hier_inst/leaf_inst3/localout_leaf}

Incorrect usage example:

create_composite_domain cd -subdomains {pd2 pd3} -supply {primary
pdsub_ss}
set_isolation cd_iso -domain cd -update -clamp_value 0 -applies_to outputs
-isolation_signal iso -isolation_sense high -location parent -elements
{hier_inst/leaf_inst3/scanout_leaf hier_inst/leaf_inst3/localout_leaf}

Error message:

** Error: ./test.upf(90): UPF: (vopt-PA-9809) The isolation strategy
’cd_ret’ is defined on the composite domain ’cd’.
Specifying elements or instances on this strategy is invalid. Please
specify the member elements/instances on the subpower domains’ strategies
by using the -update argument.

Help message:

power-aware Message # 9809:
A composite domain cannot contain design objects as elements/members. So a
UPF command applied to a composite domain cannot cannot directly refer to
design objects in its elements/instances list. These elements/instances
should be populated individually for each sub power domain using the
strategy/command with -update argument, after applying the
strategy/command on the composite domain.

• set_isolation_control

This command will be applied to all the subdomains of a composite domain.

• set_level_shifter

This command will be applied to all the subdomains of a composite domain.

Power Aware User’s Manual, v10.1194

UPF Commands and Reference
create_composite_domain

The following arguments are not supported (they can also refer to composite_domain):

o -source domain_name

o -sink domain_name:

The following are also in effect:

o set_level_shifter -domain composite_domain cannot use the -elements,
-exclude_elements, or -instance arguments. This may cause conflict in the
subdomains.

o The elements can be individually updated for each strategy in all the sub-power
domains.

o If any error occurred in transitively applying this command on a subdomain, it will
not be applied to that subdomain. Usage and error messages for incorrectly
specifying -elements or -instance arguments are similar to those for set_isolation.

• set_port_attributes

If a composite domain is included in the the -domains argument of this command, it will be
replaced by its sub-power domains, listed transitively.

Example:

create_composite_domain cd -subdomains {pd1 pd2 pd3} -supply {primary
pdsub_ss}
set_port_attributes {-domains {cd} -applies_to inputs} -attribute pin_type
data_in

This is equivalent to:

set_port_attributes {-domains {pd1 pd2 pd3} -applies_to inputs} -attribute
pin_type data_in

• set_retention

This command will be applied to all the subdomains of a composite domain.

The following shall also apply:

o set_isolation -domain composite_domain cannot have -elements, or
-exclude_elements, or -instance arguments. This may cause conflict in the
subdomains.

o The elements can be individually updated for each strategy in all the sub-power
domains.

o If any error occurred in transitively applying this command on a subdomain, it will
not be applied to that subdomain.

UPF Commands and Reference
create_composite_domain

Power Aware User’s Manual, v10.1 195

The usage and error messages for incorrectly specifying -elements are -instance arguments are
similar to set_isolation.

• set_retention_control

This command will be applied to all the subdomains of a composite domain..

• use_interface_cell

Not supported.

Power Aware User’s Manual, v10.1196

UPF Commands and Reference
create_hdl2upf_vct

create_hdl2upf_vct
Support for UPF Standard

v1.0 — yes

v2.0 — yes

Arguments

Usage Notes

Defines a value conversion table (VCT) from an HDL logic type to the net_state_type of the
supply net value when that value is propagated from HDL port to a UPF supply net.

Argument Comments/Restrictions

-hdl_type User-defined types not supported.

-table

UPF Commands and Reference
create_logic_net

Power Aware User’s Manual, v10.1 197

create_logic_net
Support for UPF Standard

v1.0 — no

v2.0 — yes

Arguments

Usage Notes

Results in the created net reflecting the same value as a port that you connect to it using the
connect_logic_net command (net_dut and pmb_out in the example below).

This net can be used as a control signal.

The following are not supported:

• Logic nets with the same name but different creation scope

• Dumping of logic nets with save_upf command

• Implicit port/net semantics for logic ports/nets

Example

set_scope /tb
create_logic_net net_tb
set_scope /tb/pmb

#connect the logic net to an output port on the
#power management block

connect_logic_net net_tb -ports pmb_out
set_scope /tb/dut
create_logic_port p_dut
create_logic_net net_dut
connect_logic_net net_dut -ports p_dut
set_scope
connect_logic_net net_tb -ports dut/p_dut

Argument Comments/Restrictions

<net_name> The name of a logic net that you want to create in
the active scope.

Power Aware User’s Manual, v10.1198

UPF Commands and Reference
create_logic_port

create_logic_port
Support for UPF Standard

v1.0 — no

v2.0 — yes

Arguments

Usage Notes

The following are not supported:

• Implicit port/net semantics for logic ports/nets

• Application of isolation strategies on logic ports

Argument Comments/Restrictions

-direction

UPF Commands and Reference
create_power_domain

Power Aware User’s Manual, v10.1 199

create_power_domain
Support for UPF Standard

v1.0 — yes (partial)

v2.0 — yes (partial)

Arguments

Usage Notes

For the -elements argument:

• You can specify a hierarchical path within the active scope in the list of design elements.

• You can specify bit- or part-selects of one or more signals. However, complex data
types of SystemVerilog, such as structs, are not supported.

• According to UPF, only hierarchical path of instances can be accepted inside -elements
{ element_list }. This has been extended under the above mentioned switch to allow
generate hierarchy to be specified in the extent of a power domain. This feature is only
available for corruption and retention and not for isolation and level shifting. This
implies that if a generate block is added in the extent of a power domain, it will only
show corruption and if it contains a retention register, retention behavior as well.
However, there will not be any level shifters/isolation cells placed at the generate
boundary.

create_power_domain PD_forgen -elements { forgen[1] }

Examples

• Results in an effective element list of {top1 top2}.

create_power_domain PD1 -elements {sig[2] sig1[2:1]}

Argument v1.0 v2.0 Comments/Restrictions

-simulation_only N Y

-elements Y Y See “Usage Notes” below.

-include_scope Y Y

-supply N Y

-scope Y Y

-define_func_type N Y

-update N Y Allows adding elements and supplies to a
previously created power domain for a progressive
refinement of power intent.

-exclude_elements N N Not supported.

Power Aware User’s Manual, v10.1200

UPF Commands and Reference
create_power_domain

create_power_domain PD -elements {top1}
create_power_domain PD -elements {top2} -update

• Defines automatic connection semantics on supply sets. Supply nets of supply sets are
automatically connected to the supply ports of design elements based on the purpose of
the supply set in a given domain or strategy context and the function that a supply net
performs in the context of supply set.

create_power_domain PD -elements {top1}
create_power_domain PD -elements {top2} -update

UPF Commands and Reference
create_power_switch

Power Aware User’s Manual, v10.1 201

create_power_switch
Support for UPF Standard

v1.0 — yes (partial)

v2.0 — yes

Arguments

Usage Notes

The following is not supported:

• In order to model the definition of a power switch,ModelSim currently treats
UNDETERMINED state as OFF state for simulation. This implies that when the state of
supply set is NOT_NORMAL, the state on the output supply port will be OFF instead of
UNDETERMINED state.

Argument v1.0 v2.0 Comments/Restrictions

-domain Y Y

-output_supply_port Y Y

-input_supply_port Y Y

-control_port Y Y

-on_state Y Y

-off_state Y Y

-supply_set N Y When the supply set simstate is anything other
than NORMAL, the state of the output supply port
of a switch is OFF and the acknowledge ports are
corrupted. Note that this differs from UPF v2.0,
which states that the state of the output supply port
of a switch is UNDETERMINED.

-on_partial_state Y Y

-ack_port Y Y

-ack_delay Y Y

-error_state Y Y

Power Aware User’s Manual, v10.1202

UPF Commands and Reference
create_pst

create_pst
Support for UPF Standard

v1.0 — yes

v2.0 — yes

Arguments

Usage Notes

Creates a power state table (PST).

Argument Comments/Restrictions

-supplies

UPF Commands and Reference
create_supply_net

Power Aware User’s Manual, v10.1 203

create_supply_net
Support for UPF Standard

v1.0 — yes

v2.0 — yes

Arguments

Usage Notes

UPF v1.0 implemented a slight error in the semantic specification for UPF command
create_supply_net -resolve parallel, which has been corrected in UPF v2.0.

ModelSim follows the UPF v2.0 specification in this case, since it is the later standard and its
definition reflects what was intended to be the semantics for UPF v1.0.

Specifically, if multiple switches drive a supply net with parallel resolution, and the state of at
least one (but not all) switch outputs is fully ON, and the remaining switch outputs are OFF,
then:

• UPF v1.0 says the state of the driven supply net should be fully ON.

• UPF v2.0 says the state of the driven supply net should be partially ON.

Therefore, in following the UPF v2.0 specification, the state of the driven supply net will be
partially ON.

Argument Comments/Restrictions

-domain

-reuse

-resolve The value of parallel is implemented differently
for v1.0 and v2.0. See “Usage Notes” below.

Power Aware User’s Manual, v10.1204

UPF Commands and Reference
create_supply_port

create_supply_port
Support for UPF Standard

v1.0 — yes

v2.0 — yes

Arguments

Argument Comments/Restrictions

-direction The value of inout is not supported.

-domain

UPF Commands and Reference
create_supply_set

Power Aware User’s Manual, v10.1 205

create_supply_set
Support for UPF Standard

v1.0 — no

v2.0 — yes

Arguments

Argument Comments/Restrictions

-function

-reference_gnd

-update

Power Aware User’s Manual, v10.1206

UPF Commands and Reference
create_upf2hdl_vct

create_upf2hdl_vct
Support for UPF Standard

v1.0 — yes

v2.0 — yes

Arguments

Usage Notes

Defines a value conversion table (VCT) for the two LSBs of the supply_state_type.state value
when that value is propagated from a UPF supply net into a logic port defined in an HDL.

Argument Comments/Restrictions

-hdl_type User-defined types not supported.

-table

UPF Commands and Reference
load_simstate_behavior

Power Aware User’s Manual, v10.1 207

load_simstate_behavior
Support for UPF Standard

v1.0 — no

v2.0 — yes

Arguments

Usage Notes

The load_simstate_behavior command loads a UPF file containing the defaults of simstate
behavior for a library. This file consists solely of set_simstate_behavior commands, which are
applied to the models in the library specified by the library_name argument.

You can load only one file per occurrence of this command.

Examples

Example D-1. Load Files With load_simstate_behavior Commands

The following example shows how to use the load_simstate_behavior command to load
simstate sementics for lib1 and lib2.

main.upf
upf_version 2.0
set_scope tb/top1
...
load_simstate_behavior lib1 -file load1.upf
load_simstate_behavior lib2 -file load2.upf
...
create_power_domain pd1
set_simstate_behavior ENABLE -elements {mid1/bot1}
create_supply_net VDD_N -domain pd1
create_supply_net GND_N -domain pd1
...

where

load1.upf consists of

set_simstate_behavior ENABLE -model mid
set_simstate_behavior DISABLE -model bot

load2.upf consists of

set_simstate_behavior ENABLE -model top

Argument Comments/Restrictions

<library_name> Name of a ModelSim library (Required)

-file Name of a file containing set_simstate_behavior
commands.

Power Aware User’s Manual, v10.1208

UPF Commands and Reference
load_simstate_behavior

Example D-2. Error/Warning Conditions: Unknown Library Name

It is an error if the specified library cannot be resolved.

upf_version 2.0
set_scope tb/top1
...
load_simstate_behavior lib1 -file simstate_file1.upf
...

Vopt Message

** Error: test.upf(6): UPF: (vopt-9753) Library 'lib1' does not exist.

Example D-3. Error/Warning Conditions: Library File Does Not Exist

It is an error if specified file does not exist.

upf_version 2.0
set_scope tb/top1
...
load_simstate_behavior lib1 -file sim.upf
...

Vopt Message

** Error: test.upf(6): UPF: (vopt-9718) Can't open file 'sim.upf'

Example D-4. Error/Warning Conditions: Model Cannot Be Found

It is an error if a model specified in file cannot be found.

main.upf
upf_version 2.0
set_scope tb/top1
...
load_simstate_behavior lib1 -file sim.upf
...

sim.upf
set_simstate_behavior ENABLE -model mad

Vopt Message

** Error: sim.upf(1): UPF: (vopt-9655) Model: 'mad' doesn't exist in
library: 'lib1'.

UPF Commands and Reference
load_simstate_behavior

Power Aware User’s Manual, v10.1 209

Example D-5. Error/Warning Conditions: File Contains Wrong Commands

It is an error if the specified file contains UPF commands other than set_simstate_behavior.

main.upf
upf_version 2.0
set_scope tb/top1
...
load_simstate_behavior lib1 -file sim.upf
...

sim.upf
set_scope mid1
set_simstate_behavior ENABLE -model mid

Vopt Message

** Error: sim.upf(1): UPF: (vopt-9754) Command 'set_scope' not allowed in
file specified via command 'load_simstate_behavior'.

Power Aware User’s Manual, v10.1210

UPF Commands and Reference
load_upf

load_upf
Support for UPF Standard

v1.0 — yes

v2.0 — yes

Arguments

Argument Comments/Restrictions

-scope

-version

UPF Commands and Reference
load_upf_protected

Power Aware User’s Manual, v10.1 211

load_upf_protected
Support for UPF Standard

v1.0 — no

v2.0 — yes

Arguments

Usage Notes

This command loads a UPF file in a protected environment that prevents corruption of existing
variables.

Argument Comments/Restrictions

-hide_globals

-params

-scope

-version

Power Aware User’s Manual, v10.1212

UPF Commands and Reference
map_isolation_cell

map_isolation_cell
Support for UPF Standard

v1.0 — no

v2.0 — yes

Arguments

Usage Notes

This command maps a particular isolation strategy to a library cell or range of library cells to be
inserted for isolation. It has an effect only if isolation cells have been inserted (see
set_isolation).

The information about the ports of the library model is specified using '-port' argument, which
connects the specified net_ref to a port of the model.

A net_ref may be one of the following::

• A logic net name

• A supply net name

Argument Comments/Restrictions

<filename> Text file that defines isolation strategy and power
domain.

-domain

-elements This argument takes the list of ports on which
user-defined isolation cell is to be placed. If no list
specified, then user-defined cells are applied to all
the elements belonging to the specified isolation
strategy.

-lib_cells

-lib_cell_type

-lib_model_name Specifies the name of the cell/module to be picked
up for isolation. This module must be present in a
library visible to the Power Aware vopt command.

-port Provides information about the ports of the library
cell. This argument connects the specified net_ref
to a port of the model (see Usage Notes, below).

UPF Commands and Reference
map_isolation_cell

Power Aware User’s Manual, v10.1 213

• One of the following symbolic references:

o UPF_ISO_ENABLE (Specific to ModelSim)

Refers to the isolation control signal of associated isolation strategy.

o UPF_ISO_PWR (Specific to ModelSim)

Refers to the isolation power net of associated isolation strategy.

o UPF_ISO_GND (Specific to ModelSim)

Refers to the isolation ground net of associated isolation strategy.

o UPF_GENERIC_DATA

Refersto the port on which the cell is to be placed.

o UPF_GENERIC_OUTPUT

Refers to the output of the isolation cell.

o isolation_signal

Refers to the isolation control signal of associated isolation strategy.

o isolation_signal[index]

Not supported.

o isolation_supply_set.function_name

The function_name extension refers to the supply net corresponding to the
function it provides to the isolation_supply_set.

o isolation_supply_set[index].function_name

Not supported.

Example D-6. Specifying Argument Values for map_isolation_cell

...
set_isolation ISO_GEN \
-domain C0 \
-isolation_power_net PDO_VNET_ISO_OUT \
-clamp_value 1 \
-applies_to outputs

set_isolation_control ISO_GEN \
-domain C0 \
-isolation_signal /tb/iso \
-isolation_sense low \
-location parent

Power Aware User’s Manual, v10.1214

UPF Commands and Reference
map_isolation_cell

map_isolation_cell ISO_GEN \
 -domain C0 \
 -elements {mid_inst/out1} \
 -lib_model_name iso_cell_0_vh \
 -port "iso UPF_ISO_ENABLE"

map_isolation_cell ISO_GEN \
 -domain C0 \
 -elements {mid_inst/out1} \
 -lib_model_name iso_cell_0_vh \
 -port "iso !tb_iso"
 -port "cell_in UPF_GENERIC_DATA"
 -port "cell_out UPF_GENERIC_OUTPUT"

UPF Commands and Reference
map_level_shifter_cell

Power Aware User’s Manual, v10.1 215

map_level_shifter_cell
Support for UPF Standard

v1.0 — no

v2.0 — yes

Arguments

Argument Comments/Restrictions

<filename> Text file that defines level shifter strategy.

-domain

-lib_cells

-elements A list of ports to use from the strategy defined in
the <textfile> provided with this command.

Power Aware User’s Manual, v10.1216

UPF Commands and Reference
map_retention_cell

map_retention_cell
Support for UPF Standard

v1.0 — no

v2.0 — yes

Arguments

Argument v1.0 v2.0 Comments/Restrictions

-domain N Y

-elements N N Not supported.

-exclude_elements N N

-lib_cells N N Not supported.

-lib_cell_type N Y

-lib_model_name N Y The name of the library cell or behavioral model
and port connectivity for this strategy.

UPF Commands and Reference
name_format

Power Aware User’s Manual, v10.1 217

name_format
Support for UPF Standard

v1.0 — yes (partial)

v2.0 — yes (partial)

Arguments

Argument v1.0 v2.0 Comments/Restrictions

-isolation_prefix N Y

-isolation_suffix N Y

-level_shift_prefix N Y

-level_shift_suffix N Y

-implicit_supply_suffix N N Not supported.

-implicit_logic_prefix N N Not supported.

-implicit_logic_suffix N N Not supported.

Power Aware User’s Manual, v10.1218

UPF Commands and Reference
save_upf

save_upf
Support for UPF Standard

v1.0 — yes (partial)

v2.0 — yes (partial)

Arguments

Usage Notes

ModelSim supports two modes for using the save_upf command: interpreted and uninterpreted.

• Interpreted mode (default)

In interpreted mode, any command or argument that is not supported by Questa is
written as a comment at the end of the saved UPF file. This file contains supported
commands as interpreted by Questa, which are written after performing various
operations such as semantic checks, resolving net-port connections, and resolving
design objects related to a command.

Note that save_upf dumps the complete power intent of the scope, not just the UPF
commands in effect at the point where save_upf command is given.

• Uninterpreted mode

In uninterpreted mode, all the UPF commands are saved in the output file without any
processing (even if the commands are not supported by ModelSim). This mode filters
out any TCL-specific constructs in the UPF and writes only the UPF commands to the
output UPF file.

To write the output file in uninterpreted mode, do either of the following:

o Specify save_upf -u. Note that in uninterpreted mode, the -scope and -version
arguments of the save_upf command are not supported. Also, the saved UPF file is a
complete replica of the original UPF file (but without any TCL constructs).

Because the -u argument is not part of the UPF standard, you can provide it in a
separate UPF file by using vopt -pa_tclfile.

o Specify vopt -pa_dumpupf <filename>. This saves the UPF file in uninterpreted
mode to the <filename> file.

Argument v1.0 v2.0 Comments/Restrictions

-scope See Usage Notes, below

-version Currently, -version is supported only when its
value is the same as input file version.

-u N Y Uninterpreted mode only, not part of UPF standard

UPF Commands and Reference
set_design_attributes

Power Aware User’s Manual, v10.1 219

set_design_attributes
Support for UPF Standard

v1.0 — no

v2.0 — yes (partial)

Arguments

Argument v1.0 v2.0 Comments/Restrictions

-elements N Y

-models N Y

-attribute N Y Refer to Table D-5 for a list of UPF attributes
supported for this argument.

-exclude_elements N N Not supported.

Power Aware User’s Manual, v10.1220

UPF Commands and Reference
set_design_top

set_design_top
Support for UPF Standard

v1.0 — yes

v2.0 — yes

Arguments

none

UPF Commands and Reference
set_domain_supply_net

Power Aware User’s Manual, v10.1 221

set_domain_supply_net
Support for UPF Standard

v1.0 — yes

v2.0 — yes

Arguments

Argument Comments/Restrictions

-primary_power_net

-primary_ground_net

Power Aware User’s Manual, v10.1222

UPF Commands and Reference
set_isolation

set_isolation
Support for UPF Standard

v1.0 — yes (partial)

v2.0 — yes (partial)

UPF Commands and Reference
set_isolation

Power Aware User’s Manual, v10.1 223

Arguments

Argument v1.0 v2.0 Comments/Restrictions

-domain Y Y

-elements Y Y Complex data types of SystemVerilog, such as
structs, are not supported. However, you can
specify bit- or part-selects of one or more
signals.

Example:
set_isolation ISO1 -domain PD1 -elements
{out1[2] out2[2:1]}

-applies_to Y Y

-isolation_power_net Y Y

-isolation_ground_net Y Y

-no_isolation Y Y

-isolation_supply_set Y Y Supports only a single value (no list)—multiple
clamp values, supplies, and enable isolation
strategies are not supported.

-name_prefix Y Y

-name_suffix Y Y

-clamp_value Y Y Specifying a user-defined value for <latch> is
not supported.

-location Y Y Supports only the following values:
• self
• parent
• fanin
• fanout
• faninout

Power Aware User’s Manual, v10.1224

UPF Commands and Reference
set_isolation

-instance N Y Recognizes the special attributes present on the
specified instance, applies the appropriate
simulation semantics, and makes the
connections as follows:

• If there is a port of type pg_type present on
the instance, then ModelSim automatically
connects the appropriate power and ground
pins of the respective strategy and disable
the implicit corruption semantics.

• If there is no port of type pg_type present on
the instance, then ModelSim applies
implicit corruption semantics according to
the primary_power and ground nets
specified for the strategy.

-update N Y Allows adding elements and supplies to a
previously created power domain.

-applies_to_clamp Y Y

-applies_to_sink_off_clamp Y Y

-applies_to_source_off_clamp Y Y

-diff_supply_only N Y No isolation is introduced into the path from the
driver to the receiver for an isolation strategy
defined on a port on the interface of
ref_domain_name, where the driver is powered
by the same supply as a receiver of the port.

-force_isolation N Y

-isolation_signal Y Y

-isolation_sense Y Y

-source N Y Filters the ports receiving a net that is driven by
logic powered by the supply set.

-sink N Y Filters the ports driving a net that fans out to
logic powered by the supply set.

-sink_off_clamp N N Not supported.

-source_off_clamp N N Not supported.

-transitive N N Not supported.

Argument v1.0 v2.0 Comments/Restrictions

UPF Commands and Reference
set_isolation

Power Aware User’s Manual, v10.1 225

Usage Notes

The isolation strategy defined by set_isolation causes Power Aware to perform insertion of
isolation cells, together with an analysis of the power state table to see whether adjacent power
domains can be in different power states and therefore require isolation.

The -instance argument prevents insertion of a redundant isolation cell at a port where one
already exists (see map_isolation_cell).

When both -source and -sink are specified, a port is included if it has a source as specified and a
sink as specified.

This command supports isolation of lower boundary ports of a power domain, which is defined
in UPF v2.0 as “The highconn side of ports defined on design elements in other power domains,
but instanced within design elements in the extent of the domain.”

set_scope /tb
create_power_domain PD_TOP ?elements {top_inst}
create_power_domain PD_BOT ?elements {top_inst/bot_inst}
...
set_isolation PD_TOP_isolation1 -domain PD_TOP \
-isolation_power_net VDD_PD_TOP_net -clamp_value 0 \
-applies_to inputs \
-location parent

This command will isolate both the inputs ports of the instance /tb/top_inst, as well as outputs of
the instance /tb/top_inst/bot_inst" (lower boundary ports) .

Power Aware User’s Manual, v10.1226

UPF Commands and Reference
set_isolation_control

set_isolation_control
Support for UPF Standard

v1.0 — yes

v2.0 — yes

Arguments

Usage Notes

The -location argument defines the isolation behavior so that it appears in the specified location,
which is used by synthesis and/or place-and-route to guide insertion of actual isolation cells.

Argument Comments/Restrictions

-domain

-isolation_signal

-isolation_sense

-location The sibling value is not supported.

UPF Commands and Reference
set_level_shifter

Power Aware User’s Manual, v10.1 227

set_level_shifter
Support for UPF Standard

v1.0 — yes (partial)

v2.0 — yes (partial)

Power Aware User’s Manual, v10.1228

UPF Commands and Reference
set_level_shifter

Arguments

Argument v1.0 v2.0 Comments/Restrictions

-domain Y Y

-elements Y Y Complex data types of SystemVerilog, such as
structs, are not supported. However, you can
specify bit- or part-selects of one or more signals.

-no_shift Y Y

-threshold Y Y

-applies_to Y Y

-rule Y Y

-location Y Y The -location argument defines where level shifter
cells are to be placed in the design.

• If you specify a value of fanout, a level shifter
will be identified for placement at all fanout
locations (for valid level shifters) and the count
is incremented accordingly in the report.

• If you specify self, parent, sibling, or
automatic, then only one level shifter will be
identified for placement at a fanout location.
Thus, the report may show a count of level
shifters in some paths to be 0.

Supports only the following values:
• self
• parent
• fanin
• fanout
• faninout

Example:
set_level_shifter LS1 -domain pd1 -
elements {out3] out4[2:1]}

-instance N Y Recognizes the special attributes present on the
specified instance, applies the appropriate
simulation semantics, currently disables the Power
Aware simstate semantics.

-update N Y Allows adding elements and supplies to a
previously created power domain for a progressive
refinement of power intent.

UPF Commands and Reference
set_level_shifter

Power Aware User’s Manual, v10.1 229

Usage Notes

When -source and -sink are specified, a port is included if it has a source as specified or a sink
as specified.

For a selected output port on the interface of a domain for which this strategy is specified, level-
shifting is performed only on the subset of the fanout that drives an element in the domain
specified by the -sink option.

For a selected input port on the interface of a domain for which this strategy is specified, level -
shifting is performed only on the subset of the fanin driven by an element in the domain
specified by the -source option.

-force_shift N Y

-input_supply_set N N Not supported.

-output_supply_set N N Not supported.

-internal_supply_set N N Not supported.

-name_prefix Y Y

-name_suffix Y Y

-source N Y Selects the ports receiving a net that is driven from
a port on the interface of the specified domain. See
Usage Notes, below.

-sink N Y Selects the ports driving a net that fans out to a
port on the interface of the specified domain. See
Usage Notes, below.

-transitive N N Not supported.

Argument v1.0 v2.0 Comments/Restrictions

Power Aware User’s Manual, v10.1230

UPF Commands and Reference
set_partial_on_translation

set_partial_on_translation
Support for UPF Standard

v1.0 — no

v2.0 — yes

Arguments

Usage Notes

The set_partial_on_translation command defines the translation of PARTIAL_ON to
FULL_ON or OFF for purposes of evaluating the power state of supply sets and power
domains. The state of a supply set is evaluated after the tool-specific translation of
PARTIAL_ON to FULL_ON or OFF for each supply net in the set.

By default Power Aware translates PARTIAL_ON is translated to OFF. Therefore, you must
use the set_partial_on_translation command to change the default translation behavior to
FULL_ON.

You can also define a list of tools for which translation of PARTIAL_ON to FULL_ON takes
place and the tools for which PARTIAL_ON to OFF takes place. All tool names are case-
insensitive

You can also specify default behavior for an unlisted tool.

Note
To define PARTIAL_ON translation behavior for ModelSim, specify 'questa' in the tools
list. In ModelSim, PARTIAL_ON has an enum value of 2. The supply_partial_on
function would also assign the same enum value of 2.

Argument Comments/Restrictions

OFF | FULL_ON OFF defines a default translation from
PARTIAL_ON to OFF when evaluating the power
state of supply sets and power domains (default).

FULL_ON defines a default translation from
PARTIAL_ON to FULL_ON when evaluating the
power state of supply sets and power domains.

-full_on_tools Defines a list of tools (products) for which
translation of PARTIAL_ON to FULL_ON take
place.

-off_tools Defines a list of tools for which translation of
PARTIAL_ON to OFF take place.

UPF Commands and Reference
set_partial_on_translation

Power Aware User’s Manual, v10.1 231

Example D-7. Set the Translation of PARTIAL_ON to FULL_ON For All Tools

upf_version 2.0
set_scope tb
...
set_partial_on_translation FULL_ON
...

Example D-8. Set the translation of PARTIAL_ON to FULL_ON Only for
ModelSim and to OFF for Others

upf_version 2.0
set_scope tb
...
set_partial_on_translation OFF -full_on_tools questa
...

Example D-9. Set the translation of PARTIAL_ON to OFF Only for ModelSim
and to FULL_ON for Others

upf_version 2.0
set_scope tb
...
set_partial_on_translation FULL_ON -off_tools questa
...

Example D-10. Error/Warning Conditions: Same String in Different Lists

It is an error if the same string for a tool name occurs in both the -full_on_tools and -off_tools
lists. In the following example for ModelSim, the error occur only if questa tool name is
specified in both the -full_on_tools and -off_tools string_lists.

upf_version 2.0
set_scope tb
...
set_partial_on_translation OFF -full_on_tools {questa} -off_tools questa
...

Vopt Message

** Error: test.upf(5): UPF: (vopt-9762) The same string occurs in both the
-full_on_tools and -off_tools string_lists.

Power Aware User’s Manual, v10.1232

UPF Commands and Reference
set_partial_on_translation

Usage: set_partial_on_translation [OFF | FULL_ON] [-full_on_tools
{string_list}] [-off_tools {string_list}]

Example D-11. Error/Warning Conditions: set_partial_on_translation Invoked
More Than Once

A Warning message is issued if set_partial_on_translation is invoked more than once.

...
upf_version 2.0
set_scope tb
...
set_partial_on_translation OFF -full_on_tools {questa}
set_partial_on_translation FULL_ON
...

Vopt Message

** Warning: test.upf(6): UPF: (vopt-9763) Command
'set_partial_on_translation' invoked more than once. Ignoring previous
specification(s) of this command.

UPF Commands and Reference
set_pin_related_supply

Power Aware User’s Manual, v10.1 233

set_pin_related_supply
Support for UPF Standard

v1.0 — yes

v2.0 — yes

Arguments

Usage Notes

• Questa SIM assumes the driver/receiver logic supply to be the same as specified related
supplies—that is, corruption, isolation, and level-shifting behavior is in accordance with
the specified related supplies. When the supply specified using set_pin_related_supply
(using -related_power_pin or -related_ground_pin is a different supply than that of
actual driver or receiver logic, ModelSim gives a vopt error message (vopt-9814).

You can use the -warning argument of vopt to change the severity of this message to a
warning so that simulation may continue:

vopt -warning 9814

Refer to Power Aware Messages for more information on changing the level of message
severity.

Argument Comments/Restrictions

-pins

-related_power_pin

-related_ground_pin

Power Aware User’s Manual, v10.1234

UPF Commands and Reference
set_port_attributes

set_port_attributes
Support for UPF Standard

v1.0 — no

v2.0 — yes (partial)

Arguments

Usage Notes

• The -clamp_value, -source_off_clamp, and -sink_off_clamp arguments affect the
filtering of ports specified by the set_isolation command.

Argument v1.0 v2.0 Comments/Restrictions

-ports N Y

-domains N Y

-elements N Y Complex data types of SystemVerilog, such as
structs, are not supported.

-applies_to N Y

-model N Y

-attribute N Y

-clamp_value N Y

-sink_off_clamp N Y

-source_off_clamp N Y

-receiver_supply N Y

-driver_supply N Y

-related_power_port N Y

-related_ground_port N Y

-related_bias_ports N N

-repeater_supply N Y

-pg_type N Y Might not work on UPF-created supply_ports/nets.

-exclude_domains N N Not supported.

-exclude_elements N N Not supported.

-exclude_ports N N Not supported.

-transitive N N Not supported.

UPF Commands and Reference
set_port_attributes

Power Aware User’s Manual, v10.1 235

• In some cases, -related_power_port/-related_ground_port might not work properly with
-model.

• ModelSim assumes the driver/receiver logic supply to be the same as specified related
supplies—that is, corruption, isolation, and level-shifting behavior is in accordance with
the specified related supplies. When the supply specified using set_port_attributes
(using -related_power_port or -related_ground_port) is a different supply than that of
actual driver or receiver logic, ModelSim gives a vopt error message (vopt-9814).

You can use the -warning argument of vopt to change the severity of this message to a
warning so that simulation may continue:

vopt -warning 9814

Refer to Power Aware Messages for more information on changing the level of message
severity.

Example

set_port_attributes -ports top/out -source_off clamp_1

Power Aware User’s Manual, v10.1236

UPF Commands and Reference
set_power_switch

set_power_switch
Support for UPF Standard

v1.0 — yes (partial)

v2.0 — yes

Arguments

Usage Notes

The following is not supported:

• In order to model the definition of a power switch, the tool currently treats
UNDETERMINED state as OFF state for simulation. This implies that when the state of
supply set is NOT_NORMAL, the state on the output supply port will be OFF instead of
UNDETERMINED state.

Argument v1.0 v2.0 Comments/Restrictions

-output_supply_port Y Y

-input_supply_port Y Y

-control_port Y Y

-on_state Y Y

-supply_set N Y When the supply set simstate is anything other
than NORMAL, the state of the output supply port
of a switch is OFF and the acknowledge ports are
corrupted. Note that this differs from UPF v2.0,
which states that the state of the output supply port
of a switch is UNDETERMINED.

-on_partial_state Y Y

-off_state Y Y

-error_state Y Y

UPF Commands and Reference
set_retention

Power Aware User’s Manual, v10.1 237

set_retention
Support for UPF Standard

v1.0 — yes (partial)

v2.0 — yes (partial)

Power Aware User’s Manual, v10.1238

UPF Commands and Reference
set_retention

Arguments

Argument v1.0 v2.0 Comments/Restrictions

-domain Y Y

-elements Y Y

-retention_power_net Y Y

-retention_ground_net Y Y

-retention_supply_set N Y Powers the register holding the retained value.

-no_retention N Y Specifies that storage elements specified by the
retention strategy do not have retention capability
added.

-use_retention_as_primary N Y Powers the storage element and the output drivers
of the register using the retention supply.

-save_signal N Y

-restore_signal N Y

-instance N Y Recognizes the special attributes present on the
specified instance, applies the appropriate
simulation semantics, and makes the connections:

• If there is a port of type pg_type present on the
instance, thenModelSim automatically
connects the primary_power and
primary_ground pins with primary power and
primary ground nets of the power domain. It
connects the backup power and backup ground
pin specified on the instance with the retention
power and ground nets specified in the
strategy.

• If there is no port of type pg_type present on
the instance, then ModelSim applies implicit
corruption semantics according to the
primary_power and ground nets specified for
the power domain.

-update N Y Allows adding elements and supplies to a
previously created power domain.

-exclude_elements N N Not supported.

-restore_condition N N Not supported.

-retention_condition N N Not supported.

-save_condition N N Not supported.

UPF Commands and Reference
set_retention

Power Aware User’s Manual, v10.1 239

Usage Notes

Restrictions:

• Corruption of retention element and saved value is not supported.

• The implicit corruption semantics are also applied to the shadow latch used to preserve
the data during retention period. In order to remove the shadow latch from corruption,
you must specify it in an exclude file (vopt -pa_excludefile).

-parameters N N Not supported.

-transitive N N Not supported.

Argument v1.0 v2.0 Comments/Restrictions

Power Aware User’s Manual, v10.1240

UPF Commands and Reference
set_retention_control

set_retention_control
Support for UPF Standard

v1.0 — yes (partial)

v2.0 — yes (partial)

Arguments

Argument v1.0 v2.0 Comments/Restrictions

-domain Y Y

-save_signal Y Y

-restore_signal Y Y

-assert_r_mutex N N Not supported.

-assert_s_mutex N N Not supported.

-assert_rs_mutex N N Not supported.

UPF Commands and Reference
set_scope

Power Aware User’s Manual, v10.1 241

set_scope
Support for UPF Standard

v1.0 — yes

v2.0 — yes

Arguments

The syntax of set_scope in UPF only allows hierarchical path up to instances (design elements
). This has been extended under the above mentioned switch to accept hierarchical path of
generate blocks as well. This allows user to create power domains inside a generate blocks. e.g.

set_scope mid/forgen\[1\]
create_power_domain PD_forgen -include_scope

Argument Comments/Restrictions

<instance> | <pathname>

Power Aware User’s Manual, v10.1242

UPF Commands and Reference
set_simstate_behavior

set_simstate_behavior
Support for UPF Standard

v1.0 — no

v2.0 — yes

Arguments

Usage Notes

The set_simstate_behavior command defines the simulation simstate behavior for a model or
library. You can use this command to override the default enablement of simstate semantics.

ModelSim extends the behavior of this command by providing the -elements argument, which
specifies the simulation simstate behavior for a design element.

Argument Comments/Restrictions

ENABLE | DISABLE ENABLE applies simstate simulation semantics
for every supply set automatically connected to an
instance of a model. Elements implicitly connected
to a particular supply set have simstate semantics
enabled by default.

DISABLE disables simstate simulation semantics
recursively for all the descendants of the instance
of the model. Elements automatically or explicitly
connected to a particular supply set have simstate
semantics disabled by default.

-lib When both -lib and -model are specified, the
simstate behavior is defined for the specified
models in the specified library.

If -model is not defined and -lib is specified, the
simstate behavior is defined for all models in the
specified library.

The -elements argument has higher priority over
-model and -lib.

-model

-elements <.list> Optional argument not specified in UPF v2.0. You
specify a list of element names as the value to this
argument, which determines the simulation
simstate behavior for one or more design elements.

UPF Commands and Reference
set_simstate_behavior

Power Aware User’s Manual, v10.1 243

Examples

Example D-12. Enable Simstate Behavior Using set_simstate_behavior

In the following example, automatic connections led to disablement of simstate semantics of
model mid. The set_simstate_behavior command enables the simstate sementics of instances of
the model.

upf_version 2.0
set_scope tb/top1
create_power_domain pd1
...
set_simstate_behavior ENABLE -model {mid}
...
create_supply_net VDD_N -domain pd1
create_supply_net GND_N -domain pd1

Example D-13. Disable Simstate Behavior Using set_simstate_behavior

In the following example, set_simstate_behavior disables the simulation semantics all instances
of model bot.

set_scope tb/top1
set_simstate_behavior ENABLE -model {mid} -elements {mid3}
set_simstate_behavior DISABLE -model {bot}
...
create_power_domain pd1
create_supply_net VDD_N -domain pd1
...

Vopt Message

** Note: test.upf(7): UPF: (vopt-9693) Power Aware simulation semantics
disabled for /tb/top1/mid1/bot1.
** Note: test.upf(7): UPF: (vopt-9693) Power Aware simulation semantics
disabled for /tb/top1/mid1/bot2.
** Note: test.upf(7): UPF: (vopt-9693) Power Aware simulation semantics
disabled for /tb/top1/mid2/bot1.
** Note: test.upf(7): UPF: (vopt-9693) Power Aware simulation semantics
disabled for /tb/top1/mi

Tip: You can suppress the above messages by using the following argument with the
vopt command: vopt -suppress 9693

Power Aware User’s Manual, v10.1244

UPF Commands and Reference
set_simstate_behavior

Example D-14. When Both -models and -lib Arguments Are Specified

upf_version 2.0
set_scope tb/top1
create_power_domain pd1
...
set_simstate_behavior ENABLE -model {mid} -lib lib_name1
set_simstate_behavior DISABLE -model {top} -lib lib_name2
...
create_supply_net VDD_N -domain pd1
create_supply_net GND_N -domain pd1
...

Example D-15. Specify Simstate Behavior For All Models in a Library

upf_version 2.0
set_scope tb/top1
create_power_domain pd1
...
set_simstate_behavior ENABLE -lib lib_name1
set_simstate_behavior DISABLE -lib lib_name2
...
create_supply_net VDD_N -domain pd1
create_supply_net GND_N -domain pd1
...

Example D-16. Use -elements Argument to Override or Specify Simstate
Behavior (single element)

upf_version 2.0
set_scope tb/top1
create_power_domain pd1
...
set_simstate_behavior ENABLE -elements /tb/top1/mid1
...
create_supply_net VDD_N -domain pd1
create_supply_net GND_N -domain pd1

Example D-17. Use -elements Argument to Override or Specify Simstate
Behavior (list of elements)

upf_version 2.0
set_scope tb/top1
create_power_domain pd1

UPF Commands and Reference
set_simstate_behavior

Power Aware User’s Manual, v10.1 245

...
set_simstate_behavior ENABLE -model {mid}
set_simstate_behavior DISABLE -elements {mid1 mid2}
...
create_supply_net VDD_N -domain pd1
create_supply_net GND_N -domain pd1

Example D-18. Error/Warning Conditions: -lib Argument Without a Library

It is an error if the specified library with -lib argument does not exist.

upf_version 2.0
set_scope tb/top1
create_power_domain pd1
set_simstate_behavior ENABLE -lib lib1
...

Vopt Message

** Error: test.upf(4): UPF: (vopt-9753) Library 'lib1' does not exist.

Example D-19. Error/Warning Conditions: -model Argument Without a Model

It is an error if the specified model (using -model argument) does not exist in the specified
library (using -lib argument).

upf_version 2.0
set_scope tb/top1
create_power_domain pd1
set_simstate_behavior ENABLE -model mad -lib work
...

Vopt Message

** Error: test.upf(4): UPF: (vopt-9655) Model: 'mad' doesn't exist in
library: 'work'.

Example D-20. Error/Warning Conditions: Conflicting Simstate Behaviors

It is an error if a model has conflicting simstate behaviors specified.

upf_version 2.0
set_scope tb/top1

Power Aware User’s Manual, v10.1246

UPF Commands and Reference
set_simstate_behavior

create_power_domain pd1
...
set_simstate_behavior ENABLE -model { mid top }
set_simstate_behavior DISABLE -model { mid }
...

Vopt Message

** Error: (vopt-9730) Attribute:'upf_simstate_behavior DISABLE' on design
object:'mid1' conflict

Example D-21. Error/Warning Conditions: DISABLE Argument Used Without
Supply Ports

It is an error if DISABLE is specified and the model has no supply ports.

upf_version 2.0
set_scope tb/top1
create_power_domain pd1
...
set_simstate_behavior DISABLE -model {mid}
...
create_supply_net VDD_N -domain pd1
create_supply_net GND_N -domain pd1
...

Vopt Message

** Error: test.upf(6): UPF: (vopt-9756) Power aware simulation semantics
cannot be disabled for design element '/tb/top1/mid1'.
** Error: test.upf(6): UPF: (vopt-9756) Power aware simulation semantics
cannot be disabled for

UPF Commands and Reference
upf_version

Power Aware User’s Manual, v10.1 247

upf_version
Support for UPF Standard

v1.0 — yes

v2.0 — yes

Arguments

none

Power Aware User’s Manual, v10.1248

UPF Commands and Reference
Supported UPF Package Functions

Supported UPF Package Functions
The following tables list the package functions supported for VHDL (Table D-3) and
SystemVerilog (Table D-4).

Table D-3. Supported UPF Package Functions for VHDL

Function Name

function supply_on (pad_name : IN string ; value : IN real) return boolean;

function supply_off (pad_name : IN string) return boolean;

function supply_partial_on (pad_name : IN string; value : real) return boolean;

function get_supply_value (pad_name : IN string) return supply_net_type;

function get_supply_voltage (value : IN supply_net_type) return real;

function get_supply_on_state (value : IN supply_net_type) return boolean;

function get_supply_on_state (value : IN supply_net_type) return bit;

function get_supply_state (value : IN supply_net_type) return net_state;

Table D-4. Supported UPF Package Functions for SystemVerilog

Function Name

function bit supply_on(string pad_name, real value);

function bit supply_off(string pad_name);

function bit supply_partial_on(string pad_name, real value);

function supply_net_type get_supply_value(string name);

function real get_supply_voltage(supply_net_type arg);

function bit get_supply_on_state(supply_net_type arg);

function bit [1:0] get_supply_state(supply_net_type arg);

UPF Commands and Reference
Accessing Generate Blocks in UPF

Power Aware User’s Manual, v10.1 249

Accessing Generate Blocks in UPF
In order to access hierarchy as defined in individual languages or as ModelSim accepts it, UPF
uses square bracket pairs, []. This is because UPF is written in Tcl, so in some contexts square
brackets can be interpreted as special command substitution characters—though you usually
need to use escape characters with them for that purpose. The exception to this when using a
UPF command argument that takes a list of values enclosed in braces, { }, because that is not
actually command substitution.

The following examples show how to generate references in UPF for both Verilog and VHDL.

create_power_domain pd -elements { top_vh/for_genvh__1/bot_vh_inst
top_vl/forgen_vl[1]/bot_vl_inst }

create_power_domain pd -elements { top_vh/for_genvh(1)/bot_vh_inst
top_vl/forgen_vl[1]/bot_vl_inst }

Limitation
Connections from UPF to HDL port of inout type are not supported for inout capability. These
connections are made in such a way that UPF is driving data to the HDL port.

Supported UPF Attributes
ModelSim supports the use of UPF attributes used to express the power intent in an HDL
model. You can specify these attributes using the following methods:

• UPF commands (set_design_attributes, set_port_attributes, set_isolation,
set_pin_related_supply, set_simstate_behavior, set_retention_elements)

• VHDL or SystemVerilog attributes

• Liberty cell specification

Table D-5 lists the UPF attributes supported by ModelSim.

Table D-5. Supported UPF Attributes

HDL Attribute Value(s) UPF Command

UPF_clamp_value 0 | 1 | Z | latch | any |
<value>

set_isolation -clamp_value
set_port_attributes -clamp_value

Power Aware User’s Manual, v10.1250

UPF Commands and Reference
Supported UPF Attributes

Specifying Attributes
You can use the set_design_attributes and set_port_attributes commands to specify attributes
for Power Aware simulation. The following arguments for these UPF commands are now
supported:

• set_design_attributes

-elements
-models
-attribute

• set_port_attributes

-ports
-domains
-elements
-model

UPF_sink_off_clamp_value 0 | 1 | Z | latch | any |
<value>

set_isolation
-sink_off_clamp_value
set_port_attributes
-sink_off_clamp_value

UPF_source_off_clamp_value 0 | 1 | Z | latch | any |
<value>

set_isolation
-source_off_clamp_value
set_port_attributes
-source_off_clamp_value

UPF_pg_type <pg_type_value> set_port_attributes -pg_type

UPF_related_ground_pin <port_name> set_pin_related_supply
-related_ground_pin
set_port_attributes
-related_ground_port

UPF_related_power_pin <port_name> set_pin_related_supply
-related_power_pin
set_port_attributes
-related_power_port

UPF_related_bias_pin <port_name> set_port_attributes
-related_bias_port

UPF_retention required | optional set_retention_elements
-retention

UPF_simstate_behavior ENABLE | DISABLE set_simstate_behavior

Table D-5. Supported UPF Attributes

HDL Attribute Value(s) UPF Command

UPF Commands and Reference
Supported UPF Attributes

Power Aware User’s Manual, v10.1 251

-attribute
-clamp_value
-sink_off_clamp_value
-source_off_clamp_value
-related_power_port
-related_ground_port
-pg_type

Limitations
• In some cases, -related_power_port/-related_ground_port might not work properly with

-model.

• -pg_type might not work on UPF-created supply_ports/nets.

• -source_off_clamp_value -sink_off_clamp_value -clamp_value only affects the filtering
of ports affected by the set_isolation command.

Attributes in VHDL or SystemVerilog
You can also specify all supported attributes using VHDL or SystemVerilog.

VHDL example:

(attribute UPF_pg_type of vdd_backup : signal is "backup_power"
System Verilog example:

(* UPF_pg_type = "backup_power" *) input vdd_backup;

Specifying Supply Nets in UPF
The connect_supply_net command specifies connection to a supply net that conforms to the
behavior described in 6.13 of IEEE Std 1801-2009. A UPF supply net is propagated through
implicitly created ports and throughout the logic hierarchy of the scope in which the net is
created.

Format of Assigned Net Values
A supply net connected by this command is a composite signal consisting of a real voltage value
(in μV) and an enumerated supply state (ON, OFF). For ModelSim, the default voltage value is
81μV on both VDD and VSS / GND nets (a voltage value is not used for dynamic simulation).

For simulating a digital design, the more important information for the net is whether its supply
state is ON or OFF. Regardless of whether the power supply net is VDD or GND, when the

Power Aware User’s Manual, v10.1252

UPF Commands and Reference
Supported UPF Attributes

power supply state is ON, the state value assumes an integer value of 1. When the supply state is
OFF, the state value assumes an integer value of 0. By default, the power state is ON.

Consequently, ModelSim reports the two default values of 81 and 1 to a power net as
81_0000000001. Note that the output of a switch in UPF whose control port has been driven to
the OFF state is always 0μV and a 0 supply state (reported by ModelSim as 0_0000000000).

Changing the Default Supply State Values for VHDL Models
When you connect a supply net to an HDL port to extend the UPF supply network directly to an
HDL model, ModelSim connects the net to the HDL port and converts the enumerated supply
state to the HDL port type.

By default, ModelSim performs the following conversion:

{supply_state_type.state = ON} => {HDL bit type = 1’b1}
{supply_state_type.state = OFF} => {HDL bit type = 1’b0}

However, for VHDL models in the design (such as memory models), this results in a logical '1'
on ground and VSS nets.

To change this default conversion, you need to define a UPF-to-VHDLValue Conversion Table
(VCT) from that converts UPF supply states to their corresponding VHDL bit values. You then
need to apply the conversion when connecting the supply net in the UPF file.

1. Define a Value Change Table for UPF-to-VHDL conversion, by doing either of the
following:

• Use the create_upf2hdl_vct command to create a VCT that defines the conversion.
For example:

create_upf2hdl_vct upf2vhdl_vss
-hdl_type {vhdl std_logic}
-table {{OFF 1} {ON 0} {PARTIAL_ON X}}

where upf2vhdl_vss is the name of the table, -hdl_type specifies VHDL std_logic
for the data type and -table maps OFF to 1, ON to 0, and PARTIAL_ON to X. Note
that this reverses the default conversion values.

• Use a predefined VCT provided by Questa (see Predefined VCTs Supported from
the UPF Standard) to perform the conversion mapping. In this example, the
UPF_GNDZERO2VHDL_SL table peforms this conversion.

Note
Using a predefined VCT is easier, but it requires implementation of UPF 2.0 (IEEE Std
1801-2009), so both methods are shown here.

UPF Commands and Reference
Supported UPF Extensions

Power Aware User’s Manual, v10.1 253

2. Implement the VCT conversion in your UPF file by using the -vct argument of the
connect_supply_net command. Continuing with the examples from Step 1, use either
one of the following:

• Assign the name of the VCT you defined (upf2vhdl_vss) to the -vct argument:

connect_supply_net power_supply_net { HDL_port ..} -vct upf2vhdl_vss

• Assign the name of the predefined VCT you selected
(UPF_GNDZERO2VHDL_SL) to the -vct argument:

connect_supply_net power_supply_net { HDL_port ..}
-vct UPF_GNDZERO2VHDL_SL

Supported UPF Extensions

Using -pa_upfextensions
The -pa_upfextensions argument to the vopt command allows you to define and apply various
UPF behaviors that are not supported by the current standard (UPF v2.0). Table D-6 lists the
values for this argument that you can specify to override supported UPF behavior.

Syntax

vopt -pa_upfextensions=[ignorepgports] [ignorepgportsaon] [relatedsnet] [nonlrmstatenames]
[s] [genblk] [v] [nonameclash] [altgenname] [all] [default]

Description

• To specify more than one value for this argument, use the + operator between values
(there is no order dependency when specifying multiple values). For example:

vopt -pa_upfextensions=relatedsnet+genblk+v

• To enable all values, specify the following:

vopt -pa_upfextensions=all

• To enable a limited number of values (see default in Table D-6), specify either of the
following:

vopt -pa_upfextensions=default
vopt -pa_upfextensions

Power Aware User’s Manual, v10.1254

UPF Commands and Reference
Supported UPF Extensions

Table D-6. Power Aware Actions for vopt -pa_upfextensions

Value Action

ignorepgports Bypasses connection of a supply net to a port using the
connect_supply_net command when the port is missing in
the verification model but is a power or ground (PG) pin
in the Liberty model.

In this case, the connect_supply_net command to these
ports is ignored.

This is equivalent to using vopt -pa_connectpgpin=i

ignorepgportsaon Bypasses connection of a supply net to a port using the
connect_supply_net command when the port is missing in
the verification model but is a power or ground (PG) pin
in the Liberty model.

In this case, connect_supply_net command to these ports
is ignored and the Power Aware simulation semantics of
the parent instance of the the port are disabled.

This is equivalent to using vopt -pa_connectpgpin=a

relatedsnet Supports the behavior for the Tcl command
set_related_supply_net.

nonlrmstatenames Allows non-standard UPF names in state name of
add_port_state command. For example:

add_port_state VN1 -state {1p1 1.0}

s Allows relative paths in set_scope command. For
example:

set_scope ../../

genblk Allows generate block to be used in set_scope and
create_power_domain (-elements argument) commands.

v Allows automatic insertion of vct for pins detected as
power and ground pins.

nonameclash Ignores the name clash error that occurs for ports of the
set_power_switch command that are specified for the
-input_supply_port or -output_supply_port arguments and
that already exist in RTL.

UPF Commands and Reference
Supported UPF Extensions

Power Aware User’s Manual, v10.1 255

altgenname Supports the synthesis style hier-paths for generate blocks.
ModelSim recognizes a hier-path with an escaped
generate scope of the form that a synthesis tool generates,
and maps such a name to a hierarchical name of
conventional form.

For example, each of the following styles—

{< prefix >/}gen_label[index].name2
{/< suffix >}

/* ’gen_label[index].name2’ is the new
name of the instance ’name2’ within scope
gen_label[index].*/

{< prefix >/}\\gen_label[index].name2
{/< suffix >}

/* The new name could also be double-
escaped. */

{< prefix >.}gen_label[index].name2
{/< suffix >}

/* Use ’.’ as a path separator for
generate scopes */

would map to—

{< prefix >/}gen_label[index]/name2
{/< suffix >}

all Enables (specifies) all values of the -pa_upfextensions
argument.

default Enables (specifies) only the following values of the
-pa_upfextensions argument:

• ignorepgports
• relatedsnet
• nonlrmstatenames
• s
• v
• genblk
• nonameclash

NOTE: Specifying vopt -pa_upfextensions with no values
has the same effect.

Table D-6. Power Aware Actions for vopt -pa_upfextensions (cont.)

Value Action

Power Aware User’s Manual, v10.1256

UPF Commands and Reference
UPF Supply Connections

UPF Supply Connections
Supply connections between various UPF objects can made between supply nets, supply sets,
supply ports, power switches and UPF objects such as retention, isolation, level shifter cells.
You can define these connections in the following ways:

• Implicit Connections

• Explicit Connections

• Automatic Connections

• Power State Composition

Implicit Connections
Implicit connections provide a way to connect supply nets to elements that do not have supply
ports. Any design element that is present in the extent of power domain and does not have
supply ports connected or is excluded from Power Aware processing (-pa_excludefile) will be
implicitly connected with the primary supplies (power and ground) of the power domain. Thus,
the corruption of that element will be depend on the state of the primary power net and primary
ground net of the power domain.

Explicit Connections
You can explicitly connect a supply net to a supply port using the following UPF command:

connect_supply_net

This explicit connection overrides (has higher precedence than) the implicit and automatic
connection semantics that might otherwise apply.

Explicit connections include:

• Connections to UPF-created supply ports

• Connections to HDL-created supply ports (supply_net_type or 1-bit type)

• Connections to supply ports of power switches

Explicit connection to an HDL supply port has simulation semantics disabled by default (see
“Simulation Semantics for UPF Supply Connections”). Driving an HDL port from UPF
overrides its RTL connection.

UPF Commands and Reference
UPF Supply Connections

Power Aware User’s Manual, v10.1 257

Explicit Connections to HDL Ports
Using the connect_supply_net command, you can connect a UPF-created supply net to an
HDL-created supply port and a UPF-created supply port to an HDL-created supply net. To
ensure the supply net state and voltage values are propagated and modeled in the various HDLs,
you must use the supply_net_type datatype. You can make these datatypes visible by importing
UPF defined HDL packages (refer to Appendix B in UPF v1.0 and Annex B in IEEE Std
1801-2009).

Examples
HDL specification (Verilog):

module memory(input supply_net_type vdd, ..);
...
endmodule

HDL specification (VHDL):

entity memory is
port (vdd : in supply_net_type; ..)
...
end entity

UPF specification:

connect_supply_net vdd_switchable -ports mem/vdd

Explicit Connections to 1-bit HDL Ports
UPF also allows supply connections between supply nets and 1-bit Verilog/VHDL ports for
building simple functional models. In these cases, HDL supply ports are connected to the
ON/OFF state bit of the supply net. For complex modeling, you can use value change tables
(VCTs) for the conversion from the supply net state to values relevant to an HDL type, or
vice-versa.

Limitation

Enumerated HDL types are not supported.

Examples

HDL specification (Verilog):

module memory(input vdd, ..);
...
endmodule

Power Aware User’s Manual, v10.1258

UPF Commands and Reference
UPF Supply Connections

HDL specification (VHDL):

entity memory is
port (vdd : in std_logic; ..)
..
end entity

UPF specification:

connect_supply_net vdd_switchable -ports mem/vdd

Explicit Connections to Supply Ports of Power Switch
You can use the connect_supply_net command to define connections to supply ports of power
switch. For example:

create_power_switch SW \
 -input_supply_ports {IN_SW} \
 ..
connect_supply_net VDD_IN -ports {SW.IN_SW}

You can also specify connections using the create_power_switch command.
For example:

create_power_switch SW \
 -input_supply_ports {IN_SW VDD_IN} \
 ..

Automatic Connections
Questa supports the UPF automatic connection semantics of supply nets and supply sets as
defined by IEEE Std 1801-2009 (UPF v2.0).

Automatic connections semantics are defined for:

Supply nets using the connect_supply_net command
(see “Automatic Connections for Supply Nets”)

Supply sets using either the connect_supply_set or create_power_domain command
(see “Automatic Connections for Supply Sets”)

The necessary conditions for the supply nets (or supply nets of supply sets) to automatically
connected to the supply ports of design elements are:

UPF Commands and Reference
UPF Supply Connections

Power Aware User’s Manual, v10.1 259

• Design element has a port with -pg_type attribute. The pg_type attribute includes

o String type HDL attribute named either pg_type or UPF_pg_type.

o Implementation library model with pg_type attribute.

• Value of the pg_type attribute of the port matches with the pg_type value specified
using UPF commands.

Simulation semantics of all the design elements whose ports are automatically connected to
power supply are disabled (see “Simulation Semantics for UPF Supply Connections”).

Automatic Connections for Supply Nets
You can define automatic connection semantics on individual supply nets using the following
UPF command:

connect_supply_net -pg_type -domain -cells

Questa will automatically connect the specified supply net with the supply ports on the
specified cell or the design elements within the extent of power domain which fulfills the
necessary conditions for automatic connection semantics. You can also specify Value
Conversion Tables (VCTs) for automatic connection semantics by using the -vct argument.

Using the -vct argument has a restriction that all the ports that are connected using
connect_supply_net should have matching types, since the type matching for VCT will produce
error during connections.

For example:

connect_supply_net snet -domain PD -pg_type primary_power -vct my_sv_vct

This will produce an error message when domain PD has a vhdl instance contain supply port
with pg_type primary_power and different type and create the connection, assuming a 1-bit
connection.

Command Syntax

UPF v1.0:

connect_supply_net net_name
[-ports list] [-pins list]
[<-cells list | -domain domain_name>]
[<-rail_connection rail_type | -pg_type pg_type>]*
[-vct vct_name]

UPF2.0:

connect_supply_net net_name"

Power Aware User’s Manual, v10.1260

UPF Commands and Reference
UPF Supply Connections

[-ports list]
[-pg_type {pg_type_list element_list}]*
[-vct vct_name] [-pins list]
[-cells list] [-domain domain_name]
[-rail_connection rail_type]

Currently, the connect_supply_net command in UPF2.0 is modeled as its equivalent command
in UPF v1.0. That is, connect_supply_net command in UPF v2.0 will not accept element_list in
-pg_type argument.

Examples

connect_supply_net VDD -domain PD_SW -pg_type primary_power
connect_supply_net Vdd_backup -cells {RET_CELL} -pg_type backup_power
connect_supply_net VSS -domain PD_SW -pg_type primary_ground -vct

UPF_GNDZERO2SV_LOGIC.

Automatic Connections for Supply Sets
You can define automatic connection semantics on supply sets using either of the following
UPF commands:

connect_supply_set -connect

create_power_domain -define_func_type

ModelSim automatically connects supply nets of supply sets to the supply ports of design
elements. This connection is based on the purpose of the supply set in a given domain or
strategy context and the function that a supply net performs in the context of supply set.

Limitations

• Supply sets specified in strategy context will not be automatically connected to design
elements owing to seperate infrastructure in -instance.

• Supply nets in supply sets functioning as predefined supply set functions are not
automatically connected as per their predefined function. Explicit specification of
automatic connections must be specified.

Command Syntax

Using connect_supply_set:

connect_supply_set supply_set_ref
{-connect {supply_function {pg_type_list}}}*
[-elements element_list]
[-exclude_elements exclude_list]
[-transitive]

UPF Commands and Reference
UPF Supply Connections

Power Aware User’s Manual, v10.1 261

Using create_power_domain:

create_power_domain
[-define_func_type {supply_function {pg_type_list}}]*

Examples

create_power_domain PD \
-define_func_type {power primary_power} \
-define_func_type {always_on backup_power} \
..

connect_supply_set PD.primary \
-connect {power primary_power} \
-elements TOP

connect_supply_set PD.ISO.isolation_supply_set \
-connect {iso_power primary_power} \
-connect {iso_ground primary_ground} \

connect_supply_set PD.RET.retention_supply_set \
-connect {ret_backup_power backup_power} \
-connect {switchtable_supply primary_power}

Power State Composition
States of ports and nets carry voltage and on/off information, which means combinations of
power states of supply ports and/or nets are important in identifying the requirement of isolation
cells and level shifters on boundaries between two power domains. Because a power state added
on one domain/supply set can reference other power states added on another domain/supply set,
ModelSim can statically infer such dependencies. These dependencies help in determining the
combinations of power states of supply nets and/or ports.

You can add composite power states to your design as follows:

• Supply net — power state information (state and voltage level) is defined by the
supply_net_type declaration of the HDL cell (see Explicit Connections to HDL Ports).

• Supply port — power state information (state and voltage level) is defined by the
supply_net_type declaration of the HDL cell (see Explicit Connections to HDL Ports).

• Supply set — composed of two or more supply nets, so its power state is specified in
terms of those supply nets.

• Power domain — power state is determined by the state of supply sets associated with
the domain.

Power Aware User’s Manual, v10.1262

UPF Commands and Reference
UPF Supply Connections

ModelSim performs level shifter and isolation cell analysis/checks from information provided
with add_power_state UPF commands and also reports the power domain state dependencies in
report files.

To know whether an isolation or level-shifting is required on a boundary between power
domains, a static analysis is required to determine state dependencies between these power
domains (or supply sets associated with these domains). The dependency information is
extracted from supply/logic expression (mentioned in add_power_state command) of various
power states from power domains or supply sets.

A valid combination of two power states of domains/supply sets is equivalent to a valid
combination of power states of certain supply ports/supply nets (state and voltages). ModelSim
uses this net state and voltage information to determine whether isolation or level-shifting is
required or not.

Note
For the cases where ModelSim is statically not able to determine whether the state
combination of two power domain/supply sets is invalid (or these power states cannot co-
exist at any point of time), ModelSim assumes it to be a valid state combination.

In the following example for static analysis, ModelSim assumes that PD1_ON and PD2_ON
may co-exist at some point of time.

add_power_state PD1 -state PD1_ON
{-supply_expr {VDD1 == FULL_ON && GND1 == FULL_ON}}

add_power_state PD2 -state PD2_ON
{-supply_expr {VDD2 == FULL_ON && GND2 == FULL_ON}}

This information corresponds that (VDD1 is FULL_ON, GND1 is FULL_ON, VDD2 is
FULL_ON, GND2 is FULL_ON) may exist at some point of time.

Note
For better static analysis, it is recommended to include the state information of primary
nets of power domain in supply expression of add_power_state for power domain (or its
associated supply set).

Also, to determine the state relation between two power domains/supply sets, ModelSim
uses the information specified in power states of those two power domains/supply sets.

For example:

create_supply_net VDD ...
create_supply_net GND ...
set_domain_supply_net PD1 -primary_power_net VDD -primary_ground_net GND
add_power_state PD1 -state PD1_ON {-logic_expr {PD2 == PD2_OFF}

UPF Commands and Reference
UPF Supply Connections

Power Aware User’s Manual, v10.1 263

-supply_expr {VDD == FULL_ON && GND == FULL_ON}}

Determining State Dependency with add_power_state Arguments
You can use the following arguments of the UPF add_power_state command to determine
whether power states of different power domains can co-exist:

• -logic_expr

• -supply_expr

The following examples show various ways of using these arguments.

Example D-22. Dependency Specified with add_power_state -logic_expr —
Case 1

In this example, from logic_expr of PD1_S1 ModelSim determines that state PD1_S1 and
PD2_S2 cannot co-exist.

add_power_state PD1 -state PD1_S1 {-logic_expr {PD2 != PD2_S2}
-supply_expr {VDD1 == FULL_ON && GND1 == FULL_ON}}

add_power_state PD2 -state PD2_S2 {-supply_expr {VDD1 == FULL_ON &&
GND1 == FULL_ON}}

Example D-23. Dependency Specified with add_power_state -logic_expr —
Case 2

In this example, from logic_expr of PD1_S1 and PD2_S2 ModelSim determines that state
PD1_S1 and PD2_S2 cannot co-exist, as one requires ctrl to be 1 and other requires it to be 0.

add_power_state PD1 -state PD1_S1 {-logic_expr {ctrl} -supply_expr
{VDD1 == FULL_ON && GND1 == FULL_ON}}

add_power_state PD2 -state PD2_S2 {-logic_expr {!ctrl} -supply_expr
{VDD1 == FULL_ON && GND1 == FULL_ON}}

Example D-24. Dependency Specified with add_power_state -logic_expr —
Case 3

In this example, from logic_expr of PD1_S1, PD3_S3 ModelSim determines that state PD1_S1
and PD2_S2 cannot co-exist.

add_power_state PD1 -state PD1_S1 {-logic_expr {PD3 == PD3_S3}
-supply_expr {VDD1 == FULL_ON && GND1 == FULL_ON}}

Power Aware User’s Manual, v10.1264

UPF Commands and Reference
UPF Supply Connections

add_power_state PD2 -state PD2_S2 {-logic_expr {!ctrl} -supply_expr
{VDD1 == FULL_ON && GND1 == FULL_ON}}

add_power_state PD3 -state PD3_S3 {-logic_expr {PD2 != PD2_S2}
-supply_expr {VDD3 == FULL_ON && GND3 == FULL_ON}}

Example D-25. Dependency Specified with add_power_state -logic_expr —
Case 4

In this example, from logic_expr of PD1_S1 and PD2_S2 ModelSim determines that state
PD1_S1 and PD2_S2 cannot co-exist, as one requires ctrl to be 1 and other requires it to be 0.

add_power_state PD1 -state PD1_S1 {-logic_expr {ctrl == 1} -supply_expr
{VDD1 == FULL_ON && GND1 == FULL_ON}}

add_power_state PD2 -state PD2_S2 {-logic_expr {!ctrl} -supply_expr
{VDD1 == FULL_ON && GND1 == FULL_ON}}

Example D-26. Dependency Specified with add_power_state -supply_expr —
Case 1

In this example, from supply_expr of PD1_S1 and PD2_S2 (VDD state) ModelSim determines
that state PD1_S1 and PD2_S2 cannot co-exist.

add_power_state PD1 -state PD1_S1 {-supply_expr {VDD1 == FULL_ON &&
GND1 == FULL_ON && VDD == FULL_ON}}

add_power_state PD2 -state PD2_S2 {-supply_expr {VDD1 == FULL_ON &&
GND1 == FULL_ON && VDD == OFF}}

Example D-27. Dependency Specified with add_power_state -supply_expr —
Case 2

In this example, from supply_expr of PD1_S1 and PD2_S2 (VDD state), ModelSim determines
that state PD1_S1 and PD2_S2 cannot co-exist.

add_power_state PD1 -state PD1_S1 {-supply_expr {VDD1 == FULL_ON &&
GND1 == FULL_ON && VDD == FULL_ON}}

add_power_state PD2 -state PD2_S2 {-supply_expr {VDD1 == FULL_ON &&
GND1 == FULL_ON && VDD != FULL_ON}}

UPF Commands and Reference
UPF Supply Connections

Power Aware User’s Manual, v10.1 265

Example D-28. Dependency Specified with add_power_state -supply_expr —
Case 3

In this example, from supply_expr of PD1_S1 and PD2_S2 (VDD voltage range), ModelSim
determines that state PD1_S1 and PD2_S2 cannot co-exist.

add_power_state PD1 -state PD1_S1 {-supply_expr {VDD1 == FULL_ON &&
GND1 == FULL_ON && VDD == ’{FULL_ON, 0.8, 1.4}}}

add_power_state PD2 -state PD2_S2 {-supply_expr {VDD1 == FULL_ON &&
GND1 == FULL_ON && VDD == ’{FULL_ON, 1.6, 2.4}}}

Power State Reporting
ModelSim provides the following types of information in the report files:

• Information about the power state added on power domain/supply sets.

• Power State dependencies between connected power domains.

Example Report (Excerpt)

Power state info of Power domain : ’PD_tb’.
 1. Power state ’PD_tb_normal’, File: src/testcase4/test.upf(15).
 Supply Expression : ((((tb_pow)==(‘{FULL_ON , 3.30
})))&&(((tb_gnd)==(‘{FULL_ON , 1.00 })))).
 Function States :
 1. Ground(tb_gnd) == {FULL_ON,1.00}, Power(tb_pow) ==

{FULL_ON,3.30}.

 Power state info of Power domain : ’PD_mid2’.
 1. Power state ’PD_mid2_off’, File: src/testcase4/test.upf(67).
 Supply Expression : ((((mid2_MAIN_NET)==(‘{OFF
})))&&(((mid2_GND_NET)==(‘{OFF })))).
 Function States :
 1. Ground(mid2_GND_NET) == {OFF}, Power(mid2_MAIN_NET) ==

{OFF}.

 2. Power state ’PD_mid2_normal’, File: src/testcase4/test.upf(66).
 Supply Expression : ((((mid2_MAIN_NET)==(‘{FULL_ON , 4.20
})))&&(((mid2_GND_NET)==(‘{FULL_ON , 1.30 })))).
 Function States :
 1. Ground(mid2_GND_NET) == {FULL_ON,1.30}, Power(mid2_MAIN_NET)

== {FULL_ON,4.20}.

 Power State Combinations for connected domains :

 Power Domain ’PD_mid1’ Power Domain ’PD_wrapper1’

 PD_mid1_off PD_wrapper1_normal

Power Aware User’s Manual, v10.1266

UPF Commands and Reference
Value Conversion Tables

 Power Domain ’PD_mid1’ Power Domain ’PD_wrapper2’

 PD_mid1_off PD_wrapper2_normal
 PD_mid1_normal PD_wrapper2_normal

 Power Domain ’PD_mid1’ Power Domain ’PD_mid3’

 PD_mid1_off PD_mid3_off
 PD_mid1_off PD_mid3_normal
 PD_mid1_normal PD_mid3_off
 PD_mid1_normal PD_mid3_normal

 Power Domain ’PD_wrapper1’ Power Domain ’PD_mid3’

 PD_wrapper1_normal PD_mid3_off
 PD_wrapper1_normal PD_mid3_normal

Value Conversion Tables
A value conversion table (VCT) is a UPF definition (IEEE Std1801-2009) of how to convert, or
map, a value from a supply net state relevant to an HDL variable type (and from an HDL
variable type to a supply net state). This mapping enables complex modeling of connections
between supply nets and RTL ports.

Using VCT Commands
ModelSim can use the create_upf2hdl_vct and create_hdl2upf_vct commands in the UPF file
for modeling complex connections between a supply net and RTL port.

ModelSim also automatically inserts VCT for pins detected as power and ground pins when you
specify vopt -pa_upfextensions.

Examples
The following examples show the create_upf2hdl_vct and create_hdl2upf_vct commands in a
UPF file.

create_hdl2upf_vct VHDL_SL2UPF \
-hdl_type {vhdl} \
-table {{'U' OFF} \

UPF Commands and Reference
Value Conversion Tables

Power Aware User’s Manual, v10.1 267

{'X' OFF} \
{'0' OFF} \
{'1' ON} \
{'Z' OFF} \
{'L' OFF} \
{'H' ON} \
{'W' OFF} \
{'-' OFF}}

create_upf2hdl_vct UPF_GNDZERO2SV_LOGIC \
-hdl_type sv \
-table {{PARTIAL_ON X} \

{OFF 1} \
{ON 0}}

Note
If VCT definition for a connection is not applicable or fails, then default 1-bit connection
semantics will be applied. For example:

module memory (input gnd, ...);

...

endmodule

connect_supply_net gnd_switchable -ports mem_sv/gnd -vct

SV_LOGIC2UPF_GNDZERO

Data flow for the connection is UPF to RTL but VCT is specified as RTL

to UPF. Hence, specified VCT is not applicable.

Limitations
Only the following HDL data types are supported:

• System Verilog — logic, bit, wire, reg

• Verilog — wire, reg

• VHDL — bit, std_logic, std_ulogic, Boolean
(NOTE: Any subtypes of these are not supported.)

Predefined VCTs Supported from the UPF Standard
ModelSim provides several predefined VCTs described in Annex C of IEEE Std1801-2009,
which you can use with the connect_supply_net -vct command.

The predefined VCT definitions provided with ModelSim are listed below.

Power Aware User’s Manual, v10.1268

UPF Commands and Reference
Value Conversion Tables

create_hdl2upf_vct VHDL_SL2UPF \
-hdl_type {vhdl} \
-table { {'U' OFF} \
{'X' OFF} \
{'0' OFF} \
{'1' ON} \
{'Z' OFF} \
{'L' OFF} \
{'H' ON} \
{'W' OFF} \
{'-' OFF}}

create_upf2hdl_vct UPF2VHDL_SL \
-hdl_type {vhdl} \
-table {{PARTIAL_ON 'X'} \
{ON '1'} \
{OFF '0'}}

create_hdl2upf_vct VHDL_SL2UPF_GNDZERO \
-hdl_type {vhdl} \
-table { {'U' OFF} \
{'X' OFF} \
{'0' ON} \
{'1' OFF} \
{'Z' OFF} \
{'L' ON} \
{'H' OFF} \
{'W' OFF} \
{'-' OFF}}

create_upf2hdl_vct UPF_GNDZERO2VHDL_SL \
-hdl_type {vhdl} \
-table {{PARTIAL_ON 'X'} \
{OFF '1'} \
{ON '0'}}

create_hdl2upf_vct SV_LOGIC2UPF \
-hdl_type sv \
-table {{X OFF} \
{Z PARTIAL_ON } \
{1 ON } \
{0 OFF }}

create_upf2hdl_vct UPF2SV_LOGIC \
-hdl_type sv \
-table {{PARTIAL_ON X} \
{ON 1} \
{OFF 0}}

create_hdl2upf_vct SV_LOGIC2UPF_GNDZERO \
-hdl_type sv \
-table {{X OFF} \

UPF Commands and Reference
Value Conversion Tables

Power Aware User’s Manual, v10.1 269

{0 ON} \
{1 OFF} \
{Z OFF}}

create_upf2hdl_vct UPF_GNDZERO2SV_LOGIC \
-hdl_type sv \
-table {{PARTIAL_ON X} \
{OFF 1} \
{ON 0}}

create_upf2hdl_vct VHDL_TIED_HI \
-hdl_type {vhdl} \
-table {{ON '1'} \
{PARTIAL_ON 'X'} \
{OFF 'X'}}

create_upf2hdl_vct SV_TIED_HI \
-hdl_type sv \
-table {{ON 1} \
{PARTIAL_ON X} \
{OFF X}}

create_upf2hdl_vct VHDL_TIED_LO \
-hdl_type {vhdl} \
-table {{ON '0'} \
{PARTIAL_ON '0'} \
{OFF 'X'}}

create_upf2hdl_vct SV_TIED_LO \
-hdl_type sv \
-table {{ON 0} \
{PARTIAL_ON X} \
{OFF X}}

create_hdl2upf_vct SV_BIT2UPF \
-hdl_type {sv bit}\
-table {{1 ON } \
{0 OFF }}

create_upf2hdl_vct UPF2SV_BIT \
-hdl_type {sv bit} \
-table {{PARTIAL_ON 0}
{ON 1} \
{OFF 0}}

create_hdl2upf_vct SV_BIT2UPF_GNDZERO \
-hdl_type {sv bit}\
-table {{0 ON} \
{1 OFF}}

Power Aware User’s Manual, v10.1270

UPF Commands and Reference
Value Conversion Tables

create_upf2hdl_vct UPF_GNDZERO2SV_BIT \
-hdl_type {sv bit}\
-table {{PARTIAL_ON 1} \
{OFF 1} \
{ON 0}}

create_hdl2upf_vct VHDL_BIT2UPF \
-hdl_type {vhdl bit} \
-table {{'1' ON } \
{'0' OFF }}

create_upf2hdl_vct UPF2VHDL_BIT \
-hdl_type {vhdl bit} \
-table {{PARTIAL_ON '0'}
{ON '1'} \
{OFF '0'}}
create_hdl2upf_vct VHDL_BIT2UPF_GNDZERO \
-hdl_type {vhdl bit}\
-table {{'0' ON} \
{'1' OFF}}

create_upf2hdl_vct UPF_GNDZERO2VHDL_BIT \
-hdl_type {vhdl bit}\
-table {{PARTIAL_ON '1'} \
{OFF '1'} \
{ON '0'}}

create_hdl2upf_vct VHDL_BOOL2UPF \
-hdl_type {vhdl boolean} \
-table {{TRUE ON } \
{FALSE OFF }}

create_upf2hdl_vct UPF2VHDL_BOOL \
-hdl_type {vhdl boolean} \
-table {{PARTIAL_ON FALSE}
{ON TRUE} \
{OFF FALSE}}

create_hdl2upf_vct VHDL_BOOL2UPF_GNDZERO \
-hdl_type {vhdl boolean}\
-table {{FALSE ON} \
{TRUE OFF}}

create_upf2hdl_vct UPF_GNDZERO2VHDL_BOOL \
-hdl_type {vhdl bit}\
-table {{PARTIAL_ON TRUE} \
{OFF TRUE} \
{ON FALSE}}

UPF Commands and Reference
Value Conversion Tables

Power Aware User’s Manual, v10.1 271

Connections Using Value Conversion Tables (VCTs)
You can model more complex connections between supply nets and HDL ports by using either
of the following UPF commands to define value conversions:

create_upf2hdl_vct

create_hdl2upf_vct

Limitations

Only following types are supported in HDL data types:

• SystemVerilog (logic, bit, wire, reg)

• Verilog (wire, reg)

• VHDL (bit, std_logic, std_ulogic, Boolean).

Any subtypes of these are not supported.

Examples

create_hdl2upf_vct VHDL_SL2UPF \
 -hdl_type {vhdl} \
 -table {{'U' OFF} \
 {'X' OFF} \
 {'0' OFF} \
 {'1' ON} \
 {'Z' OFF} \
 {'L' OFF} \
 {'H' ON} \
 {'W' OFF}\
 {'-' OFF}}

create_upf2hdl_vct UPF_GNDZERO2SV_LOGIC \
 -hdl_type sv \
 -table {{PARTIAL_ON X} \
 {OFF 1} \
 {ON 0}}

In addition, you can specify an existing value conversion table (VCT) using the following UPF
command and argument:

connect_supply_net -vct

Power Aware User’s Manual, v10.1272

UPF Commands and Reference
Value Conversion Tables

Note
ModelSim provides several predefined VCT definitions (see “Value Conversion Tables”)
that you with connect_supply_net -vct. However, if the VCT specification for a
connection is not applicable or valid, then ModelSim applies the default 1-bit connection
semantics.

Examples

RTL Specification (Verilog):

module memory (input VSS, VDD);
..
endmodule

RTL Specification (VHDL):

entity memory is
port (VSS : in std_logic; VDD: in std_logic;..)
..
end entity

UPF specification:

connect_supply_net VDD_switchable -ports mem_sv/VDD
connect_supply_net VSS_switchable -ports mem_sv/VSS -vct
UPF_GNDZERO2SV_LOGIC

connect_supply_net VDD_switchable -ports mem_vhd/VDD
connect_supply_net VSS_switchable -ports mem_vhd/gnd -vct
UPF_GNDZERO2VHDL_SL

RTL Specification (Verilog):

module memory (input VSS, ..);
...
endmodule

UPF specification:

connect_supply_net VSS_switchable -ports mem_sv/VSS -vct
SV_LOGIC2UPF_GNDZERO

UPF Commands and Reference
Supply Nets

Power Aware User’s Manual, v10.1 273

Data flow for the connection is UPF to HDL, but VCT is specified as HDL to UPF. As a result,
the specified VCT is not applicable.

Simulation Semantics for UPF Supply Connections
Power Aware simulation semantics are automatically disabled for design elements that are
explicitly or automatically connected to a particular supply net or supply set. Simulation
semantics are disabled for all the descendants of the instance of model.

Examples

RTL Specification (Verilog):

module memory(input vdd, ..);
...
endmodule

RTL Specification (VHDL):

entity memory is
port (vdd : in std_logic; ..)
..
end entity

UPF specification:

create_power_domain mem_pd -elements mem
connect_supply_net vdd_switchable -ports mem/vdd

Usage Note

When automatic connection semantics are applied, simulation semantics of all the instances
whose ports are automatically connected will be disabled. This may display a notification
message similar to the following:

** Note: top.upf(12): (vopt-9693) Power Aware simulation semantics
disabled for /testbench/rtl_top/mem

It is recommended that you use vopt -suppress 9693 to suppress this message.

Supply Nets
This section describes how to use UPF commands with ModelSim to define supply net behavior
for Power Aware.

Power Aware User’s Manual, v10.1274

UPF Commands and Reference
Supply Nets

Resolving Drivers on a Supply Net
Supply nets are often connected to the output of a single switch. However, if you have a design
where the output of multiple switches are connected to the same supply net, you need a
resolution mechanism to determine the state and voltage of the net, depending on the values
supplied by the each of the individual switches.

Version 1.0 of the UPF Standard (UPF v1.0) defines the semantics of using the
create_supply_net command to determine the resolution of different drivers on a supply net. In
UPF v1.0, the resolution is mainly dependent on the state and voltage value of the supply
network. In particular, the -resolve argument provides the following values, which you to select
a method of multiple drivers on a supply net (refer to Section 5.1.5):

• unresolved

• one-hot

• parallel

Note that resolution can only be defined on the supply net and not on supply ports. As a result
you can have multiple ports driving a supply net, but not multiple supply nets driving a supply
port.

Example
In the following example, ports p1, p2, and p3 are driving the resolved supply net, resol_net,
which has ’one_hot’ resolution specified.

A voltage value and supply state would be driven on resol_net, depending on the
resolution(one_hot) specified and the state of the drivers (p1, p2, p3).

In a case of a error in resolution, the supply net is turned off and voltage value is driven to 0. An
error message is displayed that lists the voltages and states of all the drivers.

The following is an example of the error message for one_hot and parallel resolution
respectively.

set_scope tb
create_power_domain PD_TOP -elements { top1 } -include_scope
create_supply_port p1 -domain PD_TOP -direction in
create_supply_port p2 -domain PD_TOP -direction in
create_supply_port p3 -domain PD_TOP -direction in
create_supply_net resol_net -domain PD_TOP -resolve one_hot

####### Supply Net Resolution ########
connect_supply_net resol_net -ports p1

connect_supply_net resol_net -ports p2

connect_supply_net resol_net -ports p3

UPF Commands and Reference
Supply Nets

Power Aware User’s Manual, v10.1 275

** Error: (vsim-8928) MSPA_RSLV_ONE_HOT: Time: 20 ns, More than one driver
is ON for one_hot supply net: /tb/resol_net

Drivers are:-

/tb/p1: {0 uV, OFF}
/tb/p2: {5 uV, ON}
/tb/p3: {10 uV,ON}

** Error: (vsim-8927) MSPA_RSLV_PARALLEL: Time: 15 ns, Different
voltages driven by ON drivers of parallel supply net /tb/resol_net

Drivers are:-

/tb/p1: {0 uV, OFF}
/tb/p2: {5 uV, ON}
/tb/p3: {10 uV, ON}

Defining Isolation
Isolation is used to separate signals that originate in a design element with power off from a part
of the design that has power on and that can still read the signals from the powered down
element. A particular domain may be powered off while another domain is operating in normal
mode.

There are two methods for defining an isolation cell.

Method 1: Isolation is already explicitly present
In this case, the design (in either a RTL or a GL netlist) contains an explicit cell instance that
functions as an isolation cell. The UPF file includes a set_isolation -instance command that
identifies this explicit instance as an isolation cell. In this case:

• No isolation needs to be added

• Power Aware will not insert an additional isolation cell

• Power Aware will not modify the explicit isolation cell that is present
(it is assumed that the user-provided isolation cell does what it is supposed to do)

Power Aware User’s Manual, v10.1276

UPF Commands and Reference
Supply Nets

Method 2: Isolation needs to be added
In this case, you use the set_isolation command to provide an isolation strategy (without the
-instance option). ModelSim then implicitly inserts an isolation cell on any port that satsfies all
of the following:

• Matches the criteria defined in the isolation strategy

• Requires isolation because the power state table indicates that the two power domains
on either side of the port can be ON/OFF or OFF/ON respectively

• Does not already have an explicit isolation cell present and identified (per Method 1)

By default, if ModelSim does insert an isolation cell, Power Aware simulation will use a built-
in behavioral model for isolation. However, you can cause the simulation to insert a different
model (when required) by using the map_isolation_cell UPF command to identify the isolation
model to be used.

Note
To prevent a redundant isolation cell from being inserted on a port, use the set_isolation
-instance command to identify the instance of the existing isolation cell.

Specifying Isolation Cells
ModelSim reads the set_isolation command in the UPF file and identifies ports as candidates
for isolation cell insertion. These ports are also dumped into the UPF report file (report.upf.txt),
as in Example D-29.

Example D-29. UPF Report File for Isolation Ports (report.upf.txt)

Isolation Strategy: iso_PD_mid1, File: test.upf(44).
Isolation Supplies:

power : /tb/TOP/tb_pow
ground : /tb/TOP/mid1_GND_NET

Isolation Control (/tb/TOP/ctrl), Isolation Sense (HIGH), Clamp Value
(1), Location (automatic)

Isolated Signals:
1. Signal : /tb/TOP/mid1/out2_bot
2. Signal : /tb/TOP/mid1/out1_bot

Isolation Cell Instances

If you have used the set_isolation -instance command in a UPF file to instantiate RTL isolation
cells, ModelSim will infer those cells and perform isolation checks on them.

UPF Commands and Reference
Supply Nets

Power Aware User’s Manual, v10.1 277

ModelSim automatically infers the right UPF strategy for cells that are not specified in
the UPF file. For more information, refer to “Automatic Detection of Power Management
Cells.”

A cell instance is identified as an isolation cell in any of the following cases:

• Instance is specified with -instance argument of set_isolation command.

• For a GLS design, any of the following is present:

o Synopsys pragma synopsys isolation_upf.
Example:

ISOLOD1BWP trafficWriteEnable_UPF_ISO (.I(trafficWriteEnable),
.ISO(n16),.Z(n57)); //synopsys isolation_upf PD_C2_ISS1+PD_C2

o Liberty attribute is_isolation_cell. Example:

cell (ISO_LO) {
 is_isolation_cell : true;
 ...
 }

o HDL attribute is_isolation_cell. Example:

(* is_isolation_cell = 1 *)
 module ISOCELL (I, ISO, Z) ;

 endmodule

o Cell in accordance with map_isolation_cell UPF command. Example:

UPF Command : map_isolation_cell mem_ctrl_iso_0 -domain PD_mem_ctrl
-lib_cells {ISO_LO}
 Instantiation in hdl : ISO_LO addr_0 (.I(n158), .ISO(n174),
.Z(address[0]));

o Instance name in accordance with name_format UPF command. Example:

UPF Command : name_format -isolation_prefix "MY_ISO_"
-isolation_suffix "UPF_ISO"
 Instantiation in hdl : SEN_OR2_4 MY_ISO_t_state_21__UPF_ISO
(.A1 (n151) , .A2 (n354) , .X (t_state[21])) ;

Power Aware User’s Manual, v10.1278

UPF Commands and Reference
Supply Nets

Limitations
If isolation is required and is not present (and identified with set_isolation -instance), then
Power Aware simulation effectively inserts an isolation cell.

The current Power Aware architecture implements isolation by actually inserting a cell—an
instance of a behavioral model for isolation—into the design where isolation is required.
However, ports on an isolation cell inserted this way have a limitation of not supporting enum
types.

For ports of type enum, Power Aware reverts to the implementation approach used in previous
releases. In that approach, an isolation cell is not actually inserted into the design. Instead,
internal mechanisms (such as the force command) make an existing design port (highconn or
lowconn) behave as if isolation were present.

Note that the isolation effect of these two approaches is identical—you will see exactly the
same results in reports and in the GUI. The only difference is that the new architecture shows
explicit instances of isolation cells that have been added to the design.

Defining Retention
To define retention registers in a power domain and set the corresponding save and restore
signals for the retention registers, you use the set_retention command in your UPF file. In
particular, you can use the following arguments (which are supported only in UPF v2.0) to
define your retention strategy:

• -retention_supply_set— Defines the supply set used to power the logic inferred by the
<retention_name> strategy.

• -no_retention — Storage elements specified by this argument are prevented from having
retention capability.

• -use_retention_as_primary — Specifies that the storage element and its output are
powered by the retention supply.

-retention_supply_set

Description

This argument defines the supply set used to power the register holding the retained value.

Note the following cases:

• If you have specified both retention power and retention ground nets, using this
command creates an implicit retention supply set and is used with the specified strategy.
The retention power net serves the power function in the retention supply set and the
retention ground net serves the ground function in the retention supply set.

UPF Commands and Reference
Supply Nets

Power Aware User’s Manual, v10.1 279

• If you have specified the retention power net but not the retention ground net, then the
domain’s primary supply sets ground function is used as the retention ground.

• If you have specified the retention ground net but not the retention power net, then the
domain’s primary supply sets power function is used as the retention power.

Note that the power of the retention cell is preserved (an extra port RETPWR (Retention Power)
is added to the retention models).

Whenever the power of a retention cell (RETPWR) goes down, the value stored in retention cell
gets corrupted, and the ‘X’ value is restored when restore signal is triggered.

Example

Consider the following logic added in a retention model:

// store x in RETPWRDOWN
 always @(negedge RETPWR)
 begin
 -> pa_store_x ;
 end

An extra port RETPWR has been added in the Power Aware retention models.

Whenever you use your own retention models using the map_retention_cell UPF command:

• For a user-defined model with RETPWR port and corresponding logic—Behavior will
be in accordance with the RETPWR logic.

• For a user-defined model without a RETPWR port — A warning is issued during the
vsim simulation. For example:

** Warning: (vsim-PA-8944) Retention Model : 'MyRetModel' does not have
Port 'RETPWR'. Ignoring it.
Region: /mspa_top/blk0/inst0_MyRetModel

-no_retention

Description

This argument disables retention on specified storage elements.

Example

upf_version 2.0
set_scope tb1
create_power_domain PD_TOP -elements { top1/bot1/tdsig}
create_power_domain PD_TOP2 -elements { top1/q1 }
create_power_domain PD_TOP3 -elements { top1/}
...
set_domain_supply_net PD_TOP -primary_power_net PD_TOP_primary_power -
primary_ground_net GND_net

Power Aware User’s Manual, v10.1280

UPF Commands and Reference
Supply Nets

set_domain_supply_net PD_TOP2 -primary_power_net PD_TOP_primary_power2 -
primary_ground_net GND_net
set_domain_supply_net PD_TOP3 -primary_power_net PD_TOP_primary_power3 -
primary_ground_net GND_net
create_power_switch PD_TOP_sw \

-domain PD_TOP \
-output_supply_port { out_sw_PD_TOP PD_TOP_primary_power } \
-input_supply_port { in_sw_PD_TOP VDD_net } \
-control_port { ctrl_sw_PD_TOP pg } \
-on_state { normal_working in_sw_PD_TOP {ctrl_sw_PD_TOP } } \
-off_state { off_state {!ctrl_sw_PD_TOP} }

...
set_retention PD_TOP_retention3 -domain PD_TOP -retention_power_net
VDD_net -elements { top1/bot1/tdsig[0][1] } -no_retention
set_retention_control PD_TOP_retention3 -domain PD_TOP -save_signal { ret3
posedge } -restore_signal { ret1 negedge }

set_retention PD_TOP_retention2 -domain PD_TOP -retention_power_net
VDD_net -elements { top1/bot1/tdsig }
set_retention_control PD_TOP_retention2 -domain PD_TOP -save_signal { ret2
posedge } -restore_signal { ret1 negedge }

set_retention PD_TOP_retention1 -domain PD_TOP -retention_power_net
VDD_net -elements { top1/bot1/tdsig[0][0] }
set_retention_control PD_TOP_retention1 -domain PD_TOP -save_signal { ret1
posedge } -restore_signal { ret1 negedge }
...

As a result of this UPF command, no retention strategy is applied to:

top1/bot1/tdsig[0][1]

Reports

report.upf.txt

Power Domain: PD_TOP, File: ./src/bitwise_1/test.upf(7).
 Creation Scope: /tb1
 Primary Supplies:
 power : /tb1/PD_TOP_primary_power
 ground : /tb1/GND_net
 Power Switch: PD_TOP_sw, File: ./src/bitwise_1/test.upf(34).
 Output Supply port:
 out_sw_PD_TOP(/tb1/PD_TOP_primary_power)
 Input Supply ports:
 1. in_sw_PD_TOP(/tb1/VDD_net)
 Control Ports:
 1. ctrl_sw_PD_TOP(/tb1/pg)
 Switch States:
 1. normal_working(ON) : (ctrl_sw_PD_TOP)
 2. off_state(OFF) : (!ctrl_sw_PD_TOP)
 Retention Strategy: PD_TOP_retention3, File:
./src/bitwise_1/test.upf(58).
 Retention Supplies:
 power : /tb1/VDD_net

UPF Commands and Reference
Supply Nets

Power Aware User’s Manual, v10.1 281

 ground : /tb1/GND_net
 No Retention
 Retention SAVE (/tb1/ret3), Retention Sense (posedge)
 Retention RESTORE (/tb1/ret1), Retention Sense (negedge)
 Retention Strategy: PD_TOP_retention2, File:
./src/bitwise_1/test.upf(61).
 Retention Supplies:
 power : /tb1/VDD_net
 ground : /tb1/GND_net
 Retention SAVE (/tb1/ret2), Retention Sense (posedge)
 Retention RESTORE (/tb1/ret1), Retention Sense (negedge)
 Retention Strategy: PD_TOP_retention1, File:
./src/bitwise_1/test.upf(64).
 Retention Supplies:
 power : /tb1/VDD_net
 ground : /tb1/GND_net
 Retention SAVE (/tb1/ret1), Retention Sense (posedge)
 Retention RESTORE (/tb1/ret1), Retention Sense (negedge)

Power Domain: PD_BOT, File: ./src/bitwise_1/test.upf(70).
...

report.mspa.txt

--
----- ModelSim Power Aware Report File -----
--
Total (tb1)
 upf_retention_ret # 1
 upf_retention_sr # 12
 NPM_FF # 12
 NPM_LA # 2
 OUTPUT # 38
...

PD_TOP sub_total (/tb1/top1/bot1)
 upf_retention_ret # 1
 /tb1/top1/bot1/tdsig[0] 1
 upf_retention_sr # 12
 /tb1/top1/bot1/tdsig[2] 1
 /tb1/top1/bot1/tdsig[3] 1
 /tb1/top1/bot1/tdsig[4] 1
 /tb1/top1/bot1/tdsig[5] 1
 /tb1/top1/bot1/tdsig[6] 1
 /tb1/top1/bot1/tdsig[7] 1
 /tb1/top1/bot1/tdsig[8] 1
 /tb1/top1/bot1/tdsig[9] 1
 /tb1/top1/bot1/tdsig[10] 1
 /tb1/top1/bot1/tdsig[11] 1
 /tb1/top1/bot1/tdsig[12] 1
 /tb1/top1/bot1/tdsig[13] 1
 NPM_FF # 1
 /tb1/top1/bot1/tdsig[1] 1

PD_TOP2 sub_total (/tb1/top1)
 OUTPUT # 1
 /tb1/top1/q1 1

Power Aware User’s Manual, v10.1282

UPF Commands and Reference
Supply Nets

...
PD_TOP3 sub_total (/tb1/top1)
 NPM_FF # 7
 /tb1/top1/d1[6:4] 3
 /tb1/top1/d1[3:0] 4
 OUTPUT # 11
 /tb1/top1/out_buf 1
 /tb1/top1/out_reg 1
 /tb1/top1/out_lat 1
 /tb1/top1/out_uniso 1
 /tb1/top1/d2 7

-- NPM_FF => Denotes all Non Power Management Flip Flops of a Power
Domain.
-- NPM_LA => Denotes all Non Power Management Latches of a Power Domain.
-- OUTPUT => Denotes all outputs and power signals,which are not
sequential elements, of a Power Domain.

-use_retention_as_primary

Description

This argument powers the storage element and the output drivers of the register using the
retention supply.

Example

upf_version 2.0
set_scope tb
create_power_domain pd_aon -include_scope
...
connect_supply_net vdd_net -ports { vdd_port }
connect_supply_net gnd_net -ports { gnd_port }
create_supply_set pd_aon_ss \
 -function { power vdd_net } \
 -function { ground gnd_net }
...
###############################
Retention Strategy for pd
###############################
set_retention pd_retention1 -domain pd -save_signal { ret posedge
} -restore_signal { ret negedge } -elements {top_vh} -
use_retention_as_primary
map_retention_cell pd_retention1 -domain pd -lib_model_name
upf_retention_ret -lib_cell_type FF_CKHI
associate_supply_set pd_aon_ss -handle pd.pd_retention1.supply
...

Report

report.mspa.txt

--

UPF Commands and Reference
Supply Nets

Power Aware User’s Manual, v10.1 283

----- ModelSim Power Aware Report File -----
--
Total (tb)
 upf_retention_ret # 2
 NPM_FF # 1
 NPM_LA # 3
 OUTPUT # 3

pd sub_total (/tb/top_vh /tb/top_vl)
 upf_retention_ret # 1
 /tb/top_vl/q_regvl 1
 NPM_LA # 2
 /tb/top_vh/q_latvh 1
 /tb/top_vl/q_latvl 1
 OUTPUT # 2
 /tb/top_vh/q_combvh 1
 /tb/top_vl/q_combvl 1

pd.pd_retention1.use_retention_as_primary sub_total (/tb/top_vh)
 upf_retention_ret # 1
 /tb/top_vh/q_regvh 1

pd_aon sub_total (/tb/top_aon)
 NPM_FF # 1
 /tb/top_aon/q_regvl 1
 NPM_LA # 1
 /tb/top_aon/q_latvl 1
 OUTPUT # 1
 /tb/top_aon/q_combvl 1

-- NPM_FF => Denotes all Non Power Management Flip Flops of a Power
Domain.
-- NPM_LA => Denotes all Non Power Management Latches of a Power Domain.
-- OUTPUT => Denotes all outputs and power signals,which are not
sequential elements, of a Power Domain.

Power Aware User’s Manual, v10.1284

UPF Commands and Reference
Supply Nets

Power Aware User’s Manual, v10.1 285

Appendix E
Power Configuration File Reference

In addition to the UPF format (see UPF Commands and Reference), Mentor also supports a
format for specifying the power intent of a design that is referred to as Power Configuration File
(PCF).

Power Specification File
To perform Power Aware verification, you need to provide a power specification file that
identifies the low-power specification of the design. A power specification file is analogous to a
standard delay file (SDF) used for annotating timing and timing check information into a
simulation.

Using a power specification file is the key to the verification flow using Power Aware. This file
provides the following information required to overlay verification with the power control
network and Power Aware functionality:

• Power regions, voltage domains, and power islands

• Retention sequential models, their type, and the regions they are in
(including nodebug, encrypted, and protected regions)

• State and output corruption behavior in power-down situations

• Power control signals and the portions of the design they control

The power specification file is designed to capture all Power Aware characteristics of the design
at the RTL (or higher) in a compact form that can be easily used by the simulator.

Formats
This power specification file can be written in either of the following formats:

• Unified Power Format (UPF) — A a standardized set of low-power design
specifications for use throughout design, analysis, verification, and implementation.
This is the recommended format for low-power specification for Power Aware
simulations. File format adheres to v1.0 of the UPF standard by default. In addition,
Mentor also supports portions of v2.0 (IEEE Std1801-2009). Refer to UPF Commands
and Reference for more information on UPF.

Power Aware User’s Manual, v10.1286

Power Configuration File Reference

• Power Configuration File (PCF) — A preliminary file format specific to ModelSim that
was developed to meet the specific needs of various customers and semiconductor
companies. Refer to Power Configuration File Reference for more informationon PCF.

Using a PCF as Part of Power Aware Verification
You can use a power specification file written as a Power Configuration File (PCF) as part of a
Power Aware analysis at the RTL level as follows:

1. Code the functional design using normal RTL coding guidelines. Specifically, the power
control network is not wired through the RTL functional network.

2. Model the power management blocks, including the definition of the power control
signals. These signals either indicate the on/off status of power to specific power islands
or flag the storing and restoring of state information.

3. Use the PCF to specify how the power control network overlays connect to the
functional network.

4. Use a Power Aware library of Verilog models provided by the silicon (or library)
vendor. The library models trigger relevant events for the simulator so that the simulator
can modify the run-time behavior of the RTL design to corrupt state and outputs and
store or restore state values based on power control network activity. For more
information refer to Guidelines for Writing HDL Models

5. Use the PCF to map the Power Aware models to sequential elements in the design.

6. Use the Power Aware model library, it is presumed to be precompiled as it does not
change.

7. Compile the RTL design normally.

8. Simulate the design (see Standard Flow For RTL). When the design is simulated, the
simulator will take the PCF as input as well as the compiled design.

9. Proceed with the simulation normally, as the test bench triggers power down signals for
various power islands while save and restore occur as required. The purpose of the
verification is to ensure the design functions correctly within the dynamic context of
power islands being turned off and on.

Power Configuration File Reference
PCF Syntax and Contents

Power Aware User’s Manual, v10.1 287

PCF Syntax and Contents
This section describes the syntax and semantics of the PCF, using Backus-Naur Format (BNF)
grammar to specify the syntax.

Basic PCF Statement Types
The PCF consists of header and power or context statements. The header statement must be the
first statement in the PCF. Power and context statements can be intermixed. Context statements
apply to all statements that follow the context statement unless and until overridden by a
subsequent context statement.

Statement Termination
You should terminate all statements with a semicolon (;). However, for backward compatibility
with earlier PCF formats, a statement may be terminated by a new line (CRLF).

When using a new line to terminate a statement, use the backslash (\) character to indicate line
continuation instead of termination immediately prior to the new line.

Only one form of statement termination can be used in a simulation session.

stmt_end ::=
 ;
| CRLF

Header Statement
The header statement is mandatory for PCF version 2.0 or later. It is an error if the PCF version
is not specified or if there is no header statement prior to the occurrence of the first power or
context statement.

Future versions of the PCF may define additional header information. That is why the header
statement is defined as a comma-separated list of keyword-value pairs that are specified only
once in a PCF file.

header_statement ::=
HEADER keyword_value_pair {, keyword_value_pair }
 stmt_end

 keyword_value_pair ::=
 (keyword = value)

 keyword ::=
 VERSION
 | SEPARATOR
 | STMT_TERM
 | ... (user or vendor defined)

Power Aware User’s Manual, v10.1288

Power Configuration File Reference
PCF Syntax and Contents

Note
Currently, the only information defined in the header statement is the PCF version
number and separator character. The verification tool provider will specify which
versions numbers they support. Future versions of the PCF specification may identify
additional keywords and the values associated with them.

• VERSION — (Required) This keyword-value pair identifies the PCF specification
version number and must be the first keyword specified in the header statement as this
information can determine whether or not subsequent keywords are recognizable and
supported. The version number will be of the form:

<positive>.<natural>

Vendors may not extend or add to the version number as it applies to the version of the
PCF specification and not to a vendor's tool version.

• SEPARATOR — (Optional) This keyword-value pair identifies the separator character
used to separate one scope level from the next. If not specified, the separator character
is defined by the tool processing the PCF or, if the tool defines no default, it is the slash
character (/). Although defined by a string value, the separator character string value
must be exactly one character in length.

• STMT_TERM — (Optional) This keyword-value pair identifies the statement
termination. In PCF 1.0, the default statement termination is CRLF. For PCF 2.0 or
later, the default statement termination is semicolon. The only permissible values are
"CRLF" or ";".

• VENDOR_<string> — (Optional) This keyword-value pair specifies a vendor’s tool-
specific entry.

Vendors may define their own tool-specific header information. Vendor-specific
information must be tagged by the prefix "VENDOR_" in the keyword. Vendor-
specific header information cannot be used to change the PCF syntactic or semantic
information as defined in this specification. It can be used for general informational
purposes, for example to identify the tool and tool version that generated or is targeted
for consuming the PCF. Vendor-specific keyword values must be double quoted
strings.

Example

This example shows the use of a secondary prefix ("MGC") that identifies the specific vendor,
in this case Mentor Graphics Corporation. Such keyword naming conventions are encouraged
as they facilitate the ability of tools to easily identify header information that has meaning to
them.

HEADER (VERSION = "2.0"),
 (SEPARATOR = "/"),

Power Configuration File Reference
PCF Syntax and Contents

Power Aware User’s Manual, v10.1 289

 (VENDOR_MGC_SOURCE = "PX"),
 (VENDOR_MGC_SOURCE_VERSION = "2006.05") ;

Context Statements
By setting the current design scope as the implicit prefix to all instance paths, you can
significantly reduce the amount of text required in the PCF. Context statements provide the
ability to define specific context items that apply to all power (and context) statements that
follow until another context statement makes a subsequent change.

context_statement ::=
 scope_statement
 | variable_statement
 | include_statement
 | corruption_map_statement
 | corruption_extent

Scope Statement
The scope statement sets the current scope context within the hierarchy of the design being
verified (including the test bench). All relative paths used in subsequent context or power
statements will be equivalent to an absolute path starting with the current scope and proceeding
through the relative path specified in the statement. The most recent scope statement shall
apply to each relative path specified in the PCF.

scope_statement ::=
 SCOPE instance_path stmt_end

instance_path ::=
 relative_path
 | absolute_path

relative_path ::=
 hdl_identifier { separator_character hdl_identifier }

absolute_path ::=
 separator_character relative_path

Another application may provide a mechanism, external to the PCF, to specify information
equivalent to a scope statement being specified immediately after the header statement. This
usage model supports the use of the same PCF with different test benches or in block level as
well as chip level verification.

Examples

SCOPE /root/dut ; -- Set initial scope to DUT

SCOPE memctrl/arbiter ; -- Set scope to memctrl.arbiter
 -- instance down design hierarchy
 -- from current scope.

Power Aware User’s Manual, v10.1290

Power Configuration File Reference
PCF Syntax and Contents

Variable Statement
Variable statements are used to store frequently used values. The values are treated as untyped
and are applied to the context specified and then interpreted. They are very similar to UNIX
environment variables or macros. An example usage would be to define a path to a common
level of hierarchy from which many instance, signal, etc. paths will then be defined.

variable_statement ::=
 $identifier = value stmt_end

• $<identifier> — The lexical form of the identifier adheres to the rules for identifiers in
Verilog (IEEE Std 1364-2005). The identifier must be prefixed by the dollar sign ($)
symbol in both the specification of its value and the referencing of that value. No white
space is permitted between the $ symbol and the identifier.

• value — a double quoted ("…") string.

Example

$memctrl_scope = "/top/dut/memory_unit/memctrl" ;
SCOPE $memctrl_scope/arbiter ;

$inst_path = "top/pd1/inst1/inst11";
POWER PDINST11 $inst_path/cell1,
 ($inst_path/gl obal_vdd1 &
 $inst_path/vd1/local_vdd_11);

Include Statement
The ability to textually include another PCF file is provided through the include statement. The
include statement allows PCF files to be created on a hierarchical or power island or voltage
domain basis. It also allows the specification of common, reusable information in a separate
file for easier maintenance. For example, the data type corruption mapping information can be
specified once and then included in any design PCF that uses that specific mapping.

include_statement ::=
 include filepath_name stmt_end

• filepath_name — a simple file name, a relative file path name or an absolute file path
name. Simple filenames will be searched in the current working directory of the tool
processing the PCF. Relative file path names will be searched using the current working
directory of the tool as the starting point for the search. Absolute file path names are
searched without regard to the current working directory.

The filepath_name must conform to the UNIX file path name convention.

It is an error if the specified include file does not exist.

Example

include corruption_map.pcf ; -- corruption_map.pcf

Power Configuration File Reference
PCF Syntax and Contents

Power Aware User’s Manual, v10.1 291

 -- must exist in current
 -- working directory

include memctrl/memctrl.pcf ; -- Search in memctrl
 -- subdirectory of
 -- current working dir

include /u/home/tsmith/projs/memctrl/memctrl.pcf ;
 -- Absolute path to a PCF file to include

Corruption Extent Statement
By default, corruption semantics are applied only to what has been specified. Frequently,
corruption in power down situations should be applied more extensively. The corruption extent
statement allows the specification of the extent that corruption is applied in power-down
situations.

corruption_extent ::=
 CEXTENT = extent_keyword stmt_end

extent_keyword ::=
 OUTS_SEQ_AND_WIRES
 | OUTS_AND_SEQ
 | OUTPUTS

• OUTS_SEQ_AND_WIRES — corrupts registers and signals that are driven by logic
which is powered down.

• OUTS _AND_SEQ — corrupts output ports and sequential elements within the power
domain.

• OUTPUTS — corrupts only the output ports of a power domain.

Power Statements
Power statements define voltage domains, power islands, mapping of inferred registers and
latches to Power Aware models and corruption behavior.

power_statement ::=
 power_control statement
 | power_model_mapping

Power Control Statement

The power control statement defines the power islands by mapping a power control signal to the
design power elements to which it applies.

power_control_statement ::=
 POWER tag [-osw | -os| -o] region_definitions , (boolean_expr)
 [retention_specification]
 [POWER_VDD voltage_specification]
stmt_end

Power Aware User’s Manual, v10.1292

Power Configuration File Reference
PCF Syntax and Contents

• tag — a name without any white space (spaces, tabs, etc.) that provides a descriptive
handle or identifier for the power island or power control mapping being defined.

• [-osw | -os | -o] — command options that allow you to override the global corruption
extent of the vopt -pa_ce command for specific power domains.

o osw — sets the corruption extent to outputs and sequential and non-sequential wires.

o os — sets the corruption extent to outputs and sequential elements.

o o — sets the corruption extent to outputs only.

For example, you can use -o to define a specific power domain with non-sysnthesizable
RTL to prevent register/latch detection, even though you the command line specifies
vopt -pa_ce=os.

• region_definitions — a list of signal, instance, and process definitions that allow the
declaration of a power island by specifying various combinations of elements which are
controlled by the power island on/off state. Refer to the section Region Definitions for
detailed information.

• boolean_expr — a Verilog boolean expression. When the expression evaluates TRUE,
power to the specified elements in rtl_region_definition is powered ON. When it
evaluates FALSE, power to the specified elements in rtl_region_definition is OFF.

• retention_specification — (optional) The power control statement may optionally
specify the signal(s) used to control retention behavior throughout the power island
defined by the power control statement. The retention specification is described in the
section Retention Statement.

• POWER_VDD voltage_specification — (optional) To facilitate a concise specification
in the situation where the voltage domain and the power island are the same, the power
control statement may optionally specify the operating voltages for the power
island/voltage domain. The voltage specification is described in the section Voltage
Domains.

Region Definitions
The region definitions are a list of signal, instance and process definitions. This will allow
declaring a power island by specifying various combinations of elements which are controlled
by the power island on/off state.

region_definitions ::=
 region_definition { , region_definition }

region_definition ::=
 signal_definition
 | instance_definition
 | process_definition

Power Configuration File Reference
PCF Syntax and Contents

Power Aware User’s Manual, v10.1 293

signal_definition ::=
 -s hdl_path

instance_definition ::=
 [-i][-nr] hdl_path

process_definition ::=
 -p hdl_path

In each region definition, the HDL path is relative to the context that has previously been set
through a SCOPE statement. The path must terminate at an object or scope appropriate for the
type of definition (a signal or port, block instance or process instance).

• Signal Definition

o -s — specifies that the given signal (hdl_path) is part of the power island and must
be corrupted on power down. The signal is the lowest level of granularity for power
region definition.

• Instance Definition

Instance regions are recursive by default. That is, the corruption includes the specified
instance and extends to any additional instances contained within the design hierarchy
sub-tree rooted at the specified instance through the lowest leaves of that sub-tree.

You can target individual instances within generate using two underscore characters
(__) instead of square brackets, [].

o -i — For block instances, the argument -i is optional, since it is the only region
definition that does not require a argument to identify the kind of region. It is
recommended that you specify the -i argument for clarity.

o -nr — If the corruption should not extend beyond the immediately specified
instance, then you can specify the -nr argument, since -nr specifies non-recursive
corruption.

Note
The -nr argument applies to all instance names that match a regular expression.

The -nr argument is meaningful only during 'all' corruption: CEXTENT = ALL.
When you specify this argument, the simulator applies the corruption only to the
inferred registers and latches contained in the root of the sub-tree defined by the
instance specification and not to the instances declared below that.

Corruption of instance outputs will be applied to the outputs of all the instances
listed in the POWER statements. In the case of an instance declared without -nr,
output corruption will be applied to the outputs of the top of the instance and not to
the instances below that. That is, recursive application of corruption applies only to
inferred registers and latches—never to outputs.

Power Aware User’s Manual, v10.1294

Power Configuration File Reference
PCF Syntax and Contents

• Process Definition

To identify specific processes within a block instance and not all processes within a
block instance, the PCF supports the specification of processes individually.

o -p — indicates that the region definition applies to only the specified process. The
HDL path identifies the relative hierarchical path to the process's label.

The sequential elements in the process and the outputs (drivers) of the process will be
corrupted. If two processes in one single instance are controlled by different power
control signals, the sequential elements of the different processes need to be corrupted
separately.

Example

POWER PD0
 -s top/pd11/s1,
 -nr top/pd11/w11,
 -p top/pd11/c111/p1,
 top/pd11/c112,
 (top/global_vdd_1 & top/vd1/local_vdd_11) ;

A power island named PD0 is defined by the signals top/global_vdd_1 bit-wise anded with
top/vd1/local_vdd_11. In other words, the power is ON for PD0 only when both vdd _1 and
vdd_11 are on (1). When the power for PD0 is off, the following are corrupted:

• The signal top/pd11/s1

• The block instance top/pd11/w11 (inferred registers, latches and outputs)

• The inferred registers or latches for the process top/pd11/c112

Example

POWER VD1 top/vd1 , (top/global/vdd1)

The instance top/vd1 is controlled by power control signal top/global_vdd1.

If corruption extent is set to ALL, then the outputs of top/vd1 are corrupted when
top/global/vdd1 is 0 as are inferred registers and latches in top/vd1 and all sub-blocks below
top/vd1.

Example

POWER PD1
top/pd11 ,
 (top/global_vdd1 & top/vd1/local_vdd_12);

POWER signal_always_on
 -s top/pd11/out1, 1;

Power Configuration File Reference
PCF Syntax and Contents

Power Aware User’s Manual, v10.1 295

With this power specification file, the output top/pd11/out1 will not be corrupted when the
power for power domain PD1 goes off.

Example

Note
This example describes the combinatorial logic (powered by top/VDD1) which is an
output out1 of an instance m2_00 which is powered from VDD2.

POWER PD1
 -s top/m2_00/out1,
 (top/VDD1);

POWER PD0
 top/m2_00,
 (top/VDD2);

This means if the VDD1 goes off, the 'out1' needs to go 'X', but VDD2 has no effect on the
'out1'.

Example

POWER PD0
 -s top/pd11/s1,
 -nr top/pd11/w11,
 -p top/pd11/c111/p1,
 top/pd11/c112,
 (top/global_vdd_1 & top/vd1/local_vdd_11)
 RETENTION top/vd1/save top/vd1/restore
 POWER_VDD {0.5} ;

Example

POWER PD1 -- Process p1 is in a different
 -p /top/m2_00/p1, -- power island
 (top/VDD1);

POWER PD2 -- Than process p2
 -p /top/m2_00/p2, -- But both exist in the same block
 (top/VDD2);

module m2(i1, i2, i3, i4, iso, a1, a2, clock, reset)
 output a 1, a2;
 reg a11, a21;
 input i1, i2, i3, i4;
 input clk, reset;

 // Belong to PD1
 always @(i1 or i2 or i3)
 begin : p1

 a11 <= i1 & i2 & i3;

Power Aware User’s Manual, v10.1296

Power Configuration File Reference
PCF Syntax and Contents

 end

// Belong to PD2
 always @(i1 or i2 or i3)
 begin : p2
 …..
 a21 <= (i1 | i2 | i3);
 …..
 end

endmodule

Power Model Mapping Statement
The mapping statement defines how an inferred register or latch signal or variable in the design
maps to a model from the Power Aware model library that defines its run-time behavior.

Need to allow mapping of a Power Aware model to all inferred sequential items (regs/latches)
in a scope or to specific signals (whole signals, not bit, part or selected elements of a signal) in a
scope. Wildcard matching will apply.

power_model_mapping ::=
 MAP model_module_name pacell_spec
 ret_ctrl_signals,
 region_definitions stmt_end

ret_ctrl_signals ::=
 ret_signal_name
 | ret_save_sig_name ret_restore_sig_name

 pacell_spec ::=
 pacell_type [interface_information]

pacell_type ::=
 FF_CKHI
 | FF_CKLO
 | FF_CKFR
 | LA_ENHI
 | LA_ENLO
 | LA_ENFR
 | ANY_CKHI
 | ANY_CKLO
 | ANY_CKFR
 | RETMEM
 | NON_RETMEM

interface_information ::=
 (named_parameter_assignment
 {, named_parameter_assignment })

• model_module_name — specifies a Verilog module that defines the Power Aware
(retention) behavior that will be mapped to the regions specified by region_definition.
Normal Verilog library search will be used to locate the module (e.g., -L my_lib). It is
an error if the specified module cannot be found or, if found, does not conform to the

Power Configuration File Reference
PCF Syntax and Contents

Power Aware User’s Manual, v10.1 297

modeling guidelines for Power Aware models. For more information refer to Guidelines
for Writing HDL Models.

• ret_ctrl_signals — specifies either a single signal name that will be connected to the
RET port of the Power Aware model, or a pair of retention signal names that are
connected to the SAVE and RESTORE ports of the Power Aware model. For more
information refer to the chapter Guidelines for Writing HDL Models.

• region_definitions — determines which regions, defined in the section Region
Definitions, shall be supported in the power model mapping statement with the
following semantics for each region:

o Signal — The specified signal shall infer a sequential element (register or latch) that
will be mapped to the Power Aware model. A warning shall be issued if a sequential
element has not been inferred for the specified signal. An error shall be issued if the
pacell_type is specified and the Power Aware cell type inferred for the specified
signal does not match.

o Instance — All sequential elements inferred within the instance will be mapped to
the specified Power Aware model. By default, the mapping is recursive to all child
instances of the specified instance. The -nr switch may be used to specify non-
recursive mapping to the instance only (not to any child instances). A warning shall
be issued if pacell_type is specified and no inferred sequential elements of that type
are present in the region.

o Process — All sequential elements inferred within the process will be mapped to the
specified Power Aware model. A warning shall be issued if there are no inferred
sequential elements for the specified process. A warning shall be issued if
pacell_type is specified and no inferred sequential elements of that type are present
in the region.

• pacell_type — specifies the type of inferred sequential cell to which the mapping
statement applies.

Specification of the Power Aware cell type avoids unintentional mapping of the
incorrect Power Aware model to an inferred sequential element of a different type while
permitting all types of cells to be inferred in the same region definition and PCF
coverage of all inferred sequential elements with as few power model mapping
statements as possible. When the cell type is specified, then only inferred sequential
elements that match that type are mapped to the Power Aware model specified in the
mapping statement. The cell types are defined as follows:

o FF_CKHI — Inferred registers (flip-flops) active on the positive edge of the clock
signal.

o FF_CKLO — Inferred registers active on the negative edge of the clock signal.

o FF_CKFR — All inferred registers regardless of the edge sensitivity of the clock
signal.

Power Aware User’s Manual, v10.1298

Power Configuration File Reference
PCF Syntax and Contents

o LA_ENHI — Inferred latches active when the enable signal is high.

o LA_ENLO — Inferred latches active when the enable signal is low.

o LA_ENFR — All inferred latches regardless of the level sensitivity of the enable
signal.

o ANY_CKHI — Generically matches any inferred sequential element (register or
latch) that is active on the posedge of a clock or high level of an enable signal. That
is, this cell type is equivalent to two mapping statements that are identical except for
cell type where one statement cell type is FF_CKHI and the cell type of the other
equivalent mapping statement is LA_ENHI.

o ANY_CKLO — Generically matches any inferred sequential element that is active
on the engaged of a clock or low level of an enable signal. That is, this cell type is
equivalent to two mapping statements that are identical except for cell type where
one statement cell type is FF_CKLO and the cell type of the other equivalent
mapping statement is LA_ENLO.

o ANY_CKFR — Generically matches any inferred sequential element without regard
to edge or level sensitivity. A mapping statement specifying this cell type is
equivalent to four mapping statements that are identical except for the cell type. The
1st equivalent statement has cell type FF_CKHI, the 2nd equivalent statement has
cell type FF_CKLO, the 3rd equivalent statement has cell type LA_ENHI and the
4th equivalent statement has cell type LA_ENLO.

o RETMEM — Matches an inferred memory to a model that will determine under
what conditions the memory contents would be corrupted. If the pacell type is
RETMEM, then the region definition must specify a signal (-s
<signal_for_memory_contents>). It is an error if any other region definition is
specified.

o NON_RETMEM — Matches an inferred memory to corruption only semantics
(memory contents are always corrupted in power down situations). In the case of
NON_RETMEM pacell type, the model module name must indicate the built-in
corruption model bi_nonret_memory. The builtin corruption model applies the
corruption value as governed by the corruption map in effect for that scope.

• interface_information — (optional) The pacell_spec can optionally specify a named
mapping of power control signals to the ports of the PA model. This allows the names of
the signals in the design to differ from the names of the pins on the PA cell. The syntax
used is straight from the Verilog 1364 LRM for named parameter assignment. The
actual may be a simple name, a hierarchical name, a bit or part select or struct (record)
element selection.

During verification, the Power Aware behavior is mapped from the specified Power Aware
model to all inferred sequential elements matching the cell type in order to determine when to
save and restore the state (or specified corruption value) of the sequential element according to
the semantics defined in the PA Verification Guidelines for Power Aware Modeling.

Power Configuration File Reference
PCF Syntax and Contents

Power Aware User’s Manual, v10.1 299

Mapping Statement Precedence
The general precedence ordering defined in section Rule Precedence applies when multiple
mapping statements refer to the same region. Specifically, the precedence for mapping
statements is as follows:

• A mapping to an instance lower in the design hierarchy takes precedence over a
mapping to an instance of a parent scope in the hierarchy.

• A mapping to a process takes precedence over a mapping applied to a parent instance
scope.

• A mapping to a signal takes precedence over either a process or instance mapping
applied to a parent scope.

• If two or more mapping statements map to the same region and the same Power Aware
cell type but map to different retention models, then the first mapping statement is used
and a warning message issued.

• The precedence of Power Aware cell types is as follows from highest to lowest
precedence:

a. Clock/enable specific and sequential element specific types (FF_CKHI, FF_CKLO,
LA_ENHI, LA_ENLO)

b. Clock/enable free, sequential element specific types (FF_CKFR, LA_ENFR).

c. Clock/enable specific, sequential element generic types (ANY_CKHI,
ANY_CKLO).

d. Clock/enable free, sequential element generic type (ANY_CKFR).

The default mapping for an inferred latch is to LA_ENHI. This default mapping is considered
only under the following conditions:

• The enable condition for latches may be complex whether the latch is intentional or
unintentional. For enable conditions that are not simply low or high values such as an
equality expression, e.g, en_cond = "101", the mapping will be made to an LA_ENHI
model (if such a mapping is specified) where the true condition is considered high.

• For latches inferred from a typically unintentional situation, such as the failure to assign
all outputs in all branches of a process, the inferred latch will be mapped to a LA_ENHI
Power Aware type.

• If there is an ambiguity as to which latch Power Aware type to map an inferred latch, it
will be mapped to LA_ENHI.

The power model mapping statement may be terminated by a CRLF or by a semicolon. If
terminated by a CRLF, then line continuation must be used if a CRLF is inserted in the middle
of the statement. Semicolon termination is encouraged as CRLF is provided primarily for
backward compatibility.

Power Aware User’s Manual, v10.1300

Power Configuration File Reference
PCF Syntax and Contents

Specifying Default Model Mappings
A likely scenario is for a design to use a single technology library from a single vendor. In this
situation, repeating the model mapping specifics repeatedly for multiple parts of the design
becomes excessively redundant. The DEFAULT_MAP statement is provided for the purpose of
defining default mappings of Power Aware models to various Power Aware cell types. To
increase the usefulness of the default mapping statements, their lifetimes are defined to extend
to the context (scope) they are defined within. To allow a global set of default mappings
together with locally overridden mappings, the default mapping statements conform to the
precedence rules defined in the sections Rule Precedence and Mapping Statement Precedence.
Each default mapping statement is independent of other default mapping statements defined
within the same scope. This allows the default mapping for one type of Power Aware cell to be
overridden in a nested context while other default mappings are not. Furthermore, a Power
Model Mapping Statement overrides any default mapping that might otherwise apply.

DEFAULT_MAP model_module_name : pacell_type
 stmt_end

A warning will result if a default mapping within a context (scope) creates an ambiguity with
another default mapping within that same context. In such ambiguous situations, the first
default mapping will be used and subsequent default mappings ignored.

Retention Statement
Normally, the Power Control Statement will specify the retention control signal(s) for an entire
power island. However, to provide the ability for a power island to have more than one set of
retention control signals as well as the flexibility to specify retention control signals separate
from the power control statement and the default model mappings, the retention statement is
provided. The retention statement may be paired with the use of default mappings to specify the
information that is region-specific for inferred sequential elements. Specifically, the retention
control signals that are specific to a region are specified so they can be connected to the Power
Aware models associated with the default mapping to inferred sequential elements.

retention_statement ::=
 retention_specification, region_definitions
 stmt_end

retention_specification ::=
 RETENTION ret_ctrl_signals

The retention control signals specified must match the Power Aware model that is mapped to
the inferred sequential elements. The Guidelines for Writing HDL Models allows the use of one
or two retention control signals.

Power Configuration File Reference
PCF Syntax and Contents

Power Aware User’s Manual, v10.1 301

Corruption Semantics
Corruption occurs on power down. Corruption can be applied to state variables (inferred
registers and latches) and to the outputs of a block. The corruption of inferred registers and
latches and outputs results in a change in the current value of these signal objects in the
simulation to the corruption value. No events are propagated as a result in these changes in
values. That is, corruption shall not result in the activation of any processes sensitive to the
state variables (if signals) or outputs that are corrupted.

Upon restoration of a retained value for inferred registers and latches, the current value of these
signal objects will be changed and events are propagated to ensure that the restored state is
propagated to outputs. Only inferred registers and latches may have retained values restored.
The restored values are specified by the Power Aware model mapped by the PCF to the inferred
registers and latches. For more information, refer to Guidelines for Writing HDL Models.

Voltage Domains
Voltage domains may be specified along with power islands. There are 2 key pieces of
information for a voltage domain:

• Whether power is on or off. This information is already specified by the power control
statement.

• The voltage level or range of levels under which the domain operates.

Voltage domain statements are optional. Whereas power control statements specify power
islands and retention specifications along with model mappings specify retention sequential
objects and both impact the simulated behavior of the design, the voltage statement and voltage
specification have no simulation semantics defined.

voltage_domain_statement ::=
 POWER_VDD tag region_definitions ,
 voltage_specification
 stmt_end

voltage_specification ::=
 op_voltages
 [, vdd_level_sig]

op_voltages ::=
 { real_literal {, real_literal} }

The voltage domain statement begins with the keyword POWER_VDD.

• tag — a mnemonic name for the VDD region.

• region_definition — the same as defined in section Region Definitions.

• op_voltages — a list of one or more real values that specify the allowable voltages under
which the domain may operate in units of volts. A list of voltage values provides the

Power Aware User’s Manual, v10.1302

Power Configuration File Reference
Regular Expressions and Variables

ability to specify voltage domains where clock frequency is reduced to lower dynamic
power consumption.

• vdd_level_sig — (optional) specifies a voltage level signal (or legal Verilog signal
expression). This signal must be an integral type. Its value indicates which operating
voltage level is in operation at any given point in time. The integral value shall match
the positional value of the operating voltages with the value of 0 corresponding to the
first operating voltage level specified, 1 corresponding to the 2nd operating voltage level
specified, etc.

Comments
A comment may appear anywhere on the line. The start of a comment is denoted by "--". The
comment extends to the end of the line.

comment ::=
 -- <any text> CRLF

Regular Expressions and Variables
In order to make it easy to group instances, signals and labels within instances, regular
expressions are supported. The common subset of syntax and rules of Perl and Tcl are
supported. More specifically, the following sets of meta-characters are supported.

• Single Character Matches — "." or "[]", for example:

"/ab.c/" -- a, b, any character, c
"/a[bc]d/" -- abd, or acd

• Multiple Character Matches — "*" or "{n,m}", for example:

"/ab*c/" -- a, zero or more b's, c
"/ab{2,4}c/" # a, two to four b's, c

The only difference is that the regular expression will be delimited by quotation marks.

Examples

The following matches all the instances 'DFF_ 0' to 'DFF_ 99' within the 'top/pd11' instance.

POWER PD0
 top/pd11/"DFF_[0- 9]{1,2}",
 (top/global_vdd1 & top/vd1/local_vdd_11);

The following matches all instances 'DFF_0' to 'DFF_99' for any sub-instance with a name
beginning with 'pd2' under 'top'.

POWER PD2
 top/"pd2.*"/"DFF_[0- 9]{1,2}",

Power Configuration File Reference
Rule Precedence

Power Aware User’s Manual, v10.1 303

 (top/global_vdd1 & top/vd1/local_vdd_12);

Rule Precedence
When more than one rule applies to a given power element, the rule defined at the lowest
hierarchical level takes precedence over the rules defined at higher hierarchical level. This
applies to power control statements, power model mapping statements and voltage domain
statements.

When a rule is defined for an instance and a rule is defined for a signal belonging to that
instance (at same hierarchical level), then, for that signal, the rule defined for the signal takes
precedence over the rule defined for the process. In case more than one rule is defined at the
same power element, a fatal error shall be reported and no verification will be terminated.

Power Aware User’s Manual, v10.1304

Power Configuration File Reference
Rule Precedence

Power Aware User’s Manual, v10.1 305

Appendix F
Supplemental Information

This appendix provides supplemental information on applications of Power Aware.

Power Aware Verification of ARM-Based Designs
This section contains an application note written by Ping Yeung and Erich Marschner of Mentor
Graphics Corporation.

Abstract
Power dissipation has become a key constraint for the design of today’s complex chips.
Minimizing power dissipation is essential for battery-powered portable devices, as well as for
reducing cooling requirements for non-portable systems. Such minimization requires active
power management built into a device.

In a System-on-Chip (SoC) design with active power management, various subsystems can be
independently powered up or down, and/or powered at different voltage levels. It is important to
verify that the SoC works correctly under active power management. When a given subsystem
is turned off, its state will be lost, unless some or all of the state is explicitly retained during
power down. When that subsystem is powered up again, it must either be reset, or it must
restore its previous state from the retained state, or some combination thereof. When a
subsystem is powered down, it must not interfere with the normal operation of the rest of the
SoC.

Power aware verification is essential to verify the operation of a design under active power
management, including the power management architecture, state retention and restoration of
subsystems when powered down, and the interaction of subsystems in various power states. In
this presentation, we summarize the challenges of power aware verification and describe the use
of IEEE Std 1801™-2009 UPF to define power management architecture. We outline the
requirements and essential coverage goals for verifying a power-managed ARM-based SoC
design.

Power Aware User’s Manual, v10.1306

Supplemental Information
Power Aware Verification of ARM-Based Designs

Introduction
The continual scaling of transistors and the end of voltage scaling has made power one of the
critical design constraints in the design flow. Trying to maintain performance levels and achieve
faster speeds by scaling supply and threshold voltages increases the subthreshold leakage
current due to its exponential relationship with the threshold voltage [1]. Leakage currents lead
to power dissipation even when the circuit is not doing any useful work, which limits operation
time between charges for battery-operated devices, and creates a heat dissipation problem for all
devices.

Minimizing power dissipation starts with minimizing the dynamic power dissipation associated
with the clock tree, by turning off the clock for subsystems that are not in use. This technique
has been in use for many years. But at 90nm and below, static leakage becomes the dominant
form of power dissipation. Active power management minimizes static leakage through various
techniques, such as shutting off the power to unused subsystems or varying the supply voltage
or threshhold voltage for a given component to achieve the functionality and performance
required with minimum power.

Active Power Management
Active power management can be thought of as having three major aspects:

• the power management architecture, which involves the partitioning of the system into
separately controlled power domains, and the logic required to power those domains;
mediate their interactions, and control their behavior;

• the power managed behavior of the design, which involves the dynamic operation of
power domains as they are powered up and down under active power management, as
well as the dynamic interactions of those power domains to achieve system
functionality;

• the power control logic that ultimately drives the control inputs to the power
management architecture, which may be implemented in hardware or software or a
combination thereof.

All three of these aspects need to be verified to ensure that the design will work properly under
active power management. Ideally such verification should be done at the RTL stage. This
enables verification of the active power management capability much more efficiently than
would be possible at the gate level, which in turn allows more time for consideration of
alternative power management architectures and simplifies debugging.

Power Management Techniques
Several power management techniques are used to minimize power dissipation: clock gating,
power gating, voltage scaling, and body biasing are four of them. Clock gating disables the

Supplemental Information
Power Aware Verification of ARM-Based Designs

Power Aware User’s Manual, v10.1 307

clock of an unused device, to eliminate dynamic power consumption by the clock tree. Power
gating uses a current switch to cut off a circuit from its power supply rails during standby mode,
to eliminate static leakage when the circuit is not in use. Voltage scaling changes the voltage
and clock frequency to match the performance required for a given operation so as to minimize
leakage. Body biasing changes the threshhold voltage to reduce leakage current at the expense
of slower switching times.

Power gating is one of the most common active power management techniques. Switching off
the power to a subsystem when it is not in use eliminates the leakage current in that subsystem
when it is powered down, and hence the overall leakage power dissipation through that
subsystem is reduced. However, this technique also results in loss of state in the subsystem
when it is switched off. Also, the outputs of a power domain can float to unpredictable values
when they are powered down.

Another common technique is the use of different supply voltage levels for different
subsystems. A subsystem that has a higher voltage supply can change state more quickly and
therefore operate with higher performance, at the expense of higher static leakage and dynamic
power. A subsystem with a lower voltage supply cannot change state as quickly, and
consequently operates with lower performance, but also with less static leakage and dynamic
power. This technique allows designers to minimize static leakage in areas where higher
performance is not required.

Multiple voltage supplies can also be used for a single subsystem, for example, by enabling it to
dynamically switch between a higher voltage supply and a lower voltage supply. This allows
the system to select higher performance for that subsystem when necessary, but minimize static
leakage when high performance is not required. Multi-voltage and power gating techniques can
be combined to give a range of power/performance options.

All of these power management techniques must be implemented in a manner that preserves the
intended functionality of the design. This requires creation of power management logic to
ensure that the design operates correctly as the power supplies to its various components are
switched on and off or switched between voltage levels. Since this power management logic
could potentially affect the functionality of the design, it is important to verify the power
management logic early in the design cycle, to avoid costly respins.

Power Management Specification
The power management architecture for a given design could be defined as part of the design,
and ultimately it will be a part of the design’s implementation. A better approach, however, is
to specify the power management architecture separate from the design. This simplifies
exploration of alternative power management architectures, reduces the likelihood of
unintended changes to the golden design functionality, and maintains the reusability of the
design data. This is the approach supported by IEEE Std 1801™-2009, "Standard for Design
and Verification of Low Power Integrated Circuits." This standard is also known as the Unified
Power Format (UPF) version 2.0. Initially developed by Accellera, UPF is currently supported
by multiple vendors and is in use worldwide [5].

Power Aware User’s Manual, v10.1308

Supplemental Information
Power Aware Verification of ARM-Based Designs

UPF provides the concepts and notation required to define the power management architecture
for a design. A UPF specification can be used to drive the implementation of power
management for a given design, during synthesis or subsequent implementation steps. A UPF
specification can also be used to drive verification of power management, during RTL
simulation, gate-level simulation, or even via static verification methods. The ability to use
UPF in conjunction with RTL simulation enables early verification of the power management
architecture. The ability to use UPF across all of these applications eases implementation and
validation by enabling reuse of power management specifications throughout the flow.

UPF syntax is defined as an extension of Tcl [6], which enables UPF descriptions to leverage all
of the control features of Tcl. UPF captures the power management architecture in a portable
form for use in simulation, synthesis, and routing, reducing potential omissions during
translation of that intent from tool to tool. Because it is separate from the HDL description and
can be read by all of the tools in the flow, the UPF side file is as portable and interoperable as
the logic design’s HDL code.

The concepts introduced in the following sections are illustrated with the UPF commands used
to specify them.

Power Management Architecture
In order to employ active power management techniques such as power gating and multiple
voltage supplies, the design must be partitioned into separate functional areas that can be
independently powered. Additional logic must be inserted into the design to perform special
functions such as power switching, state retention, isolation, and level shifting. These additional
components constitute the power management architecture for a given system.

Operating Modes
Designing the power management architecture for a given system starts with characterization of
the functions and operating modes of the system. Since the goal of active power management is
to optimize the use of power based on the function and performance required of the system at
any given time, the first step involves identifying the distinct combinations of functionality and
performance that will be required of the device in use. Analysis of the set of distinct operating
modes allows the designer to determine how to partition the design into independently powered
subsystems or subcomponents, so that any given operating mode can be supported by providing
the necessary subset of system components with the appropriate power.

For example, Figure F-1 shows a block diagram of a design that has two operating modes: ON
and SLEEP.

Supplemental Information
Power Aware Verification of ARM-Based Designs

Power Aware User’s Manual, v10.1 309

Figure F-1. A Power-Managed Design

In the ON mode, it reads input data streams, interleaves them, and stores them in the memory
before driving them onto outputs. In the SLEEP mode, it monitors inputs and maintains the
state of its memory, but it does not process inputs.

Power Domains
Each independently powered subsystem or subcomponent is called a power domain. At the
RTL stage, a power domain is typically somewhat abstract, consisting of some or all of the RTL
logic within a given portion of the design hierarchy. At the logical netlist stage, a power
domain consists of a collection of cells that will share the same primary power and ground
supplies. At the physical level, the cells associated with a given power domain may be placed
in a contiguous region of a chip or distributed over multiple discontiguous regions of the chip.

The design in Figure F-1 has several major components. These include the interleaver block,
the memory controller block, and the memory itself. Each of these can be defined as a separate
power domain. The top-level of the design is also a separate power domain. The dotted lines in
Figure F-1 indicate power domain boundaries. The following UPF commands would be used to
define these power domains:

#--
Create power domains
#--
create_power_domain PD_top
create_power_domain PD_interleaver -elements {i0}
create_power_domain PD_mem_ctrl -elements {mc0}
create_power_domain PD_sram -elements {m1 m2 m3 m4}

Power Aware User’s Manual, v10.1310

Supplemental Information
Power Aware Verification of ARM-Based Designs

The –elements option on each command lists the instance names of the elements to be included
in the specified power domain.

Power Distribution
Each power domain may have one or more power supplies. The primary supply provides power
for most of the functional elements in that domain. Additional supplies may provide power for
retention, isolation, or level shifting cells associated with the power domain.

The primary supply may be a switched supply, which can be turned on and off via a control
input to the switch. Either the VDD or VSS supply may be switched. A supply may be driven
by multiple switches connected to the same voltage source. The switches are turned on
incrementally, to minimize rush currents when the supply is switched on. A supply may also be
driven by multiple switches connected to different voltage sources, so that the supply voltage
level delivered to elements of the power domain may be varied. Switches may be on-chip or
off-chip.

Power is distributed to power domains via supply ports interconnected by supply nets. Supply
ports may represent external supplies or may be driven by internal supply sources. Supply ports
are connected to supply nets, each of which is ultimately connected to a power domain. Each
supply port has one or more supply states defined. The port may drive only one state at any
given time. That state is propagated by the supply net connected to the port.

For the example in Figure F-1, the following UPF commands could be used to define top-level
supply ports, and to define and connect supply nets to those ports:

#--
Create top level power domain supply ports
#--
create_supply_port VDD_0d99 -domain PD_top
create_supply_port VDD_0d81 -domain PD_top
create_supply_port VSS -domain PD_top

#--
Create top level power domain supply nets
#--
create_supply_net VDD_0d99 -domain PD_top
create_supply_net VDD_0d81 -domain PD_top
create_supply_net VSS -domain PD_top

#--
Connect top level power domain supply ports
to supply nets
#--
connect_supply_net VDD_0d99 -ports VDD_0d99
connect_supply_net VDD_0d81 -ports VDD_0d81
connect_supply_net VSS -ports VSS

Supplemental Information
Power Aware Verification of ARM-Based Designs

Power Aware User’s Manual, v10.1 311

The following UPF command would be used to identify a particular pair of
supply nets as the primary power and ground supplies for a given power
domain:

#--
Set the default for top level power domain
#--
set_domain_supply_net PD_top \
 -primary_power_net VDD_0d99 \
 -primary_ground_net VSS

Additional UPF commands could be used to propagate the top-level supply
nets into subordinate power domains and to define a power switch to create
a switched ground (VSS_SW) for one of the power domains:

#--
Create sub domain supply nets
#--
create_supply_net VDD_0d81 -domain PD_interleaver -reuse
create_supply_net VDD_0d81 -domain PD_mem_ctrl -reuse
create_supply_net VDD_0d99 -domain PD_sram -reuse

create_supply_net VSS -domain PD_interleaver -reuse
create_supply_net VSS -domain PD_mem_ctrl -reuse
create_supply_net VSS -domain PD_sram -reuse

#--
Create supply net for switch output
#--
create_supply_net VSS_SW -domain PD_mem_ctrl

#--
Create power switch for memory controller domain
- switch on ground side of supply network
#--
create_power_switch mem_ctrl_sw \
 -domain PD_mem_ctrl \
 -output_supply_port {vout_p VSS_SW} \
 -input_supply_port {vin_p VSS} \
 -control_port {ctrl_p mc_pwr_c} \
 -on_state {normal_working vin_p {ctrl_p}} \
 -off_state {off_state {!ctrl_p}}

Power distribution logic may also include on-chip analog components such as regulators and
sensors. A regulator takes an input supply voltage and generates a specific output voltage. A
sensor monitors a supply rail and signals when the voltage has stabilized at its nominal value
with respect to ground. Sensors enable construction of a feedback loop so that power control
logic can determine when a power rail has completed transitioning. Analog components such as
these are not specifiable in UPF, but can be modeled in HDL code using UPF package functions
to model the ramp-up and ramp-down of power supplies as they switch on and off.

Power Aware User’s Manual, v10.1312

Supplemental Information
Power Aware Verification of ARM-Based Designs

Power States
UPF provides commands for defining a power state table that captures the possible power states
of the system. The power state table defines system power states in terms of the states of supply
ports or nets.

For the example in Figure F-1, the following UPF commands define the possible states of the
supply ports VDD_0d81, VDD_0d99, and VSS, as well as the switched ground supply
VSS_SW:

#--
Define power states
#--
add_port_state VDD_0d99 -state {ON 0.99 1.10 1.21}
add_port_state VDD_0d99 –state {OFF off}

add_port_state VDD_0d81 -state {ON 0.81 0.90 0.99}
add_port_state VDD_0d81 –state {OFF off}

add_port_state VSS -state {ON 0 0 0}
add_port_state VSS_SW -state {ON 0} -state {OFF off}

#--
Create power state table
#--
create_pst top_pst \
 –supplies { VDD_0d99 VDD_0d81 VSS VSS_SW }

add_pst_state ON \
 -pst top_pst -state { ON ON ON ON }
add_pst_state SLEEP \
 –pst top_pst -state { ON ON ON OFF }
add_pst_state OFF \
 -pst top_pst -state { OFF OFF ON OFF }

The power states of the system in Figure F-1 are defined in the above power state table. Note
that these power states are the same as the operating modes of the system, plus the state in
which the system is completely turned off.

Isolation and Level Shifting
Even though each power domain may be independently powered on and off, their logical and
physical connections to other power domains remain; therefore, when one domain is turned off,
it is still connected logically and electrically to other domains. These connections between
power domains require special cells to mediate the interaction between domains as their
respective power states change. Two kinds of cells are involved: isolation cells, and level
shifting cells.

Isolation cells ensure that signals coming from unpowered domains are clamped to a well-
defined logic value while the source domain is powered down, so that any sink domain that is
powered up sees reliable inputs. Depending upon the architecture of the design, and the

Supplemental Information
Power Aware Verification of ARM-Based Designs

Power Aware User’s Manual, v10.1 313

particular characteristics of a signal that crosses from one power domain to another (e.g., how
many power domains it fans out to, and when those power domains are on or off with respect to
the source domain), it may be appropriate to insert isolation cells at either the source of the
signal or at its sink(s). However, since the isolation cell must be powered on when the source
domain is powered off, isolation cells are typically powered by a separate, "always-on" supply
voltage.

The following UPF commands specify the addition of isolation for the PD_mem_ctrl power
domain in the example in Figure F-1. The first command defines the supplies powering the
isolation cell and specifies its clamp value. The second command defines the control signal for
the isolation cell.

#---
Setup isolation strategy for memory controller
#---

Mem ctrl chip & write enables: clamp to '1'

set_isolation mem_ctrl_iso_1 \
 -domain PD_mem_ctrl \
 -isolation_power_net VDD_0d99 \
 -isolation_ground_net VSS \
 -clamp_value 1 \
 -elements {mc0/ceb mc0/web}

set_isolation_control mem_ctrl_iso_1 \
 -domain PD_mem_ctrl \
 -isolation_signal mc_iso_c \
 -isolation_sense high \
 -location parent

Level shifting cells ensure that a signal coming from a power domain operating at one voltage is
correctly interpreted when it is received by a power domain operating at a different voltage.
Depending upon the relative voltage levels of the two power domains, a level shifter may
increase or decrease the operating voltage of the signal. As with isolation cells, level shifters
may have separate power supplies that are always on, or they may be powered by the primary
supplies of the source and sink domains, respectively.

#---
Define level shifters
#---

set_level_shifter interleaver_ls_in \
 -domain PD_interleaver \
 -applies_to inputs \
 -location self

set_level_shifter interleaver_ls_out \
 -domain PD_interleaver \
 -applies_to outputs \
 -location parent

Power Aware User’s Manual, v10.1314

Supplemental Information
Power Aware Verification of ARM-Based Designs

The UPF commands above specify addition of level shifters for the PD_interleaver power
domain in the example in Figure F-1. The first command specifies addition of level shifters for
inputs; the second command specifies addition of level shifters for outputs. Whether level
shifters will actually be inserted depends upon the respective supply voltages of the source and
sink domains involved.

State Retention
When a power domain is powered down, any normal state elements within the power domain
will lose their state. When the power domain is powered on again, the power domain must be
brought to a predictable state again. This may involve resetting all state elements in the domain,
or resetting some subset that will be sufficient to cause the rest of the domain to reach a well-
defined state after a few clock cycles. Another alternative is to save the state of certain state
elements before the domain is powered down, and restore those statements to their saved state
after the power domain is powered up again.

Retention cells are special memory elements that preserve their data during power down. Such
cells involve extra logic and possibly complex timing to save and restore their values across
powered-down periods [2]. Various kinds of retention cells have been designed [2], [3], [4].
Some of these use balloon latch mechanisms [2], which are made up of high threshold
transistors to minimize leakage through them. They are separated from the critical path of the
design by transmission gates and thus are not required to be timing critical. Others depend on
complex sequences of different controls to achieve data retention.

The following UPF command specifies where retention should occur in the example in
Figure F-1.

#---
Setup retention strategy for mem cntrl
#---
set_retention mem_ctrl_ret \
 -domain PD_mem_ctrl \
 -retention_power_net VDD_0d81 \
 -save_signal {mc_save_c high} \
 -restore_signal {mc_restore_c low}

This command identifies the power domain (PD_mem_ctrl) within which retention registers
should be used, specifies the power supply used to maintain retained values, and specifies the
control signals required for saving and restoring the values of retention registers.

Power Managed Behavior
With the power management architecture implemented on top of the design, it should be
possible to repeatedly power up each power domain and later power it down again. Each time a
domain is powered up, it should reach a well-defined state from which to continue its

Supplemental Information
Power Aware Verification of ARM-Based Designs

Power Aware User’s Manual, v10.1 315

operations. That state may be the initial reset state, or a state saved before the power domain
was last powered down, or a combination of the two.

While a power domain is powered down, its elements cannot drive their outputs to well-defined
logic values. As a result, those outputs may float to 1 or float to 0, or may be at an intermediate
value. In this situation, those outputs are considered corrupted. This is not a problem as long as
no other active power domain sinks those corrupted values; otherwise logical and/or electrical
problems could result. During the power down process, it is essential for the isolation cells in
the design to be enabled before the domain’s primary supply is shut off, for those isolation cells
to clamp signals from the powered-down domain to appropriate values, and for the isolation
cells to remain enabled until the shut-off domain’s primary supply is turned on again.

Similarly, when two interconnected power domains have been put into respective power states
that involve different supply voltages, the level shifters in the design must convert logic 1 signal
voltage levels in the source domain to logic 1 signal voltage levels in the sink domain.
Although level shifters function continuously and therefore do not need to be enabled, dynamic
changes in the supply voltages for the respective power domains may result in unexpected
situations.

Power Control Logic
Power management may involve both software and hardware control. For example, a power
control unit (PCU) can be specified in RTL internal to the SoC. The PCU may be under
software control by an embedded processor. The combination of these power management
controls drive the signals that define the PCN, based on the system’s power management
strategy—signaling power domains to retain state, enable isolation, power down (turn off
switches), power up (turn on switches), disable isolation, and restore state.

Correct operation of the power management architecture depends upon correct sequencing of
power control signals. For example, outputs of a domain must be isolated before the power is
shut off, and must remain isolated until after power is turned on again. Thus the control signal
initiating isolation must come before the control signal that turns off the power switch.
Similarly, the control signal that turns on the power switch must occur before the control signal
that terminates isolation. In fact, turning power on and off may involve handshaking between
the PCU and the supply source (or a sensor monitoring the supply) to ensure that voltage-
dependent delays in ramping up or down the power supply are factored into control signal
sequencing.

Power Aware Verification Flow
Verifying RTL-level specification of active power management for a given design involves
several steps. First, we need to verify that the power management architecture is correctly
structured, given the operating modes of the device and the power states that have been defined
to reflect those modes. Second, we need to verify that the design (both each power domain
individually and all of them collectively) behave correctly when power management control

Power Aware User’s Manual, v10.1316

Supplemental Information
Power Aware Verification of ARM-Based Designs

signals are given in the correct sequence. Third, we need to verify that the power control logic
will always generate power control signals in the correct sequence.

Figure F-2 shows the high-level design of an ARM-based SoC with active power management.
The above verification steps as applied to this example are described below.

Figure F-2. An ARM-based SoC with Active Power Management

This design consists of multiple functional units communicating over the AXI bus. Each
functional unit may be defined as a separate power domain, or even as a collection of power
domains. A UPF file for this design would specify the power management architecture for the
whole system, including the specific requirements for power distribution, switching, and state
retention for each power domain, and the requirements for isolation and level shifting between
interacting power domains. The Power Control Unit (PCU) is a hardware implementation of
power control logic that drives power control signals for each domain in the correct order. The
Cortex R4 CPU is an embedded ARM processor that drives system-level power state changes
by sending transactions to the PCU.

Verifying the Power Management Architecture
Verifying the sufficiency of the power management architecture can be done in part through
static analysis. Given a complete definition of the power domains and power states for a given
design, it is relatively straightforward to verify that the necessary isolation cells and level
shifters are present (or implied by a UPF specification) to ensure that the power domains will
interact correctly and will not be adversely affected when their neighboring power domains are

Supplemental Information
Power Aware Verification of ARM-Based Designs

Power Aware User’s Manual, v10.1 317

powered down. Static analysis can also ensure that the necessary supply structures are present
to provide the ability to control power to each power domain.

However, static analysis is not always possible. Depending upon the sequencing of power state
changes, and the ramping of power supplies as they transition, there may be a requirement for
level shifters that is not obvious from the power state table. Also, the power state table may not
be complete, and power states that are not defined might actually occur during operation of the
device. Finally, external supply sources may be switched or may vary in voltage beyond what
is defined in the power state table. For these and other reasons, simulation is often required. In
this case, power aware simulation is necessary, to ensure that the power management
architecture and its controls are taken into account during simulation.

Power Aware simulation enables functional verification of power management in the context of
an RTL design. A power aware simulation run does the following:

• Compiles the design and UPF specifications

• Infers sequential elements from the RTL design (registers, latches and memories)

• Applies the UPF-specified power management architecture to the RTL design

• Augments the simulation model with appropriate power aware models

• Dynamically modifies the RTL behavior to reflect the impact of active power
management.

Using the UPF and sequential element information, the simulator is able to augment the normal
RTL behavior with the UPF-specified power aware behavior (power distribution and control,
retention, corruption, and isolation). This involves selecting the appropriate simulation models
to implement the UPF-specified power management architecture. It may also involve
recognizing and integrating user-supplied power aware simulation models.

Verifying Power Managed Behavior
Power aware simulation can be used to visualize the effects of active power management on the
dynamic behavior of the design, as well as visualizing the behavior of the power management
architecture itself under control of power management logic. In a power aware simulation, the
internal state and outputs of a power domain will be set to X to reflect the corruption of those
signals when the primary supply to that domain is turned off. When the supply is turned on
again, the X values will be replaced as the power domain reinitializes or has its state restored.
Signals driven by outputs of a powered-down domain should be clamped to 0 or 1, so that
downstream power domains see a well-defined value and won’t be affected by corrupted
outputs of a power domain that has been powered down. Retention should be evident in that the
state of signals following power up will correspond to the state of signals prior to the previous
power down.

Visualizing the effects of active power management helps the designer confirm that all of the
necessary power domains and power states required to implement the operation modes of this

Power Aware User’s Manual, v10.1318

Supplemental Information
Power Aware Verification of ARM-Based Designs

device have been defined, and that all the necessary isolation, level-shifting, and retention cells
necessary to enable power management have been added. If there are errors in the power
management architecture, they will very likely cause signal corruption that does not go away
after power up, which in turn will lead to functional errors in the design.

Debugging power management errors can be performed by tracking corruption of signals in the
waveform view, but that method is tedious and error-prone. A much more effective method is
the use of assertions to check for correct operation of the design under active power
management. For example, an assertion to check that an output of a power domain is clamped
to the correct value when the power domain is powered down will immediately catch any error
related to the clamp value, or the powering of the isolation cell involved, rather than just
generating an X and letting it propagate. Such assertions can be automatically generated by the
power aware simulator.

Verifying Power Control Logic
Power aware simulation can also be used to verify the control logic driving the power
management architecture, provided that the control logic is part of the design rather than being
implemented in a testbench. For software-based power control logic, simulation is the only
method available. In particular, hardware/software co-simulation is necessary if the power
control logic is split between hardware and software components, as is often the case. For
hardware-based power control logic, such as a power control unit, another alternative is
available.

Formal verification is particularly suited to verifying complex control logic. In contrast to
simulation, which runs one input sequence at a time to test a device, formal verification
considers all valid input sequences in one pass. A formal verification tool can therefore identify
all possible behaviors of the power control logic, which enables it to automatically find any
corner cases in which the generated control sequences may not be complete or in the correct
order. Formal verification is driven by assertions, so use of formal verification requires creation
of assertions about the expected behavior of the power control unit. Although this takes some
effort, the ability to thoroughly verify the power control logic makes it worthwhile.

Summary
Active power management is becoming a necessary part of today’s SoC designs. To add active
power management to a design and verify that it is working correctly, it is critical to have a
well-defined methodology that addresses all aspects of active power management. The
methodology needs to support defining and verifying an appropriate power management
architecture, verifying that the design behaves correctly under the power management
architecture, and verifying that the power control signals controlling the power management
architecture are generated correctly. IEEE Std 1801™-2009 UPF supports such a methodology,
as does static analysis of power management architecture, power-aware simulation of power-
managed designs, and formal verification of power control logic. These methods provide a
comprehensive solution for defining and verifying active power management.

Supplemental Information
Power Aware Verification of ARM-Based Designs

Power Aware User’s Manual, v10.1 319

Acknowledgements
The authors would like to acknowledge the thoughtful commentary and suggestions for
improvement provided by Barry Pangrle on the penultimate draft of this paper.

References
1. N.S. Kim, T. Austin, T. Blaauw, T. Mudge, K. Flautner, H.S. Hu, M.J.Irwin, M.

Kandemir, and V. Narayanan. Leakage current: Moore's law meets static power. IEEE
Computer, 36(12):68--75, 2003.

2. S. Shigematsu, S. Mutoh, Y. Matsuya, Y. Tanabe and J. Yamada, "A 1-V High-Speed
MTCMOS Circuit Scheme for Power-Down Application Circuits," IEEE J. Solid-State
Circuits, Vol. 32, No. 6, pp. 861--869,1997.

3. Hyo-Sig Won; Kyo-Sun Kim; Kwang-Ok Jeong; Ki-Tae Park; Kyu-Myung Choi;
Jeong-Taek Kong, "An MTCMOS design methodology and its application to mobile
computing," Low Power Electronics and Design, 2003. ISLPED '03. Proceedings of the
2003 International Symposium on , vol., no., pp. 110-115, 25-27 Aug. 2003.

4. Zyuban, V.; Kosonocky, S.V., "Low power integrated scan-retention mechanism," Low
Power Electronics and Design, 2002. ISLPED '02. Proceedings of the 2002 International
Symposium on , vol., no., pp. 98-102, 2002.

5. IEEE 1801™-2009, “Standard for Design and Verification of Low Power Integrated
Circuits”, IEEE.

6. Tcl/Tk Documentation, Tcl Developer Xchange, http://www.tcl.tk.

Power Aware User’s Manual, v10.1320

Supplemental Information
Power Aware Verification of ARM-Based Designs

321

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

Power Aware User’s Manual, v10.1

— A —
Accellera, 175
Atomatic detection, 47

— B —
Backus-Naur Format, 287
BNF, 287

— D —
Dectection, automatic, 47
Design flow, 14

— F —
Feedthrough, 155

— G —
Gate-level simulation, 40

— H —
Hard macro, 150

— I —
IEEE standard for low power, 18

— L —
Liberty libraries, 41

database, 45
Low power, 13

IEEE standard for, 18
working group of IEEE, 19

Lower boundary ports, 225

— M —
Macro, hard, 150
Macromodels, 150
Messages, 139
MTI_LIBERTY_PATH, 47
Multi-voltage analysis, 142

— N —
Named events, 164

— P —
PA-GL, 13
PA-GLS

automatic detection, 47
PA-RTL, 13
PCF (Power Configuration File), 19, 285, 286
Power Aware, 13

documentation, 16
Power Aware verification, 174
Power Configuration File, 19, 285, 286
Power gating, 13
Power specification file, 19
Power State Table (PST), 143, 202
PST, 143, 202

— U —
UCDB

in Power Aware simulation, 121
Unified Power Format (UPF), 19, 173, 285
UPF, 19, 173, 174, 285

supported commands, 176
unsupported commands, 176

— V —
Value converstion table (VCT), 266
VCT, 266
Verilog

named events, 164
Voltage level-shifting, 142

— W —
Wave window, 27

Index

322 Power Aware User’s Manual, v10.1

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

End-User License Agreement
The latest version of the End-User License Agreement is available on-line at:

www.mentor.com/eula

END-USER LICENSE AGREEMENT (“Agreement”)

This is a legal agreement concerning the use of Software (as defined in Section 2) and hardware (collectively “Products”)
between the company acquiring the Products (“Customer”), and the Mentor Graphics entity that issued the
corresponding quotation or, if no quotation was issued, the applicable local Mentor Graphics entity (“Mentor
Graphics”). Except for license agreements related to the subject matter of this license agreement which are physically
signed by Customer and an authorized representative of Mentor Graphics, this Agreement and the applicable quotation
contain the parties' entire understanding relating to the subject matter and supersede all prior or contemporaneous
agreements. If Customer does not agree to these terms and conditions, promptly return or, in the case of Software
received electronically, certify destruction of Software and all accompanying items within five days after receipt of
Software and receive a full refund of any license fee paid.

1. ORDERS, FEES AND PAYMENT.

1.1. To the extent Customer (or if agreed by Mentor Graphics, Customer’s appointed third party buying agent) places and
Mentor Graphics accepts purchase orders pursuant to this Agreement (“Order(s)”), each Order will constitute a contract
between Customer and Mentor Graphics, which shall be governed solely and exclusively by the terms and conditions of
this Agreement, any applicable addenda and the applicable quotation, whether or not these documents are referenced on the
Order. Any additional or conflicting terms and conditions appearing on an Order will not be effective unless agreed in
writing by an authorized representative of Customer and Mentor Graphics.

1.2. Amounts invoiced will be paid, in the currency specified on the applicable invoice, within 30 days from the date of such
invoice. Any past due invoices will be subject to the imposition of interest charges in the amount of one and one-half
percent per month or the applicable legal rate currently in effect, whichever is lower. Prices do not include freight,
insurance, customs duties, taxes or other similar charges, which Mentor Graphics will state separately in the applicable
invoice(s). Unless timely provided with a valid certificate of exemption or other evidence that items are not taxable, Mentor
Graphics will invoice Customer for all applicable taxes including, but not limited to, VAT, GST, sales tax and service tax.
Customer will make all payments free and clear of, and without reduction for, any withholding or other taxes; any such
taxes imposed on payments by Customer hereunder will be Customer’s sole responsibility. If Customer appoints a third
party to place purchase orders and/or make payments on Customer’s behalf, Customer shall be liable for payment under
Orders placed by such third party in the event of default.

1.3. All Products are delivered FCA factory (Incoterms 2000), freight prepaid and invoiced to Customer, except Software
delivered electronically, which shall be deemed delivered when made available to Customer for download. Mentor
Graphics retains a security interest in all Products delivered under this Agreement, to secure payment of the purchase price
of such Products, and Customer agrees to sign any documents that Mentor Graphics determines to be necessary or
convenient for use in filing or perfecting such security interest. Mentor Graphics’ delivery of Software by electronic means
is subject to Customer’s provision of both a primary and an alternate e-mail address.

2. GRANT OF LICENSE. The software installed, downloaded, or otherwise acquired by Customer under this Agreement,
including any updates, modifications, revisions, copies, documentation and design data (“Software”) are copyrighted, trade
secret and confidential information of Mentor Graphics or its licensors, who maintain exclusive title to all Software and retain
all rights not expressly granted by this Agreement. Mentor Graphics grants to Customer, subject to payment of applicable
license fees, a nontransferable, nonexclusive license to use Software solely: (a) in machine-readable, object-code form (except
as provided in Subsection 5.2); (b) for Customer’s internal business purposes; (c) for the term of the license; and (d) on the
computer hardware and at the site authorized by Mentor Graphics. A site is restricted to a one-half mile (800 meter) radius.
Customer may have Software temporarily used by an employee for telecommuting purposes from locations other than a
Customer office, such as the employee's residence, an airport or hotel, provided that such employee's primary place of
employment is the site where the Software is authorized for use. Mentor Graphics’ standard policies and programs, which vary
depending on Software, license fees paid or services purchased, apply to the following: (a) relocation of Software; (b) use of
Software, which may be limited, for example, to execution of a single session by a single user on the authorized hardware or for
a restricted period of time (such limitations may be technically implemented through the use of authorization codes or similar
devices); and (c) support services provided, including eligibility to receive telephone support, updates, modifications, and
revisions. For the avoidance of doubt, if Customer requests any change or enhancement to Software, whether in the course of
receiving support or consulting services, evaluating Software, performing beta testing or otherwise, any inventions, product

 IMPORTANT INFORMATION

USE OF ALL SOFTWARE IS SUBJECT TO LICENSE RESTRICTIONS. CAREFULLY READ THIS LICENSE
AGREEMENT BEFORE USING THE PRODUCTS. USE OF SOFTWARE INDICATES CUSTOMER’S

COMPLETE AND UNCONDITIONAL ACCEPTANCE OF THE TERMS AND CONDITIONS SET FORTH IN
THIS AGREEMENT. ANY ADDITIONAL OR DIFFERENT PURCHASE ORDER TERMS AND CONDITIONS

SHALL NOT APPLY.

http://www.mentor.com/eula

improvements, modifications or developments made by Mentor Graphics (at Mentor Graphics’ sole discretion) will be the
exclusive property of Mentor Graphics.

3. ESC SOFTWARE. If Customer purchases a license to use development or prototyping tools of Mentor Graphics’ Embedded
Software Channel (“ESC”), Mentor Graphics grants to Customer a nontransferable, nonexclusive license to reproduce and
distribute executable files created using ESC compilers, including the ESC run-time libraries distributed with ESC C and C++
compiler Software that are linked into a composite program as an integral part of Customer’s compiled computer program,
provided that Customer distributes these files only in conjunction with Customer’s compiled computer program. Mentor
Graphics does NOT grant Customer any right to duplicate, incorporate or embed copies of Mentor Graphics’ real-time operating
systems or other embedded software products into Customer’s products or applications without first signing or otherwise
agreeing to a separate agreement with Mentor Graphics for such purpose.

4. BETA CODE.

4.1. Portions or all of certain Software may contain code for experimental testing and evaluation (“Beta Code”), which may not
be used without Mentor Graphics’ explicit authorization. Upon Mentor Graphics’ authorization, Mentor Graphics grants to
Customer a temporary, nontransferable, nonexclusive license for experimental use to test and evaluate the Beta Code
without charge for a limited period of time specified by Mentor Graphics. This grant and Customer’s use of the Beta Code
shall not be construed as marketing or offering to sell a license to the Beta Code, which Mentor Graphics may choose not to
release commercially in any form.

4.2. If Mentor Graphics authorizes Customer to use the Beta Code, Customer agrees to evaluate and test the Beta Code under
normal conditions as directed by Mentor Graphics. Customer will contact Mentor Graphics periodically during Customer’s
use of the Beta Code to discuss any malfunctions or suggested improvements. Upon completion of Customer’s evaluation
and testing, Customer will send to Mentor Graphics a written evaluation of the Beta Code, including its strengths,
weaknesses and recommended improvements.

4.3. Customer agrees to maintain Beta Code in confidence and shall restrict access to the Beta Code, including the methods and
concepts utilized therein, solely to those employees and Customer location(s) authorized by Mentor Graphics to perform
beta testing. Customer agrees that any written evaluations and all inventions, product improvements, modifications or
developments that Mentor Graphics conceived or made during or subsequent to this Agreement, including those based
partly or wholly on Customer’s feedback, will be the exclusive property of Mentor Graphics. Mentor Graphics will have
exclusive rights, title and interest in all such property. The provisions of this Subsection 4.3 shall survive termination of
this Agreement.

5. RESTRICTIONS ON USE.

5.1. Customer may copy Software only as reasonably necessary to support the authorized use. Each copy must include all
notices and legends embedded in Software and affixed to its medium and container as received from Mentor Graphics. All
copies shall remain the property of Mentor Graphics or its licensors. Customer shall maintain a record of the number and
primary location of all copies of Software, including copies merged with other software, and shall make those records
available to Mentor Graphics upon request. Customer shall not make Products available in any form to any person other
than Customer’s employees and on-site contractors, excluding Mentor Graphics competitors, whose job performance
requires access and who are under obligations of confidentiality. Customer shall take appropriate action to protect the
confidentiality of Products and ensure that any person permitted access does not disclose or use it except as permitted by
this Agreement. Customer shall give Mentor Graphics written notice of any unauthorized disclosure or use of the Products
as soon as Customer learns or becomes aware of such unauthorized disclosure or use. Except as otherwise permitted for
purposes of interoperability as specified by applicable and mandatory local law, Customer shall not reverse-assemble,
reverse-compile, reverse-engineer or in any way derive any source code from Software. Log files, data files, rule files and
script files generated by or for the Software (collectively “Files”), including without limitation files containing Standard
Verification Rule Format (“SVRF”) and Tcl Verification Format (“TVF”) which are Mentor Graphics’ proprietary
syntaxes for expressing process rules, constitute or include confidential information of Mentor Graphics. Customer may
share Files with third parties, excluding Mentor Graphics competitors, provided that the confidentiality of such Files is
protected by written agreement at least as well as Customer protects other information of a similar nature or importance,
but in any case with at least reasonable care. Customer may use Files containing SVRF or TVF only with Mentor Graphics
products. Under no circumstances shall Customer use Software or Files or allow their use for the purpose of developing,
enhancing or marketing any product that is in any way competitive with Software, or disclose to any third party the results
of, or information pertaining to, any benchmark.

5.2. If any Software or portions thereof are provided in source code form, Customer will use the source code only to correct
software errors and enhance or modify the Software for the authorized use. Customer shall not disclose or permit disclosure
of source code, in whole or in part, including any of its methods or concepts, to anyone except Customer’s employees or
contractors, excluding Mentor Graphics competitors, with a need to know. Customer shall not copy or compile source code
in any manner except to support this authorized use.

5.3. Customer may not assign this Agreement or the rights and duties under it, or relocate, sublicense or otherwise transfer the
Products, whether by operation of law or otherwise (“Attempted Transfer”), without Mentor Graphics’ prior written
consent and payment of Mentor Graphics’ then-current applicable relocation and/or transfer fees. Any Attempted Transfer
without Mentor Graphics’ prior written consent shall be a material breach of this Agreement and may, at Mentor Graphics’
option, result in the immediate termination of the Agreement and/or the licenses granted under this Agreement. The terms
of this Agreement, including without limitation the licensing and assignment provisions, shall be binding upon Customer’s
permitted successors in interest and assigns.

5.4. The provisions of this Section 5 shall survive the termination of this Agreement.

6. SUPPORT SERVICES. To the extent Customer purchases support services, Mentor Graphics will provide Customer updates
and technical support for the Products, at the Customer site(s) for which support is purchased, in accordance with Mentor
Graphics’ then current End-User Support Terms located at http://supportnet.mentor.com/about/legal/.

7. AUTOMATIC CHECK FOR UPDATES; PRIVACY. Technological measures in Software may communicate with servers
of Mentor Graphics or its contractors for the purpose of checking for and notifying the user of updates and to ensure that the
Software in use is licensed in compliance with this Agreement. Mentor Graphics will not collect any personally identifiable data
in this process and will not disclose any data collected to any third party without the prior written consent of Customer, except to
Mentor Graphics’ outside attorneys or as may be required by a court of competent jurisdiction.

8. LIMITED WARRANTY.

8.1. Mentor Graphics warrants that during the warranty period its standard, generally supported Products, when properly
installed, will substantially conform to the functional specifications set forth in the applicable user manual. Mentor
Graphics does not warrant that Products will meet Customer’s requirements or that operation of Products will be
uninterrupted or error free. The warranty period is 90 days starting on the 15th day after delivery or upon installation,
whichever first occurs. Customer must notify Mentor Graphics in writing of any nonconformity within the warranty period.
For the avoidance of doubt, this warranty applies only to the initial shipment of Software under an Order and does not
renew or reset, for example, with the delivery of (a) Software updates or (b) authorization codes or alternate Software under
a transaction involving Software re-mix. This warranty shall not be valid if Products have been subject to misuse,
unauthorized modification or improper installation. MENTOR GRAPHICS’ ENTIRE LIABILITY AND CUSTOMER’S
EXCLUSIVE REMEDY SHALL BE, AT MENTOR GRAPHICS’ OPTION, EITHER (A) REFUND OF THE PRICE
PAID UPON RETURN OF THE PRODUCTS TO MENTOR GRAPHICS OR (B) MODIFICATION OR
REPLACEMENT OF THE PRODUCTS THAT DO NOT MEET THIS LIMITED WARRANTY, PROVIDED
CUSTOMER HAS OTHERWISE COMPLIED WITH THIS AGREEMENT. MENTOR GRAPHICS MAKES NO
WARRANTIES WITH RESPECT TO: (A) SERVICES; (B) PRODUCTS PROVIDED AT NO CHARGE; OR (C) BETA
CODE; ALL OF WHICH ARE PROVIDED “AS IS.”

8.2. THE WARRANTIES SET FORTH IN THIS SECTION 8 ARE EXCLUSIVE. NEITHER MENTOR GRAPHICS NOR
ITS LICENSORS MAKE ANY OTHER WARRANTIES EXPRESS, IMPLIED OR STATUTORY, WITH RESPECT TO
PRODUCTS PROVIDED UNDER THIS AGREEMENT. MENTOR GRAPHICS AND ITS LICENSORS
SPECIFICALLY DISCLAIM ALL IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NON-INFRINGEMENT OF INTELLECTUAL PROPERTY.

9. LIMITATION OF LIABILITY. EXCEPT WHERE THIS EXCLUSION OR RESTRICTION OF LIABILITY WOULD BE
VOID OR INEFFECTIVE UNDER APPLICABLE LAW, IN NO EVENT SHALL MENTOR GRAPHICS OR ITS
LICENSORS BE LIABLE FOR INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES (INCLUDING
LOST PROFITS OR SAVINGS) WHETHER BASED ON CONTRACT, TORT OR ANY OTHER LEGAL THEORY, EVEN
IF MENTOR GRAPHICS OR ITS LICENSORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. IN
NO EVENT SHALL MENTOR GRAPHICS’ OR ITS LICENSORS’ LIABILITY UNDER THIS AGREEMENT EXCEED
THE AMOUNT RECEIVED FROM CUSTOMER FOR THE HARDWARE, SOFTWARE LICENSE OR SERVICE GIVING
RISE TO THE CLAIM. IN THE CASE WHERE NO AMOUNT WAS PAID, MENTOR GRAPHICS AND ITS LICENSORS
SHALL HAVE NO LIABILITY FOR ANY DAMAGES WHATSOEVER. THE PROVISIONS OF THIS SECTION 9 SHALL
SURVIVE THE TERMINATION OF THIS AGREEMENT.

10. HAZARDOUS APPLICATIONS. CUSTOMER ACKNOWLEDGES IT IS SOLELY RESPONSIBLE FOR TESTING ITS
PRODUCTS USED IN APPLICATIONS WHERE THE FAILURE OR INACCURACY OF ITS PRODUCTS MIGHT
RESULT IN DEATH OR PERSONAL INJURY (“HAZARDOUS APPLICATIONS”). NEITHER MENTOR GRAPHICS
NOR ITS LICENSORS SHALL BE LIABLE FOR ANY DAMAGES RESULTING FROM OR IN CONNECTION WITH
THE USE OF MENTOR GRAPHICS PRODUCTS IN OR FOR HAZARDOUS APPLICATIONS. THE PROVISIONS OF
THIS SECTION 10 SHALL SURVIVE THE TERMINATION OF THIS AGREEMENT.

11. INDEMNIFICATION. CUSTOMER AGREES TO INDEMNIFY AND HOLD HARMLESS MENTOR GRAPHICS AND
ITS LICENSORS FROM ANY CLAIMS, LOSS, COST, DAMAGE, EXPENSE OR LIABILITY, INCLUDING
ATTORNEYS’ FEES, ARISING OUT OF OR IN CONNECTION WITH THE USE OF PRODUCTS AS DESCRIBED IN
SECTION 10. THE PROVISIONS OF THIS SECTION 11 SHALL SURVIVE THE TERMINATION OF THIS
AGREEMENT.

12. INFRINGEMENT.

12.1. Mentor Graphics will defend or settle, at its option and expense, any action brought against Customer in the United States,
Canada, Japan, or member state of the European Union which alleges that any standard, generally supported Product
acquired by Customer hereunder infringes a patent or copyright or misappropriates a trade secret in such jurisdiction.
Mentor Graphics will pay costs and damages finally awarded against Customer that are attributable to the action. Customer
understands and agrees that as conditions to Mentor Graphics’ obligations under this section Customer must: (a) notify
Mentor Graphics promptly in writing of the action; (b) provide Mentor Graphics all reasonable information and assistance
to settle or defend the action; and (c) grant Mentor Graphics sole authority and control of the defense or settlement of the
action.

http://supportnet.mentor.com/about/legal/

12.2. If a claim is made under Subsection 12.1 Mentor Graphics may, at its option and expense, (a) replace or modify the Product
so that it becomes noninfringing; (b) procure for Customer the right to continue using the Product; or (c) require the return
of the Product and refund to Customer any purchase price or license fee paid, less a reasonable allowance for use.

12.3. Mentor Graphics has no liability to Customer if the action is based upon: (a) the combination of Software or hardware with
any product not furnished by Mentor Graphics; (b) the modification of the Product other than by Mentor Graphics; (c) the
use of other than a current unaltered release of Software; (d) the use of the Product as part of an infringing process; (e) a
product that Customer makes, uses, or sells; (f) any Beta Code or Product provided at no charge; (g) any software provided
by Mentor Graphics’ licensors who do not provide such indemnification to Mentor Graphics’ customers; or
(h) infringement by Customer that is deemed willful. In the case of (h), Customer shall reimburse Mentor Graphics for its
reasonable attorney fees and other costs related to the action.

12.4. THIS SECTION 12 IS SUBJECT TO SECTION 9 ABOVE AND STATES THE ENTIRE LIABILITY OF MENTOR
GRAPHICS AND ITS LICENSORS FOR DEFENSE, SETTLEMENT AND DAMAGES, AND CUSTOMER’S SOLE
AND EXCLUSIVE REMEDY, WITH RESPECT TO ANY ALLEGED PATENT OR COPYRIGHT INFRINGEMENT
OR TRADE SECRET MISAPPROPRIATION BY ANY PRODUCT PROVIDED UNDER THIS AGREEMENT.

13. TERMINATION AND EFFECT OF TERMINATION. If a Software license was provided for limited term use, such license
will automatically terminate at the end of the authorized term.

13.1. Mentor Graphics may terminate this Agreement and/or any license granted under this Agreement immediately upon written
notice if Customer: (a) exceeds the scope of the license or otherwise fails to comply with the licensing or confidentiality
provisions of this Agreement, or (b) becomes insolvent, files a bankruptcy petition, institutes proceedings for liquidation or
winding up or enters into an agreement to assign its assets for the benefit of creditors. For any other material breach of any
provision of this Agreement, Mentor Graphics may terminate this Agreement and/or any license granted under this
Agreement upon 30 days written notice if Customer fails to cure the breach within the 30 day notice period. Termination of
this Agreement or any license granted hereunder will not affect Customer’s obligation to pay for Products shipped or
licenses granted prior to the termination, which amounts shall be payable immediately upon the date of termination.

13.2. Upon termination of this Agreement, the rights and obligations of the parties shall cease except as expressly set forth in this
Agreement. Upon termination, Customer shall ensure that all use of the affected Products ceases, and shall return hardware
and either return to Mentor Graphics or destroy Software in Customer’s possession, including all copies and
documentation, and certify in writing to Mentor Graphics within ten business days of the termination date that Customer no
longer possesses any of the affected Products or copies of Software in any form.

14. EXPORT. The Products provided hereunder are subject to regulation by local laws and United States government agencies,
which prohibit export or diversion of certain products and information about the products to certain countries and certain
persons. Customer agrees that it will not export Products in any manner without first obtaining all necessary approval from
appropriate local and United States government agencies.

15. U.S. GOVERNMENT LICENSE RIGHTS. Software was developed entirely at private expense. All Software is commercial
computer software within the meaning of the applicable acquisition regulations. Accordingly, pursuant to US FAR 48 CFR
12.212 and DFAR 48 CFR 227.7202, use, duplication and disclosure of the Software by or for the U.S. Government or a U.S.
Government subcontractor is subject solely to the terms and conditions set forth in this Agreement, except for provisions which
are contrary to applicable mandatory federal laws.

16. THIRD PARTY BENEFICIARY. Mentor Graphics Corporation, Mentor Graphics (Ireland) Limited, Microsoft Corporation
and other licensors may be third party beneficiaries of this Agreement with the right to enforce the obligations set forth herein.

17. REVIEW OF LICENSE USAGE. Customer will monitor the access to and use of Software. With prior written notice and
during Customer’s normal business hours, Mentor Graphics may engage an internationally recognized accounting firm to
review Customer’s software monitoring system and records deemed relevant by the internationally recognized accounting firm
to confirm Customer’s compliance with the terms of this Agreement or U.S. or other local export laws. Such review may include
FLEXlm or FLEXnet (or successor product) report log files that Customer shall capture and provide at Mentor Graphics’
request. Customer shall make records available in electronic format and shall fully cooperate with data gathering to support the
license review. Mentor Graphics shall bear the expense of any such review unless a material non-compliance is revealed. Mentor
Graphics shall treat as confidential information all information gained as a result of any request or review and shall only use or
disclose such information as required by law or to enforce its rights under this Agreement. The provisions of this Section 17
shall survive the termination of this Agreement.

18. CONTROLLING LAW, JURISDICTION AND DISPUTE RESOLUTION. The owners of certain Mentor Graphics
intellectual property licensed under this Agreement are located in Ireland and the United States. To promote consistency around
the world, disputes shall be resolved as follows: excluding conflict of laws rules, this Agreement shall be governed by and
construed under the laws of the State of Oregon, USA, if Customer is located in North or South America, and the laws of Ireland
if Customer is located outside of North or South America. All disputes arising out of or in relation to this Agreement shall be
submitted to the exclusive jurisdiction of the courts of Portland, Oregon when the laws of Oregon apply, or Dublin, Ireland when
the laws of Ireland apply. Notwithstanding the foregoing, all disputes in Asia arising out of or in relation to this Agreement shall
be resolved by arbitration in Singapore before a single arbitrator to be appointed by the chairman of the Singapore International
Arbitration Centre (“SIAC”) to be conducted in the English language, in accordance with the Arbitration Rules of the SIAC in
effect at the time of the dispute, which rules are deemed to be incorporated by reference in this section. This section shall not

restrict Mentor Graphics’ right to bring an action against Customer in the jurisdiction where Customer’s place of business is
located. The United Nations Convention on Contracts for the International Sale of Goods does not apply to this Agreement.

19. SEVERABILITY. If any provision of this Agreement is held by a court of competent jurisdiction to be void, invalid,
unenforceable or illegal, such provision shall be severed from this Agreement and the remaining provisions will remain in full
force and effect.

20. MISCELLANEOUS. This Agreement contains the parties’ entire understanding relating to its subject matter and supersedes all
prior or contemporaneous agreements, including but not limited to any purchase order terms and conditions. Some Software
may contain code distributed under a third party license agreement that may provide additional rights to Customer. Please see
the applicable Software documentation for details. This Agreement may only be modified in writing by authorized
representatives of the parties. Waiver of terms or excuse of breach must be in writing and shall not constitute subsequent
consent, waiver or excuse.

Rev. 100615, Part No. 246066

	Bookcase
	Table of Contents
	List of Tables
	Chapter 1 Getting Started With Low-Power Analysis
	ModelSim Power Aware Simulation
	Where Is Power Aware in Your Design Flow?
	Documentation—Scope and Organization
	Usage
	Design
	Flow

	Contents of This Manual
	How to Use This Manual
	Related Documentation

	Chapter 2 Concepts for Using Power Aware
	Power Specification File
	Power Aware Modeling
	Modeling Corruption
	Corruption Values
	Corruption Extent

	Modeling Isolation
	Modeling Retention
	Edge-sensitive and Level-sensitive Control of Retention Models
	Automatic Model Selection
	Level-sensitive Retention Model Protocol

	Modeling Bias
	Bias Mode 1: Corrupt on Change/Bias
	Bias Mode 2: Corrupt All on Activity

	Chapter 3 Power Aware Simulation
	Commands Used For Power Aware Simulation
	General Steps for Running Power Aware

	Standard Flow For RTL
	Compile
	Optimize
	Simulate

	Alternate Flows For RTL
	Optimize DUT Separately
	Compile
	Optimize
	Simulate

	Delay Optimization
	Compile
	Optimize
	Simulate

	Implicit Optimization
	Compile
	Optimize
	Simulate

	Inhibit Optimization
	Compile
	Optimize
	Simulate

	PDU-Based Simulation
	Compile
	Optimize
	Simulate

	Standard Flow for Gate-Level Simulation
	Gate-Level Simulation
	UPF in Gate-Level Simulation
	General Steps for Power Aware Gate-Level Simulation
	Liberty Library Models
	Delay Optimization
	Compile
	Optimize
	Simulate

	Delay Optimization Using Liberty Models
	Compile
	Optimize
	Simulate

	Using a Liberty Database
	Usage Notes on Creating a Liberty Dump
	Loading Liberty Dumps
	Debugging Designs Containing Liberty Cells

	Automatic Detection of Power Management Cells

	Chapter 4 Power Aware Reports
	Generating Reports for Power Aware
	How to Generate a Report with vopt -pa_genrpt

	UPF Reports
	UPF Power Intent Report
	Example of UPF File and Power Intent Report

	UPF Static Report
	Power Domain
	Power Switch
	Retention Strategy
	Isolation Strategy
	Level Shifter Strategy
	Power State Tables
	Example of UPF Static Report File

	Static Checking UPF Reports
	Dynamic UPF Report
	Architecture Report
	Power Domain
	Power Switch
	Retention Strategy
	Isolation Strategy
	Level Shifter Strategy
	Power State Tables (PSTs)
	Sample Power Architecture Report

	Design Elements Report
	Design Element Scopes and Power Domains
	Corrupted Signals
	State Elements
	Retention Signals
	Working With A Design Element Report

	PCF Reports
	PCF Power Intent Report
	PCF Always-On Report
	PCF Corruption Report
	PCF Isolation Report
	PCF Static Checking Report

	Behavioral Element Reporting

	Chapter 5 Automatic Checking
	Static Checking in Power Aware
	Usage Notes for Static Checking
	Debugging Static Checks
	Static Isolation Checks
	Isolation Cell Instance Checking

	Static Level Shifter Checks
	Level Shifter Cell Instance Checking
	Reporting for a Valid Level Shifter

	Dynamic Checking in Power Aware
	Usage Notes
	Dynamic Retention Checking
	Dynamic Isolation Checking
	Dynamic Level Shifter Checking
	Operating Voltage for Dynamic Checking

	Miscellaneous Dynamic Checking

	Implementing Checking at Gate Level
	Level Shifting for Gate-Level Checking
	Isolation for Gate-Level Checking

	Chapter 6 Visualization of Power Aware Operations
	Power Aware in the Graphical User Interface
	Power Aware Schematic Display
	Top-Down Debugging (From the Test Bench)
	Bottom-Up Debugging (From the Design Under Test)
	Usage Notes

	Schematic Window Visualization for Debugging

	Power Aware Waveform Display
	Using Power Aware Highlighting

	Power State and Transition Display
	Power Aware State Coverage
	Power State Table (PST) States

	Visualization of Power Aware States
	Power Aware State Machines (PASM)
	DIfferences Between Conventional RTL FSMs and PASMs
	Undefined States in Power Aware State Machines
	Example of PASM in a UPF File
	Using Power Aware State Coverage

	Visualization Of Power Aware State Machines
	Power Aware State Machine List Window
	Power Aware State Machine Viewer Window

	Appendix A Power Aware Commands and Options
	ModelSim Commands Used for Power Aware
	Using -pa_enable and -pa_disable

	Additional Commands You Can Use with Power Aware
	Power Aware Messages
	Usage

	Excluding Design Elements from Power Aware
	Voltage Level-Shifting (Multi-Voltage Analysis)
	Power State Tables
	Example

	Level Shifter Specification
	Reporting
	Threshold Control for Level Shifters
	Level Shifter Instances

	Limitations on Level Shifting

	Restricting Isolation and Level Shifting on a Port
	Isolation and Level Shifting Behavior
	How to Apply the -source and -sink Arguments

	Simulating Designs Containing Macromodels
	Using UPF Commands
	Attributes in RTL
	Liberty File
	Example of Power Intent on a Hard Macro
	UPF Commands
	RTL Attributes
	Liberty File Attributes

	Creating Feedthrough For RTL Conversion Functions

	Appendix B Power Aware Checking Specifications
	Level Shifter Checking
	Isolation Checking
	Additional Information on Checking

	Appendix C Model Construction for Power Aware Simulation
	Guidelines for Writing HDL Models
	Assumptions and Advantages
	Basic Model Structure
	Named Events in Power Aware
	Usage Note for Sequence Requirements

	Attributes
	Retention Cells and Memories
	Isolation Cells
	Level Shifters

	Model Interface Ports
	Example—Register Model
	Example—Corrupt Model

	Appendix D UPF Commands and Reference
	Unified Power Format (UPF)
	Using a UPF File as Part of Power Aware Simulation

	UPF Standards
	Version 1.0 of the UPF Standard
	Version 2.0 of the UPF Standard: IEEE Std 1801-2009

	Supported UPF Commands
	add_domain_elements
	add_port_state
	add_power_state
	add_pst_state
	associate_supply_set
	connect_logic_net
	connect_supply_net
	connect_supply_set
	create_composite_domain
	create_hdl2upf_vct
	create_logic_net
	create_logic_port
	create_power_domain
	create_power_switch
	create_pst
	create_supply_net
	create_supply_port
	create_supply_set
	create_upf2hdl_vct
	load_simstate_behavior
	load_upf
	load_upf_protected
	map_isolation_cell
	map_level_shifter_cell
	map_retention_cell
	name_format
	save_upf
	set_design_attributes
	set_design_top
	set_domain_supply_net
	set_isolation
	set_isolation_control
	set_level_shifter
	set_partial_on_translation
	set_pin_related_supply
	set_port_attributes
	set_power_switch
	set_retention
	set_retention_control
	set_scope
	set_simstate_behavior
	upf_version

	Supported UPF Package Functions
	Accessing Generate Blocks in UPF
	Limitation

	Supported UPF Attributes
	Specifying Attributes
	Limitations
	Attributes in VHDL or SystemVerilog
	Specifying Supply Nets in UPF
	Format of Assigned Net Values
	Changing the Default Supply State Values for VHDL Models

	Supported UPF Extensions
	Using -pa_upfextensions

	UPF Supply Connections
	Implicit Connections
	Explicit Connections
	Explicit Connections to HDL Ports
	Examples
	Explicit Connections to 1-bit HDL Ports
	Explicit Connections to Supply Ports of Power Switch

	Automatic Connections
	Automatic Connections for Supply Nets
	Automatic Connections for Supply Sets

	Power State Composition
	Determining State Dependency with add_power_state Arguments
	Power State Reporting

	Value Conversion Tables
	Using VCT Commands
	Examples
	Limitations

	Predefined VCTs Supported from the UPF Standard
	Connections Using Value Conversion Tables (VCTs)
	Simulation Semantics for UPF Supply Connections

	Supply Nets
	Resolving Drivers on a Supply Net
	Example

	Defining Isolation
	Method 1: Isolation is already explicitly present
	Method 2: Isolation needs to be added
	Specifying Isolation Cells
	Isolation Cell Instances

	Limitations

	Defining Retention
	-retention_supply_set
	-no_retention
	-use_retention_as_primary

	Appendix E Power Configuration File Reference
	Power Specification File
	Formats

	Using a PCF as Part of Power Aware Verification
	PCF Syntax and Contents
	Basic PCF Statement Types
	Statement Termination
	Header Statement
	Context Statements
	Scope Statement
	Variable Statement
	Include Statement
	Corruption Extent Statement

	Power Statements
	Power Control Statement

	Region Definitions
	Power Model Mapping Statement
	Mapping Statement Precedence
	Specifying Default Model Mappings

	Retention Statement
	Corruption Semantics
	Voltage Domains
	Comments

	Regular Expressions and Variables
	Rule Precedence

	Appendix F Supplemental Information
	Power Aware Verification of ARM-Based Designs
	Abstract
	Introduction
	Active Power Management
	Power Management Techniques
	Power Management Specification
	Power Management Architecture
	Operating Modes
	Power Domains
	Power Distribution
	Power States
	Isolation and Level Shifting
	State Retention

	Power Managed Behavior
	Power Control Logic
	Power Aware Verification Flow
	Verifying the Power Management Architecture
	Verifying Power Managed Behavior
	Verifying Power Control Logic

	Summary
	Acknowledgements
	References

	Index
	End-User License Agreement
	Documentation Feedback

