Unified Coverage Data Base
(UCDB) API Reference

Software Version 10.1

© 1995-2011 Mentor Graphics Corporation
All rights reserved.

This document contains information that is proprietary to Mentor Graphics Corporation. The original recipient of this
document may duplicate this document in whole or in part for internal business purposes only, provided that this entire
notice appears in all copies. In duplicating any part of this document, the recipient agrees to make every reasonable
effort to prevent the unauthorized use and distribution of the proprietary information.

This document is for information and instruction purposes. Mentor Graphics reserves the right to make
changes in specifications and other information contained in this publication without prior notice, and the
reader should, in all cases, consult Mentor Graphics to determine whether any changes have been
made.

The terms and conditions governing the sale and licensing of Mentor Graphics products are set forth in
written agreements between Mentor Graphics and its customers. No representation or other affirmation
of fact contained in this publication shall be deemed to be a warranty or give rise to any liability of Mentor
Graphics whatsoever.

MENTOR GRAPHICS MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE.

MENTOR GRAPHICS SHALL NOT BE LIABLE FOR ANY INCIDENTAL, INDIRECT, SPECIAL, OR
CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING BUT NOT LIMITED TO LOST PROFITS)
ARISING OUT OF OR RELATED TO THIS PUBLICATION OR THE INFORMATION CONTAINED IN IT,
EVEN IF MENTOR GRAPHICS CORPORATION HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

RESTRICTED RIGHTS LEGEND 03/97

U.S. Government Restricted Rights. The SOFTWARE and documentation have been developed entirely
at private expense and are commercial computer software provided with restricted rights. Use,
duplication or disclosure by the U.S. Government or a U.S. Government subcontractor is subject to the
restrictions set forth in the license agreement provided with the software pursuant to DFARS 227.7202-
3(a) or as set forth in subparagraph (c)(1) and (2) of the Commercial Computer Software - Restricted
Rights clause at FAR 52.227-19, as applicable.

Contractor/manufacturer is:
Mentor Graphics Corporation
8005 S.W. Boeckman Road, Wilsonville, Oregon 97070-7777.
Telephone: 503.685.7000
Toll-Free Telephone: 800.592.2210
Website: www.mentor.com
SupportNet: supportnet.mentor.com/
Send Feedback on Documentation: supportnet.mentor.com/user/feedback_form.cfm

TRADEMARKS: The trademarks, logos and service marks ("Marks") used herein are the property of
Mentor Graphics Corporation or other third parties. No one is permitted to use these Marks without the
prior written consent of Mentor Graphics or the respective third-party owner. The use herein of a third-
party Mark is not an attempt to indicate Mentor Graphics as a source of a product, but is intended to
indicate a product from, or associated with, a particular third party. A current list of Mentor Graphics’
trademarks may be viewed at: www.mentor.com/terms_conditions/trademarks.cfm.

http://www.mentor.com
http://supportnet.mentor.com/
http://supportnet.mentor.com/user/feedback_form.cfm
http://www.mentor.com/terms_conditions/trademarks.cfm

Table of Contents

Chapter 1
LNt OdUCTION. . .. e 11
TEMINOIOQY . . . oottt e e 12

Chapter 2
UCD B BaSICS it ittt ettt et et e e 13
UCDB DataHierarchyo e e e 14
Scopes and COVENTEMS.ttt ettt e e e e e e 14
DeSIgN UNit SCOPES. . . oottt e e e 15
UCD B SCOPE TY RS . v v ittt et e e e e e e 15
UCDB DatlaMoOdelS.ot e e 18
Code Coverage Roll-Upsin Design Unitsand Instances. 18
Statement COVEIagEottt e 18
Branch Coverage.ot 20
Expression and Condition Coverage.o v it 25
Finite State Machine (FSM) Coverage. e 28
Toggle Coverage.ot 29
GIOUPS. . . ottt 35
SVA and PSL COVEIS . . .ottt 37
ASSEIION Dala. . . . o v e et e 38
SystemVerilog Covergroup COVEIrageot ittt ettt e 42
DS gN UNItS . ..o 51
Test DataRecordsand History Nodes e 52
UCDB USE CaSES. . . ottt ittt e et e e e e e e e e e e 56
UCDB ACCESS MOUES. . . .ottt e e e e e e 56
Error Handlingo 57
TraverseaUCDB iN MeEmMOrY.o e e e e 57
Read Coverage Data.t e 58
FiINd ObjectsinaUCDB. e e e e e 62
INCremeNnt COVENagEottt et e e e et e e e 63
Remove DatafromalUCDB. e 65
User-Defined Attributesand TagsintheUCDB, 66
Using Tagsto Traversefrom Test Planto CoverageData. 70
File Representation inthe UCDB i e 72
AddNew Datato aUCDBo e 76
Test Data ReCOIdS.ot 84
Create aUCDB from ScratchinMemory. e 85
Read Streaming MOdE. oo 87
Write Streaming MoOdeot 89
UCDBinQuestaand ModelSim e e 92
UCDB intheTool ArchiteCture i e 92
Using themti_AddUCDBSaveCB FLI Callback oo, 94
Questa Compatibility 96

UCDB API Reference, v10.1 3

Table of Contents

Chapter 3

UCDB API FUNCLIONS. . . oo e e e e e 97
SOUIrCE IS . . o 98
ucdb_CreateSrcFileHandleByName. e e 99
ucdb_CreateFileHandleByNum e 99
ucdb CloneFileHandle. 100
ucdb_CreateNullFileHandle. 100
ucdb_IsvalidFileHandle. 100
ucdb GetFileName. 101
ucdb GEtFIIENUM. e 101
ucdb GetFileTableSCope . . . oo oot e 102
ucdb SrcHileTableAppend. 102
ucdb FleTableSize. 102
ucdb FileTableName 103
ucdb FleTableRemOoVve 103
ucdb FlelnfOoTOStIING . .. oo oo 103
Error Handlero 104
ucdb RegisterErrorHandler 104
ucdb _IsModified. 104
ucdb ModifiedSINCeSIM. o 105
ucdb_SuppressModified 105
TSl ot 106
UCAD AdATESt. .. .o 107
ucdb AddPotentia Test.t e 108
UCOD GEtTESIDAA. oot ittt e e e e e 108
ucdb GetTestNaMe. 109
UCOD NEXI TSt . . .ot e e e e e e e e 109
UCAD ClONET St ..ot e e 109
UCAb REMOVET ESL.o e e 110
UCAD NUM T BSES . . .ottt e e e et et e e e 110
ucdb CreateHIiStoryNOde e 110
ucdb_AddHistoryNodeChild 111
ucdb_NextHIStoryNOdeo 111
ucdb HIStOrYROOLo 111
ucdb NextHIStOryROOLo e 112
ucdb NextHIstoryLoOKUD.o e 112
ucdb GetHistoryNodeParent e 113
ucdb_GetNextHistoryNodeChild 113
ucdb_CloneHIStOryNOdE.o 113
ucdb_GetHistoryKind. 114
ucdb_CalculateHistorySignaturet 114
Databasesand Database Files 115
UCAD OpEN .. e 117
ucdb_OpenReadSIIEaM.o 118
ucdb_OpenWItESIIEaMot e 118
Ucdb WIHtESreamo 118
UCAb WIHteStrEaMSCOPE. . . v o v ettt ettt 118
UCAD WWHte . o e 119

4 UCDB API Reference, v10.1

Table of Contents

UCAD ClOSE . .ot t 119
UCAD DBV &SI ON. . ..ottt e e e e e e 119
UCAD AP IV EISION . . .o e 120
ucdb SetPathSeparator.o 120
ucdb_GetPathSeparator.ot 120
ucdb Filename 120
User-specified Attributes. 121
ucdb AttrGEINEXL.o e 122
ucdb Attt Add 122
Ucdb AttrREMOVE.o 123
UCAD AtIIGEL.o 123
UCAD_ATTAITAYSIZE . . . oot e e e e e e 124
010 = P 125
000 o T O == <ot o] .= 129
ucdb ComposeDUNEIMEot e et 129
ucdb ParseDUNGAME. 130
ucdb _CreatelnstanCe.ot 130
ucdb_CreatelnstanceByName. 131
8o (o T O = = 1 01 132
ucdb_CreateCrossBYNamMe.ot 132
ucdb CreateTranSitionottt e e 133
ucdb CreateTransitionByName. i e e 133
ucdb_INsStanceSetDU. o 134
UCAD_ClONESCOPE . . . o v ottt et e e e e e e e e e e 134
UCAD_REMOVESCOPE . . . o ottt ettt e e e e et e e e e 135
UCAD SCOPEParENt.ot 135
UCAD SCOPEGEITOP. . . . ottt i ettt et e 135
ucdb GetSCopENAMEo e 136
ucdb SetSCopeENaME i e 136
UCAD . GEESCOPE T Y. . . o vt ettt et e e e e e e e e e e e 136
UCAD_GELSCOPESOUICETY PR « . . ot ittt e et e e e e e e e et e e 136
ucdb GetSCopeFIags.o 137
ucdb SetSCOPEFIagS. oo 137
ucdb GetScopeFlago e 137
ucdb SetScopeFlag. e 137
ucdb_GetScopeSoUrcelNfO o e 138
ucdb_SetScopeSourcelnfo 138
ucdb_SetScopeFileHandle 138
ucdb GetScopeWeight oo 139
ucdb _SetScopeWeight e 139
ucdb GetScopeGoalo 139
ucdb_SetScopeGoalo e 140
ucdb_GetScopeHIerName. 140
ucdb _GetlnstanCeDU i 140
ucdb_GetlnstanceDUNEIMEt e e e e 140
ucdb GetNUMCIOSSEACYPS . . o . vttt et e et et 141
ucdb GetlthCrossedCvp. . ..o ot e 141
ucdb_GetIthCrossedCvpNamE oot 141
ucdb GetTransitionItem 142

UCDB API Reference, v10.1 5

Table of Contents

ucdb_GetTransitionltemNameot e e e 142
ucdb NextPackageo 142
Ucdb NeXtDU . .. e 143
ucdb MatChDU. 143
ucdb NeXtSUDSCOPE. oot 143
ucdb_NextSCopelnDB o 144
ucdb NextinstOfDU e 144
ucdb_ScopelsUnderDU i 144
ucdb_ScopelsUnderCoverinstanCe.c.o it 145
ucdb CallBack e 145
ucdb PathCallBack. 145
ucdb MatChTestS 147
ucdb MatchCalBack 148
Coverage and StatistiCS SUMMEAIIES.ottt ettt e 149
Ucdb SetGoalo 152
UCdD GeatGOoao 152
ucdb SetWelghtPerType ... oo 153
ucdb_GetWeightPer Ty peo e 153
ucdb_GetCoverageSUMIMATYottt e e e e e et e 153
8o o 7= ()= =0 = P 154
UCOh GatStatiStiCS. oot it 154
ucdb_ CalcCoverageSUMIMArY.ottt e et e 155
ucdb GetTotalCoVErage.ottt e e 156
UCAD_GEIMEMOIYSEAS o oot ettt e e e e e e 157
UCdD_SEIMEMOIYSEALS oottt e 157
(O00Y 7 1 = 0P 158
UCb CreateNEXtCOVESottt 160
UCAh CloNECOVEY e 161
Ucdb RemMOVECOVES e 161
ucdb_MatchCoverINSCOPE oo 162
ucdb INCrementCoOVErot 162
ucdb GetCoverFIags.o 162
ucdb GetCoverFlag e 163
ucdb SetCoverFlag. e 163
UCAD GElCOVEI TY PR, . . ottt e e e e e 163
UCAD GatCOVErDaA v v ittt e e e 164
UCOD SEtCOVEIDAIA oottt 164
ucdb SetCovErCOUNt oot 164
ucdb SetCoverGoal 165
ucdb SetCoverLimit. 165
ucdb SetCoverWeight e 165
ucdb_GetSCOPENUMCOVENSottt e e e e e et e e 166
ucdb_GetECCoverNumHeaders. e e 166
ucdb GetECCoverHeader. 166
ucdb NextCoVErINSCOPEot 167
ucdb NextCoverlnDB i et e e 167
TOgOIES. « oo e e 168
ucdb_Createloggle. . . . oot e 168
ucdb_GetTogglelnfo. 169

UCDB API Reference, v10.1

Table of Contents

ucdb_GetToggleCovered 169
ucdb GetBCoverInfo e 169
OIOUPS . . o ot ettt e e 170
UCAD CreateGrOUPSCOPE .« . . oot ittt e e e e 171
ucdb_GetGroupInfoot 171
ucdb_ExpandOrderedGroupRangelList. 172
ucdb_GetOrderedGroupElementByIndex. 172
=0 173
ucdb ObJKING. . ..o 174
UCAD GO TYPE. . . ottt e e 174
8o | oI AN (o (@ o =" 174
ucdb_RemMOVEOD] TaG . . .« . o vt ettt et e e e e e 175
uCdD_GEtOD NUMTAGS. . . . o vt ettt e e e e e e et e e e e 175
ucdb GetObhjIthTago e 175
UCAD SEtOD TagS . - . o v vt ettt e e e 175
ucdb BeginTaggedObj 176
ucdb NextTaggedObh)o 176
UCAD NEXITAD. . . o v ot ettt e e e e e e e e e e e 176
FOrmal Data.o 177
ucdb SetFormalStatuso e 180
ucdb GetFormalStatuso 180
ucdb SetFormalRadius. e 180
ucdb GetFormalRadius e 181
ucdb SetFormalWitness.o 182
ucdb GetFormalWitneSs.ot 182
ucdb_SetFormallyUnreachableCoverTest i 183
ucdb_ClearFormallyUnreachableCoverTest. i 183
ucdb_GetFormallyUnreachableCoverTest i 184
ucdb AddFormalEnV o e 184
ucdb_AssocAssumptionFormalEnv 185
ucdb AssocFormallnfoTest i 185
ucdb NextFormalEnv. e 185
ucdb NextFormalENVASSUMPLIONo e 186
ucdb FormalENvVGEtData. 186
ucdb FormalTestGetinfo i 187
Test Traceability e 188
UCAD ASSOCCOVEI TS . .o ittt ittt et e e e e 189
UCAD NEXICOVEI TESt . . .ot ittt et e e et ettt e 189
Ucdb GetCovearTESIMasK . . . oottt et e e 189
ucdb SetCoverTestMasKt 190
ucdb OrCoverTestMasK.o e 190
Appendix A

UCDB Organizationottt et e et e e 191
TES SOt ON . . . oo 191
COVEIagE SECHION ottt 193
SCOPENOAES . . . e 193
(@001] =0 193

UCDB API Reference, v10.1 7

Table of Contents

NEStING RUIESo e e 194
A OULES. . . . o e 197
Appendix B: UCDB Diff BNF e 205

I ndex

End-User License Agreement

UCDB API Reference, v10.1

List of Figures

Figure 2-1.
Figure 2-2.
Figure 2-3.
Figure 2-4.
Figure 2-5.
Figure 2-6.
Figure 2-7.
Figure 2-8.
Figure 2-9.

Figure 2-10.
Figure 2-11.
Figure 2-12.
Figure 2-13.
Figure 2-14.
Figure 2-15.
Figure 2-16.
Figure 2-17.
Figure 2-18.
Figure 2-19.
Figure 2-20.
Figure 2-21.
Figure 2-22.

Figure 2-23

Basic Design/Coverage Hierarchy, 14
Design/Coverage Hierarchy with DesignUnits 17
DataModel for Verilog Statements i 19
DataModel for Verilog Statementsin Generate Blocks. 20
DataModel for aVerilogif-else-if oo 22
DataModel foraVHDL if-elsif 23
DataModel foracaseStatementt 25
DataModel for an EXPression.ot 26
DataModel for aFinite StateMachine., 28
DataModel foraVHDL Integer Toggle. 31
DataModel foranEnumToggle ... 32
DataModel for an Extended Register Toggle. 33
DataModel for aConnected Net Toggle, 34
DataModel for aGroupovo vt 36
DataModel for SVA and PSL Cover Directives 38
Data Model for Assertions (with Fail CountOnly) 39
DataModel for an Assertion (with All Counts) 40
Data Model for an Immediate Assertion with Pass/Fail Counts. 41
DataModel for aCrosS. . ..o oo v e 43
Data Model for a Covergroup (with Per-Instance Coverage). 48
DataModel for an Embedded Covergroup.oovin... 50
DataModel for aTest Planwith Linked Coverage. 54
. Questaandthe UCDB SaveFLI Calback 93

UCDB API Reference, v10.1

List of Tables

Table A-1. Fieldsof aTestRecord e 191
Table A-2. Attributesof aHistory Node 192
Table A-3. Nesting RulesEnforcedby UCDB 194
Table A-4. UCDB Defined Attributes i e 197
Table A-5. UCDB Defined ObJeCtSo vt e e e 201

10 UCDB API Reference, v10.1

Chapter 1
Introduction

UCDB API isan application programming interface for the Unified Coverage Database
included in the Questa SV/AFV and ModelSim SE products. The UCDB and its API are
completely independent of Questa and Model Sim, however UCDBs are easily created with
these tools. In this document, the term Questa refers to both the Questa and the ModelSim SE
systems.

Questa software uses the UCDB API for saving, reading, reporting on and merging UCDB
format databases. The Questa GUI features are based on the UCDB API as are the command-
line interface features in the coverage view mode:

shel | pronpt> vsim-viewov ucdb file

Questa UCDB format databases are created with the coverage save command and UCDBs can
be externally processed with the vcover commands (see the Questa User Guide and Reference
manuals). For simple tasks such as generating a coverage report or merging coverage data, use
the corresponding Questa tool features. Use the UCDB API for more complex tasks such as:

» Importing datainto a UCDB or Questa database from another source.

» Exporting data to a database that has aformat not supported by Questa (for example, an
SQL database or a graphing package).

* Analyzing coverage datain away not supported by any tool.

» Loading coverage datainto aUCDB from a VPl application linked with Questa (that
will be saved by Questa).

UCDBSs can be read from, and written to, using the C-based UCDB API. A UCDB can be
created with the API; data can be added to an existing UCDB; and a UCDB can be traversed
and analyzed with theread API. The UCDB API library supports both memory efficient modes
(read/write streaming modes) and a fully-popul ated data model (in-memory mode).

The UCDB API library isin mti_install _dir/questasim/platform/libucdb.a (UNIX) and ucdb.lib
(Windows). The annotated header file is mti_install_dir/questasim/include/ucdb.h. Examples
illustrating how to compile various UCDB API applicationsarein
mti_install_dir/questasim/examples/ucdb.

UCDB API Reference, v10.1 11

Introduction

Terminology

Child — node that is a descendant of another, where “ decent” means nesting in adesign
hierarchy, in acoverage hierarchy or as a subset of data categorized with the parent.

Coverage scope — scope that represents a coverage grouping of some kind.

Coveritem — leaf nodein aUCDB (i.e., anode not capable of having child nodes) used
to store a coverage count.

Design hierarchy — part of the UCDB data model representing the design, testbench,
and coverage.

Design unit — scope that represents a Verilog (or SystemVerilog) module or aVHDL
entity-architecture.

Design unit list — set of all design unitsin a UCDB.

History node — generalized test data record that captures information about the
database merges and test plan imports used to create the UCDB.

Instance — scope that represents a component instance (for example, amodule
instantiation) in the design hierarchy.

Node — general term for a scope or coveritem.

Parent — ancestor node (of achild), which represents ahigher level of design hierarchy,
ahigher level of coverage hierarchy or a grouping.

Scope — hierarchical object inaUCDB (i.e., a node capable of having child nodes).

Tag — name associated with a scope—typically used to link test plan scopes with
instance, coverage, or design unit scopes—similar to a user-defined attribute with a
name but not a value.

Test plan hierarchy — data model structure (whose nodes are linked to coverage,
instance or design unit data structures) used to analyze coverage in the context of atest
plan.

Test plan scope (or test plan section) — scope that represents part of atest plan.

Test data record — data model structure that stores information about the test and the
tool from which the UCDB was created.

User-defined attribute — name-value pair (explicitly added by the user) that is not part
of the UCDB primary data model.

12

UCDB API Reference, v10.1

Chapter 2
UCDB Basics

The UCDB is a general -purpose database for storing verification data. Most of thisis of a
coverage nature, therefore the name “Unified Coverage Database” . But the UCDB can store
more types of data:

Code coverage data— statement, branch, expression, condition, toggle, and FSM.

Functional coverage data— from SystemV erilog covergroups, and SVA or PSL
“cover” statements.

Assertion data— from SV A or PSL “assert” statements.

History data— information about any number of test runs, merges, or imports that
produced data in the UCDB.

User-defined data.

Design hierarchy — so that coverage and assertion data appear in the proper design or
testbench context.

Design units — needed to represent design hierarchy fully; these can correspond to
Verilog modules or VHDL entity/architecture pairs.

Test plan hierarchy — so that coverage items can be related to atest plan, and
verification data can be analyzed in terms of the test plan rather than in isolation.

UCDB API Reference, v10.1 13

UCDB Basics
UCDB Data Hierarchy

UCDB Data Hierarchy

Scopes and Coveritems

Designs and testbenches are hierarchically organized. Design units (Verilog modules or VHDL
entity/architectures) can be hierarchical, though they are not always. Test plans can be
hierarchical. Even coverage data (of which the SystemVerilog covergroup is the best example)
can be hierarchical. Therefore, the UCDB needs some general way to store hierarchical
structures.

The UCDB has scopes (also referred to as hierarchical nodes), which store hierarchical
structures (i.e., elements of a database that can have children). Coverage data and assertion data
are stored as counters, which indicate how many times something happened in the design. For
example, they count how many times a sequence completed, how many times a bin incremented
or how many times a statement executed.. In UCDB terminology, these types of counters and
some associated data are called coveritems. These counters are database |eaf nodes, which
cannot have children.

Tree models of hierarchical organization are central to the UCDB. Figure 2-1 isan illustration
of asimple hierarchy.

Figure 2-1. Basic Design/Coverage Hierarchy

top —_ child1 ——» | stmt
scope scope coveritem
| child2 ——>» | stmt
scope coveritem
L acovergroup —_— acoverpoint —— | binl
scope scope

coveritem

coveritem

14 UCDB API Reference, v10.1

UCDB Basics
UCDB Data Hierarchy

Design Unit Scopes

For representing an HDL design, asimple hierarchy as shown above is not sufficient. For
example, take this SystemV erilog code that corresponds to the tree in Figure 2-1.:

nmodul e top;
int i;
cover group acovergroup;
acoverpoint: coverpoint i {
bins binl = { 0 };
bins bin2 = { 1 };
}

endgr oup
acovergroup acovervar = new,
subnmodul e chil d1();
subnodul e chil d2();
endnmodul e
nmodul e subnodul e;

initial $display("hello from %) ;
endnodul e

The scopes top, childl, and child2 represent the module instances of this design hierarchy. The
design units (SystemV erilog modules) need to be represented also.

In aUCDB created by Questa with code coverage, there will be code coverage associated with
the design unit. Thisisthe union of code coverage from the instances of the design unit. Thisis
calculated by the kernel, and because it is available immediately from the kernel, it is stored

directly in the UCDB. Thisrequires that the UCDB store another scope to correspond to the
design unit.

Questa also stores source file information with the design unit. (Thisis not arequirement of a
UCDB, but happens to be the case when one is created from Questa.)

From each modul e instance scope, its corresponding design unit may be accessed; in fact, the
design unit must exist prior to creating the instance.

UCDB Scope Types

Because the UCDB needsto distinguish between module instances, design units, and even other
scopes like those for covergroups and coverpoints, the UCDB has a scope type associated with
every scope. This scopetype isthe C type ucdbScopeTypeT.

Scope types are in these categories (found in the ucdb.h):

» HDL scope — these are the basic building blocks of the design hierarchy, or named
scopes (in the true HDL sense, rather than the UCDB sense) in the design.

» Design unit scope — these must be provided for those HDL scopes which have
corresponding design units.

UCDB API Reference, v10.1 15

UCDB Basics
UCDB Data Hierarchy

» Cover scope — these are used to introduce hierarchy in coverage objects, essentially to
group them together.

» Group scope — these are used to maintain bus structures for supporting part selects and
supporting a general bus data model.

» Test plan scope — a scope to represent part of atest plan hierarchy; thisis unique
because it can only have children that are other test plan scopes.

These relationships must exist between HDL scopes that are instances of a given design unit
scope:

* UCDB_INSTANCE has a corresponding UCDB_DU_MODULE or
UCDB_DU_ARCH scope asits design unit.

» UCDB_PROGRAM has a corresponding UCDB_DU_PROGRAM scope asits design
unit.

 UCDB_PACKAGE hasacorresponding UCDB_DU_PACKAGE scope asitsdesign
unit. Note that, though VHDL and SystemV erilog do not have actual instances of
packages in the language, tools like Questa do represent a package twice: the
UCDB_PACKAGE corresponds to the top-level node in the instance tree, and
UCDB_DU_PACKAGE to the definition of the package.

» UCDB_INTERFACE hasacorresponding UCDB_DU_INTERFACE scope asits
design unit.

Figure 2-2 revisits the hierarchy of Figure 2-1 and shows how design unit scopes exist to
represent the SystemV erilog code given above. The ucdbScopeTypeT values for the scopes are
given, aswell as coveritem types which have not yet been discussed. Links from the HDL
scopes to the design unit scopes are indicated as red dashed lines.

Note that the design unit scopes (UCDB_DU_MODULE in this case) have no special
relationships among them; they are not really part of design hierarchy, though they represent a
crucia part of the design.

In this example, the statement coverage coveritem (UCDB_STMTBIN) existsin both module
instances (/top/child1 and top/child2) as well as the design unit scope (submodule). This shows
one of the uses of the design unit scope: not only doesit allow us to determine that child1 and
child2 are instances of the same module, but any design-unit-wide data can reside “inside” the
design unit scope.

16 UCDB API Reference, v10.1

UCDB Basics
UCDB Data Hierarchy

Figure 2-2. Design/Coverage Hierarchy with Design Units

top - submodule ——> | stmt
a
UCDB [S)(Elopl\?IODULE " STy coveritem
DU| 1 UCDB_DU_MODULE
1 UCDB_STMTBIN
11
! 1
1
top o E— child1 -,'—> stmt
1
UCDBS(I:ISIE?I'ANCE UCDBS(I:ﬁFS)?I'ANCE ', coveritem
. ! 1
k UCDB_STMTBIN
| . child2 ——>» stmt
Seops coveritem
UCDB_INSTANCE UCDB. STMTBIN
— acovergroup —_— acoverpoint ——> | binl
scope scope .
UCDB_COVERGROUP UCDB_COVERPOINT coveritem

UCDB_CVGBIN

| » | bon2

coveritem
UCDB_CVGBIN

UCDB API Reference, v10.1 17

UCDB Basics
UCDB Data Models

UCDB Data Models

The UCDB API isavery general one that creates certain objects — such as scopes, coveritems,
test data records — with certain names, types, and attributes. This allows creation of many
different potential data models.

The data models are important because they capture assumptions about how Questa creates a
UCDB data structure for a given kind of coverage. Other tools might be able to read and make
sense of different data structures, but Questa will not.

Thisisonly to say that the UCDB API itself is more general than Questa: many different kinds
of coverage hierarchies could be created through the API, but only a small subset of those will
be valid input to Questa.

Over time, the Questa assumptionswill be refined and fewer assumptions made. This document
sets out to describe the minimum set of assumptions so that a UCDB can be read by Questa.

Code Coverage Roll-Ups in Design Units and Instances

In releases prior to 6.4, Questa created code coverage underneath both design units and
instances. The coverage under the design unit was the union of coverage under all instances.
Thiswas done primarily to make coverage analysis by design unit faster.

From 6.4 onward, the code coverage roll-up — as it is called, the aggregation of design-unit-
based coverage from instances of those design units—is done implicitly (or “on-the-fly”) when
the database is loaded into memory. However, when accessed using read streaming mode, the
nature of the storage cannot be hidden, since read streaming mode reflects exactly what islaid
out on disk. In that case, coverage never appears underneath design units.

In releases prior to 6.4, the design unit roll-up was skipped (not stored) when there was only a
single instance of the design unit — because in that case, the roll-up would be identical to the
instance. Thiswas an optimization, though one that is necessarily exposed to the user in read
streaming mode.

Statement Coverage
Statement coverage datais created simply as a coveritem, with no hierarchy.
Verilog Example (“ statement”):

nmodul e top;
initial $display("hello world");
endnodul e

18 UCDB API Reference, v10.1

UCDB Basics
UCDB Data Models

Figure 2-3. Data Model for Verilog Statements

top

scope
UCDB_DU_MODULE

A

top —_— itQ

scope

coveritem
UCDB_INSTANCE UCDB._STMTBIN

Flag: UCDB_INST_ONCE

Note how in Figure 2-3 the statement bin does not appear with the design unit also; thisis
because of the UCDB_INST_ONCE optimization described in the section Design Units.

Statement Coverage with Generates
Verilog Example (* statement-generate”):

nmodul e top;
bottom #0 inst0();
bottom #1 inst1();
endnodul e
nodul e bott om
paraneter clause = 0;
if (clause == 0)
begi n: cl ause0
initial $display("hello from%n);
end
el se
begi n: cl ausel
initial $display ("hello from %) ;
end
endnodul e

There are a number of interesting things to note here:

« UCDB_GENERATE scopes are created for the generate blocks. These must be created
even if the generate block does not have aname generated by the user (the * begin: |abel”
constructs in the example). Having different generate blocks for different scopes would
handle the case of the for-generate where different blocks correspond to the same line of
source.

» The statements appear inside the generate scopes as well as the design unit scopes. In
Figure 2-4, the line number associated with the statement is shown to distinguish
between the two statements.

* While the code coverage from generate blocks could be merged into the instance — for
example, having another set of merged statement coveritems as children of the

UCDB API Reference, v10.1 19

UCDB Basics
UCDB Data Models

UCDB_INSTANCE scopesin this example — that is not a requirement of the data
model. Questa does this aggregation on the fly, so never stores any redundant data with
the instances themselves. (Y es, this philosophy isinconsistent with design units, where
redundant data is stored.)

Figure 2-4. Data Model for Verilog Statements in Generate Blocks

top - bottom
L
n
scope " scope
UCDB_DU_MODULE 1 UCDB_DU_MODULE
1
A I
! a
)
top R E— inst0 —,'—» clause0 ——>» | stmt
1
scope scope ,' scope -
UCDB_INSTANCE UCDB_INSTANCE , UCDB_GENERATE coveritem
' UCDB_STMTBIN
1 Line: 19
1
e instl e clausel ——>» | stmt
scope scope -
UCDB_INSTANCE UCDB_GENERATE coveritem
UCDB_STMTBIN
Line: 23

Branch Coverage

Branch coverage fallsinto 3 special cases:

1. Verilogif-else— in which case asingle UCDB_BRANCH scope has 2 coveritems, one
each for the if and else branches.

2. VHDL if-elsif-else— in which case there are as many coveritems as the if-cascade has
clauses.

3. Verilog and VHDL case statements — in which case thereis one coveritem per valuein
the case statement.

Additionally, branch coverage has extra information in the scope:

« BCOUNT attribute — total number of times the test was executed. Thisis useful if the
branch does not have an “else” clause.

» BTYPE attribute — to distinguish between branch and if-else

» BHASEL SE attribute — to distinguish between if-else branches having an else and
those which do not.

20 UCDB API Reference, v10.1

UCDB Basics
UCDB Data Models

Branch Coverage of Verilog if-else

SystemV erilog Example (“branch-vliog-if”):

nmodul e top;

bit x =

bit y =

al ways @x or y) begin
if (x)

0;
0;

$di splay("x is true");
else if (y)
$di splay("y is true");

end
initial begin
#1;, x = 1,
#1;: x = 0;
#1, y = 1;
end
endnodul e

In Figure 2-5, the design unit is omitted. Thisisthe first data model drawing where coverage
counts are indicated. Some data is redundant, but this describes the basic components of the
data mode!:

UCDB_BRANCH scopes are named according to type of coverage and line number.
(Note: in Questa 6.3, these scopes are named “dummy_coverage scope”, the naming
according to line number is new to 6.4.)

BCOUNT isthe sum of if and else counts (even if the “else” islacking, asin theline 7
branch.)

BTYPE isO for these cases to indicate an “if” as opposed to a*“case” statement.
BHASELSE is O for the line 7 branch to indicate that it does not have an else clause.
“if_branch” isthe coveritem name for the true clause of the branch.

“else_branch” isthe coveritem name for the false clause of the branch if it has an
explicit “else”.

“all_false branch” isthe coveritem name for the missing else.

UCDB API Reference, v10.1 21

UCDB Basics
UCDB Data Models

Figure 2-5. Data Model for a Verilog if-else-if

top —_— #branch#15# —_ if _branch)
scope scope i
UCDB_INSTANCE UCDB_BRANCH UCDB SRANCHBIN
BCount: 3 Count: 1
Blype: 0 Line: 15
BHasElse: 1
— else_branch ’
coveritem
UCDB_BRANCHBIN
Count: 2
Line: 17
— #branch#17# —_ if_ branch ’
scope coveritem
UCDB_BRANCH UCDB_BRANCHBIN
BCount: 2 Count: 1
BType: 0 Line: 17
BHasElse: 0
— all_false_branch ’
coveritem
UCDB_BRANCHBIN
Count: 1
Line: 17

Branch Coverage of VHDL if-elsif-else
VHDL Example (“branch-vhdl-if”):

l'ibrary | EEE;

use | EEE. STD LOCd C 1164. al | ;
use std.textio.all

entity top is end;
architecture arch of top is

signal x : std_logic :="'0
signal y: std_logic :="'0
begin
branch: process

vari abl e myoutput : line;
begin

wait until x'event or y'event;

if (x ="1") then
write(nyout put,string ("x is true"));
writeline(output, myoutput);

elsif (y ='1") then
wite(nyoutput,string ("y is true"));
writeline(output, myoutput);

end if;

end process branch;

22 UCDB API Reference, v10.1

UCDB Basics
UCDB Data Models

drive: process

begin

wait for 10 ns;
X <="'1";

wait for 10 ns;
X <= "'0";

wait for 10 ns;
y <="'1%;
wai t;

end process drive;
end architecture;

Figure 2-6. Data Model for a VHDL if-elsif

scope
UCDB_INSTANCE

Al

top (arch)

scope
UCDB_DU_ARCH

top —_—

#branch#24#

scope
UCDB_BRANCH
BCount: 3
BType: O
BHasElse: 0

—> if_branch ’

coveritem
UCDB_BRANCHBIN
Count: 1
Line: 24

true_branch ’

coveritem
UCDB_BRANCHBIN
Count: 1
Line: 27

all_false_branch ’

coveritem
UCDB_BRANCHBIN
Count: 1
Line: 24

Thisisthe VHDL branch to correspond to the previous Verilog one. In this case, the design unit
is shown to illustrate the difference between VHDL and Verilog design units: the scope typeis
different, and the architecture name follows the entity name in parenthesis. (These diagrams
omit the work library name, which varies depending how the module or architecture was
compiled. Technically that is part of the design unit name in the UCDB, too.)

The most obvious difference is that thereisasingle UCDB_BRANCH scope rather than
multiple ones. Thisis because VHDL hasthe “elsif” syntax that allows a branch to have
multiple paths rather than just 2 paths. Some things are in common:

» Thefirst branch coveritem is called “if _branch”.

» Thelast coveritemiscalled “al_false branch” if thereis no explicit “else”.

* If there were an explicit “else”, the last coveritem would be called “else_branch”.

* Theattributes with the UCDB_BRANCH scope carry the same meanings.

UCDB API Reference, v10.1

23

UCDB Basics
UCDB Data Models

And some things are different:

» Coveritemsto correspond to “elsif” branches are called “true_branch”.

» TheUCDB_BRANCH scope may have arbitrarily many coveritem children to
correspond to all the “elsif” branchesin the VHDL if construct.

Case Statements
SystemVerilog Example (“branch-case’):

nodul e top;
int x = 0;
al ways @ x)
case (Xx)
1 $display("x is 1");
2: $display("x is 2");
defaul t: $di splay("x is neither 1 nor 2");
endcase
initial begin
#1: X ;
#1; x
#1; x

11
2;
3.

end
endnodul e

Thisisvery similar to theif-elsif construct. The key difference isthat the “BTY PE” attribute
has value 1, and that all the coveritems are named “true_branch”.

Note how thereisno way in the datamodel to distinguish between the explicit valuesin the case
statement and the default value. (There are differences in the line numbers stored with the
coveritems, so the difference could be determined from source if available.)

24 UCDB API Reference, v10.1

UCDB Basics
UCDB Data Models

Figure 2-7. Data Model for a case Statement

top —» | #branch#l4# |——— true_branch)

scope scope i
UCDB_INSTANCE UCDB_BRANCH UCDB BEANCHBIN
: BCount: 3 Count: 1
Y Blype: 1 Line: 15
BHasElse: 0

top | 5 true_branch ’

scope i
coveritem

UCDB_DU_MODULE UCDB_BRANCHBIN

Count: 1

Line: 16

— true_branch ’

coveritem
UCDB_BRANCHBIN

Count: 1
Line: 17

Expression and Condition Coverage

Expression coverage is defined to be the truth table coverage for an expression used to drive a
continuous assignment. Condition coverage is defined to be the truth table coverage for an
expression in abranch.

SystemVerilog Example (“expr-cond”):

nodul e top;
logic a = 0;
logic b = 0;
assign ¢ = (a|]b);
al ways @ c)
if (a|l|] b)
$di splay("a or b");
initial begin
#1; a = 1;
#1; a = 0;
#1;, a = 1
end
endnodul e

Note the example is configured by default for expression coverage only. It can be configured for
either expression coverage, condition coverage, or both. Expression coverageisfor line 14;
condition coverageisfor line 16.

UCDB API Reference, v10.1 25

UCDB Basics
UCDB Data Models

Figure 2-8. Data Model for an Expression

top — #expr#la# UDP . —— 1-1 >

scope scope scope

UCDB_INSTANCE UCDB_EXPR UCDB_EXPR UCDgOE‘f(rF'}gSIN
. #EHlI)EADER#:’a Count 1
' (alby
—> -11
top FEC —_— a0
scope B coveritem
UCDB_DU_MODULE UCDE: e coveritem ggan?._OEXPRBlN
- UCDB_EXPRBIN -

#FECSTR#={00}

Count: 2 — 000 ’
> a_l coveritem
UCDB_EXPRBIN

coveritem Count: 2

UCDB_EXPRBIN
#FECSTR#={10} L5 | unknown

Count: 1
coveritem
—> b_0 UCDB_EXPRBIN
Count: 1
coveritem

UCDB_EXPRBIN
#FECSTR#={00}
Count: 2

— b_1 }

coveritem
UCDB_EXPRBIN
#FECSTR#={01}
Count: 0

The data model for expression/condition coverage is split into two styles, each represented
simultaneously by default. (Thereisaway to turn off FEC-style coverage, with the -nocoverfec
switch to vopt, for example.) The UDP-style coverage is underneath the node named “UDP”.
UDP stands for “user-defined primitive” which really means “truth table.” Verilog UDPs use a
truth table syntax in their specification and the names of the UDP-style coverage bins are
similar to Verilog UDP row specifications.

FEC-style coverageis a so a truth-table-based coverage, but of adifferent kind of truth table.
FEC stands for “focused expression coverage’. While a UDP-style truth table is somewhat
arbitrarily generated to have a minimal number of rows, the FEC-style truth table considers
each input independently, where each row in the truth table correspondsto achangein a
particular input, where that input affects the output. Complete coverage in FEC guarantees that
each input changed. FEC is also sometimes called MCDC (modified condition decision
coverage).

26 UCDB API Reference, v10.1

UCDB Basics
UCDB Data Models

If this test case were configured for condition coverage instead, the differences would be:

e UCDB_COND scopetypeinstead of UCDB_EXPR.
 UCDB_CONDBIN coveritem type instead of UCDB_EXPRBIN.
 EHEADER would be the same except for the last line: “(a|| b)”.

» Differencein line numbers, of course.

» Differencein the coverage enabled flags in the design unit: see more on design units,
below.

UDP-Style Expression and Condition Coverage

Probably the easiest illustration of how the “UDP’ sub-tree data model corresponds to UDP-
style expression coverage isto show the report generated by Questa:

Li ne 4 Stmt 1 assign ¢ = (a|]b);
Expression totals: 2 hits of 3 rows = 66. 7%
Truth Tabl e: a
| b
hits |[(a | b)

Row 1: 11-1

Row 2: FrxQrkk 11

Row 3: 2 000

unknown: 1

The columns of the truth table are stored with the EHEADER attribute with the expression
scope. Thisis anewline-separated string. The coveritem names correspond literally to the rows
of the truth table: “1-1", “-11", “000”, and “unknown”. Note that the “unknown” coveritem
does not contribute to coverage; its presence is necessary for the report only.

FEC-Style Expression Condition Coverage

The FEC sub-tree data model is likewise explained by the Focused Expression View portion of
the report:

Li ne 14 Item 1 assign ¢ = (a|b);
Expression totals: 3 hits of 4 rows = 75. 0%
Rows: hits Fec Targets Mat chi ng i nput patterns
Row 1: 2 a0 { 00}
Row 2: 1 a_l { 10 }
Row 3: 2 b 0 { 00}
Row 4: S b_1 { 01}

Thisisvery similar to the UDP style data model, except that the bin names are “Fec Targets” —
meaning, the specific input transition represented by the row. With the “-fecanalysis’ option,
the report shows matching input patterns, which are associated as the attribute “#FECSTR#”
with each bin.

UCDB API Reference, v10.1 27

UCDB Basics
UCDB Data Models

Finite State Machine (FSM) Coverage

SystemVerilog Example (“fsm”):

nmodul e top;
bit clk = 0;
bit i = 0;
bit reset = 1;
enum{ stR stO } state;

al ways @ posedge cl k or posedge reset)

begin
if (reset)
state = stR
el se
case(state)
stR
endcase
end

al ways #10 cl k = ~cl k;

if (i==0) state = stO;

always @state) $display(state);

initial begin
$di spl ay(state);
@ negedge cl k);
@ negedge cl k)
@ negedge cl k);

reset = 0;

Figure 2-9. Data Model for a Finite State Machine

$st op;
end
endnodul e
top — state
scope scope
UCDB_INSTANCE UCDB_FSM
FSMID="state”

state
scope

UCDB_FSM_STATES

trans

scope
UCDB_FSM_TRANS

°

coveritem
UCDB_FSMBIN
FStateVval: "0”
Count: 2

coveritem
UCDB_FSMBIN
FStateVval: "1”
Count: 1

—> stR—>st0

coveritem
UCDB_FSMBIN
Flag: IS_FSM_TRANS
Count: 1

—> stR—>stR

coveritem
UCDB_FSMBIN

Flag: IS_FSM_TRANS
Count: 2

—> st0—>stR

coveritem
UCDB_FSMBIN
Flag: IS_FSM_TRANS
Count: 0

28

UCDB API Reference, v10.1

UCDB Basics
UCDB Data Models

Thefinite state machine isrepresented as atwo-level hierarchy of coverage scopes: the topmost
one for the state machine itself (whose “FSMID” isidentified as an attribute) and two child
scopes: one for states and one for transitions. These are distinguished by name and scope type.
The state machine scope itself (of type UCDB_FSM) isidentified by the name of the state
variable if possible — note this does mean that it can take the same name as atoggle coverage
scope for exactly the same variable in HDL source. Refer to Toggle Coverage for more
information.

The state coveritems are named according to the state name. An integer form of the state name
isheld in the attribute FSTATEVAL and used in the report.

The transition coveritems are named according to the transition. Theflag IS FSM_TRAN is
used to distinguish a coveritem of type UCDB_FSMBIN when it isan FSM transition bin.

Toggle Coverage

There are six basic types of toggle coverage:

* Integer toggles (VHDL only with Questa) — some unique number of integer values are
maintained up to a configurable tool limit (with Questa.) The toggle is covered if the
toggle is assigned any value.

Note
D In Questa, Verilog or SystemVerilog integer types are broken into constituent bits, so

become net or register toggles.

Enum toggles— Thetoggle is covered if al the enum values have been assigned.
* Register toggles, 2 transition — Covered if toggled from 0->1 and 1->0.

* Net toggles, 2 transition — Covered if toggled from 0->1 and 1->0. Net (or wire)
toggles must be reported without redundancy: in other words, connected nets are
reported only once, by the top-most or canonical name. This checking for redundancy is
sometimes called “unaliasing” because two connected netsin different levels of
hierarchy are really aliases of each other. The top-most net is usually considered to have
the canonical name for al connected nets.

» Extended register toggles, with 6 transitions— Adds Z transitions. Covered if it toggles
from 1->0 and 0->1 without any z transitions, otherwise it must show all transitions:
0->1, 1->0, 0->Z, Z->0, 1->Z, and Z->1.

» Extended net toggles, with 6 transitions — Adds Z transitions, with coverage rules
similar to register toggles. Unaliasing or elimination of redundancy among connected
nets also occurs.

UCDB API Reference, v10.1 29

UCDB Basics
UCDB Data Models

VHDL Integer Toggles
VHDL example (“toggle-int”):

l'ibrary | EEE;

use | EEE. STD LOG C 1164. al | ;
use std.textio.all

entity top is

end;
architecture arch of top is
signal x : integer := 0;
begin
branch: process
vari abl e myoutput : line;
begin

wait until x'event;
write(nyout put, Xx);
writeline(output, myoutput);

end process branch;

drive: process

begin
wait for 10 ns;
X <= 1;
wai t;

end process drive;

end architecture;
The UCDB_TOGGLE scope is named the same as the variable or signal being covered; if it

were also afinite state machine variable, the name would thus appear twice in the database.

The scope has specific information relevant to toggles, two fields of which are visiblein
Figure 2-10:

* Type— Thesetypes are the ucdbToggleTypeT enum values that correspond to the six
types of toggles.

» Dir (Direction) — The ucdbToggleDirT enum values: INTERNAL, IN, OUT, and
INOUT. These are used by the report software to restrict the subset of toggles being
reported upon.

e Canonical Name — The canonical name of the toggle node if it isawire and is not the
top-most node. Thisis not shown in the example because it isNULL.

30 UCDB API Reference, v10.1

UCDB Basics
UCDB Data Models

Figure 2-10. Data Model for a VHDL Integer Toggle

scope scope .
UCDB_INSTANCE UCDB_TOGGLE UCDBCO}’grgeG”EEBW
Type: INT Count: 1
Dir: INTERNAL
— @
coveritem
UCDB_TOGGLEBIN
Count: 1

The integer toggle has bins for both of the valuesit assumes: “0” and “1”. The bins are named
according to the integer value of the signal.

Note

D If there were no data changes (no events) on the integer signal, there would be no binsfor
the toggle scope in the UCDB. However, because the default integer valueis counted asa
bin value, it is not possible to have only one bin for the integer toggle; it has at |east the
default value plus some set of other values to which it was assigned (up to a configurable
tool limit with the ToggleM axI ntValues variable in the modelsim.ini file.)

Enum Toggles
SystemV erilog Example (“toggle-enum”):

nmodul e top;
enum{ a, b, ¢} t = g
initial begin
#1, t = c;
#1; t = b;
end
endnodul e

Thisisvery similar to the VHDL Integer Toggles, except with the toggle type equal to ENUM.
The coveritems are named according to enum values. In this case, the default valueis explicitly
not covered, to distinguish between an explicit and implicit assignment to that value. In this

particular ssimulation, “b” and “c” are covered while“a’ isnot, so the toggle “/top/t” itself is
uncovered.

UCDB API Reference, v10.1 31

UCDB Basics
UCDB Data Models

Extended Register Toggle

Figure 2-11. Data Model for an Enum Toggle

top

—_—

scope
UCDB_INSTANCE

t

scope
UCDB_TOGGLE
Type: ENUM
Dir: INTERNAL

—»©
coveritem

UCDB_TOGGLEBIN
Count: 0

-

coveritem
UCDB_TOGGLEBIN
Count: 1

—»©
coveritem

UCDB_TOGGLEBIN
Count: 1

This shows an exampl e of the extended (6-transition) toggle for aregister only. Extended toggle
coverage can be used for nets, too, but this document will not illustrate it; the data structure will
be identical except for the toggle type.

SystemVerilog Example (“toggle-reg-ext”):

nmodul e top
logicr
initial
#1;
#1;
#1;
#1,;
#1;
#1;
end
endnodul e

i B e i i o [

D
o nnine =

The type of the toggle scope shows that this is aregister extended toggle. The 6 bins are named
according to the possible transitions among O, 1, and z. If thiswere a 2-transition toggle, it
would be covered based on “toggle h |” and “toggle | _h” bins. However, since it has some z
transitions with non-zero count, it would have to have al bins with non-zero count in order for
the “/top/r” register toggle to be covered.

32

UCDB API Reference, v10.1

UCDB Basics
UCDB Data Models

Figure 2-12. Data Model for an Extended Register Toggle

top —_— r

scope scope
UCDB_INSTANCE UCDB_TOGGLE

Type: REG_SCALAR_EXT

Dir: INTERNAL

Net Toggle with Connected Net

—> toggle_h_|

coveritem
UCDB_TOGGLEBIN
Count: 0
toggle_l_h
toggle |z coveritem
UCDB_TOGGLEBIN
coveritem Count: 0
UCDB_TOGGLEBIN
Count: 1
toggle z |
toggle h S coveritem
UCDB_TOGGLEBIN
coveritem Count: 1
UCDB_TOGGLEBIN
Count: 1
> toggle_z_h
coveritem
UCDB_TOGGLEBIN
Count: 1

Note that this example — because of its contrived and trivial nature — requires turning off the
optimizer in Questato allow the “bottom” module to survive elaboration.

SystemVerilog Example (“toggle-net”):

nodul e top;
bit t = 0;
wire tnet;
assign tnet
initial begi

#1; t
#1; t

ORI

end
bottomi (tnet);
endnodul e

nmodul e botton(input wire tnet);

al ways @t net)
$di spl ay(tnet);
endnodul e

UCDB API Reference, v10.1

UCDB Basics

UCDB Data Models

Since the UCDB does not represent connectivity, it must indicate the connectedness of two nets
(“tnet” in this example) in adifferent way. These two data attributes are used:

* Thetop node hasaflag—UCDB_IS TOP_NODE — set for the toggle scope. Thisis
useful when traversing the entire database to restrict the report or other analysis to top-
level (canonical) nodes only. However, it does not suffice for analyzing a subset of the
database. Note that hierarchical references as well as port connections can create
connected nets.

» The canonical nameis stored for al net toggles. Thisis accessed with the
ucdb_GetTogglelnfo() function, which a so returns toggle type and toggle direction.
Note in this example how /top/tnet and /top/i/tnet both have the same canonical name:

“/top/tnet”.

top

scope
UCDB_INSTANCE

e

t j—

scope
UCDB_TOGGLE
Type: REG_SCALAR
Dir: INTERNAL

tnet —

scope
UCDB_TOGGLE
Type: SCALAR

Dir: INTERNAL
[top/tnet
Flag: IS_TOP_NODE

i —_—

scope
UCDB_INSTANCE

coveritem

Figure 2-13. Data Model for a Connected Net Toggle

—> toggle_low

UCDB_TOGGLEBIN

coveritem
UCDB_TOGGLEBIN

coveritem
UCDB_TOGGLEBIN

— toggle_high

coveritem
UCDB_TOGGLEBIN

tnet

scope
UCDB_TOGGLE
Type: SCALAR
Dir: INTERNAL
/top/tnet

R toggle_high
—> toggle_low

toggle_low

coveritem
UCDB_TOGGLEBIN

toggle_high

coveritem
UCDB_TOGGLEBIN

34

UCDB API Reference, v10.1

UCDB Basics
UCDB Data Models

Groups
SystemVerilog Example (“top/outer_struct.nested_struct.multiD_array[1][5][3]"):
nmodul e top;

typedef struct {
reg[0:4] multiD array [1:0] [2:5];
bit sinple_struct_elemb;
bit sinple _struct_elemc;

} ST1;

typedef struct {
bit outer_struct el em
ST1 nested_struct;

} ST2;

ST2 outer_struct;
initial begin

outer_struct.nested_struct.nultiD array[1][5][3]= 1’ bO;
end

endnodul e

UCDB API Reference, v10.1 35

UCDB Basics
UCDB Data Models

top

scope
UCDB_INSTANCE

'

outer_struct

scope
UCDB_GROUP_

UNPACKED_STRUCT

Figure 2-14. Data Model for a Group

—> |outer_struct_elem

scope
UCDB_TOGGLE

L » | nested_struct

scope
UCDB_GROUP_

UNPACKED_STRUCT

simple_struct_
elem_b

scope
UCDB_TOGGLE

0

simple_struct_
elem_b

scope
UCDB_TOGGLE

multiD_array

scope
UCDB_GROUP_

UNPACKED_ARRAY

Left: 2

Right: 5

scope
UCDB_GROUP_

UNPACKED_ARRAY

Left: 1
Right: 0

scope
UCDB_GROUP_
UNPACKED_ARRAY

Left: 2
Right: 5

> 5

scope
UCDB_GROUP_
PACKED_ARRAY

Left: 0
Right: 4

> 4

scope
UCDB_GROUP_
PACKED_ARRAY
Left: O

Right: 4

= 3

scope
UCDB_GROUP_
PACKED_ARRAY

Left: 0

Right: 4

> 2

scope
UCDB_GROUP_
PACKED_ARRAY

Left: 0
Right: 4

\/

4

scope
UCDB_TOGGLE

\/

3

scope
UCDB_TOGGLE

2

scope
UCDB_TOGGLE

scope
UCDB_TOGGLE

0

scope
UCDB_TOGGLE

coveritem
UCDB_TOGGLEBIN

36

UCDB API Reference, v10.1

UCDB Basics
UCDB Data Models

SVA and PSL Covers

Cover directivesin PSL or cover statements in SystemV erilog Assertions language are exactly
the same in Questa. (Both are referred to as “ cover directives’ in Questa.)

SystemV erilog Example (“cover”):

nmodul e top;

bit a=0, b=20, clk =0;

al ways #10 cl k = ~cl k;

initial begin
@ negedge cl k); b =1,
@negedge clk); a =1; b = 0;
@ negedge clk); a = 0;

@ negedge cl k); $stop;
end
/1 psl default clock = rose(clk);
/'l psl pslcover: cover {b;a};
sequence a_after _b;

@ posedge cl k) b ##1 a;

endsequence
svacover: cover property(a_after_b);
endnodul e

Except for name, the two cover directives are identical. The differences are:

* Line number — accessed with source information.

» Scope source type (accessed with ucdb_GetScopeSourceType()) — PSL_VLOG for the
Verilog PSL, VLOG for the native SVA cover. Thevalue PSL_VHDL is used for
VHDL PSL.

There are additional data— accessed with ucdb_GetCoverData() — available for cover directives:

e Goa — A tool feature in Questa, the “at_least” value for a cover directive, set with the
fcover configure command.

* Weight — Anindividual weight for this cover directive, another tool feature. The
weight is set at the coveritem level aswell asthe UCDB_COVER scope level.

» Limit— Questa has atool feature for disabling a cover after reaching a certain count. If
-1, thisis unlimited.

» Enabled — Questa has atool feature for disabling a cover directive. Thisfeatureis
disabled when the enabled bit is set to FALSE.

» Count — The pass count for the cover directive. In the future multiple counts may be
maintained. Failure counts are implied in the SystemVerilog LRM for sequences;
vacuous passes and attempts for properties. These have not yet been implemented in
Questa.

UCDB API Reference, v10.1 37

UCDB Basics
UCDB Data Models

Figure 2-15. Data Model for SVA and PSL Cover Directives

top —_ psicover —»

scope Scope coveritem
UCDB_INSTANCE UCDB_COVER UCDB_COVERBIN
S_ourceT: PSL_VLOG Goal: 1
Line: 21 Weight: 1
Count: 1
Limit: -1
Enabled: 1
L svacover —»
scope coveritem
UCDB_COVER UCDB_COVERBIN
S_ourceT: VLOG Goal: 1
Line: 25 Weight: 1
Count: 1
Limit: -1
Enabled: 1

Assertion Data

Assertions have different counts maintained in different circumstances. There are three cases;

» Theimmediate or concurrent assertion with afail count only.
» The concurrent assertion with afull complement of 7 counts (assert debug mode).

» Theimmediate assertion with both fail count and pass count (assert debug mode).

Assertions with Fail Counts Only
Example, compiled by default with optimizations (* assert”):

nmodul e top;

bit a =0, b=20, clk =0;

al ways #10 cl k = ~cl k;

initial begin
@ negedge cl k); b = 1;
@negedge clk); a =1; b = 0;
@negedge clk); a =0; b = 1;
@ negedge cl k); b = 0;

@ negedge cl k); $stop;
end
/1 psl default clock = rose(clk);
/'l psl pslassert: assert always {b} |=> {a};
property a_after_b;
@ posedge clk) b |=> a;
endproperty
svaassert: assert property(a_after_b);
endnodul e

38 UCDB API Reference, v10.1

UCDB Basics
UCDB Data Models

The UCDB_ASSERTBIN isthefail count for the assertion. Other aspects of the data model
include:

» The“ACTION” attribute on the UCDB_ASSERT scope. Thisis an integer attribute
whose values indicate how the simulator should react to an assertion failure:

o 0 — continue after failure.
o 1— break after failure.
o 2— exit after failure

* Log (theflag UCDB_LOG_ON) — thisis ahbit to indicate that the assertion failure
messages appear in the simulator transcript.

Other aspects of the data model are in common with the cover directives.

Figure 2-16. Data Model for Assertions (with Fail Count Only)

top —_— pslassert —»

scope scope coveritem
UCDB_INSTANCE UCDB_ASSERT UCDB_ASSERTBIN
SourceT: PSL_VLOG Count: 1
Lln(_e: 2.2 Limit: -1
Action: 0 Log: 1
Enabled: 1
L svaassert —>
scope coveritem
UCDB_ASSERT UCDB_ASSERTBIN
SourceT: SV :
our Count: 1
le_e. 2.6 Limit: -1
Action: 0 Log: 1
Enabled: 1

Assertion with All Counts Using -assertdebug

This requires both the -assertdebug option and full visibility for all assertions. The exampleis
compiled with -assertdebug -novopt to turn off the optimizer completely, but the
-voptargs="+acc=a’ flag could be used instead or could be used selectively to enable visibility
for some regions and not others.

SystemVerilog Example (“assert-debug”):

nmodul e top;

bit a =0, b=20, clk =0;

al ways #10 cl k = ~cl k;

initial begin
@ negedge cl k); b =1,
@negedge clk); a =1; b = 0;
@negedge clk); a =0; b = 1;

UCDB API Reference, v10.1 39

UCDB Basics
UCDB Data Models

@ negedge cl k) ; b = 0;
@ negedge cl k); $stop;
end
property a_after _b;
@ posedge clk) b |=> a;
endproperty
A: assert property(a_after_b);
endnodul e

Figure 2-17. Data Model for an Assertion (with All Counts)

R

coveritem
UCDB_VACUOUSBIN
Count: 3
> A
—> coveritem
UCDB_ASSERTBIN
coveritem C_Oupt: 1
UCDB_DISABLEDBIN Limit: -1
Count: 3 Log: 1
Enabled: 1
top —_— A —
s score coveritem
UCDB_INSTANCE UCDB_ASSERT UCDB_ATTEMPTBIN
SourceT: SV Count: 3
Line: 24) -
Action: 0
— .
coveritem
UCDB_PASSBIN
coveritem Count: 1
UCDB_ACTIVEBIN Limit: -1
Count: 3 Log: 1
Enabled: 1
O
coveritem
UCDB_PEAKACTIVEBIN
Count: 3

This currently represents 7 bins with the following meanings:

» ASSERTBIN — The assertion failure count. Has data values for limit, log, etc., as
previously discussed.

» PASSBIN — The assertion non-vacuous pass (success) count. Similar to the
ASSERTBIN in which flags and datafieldsit offers. Thisis useful to determineif an
assertion has been fully exercised during simulation. Coverage metrics derived from an
assertion use this metric if available.

40 UCDB API Reference, v10.1

UCDB Basics
UCDB Data Models

* VACUOUSBIN — The vacuous pass (success) count. Thisisfor implications whose
left-hand-side isfalse.

* DISABLEDBIN — Counts the number of cycles for which the assertion was explicitly
disabled through the SystemVerilog “disable iff” construct. Thisis essentially the

number of attempts missed because the assertion was disabled.

« ATTEMPTBIN — The number of times the assertion was attempted: the number of
times its clocking expression triggered.

e ACTIVEBIN — The number of threads |eft active (in-progress) at the end of simulation
for this assertion.

« PEAKACTIVEBIN — The maximum number of threads ever created for this assertion
at any given point in time.

Immediate Assert with Pass/Fail

Example, compiled with -assertdebug and without the optimizer (“immed-assert”):

nmodul e top;

bit a=0, b=20, clk =

al ways #10 cl k = ~cl k;
initial begin

end

@ negedge
@ negedge
@ negedge
@ negedge
@ negedge

cl k);
clk); a = 1;
clk); a = 1;
cl k);
clk); $stop;

al ways @ posedge cl k)

not a and b:

endnodul e

T UTUT

eroer

assert (!(a & b)) else $error("a and b both true!");

Figure 2-18. Data Model for an Immediate Assertion with Pass/Fail Counts

top

—_—

scope

UCDB_INSTANCE

not_a and_b

scope
UCDB_BLOCK
SourceT: VLOG
Line: 23

—_—

not_a and_b

scope
UCDB_BLOCK
SourceT: VLOG
Line: 23
Action: 0

coveritem
UCDB_ASSERTBIN
Count: 1
Limit: O
HasAction: 1

> not_a and_b)

coveritem
UCDB_PASSBIN
Count: 1
Limit: O
HasAction: 1

UCDB API Reference, v10.1

UCDB Basics
UCDB Data Models

SystemVerilog Covergroup Coverage

Covergroup with a Cross
SystemVerilog example (“covergroup”):

nmodul e top;
int a=0, b=0;
covergroup cg;
type_option.conment = "Exanple";
option.at_least = 2;
cvpa: coverpoint a{ bins a={01}; }
cvpb: coverpoint b { bins b ={ 11}; }
axb: cross cvpa, cvpb { type_option.weight = 2; }
endgr oup
Cg CV = new,
initial begin

#1; a = 0; b = 1; cv.sanple();
#1;, a =1; b = 1; cv.sanple();
#1; $di spl ay($get _coverage());
end
endnodul e

The covergroup type roll-up is part of the subtree rooted at the “cg” (UCDB_COVERGROUP)
node — specifically, the subtree containing the UCDB_COVERPOINT and UCDB_CROSS
children. The covergroup instance is the subtree rooted at the UCDB_COVERINSTANCE
node. It isamirror of the type subtree.

Note
When there are multiple instances, the number of coverpoint and cross children must be

the same among all instances, but the numbers of bins can be different.

Inthiscase, it istrue, the instance datais largely redundant, but since option.per_instance is
effectively ignored by Questa, the instance data serves the purpose of storing instance-specific
options and is also used when the datais rel oaded with $load_coverage db().

Some interesting things to note here are:

* Weight isa primary data component of a UCDB scope — accessed with
ucdb_GetScopeWeight(). Note how the cross weight is reflected in the weight for the
axb cross scope. It is also reflected in the weight associated with the coveritem itself,
(but thisisless useful).

» Thegoal for the scope — ucdb_GetScopeGoal() —is the goal established by the
covergroup type_option.goal or option.goal. In this example, all scopes— covergroup,
coverinstance, coverpoint, and cross — have adefault of 100. Thisis a percentage. The
attribute name is “#GOAL#’ to adhere to a convention whereby attributes with “#” in
the name do not appear in the command-line and graphical user interface.

42 UCDB API Reference, v10.1

UCDB Basics
UCDB Data Models

Figure 2-19. Data Model for a Cross

A coveritem
" UCDB COVERPOINT UCDB CVGBIN
1 Weight: 1 Weiaht 1
1 Goal: 100 Goa?_ >
' AtLeast: 2 " -
: Comment: ™ Count: 1
] BinRHS: "0”
1
S e B
scope scope : scope "
UCDB_INSTANCE UCDB_COVERGROUP 1 UCDB_CROSS coveritem
Welght: 1 1 Weight: 2 UCDB_.CVGB|N
Goal: 100 ' Goal: 100 Weight: 2
Comment: "Example” | AtLeast: 2 goal-t?1
Strobe: 0 1 Comment; ™ ount. L
Mergelnstance: 1 ¥ EILZF;?S,SEIndeX' o
CrossUBIndex: 0
— cvpb
scope
UCDB_COVERPOINT
Weight: 1
Goal: 100 coveritem
—> cvpa
2 AtLeast: 2 UCPB—.CVGB'N
scope Comment; ™ \évc?;?.h; 1
A UCDB_COVERPOINT Count: 2
, Weight: 1 BINRHS: "1”
1 Goal: 100
1 AtLeast: 2 coveritem
: Comment: ™ UCDB_CVGBIN
 AutoBinMax: 64 Weight: 1
1 DetectCOverlap: 0 Goal: 2
: Count: 1
BinRHS: "0”
top/cv L axb :< <ab>)
scope : scope
UCDB_COVERINSTANCE 1 UCDB_CROSS coveritem
Weight: 1 1 Weight: 1 UCDB_CVGEIN
Goal: 100 ! Goal: 100 m Welg_ht- 1
AtLeast: 2 , AtLeast: 2 UCDB CVGBIN goal.t'zl
Comment: ™ 1 Comment: ™ Weight: 1 ount. L
AutoBinMax: 64 ¥ PrintMissing: 0 e BinRHS:
DetectCOverlap: 0 Goal: 2 CrossSBIndex: 0
Mo O Count: 2 CrossUBIndex: 0
PrintMissing: 0 . cvpb BINRHS: "1" .
Perinstance: 0 ’
GETINSTCOV=1 scope
UCDB_COVERPOINT
Weight: 1
Goal: 100
AtLeast: 2
Comment: ™

AutoBinMax: 64
DetectCOverlap: 0

UCDB API Reference, v10.1

UCDB Basics

UCDB Data Models

Goal associated with the coveritemisreally the“at_least” valuefor the covergroup. This
allows a simple algorithm for determining if a coveritem is covered: if itscount is
greater than or equal to its goal.

Other attributes reflect the type_option or option values associated with the covergroup,
coverpoint or Cross.

(0]

(0]

COMMENT — for the type_option.comment in all scopesin the type subtree, or the
option.comment in all scopesin the instance subtree.

STROBE — for the type_option.strobe for the covergroup scope.

AUTOBINMAX — for the option.auto_bin_max in covergroup and coverpoint
SCOopes.

DETECTOVERLAP — for the option.detect_overlap in covergroup and coverpoint
SCOopes.

PRINTMISSING — for the option.cross_num_print_missing in covergroup and
Cross Scopes.

GETINSTCOV — for the option.get_inst_cov.

There are some additional attributes used for internal purposes:

(0]

BINRHS — the set of sampled values that could potentially cause the bin to
increment. These arereferred to as the “ bin right-hand-side values’ because they are
derived from the right-hand-side of the “=" declaration for the bin. Note that
BINRHS is not set for the cross bin because the bin depends only on the coverpoint
bins, which are referenced as part of the bin name (“<a,b>") in this case. If the cross
bin were explicitly declared (with the cross select expression syntax), then there
would be ameaningful BINRHS attribute for the cross bin.

CROSSSBINIDX and CROSSUBINIDX — these are used to implement the
SystemVerilog call $load_coverage db(). In this example the values are not very
interesting. The section Sparse Cross Bin Representation explains them in more
detail.

There is an association between the cross and its component coverpoints, indicated by
the red dashed linesin Figure 2-12. These associations are accessed with the following
functions:

(0]

(0]

(0]

ucdb_GetNumCrossedCvps()
ucdb_GetlthCrossedCvp()
ucdb_GetlthCrossedCvpName()

44

UCDB API Reference, v10.1

UCDB Basics
UCDB Data Models

Sparse Cross Bin Representation

If you create a UCDB with Questa, you will see that only cross bins with non-zero coverage
counts are in the database. This was an optimization introduced to make saving crosses more
efficient.

Unfortunately, much of thisinfrastructure relies on a private API. (If you are a customer and
you'd like to use it, please request it.) The software will still accept UCDBs with fully
enumerated crosses, i.e., al cross bins stored explicitly in the database, and thereis atrick for
allowing the API to traverse al bins whether they are stored or not. So to some degree the
sparse implementation is optional.

Thetrick to allow the API to traverse al bins, whether stored or not, is to use this function:

voi d

ucdb_Set I terateAll CrossAut oBi ns(
ucdbT db,
i nt yesno);

If thisiscalled asucdb_SetlterateAll CrossAutoBins(db,1), then the API will create abin object
during traversal whether it was really stored or not.

Other relevant bits of information for sparse crosses:

» The 0x10000000 bhit is set in the cross scope flags value if it is sparsely implemented.

* Theattribute “#CROSSNUMBINS#’ shows the total number of coverage binsin the
cross, useful for computing total coverage.

The mechanism for storing crosses sparsely closely follows the cross select expression syntax
and semantic in SystemVerilog. There is an expression API that can be used with the cross,
essentially to store and retrieve the cross select expression with which the cross was specified in
SystemVerilog source.

CROSSSBINIDX and CROSSUBINIDX

These user-defined attributes are associated with cross bins to implement the SystemVerilog
predefined system task $load coverage db(). For Questa, the $load coverage db() predefined
system task cannot work unless these attributes are correctly set.

Consider this more complex covergroup with a cross.
SystemVerilog example (“ covergroup-cross3x3”):

covergroup cg;
cvpa: coverpoint a { bins azero
cvpb: coverpoint b { bins bzero
axb: cross cvpa, cvpb

endgr oup

bi ns anonzero[] ={ [1:2] }; }
bi ns bnonzero[] ={ [1:2] }; }

o o

={ 0};
={ 0};

UCDB API Reference, v10.1 45

UCDB Basics
UCDB Data Models

The “cross bin index” attributes are best illustrated as such:

Bin Name CROSSUBINIDX CROSSSBINIDX

<azero,bzero>

<anonzero[1],bzero>

<anonzero[2] ,bzero>

<azero,bnonzero[1]>

<azero,bnonzero[2]>

<anonzero[1] ,bnonzero[1]>

<anonzero[2] ,bnonzero[1]>

<anonzero[1],bnonzero[2]>

W W W W NN NP, O
W NP O, O, O] O

<anonzero[2] ,bnonzero[2]>

* CROSSUBINIDX is mnemonically “cross user bin index” -- using an internal
terminology by which a“bin declaration” isa*“user bin”. Thisisthe syntactic bin
declaration with a bin name and terminated by a semicolon.

* CROSSSBINIDX ismnemonically “cross sub-bin index” -- using an internal
terminology by which a“bin” isa“sub-bin”. Thisisthe actual bin or coveritem object
with an individual count, which may map 1-to-1 with the declaration or many-to-1.

The secret hereisto look at the coverpoint bin declarations in isolation. Although there are 3
binsin each coverpoint and thus 9 in the cross, there are 2 bin declarations in each coverpoint.
The crossis thus organized into 4 groups of crosses of bin declarations:

e <azero,bzero>

» <anonzero[*],bzero>

» <azero,bnonzero[*]>

e <anonzero[*],bnonzero[*]>

The CROSSUBINIDX is an index value corresponding to these groups. Note the bin
declarations in the left-most crossed coverpoint (“a’ in this case) are “less significant” in the
sense that they change more rapidly as the cross bins are enumerated. Thisisimplementation
specific and is reflected in the order of binsin the report.

The CROSSSBINIDX isagiven bin'sindex within one of these groups.

Note: if you or your customer does not care about using $load coverage db(), then these user-
defined attribute values could be ignored. They are created automatically by Questa but might
take some work to reproduce independently. Note that $load coverage db() requires a
corresponding SystemV erilog covergroup to have been created in simulation, otherwise the

46 UCDB API Reference, v10.1

UCDB Basics
UCDB Data Models

load will fail anyway. Thisimpliesthat if the covergroup is being ported from third-party data,
there is still the requirement to create a corresponding SystemV erilog covergroup into which
the data could be reloaded in simulation with $load_coverage db().

Covergroup in Package with Multiple Instances
SystemVerilog example (“ covergroup-perinstance”):

package p;
covergroup cg (ref int v);
option. per_instance = 1;
coverpoint v { bins val[] ={ [0:1] }; }
endgr oup
endpackage
nmodul e top;
int a, b;
p::cg cva = new(a);
p::cg cvb = new(b);
initial begin

#1; a = 0; cva.sample();

#1; b = 1; cvb.sample();

#1; $display("cva=% 2f cvb=% 2f cva+cvb=% 2f",
cva. get _inst_coverage(),
cvb. get _inst_coverage(),
p::cg::get_coverage());

end
endnodul e

This illustrates two interesting cases together: the covergroup with per-instance coverage
(option.per_instance assigned to 1), and the covergroup in a package. Figure 2-20 shows the
design unit scopes. Thisisto show the different scope types for a package: the package has an
instance type UCDB_PACKAGE, and adesign unit type UCDB_DU_PACKAGE.

Note how the module instance “top” has nothing in it. The covergroup variables are in the
modul e top, but covergroup variables are nothing more than references to a previously created
covergroup object. The object might exist with no reference (because coverage must persist,
covergroup objects are not garbage collected); there could be more than one referenceto agiven
object; or the same reference might refer to different objects at different pointsin time. So the
covergroup variable is not very relevant to the covergroup objects themselves. Consequently,
the covergroup instances in the UCDB are stored underneath the covergroup type
(UCDB_COVERGROUP scope) as adifferent UCDB scope type:
UCDB_COVERINSTANCE.

Covergroup instances are identified by name. The name could be assigned explicitly by you —
by assigning option.name or using the set_inst_name() built-in method. If not assigned
explicitly, Questa automatically assigns the covergroup instance name using the path to the
variable used to construct the covergroup object. This path is quoted as an extended identifier so
that references to paths within the UCDB work easily. The middle coverpoint scopein

Figure 2-20 would be referenced as “/p/cg/\/top/cva/v”. Note the space after “cva’ to terminate
the extended identifier.

UCDB API Reference, v10.1 47

UCDB Basics
UCDB Data Models

Figure 2-20. Data Model for a Covergroup (with Per-Instance Coverage)

top . top
scope scope ‘ vl
UCDB_INSTANCE UCDB_DU_MODULE
coveritem
UCDB_CVGBIN
p - p Weight: 1
Goal: 1
scope scope Count: 1
UCDB_PACKAGE UCDB_DU_PACKAGE BinRHS: "0”
> v e val[1]
scope ;
UCDB_COVERPOINT UCDB eyaa
Weight: 1 Weight: 1
Y Comment: null BinRHS: "1”
cg — Vtop/cva — v
scope scope scope
UCDB_COVERGROUP UCDB_COVERINSTANCE UCDB_COVERPOINT
Weight: 1 Weight: 1 Weight: 1
Goal: 100 Goal: 100 Goal: 100
Comment: null AtlLeast: 1 AtLeast: 1
Strobe: 0 Comment: null Comment: null
AutoBinMax: 64 AutoBinMax: 64
DetectOverlap: 0 DetectOverlap: 0
PrintMissing: 0
—> Vtop/cvb B Y
scope scope
UCDB_COVERINSTANCE UCDB_COVERPOINT
Weight: 1 Weight: 1
Goal: 100 Goal: 100
AtLeast: 1 AtLeast: 1

Comment: null
AutoBinMax: 64
DetectOverlap: 0
PrintMissing: 0

Comment: null
AutoBinMax: 64
DetectOverlap: 0

val[0]

coveritem
UCDB_CVGBIN

Weight: 1
Goal: 1
Count: 1
BinRHS: "0”

val[1]

coveritem
UCDB_CVGBIN
Weight: 1
Goal: 1
Count: 0
BinRHS: "1”

val[0]

coveritem
UCDB_CVGBIN

Weight: 1
Goal: 1
Count: 0
BinRHS: "0”

val[1]

coveritem
UCDB_CVGBIN
Weight: 1
Goal: 1
Count: 1
BinRHS: "1”

48

UCDB API Reference, v10.1

UCDB Basics
UCDB Data Models

The UCDB_COVERINSTANCE scopes and their child scopes have some attributes to convey
the option values for those scopes:

 ATLEAST — the option.at_least value.

e COMMENT — the option.comment for the corresponding scopes.
* AUTOBINMAX — the option.auto_bin_max setting.

» DETECTOVERLAP — thisisoption.detect_overlap.

* PRINTMISSING: the option.cross_num_print_missing.

Note how option.per_instance itself isimplied by the presence of the
UCDB_COVERINSTANCE in the data model.

Finally, this example illustrates another interesting point. The get_inst_coverage() for /top/cva
or /top/cvb could be calculated from the UCDB_COVERINSTANCE scopes. The
get_coverage() for covergroup “cg” could be calculated from the UCDB_COVERPOINT scope
“Iplcglv”, i.e., the coverpoint that is an immediate child of the UCDB_COVERGROUP scope.
Thisrepresents, asin the previous example, the type coverage for the covergroup. Note how the
covergroup coverage is the merging together of the coverage from the two instances. The IEEE
Std 1800-2005 says “It isimportant to understand that the cumulative coverage considers the
union of al significant bins; thus, it includes the contribution of all bins (including overlapping
bins) of all instances.”

In other words, the /top/cva instance covers bin val[0], while the /top/cvb instance covers bin
val[1]. Therefore each instance has 50% coverage, but the type is covered 100% because each
bin is covered in the union contributed from all instances. Thisisreflected in the simulation
output of the $display in the example:

cva=50. 00 cvb=50. 00 cva+cvb=100. 00

Covergroup in a Class (Embedded Covergroup)
SystemV erilog example (“ covergroup-embedded”):

package p;
class c;
int i;
covergroup cg;
coverpoint i { binsival[] ={ [0:1] }; }
endgr oup
function new();
Cg = new
endfunction
function void sanple(int val);
i = val;
cg. sampl e();
endf unction
endcl ass

UCDB API Reference, v10.1 49

UCDB Basics
UCDB Data Models

endpackage
nodul e top;
p::C Ccv = new,
initial begin
cv. sanpl e(0);
$di spl ay($get _coverage());

end
endnodul e
Figure 2-21. Data Model for an Embedded Covergroup
top ——— top
— ival[0]
scope scope
UCDB_INSTANCE UCDB_DU_MODULE coveritem
UCDB_CVGBIN
Weight: 1
P Bl P Goal: 1
scope scope Count: 1
UCDB_PACKAGE UCDB_DU_PACKAGE BINRHS: "0
— cg — i e ival[1]
scope scope i
UCDB_COVERGROUP ~ UCDB_COVERPOINT |jcpp ouGBIN
Weight: 1 Weight: 1 Weight_' 1
Goal: 100 Goal: 100 Goal 1
Comment: null AtLeast: 1 Count: 0
Strobe: 0 Comment: null BINRHS: "1”
Y '
c — Vp::C::cg S i — ival[0]
scope scope scope coveritem
UCDB_CLASS UCDB_COVERINSTANCE UCDB_COVERPOINT UCDB CVGBIN
Weight: 1 Weight: 1 Weight: 1
Goal: 100 Goal: 100 Goal: 1
AtlLeast: 1 AtlLeast: 1 Count: 1
Comment: null Comment: null
— ival[1]
— new ®e o o
coveritem
scope UCDB_CVGBIN
UCDB_FUNCTION Weight: 1
Goal: 1
Count: 0

Thisisvery similar to the previous data models, with two interesting points.

First, the covergroup type name is stored as the declaration name “cg”. Technically thisis
incorrect: |EEE Std 1800-2008 specifies that the embedded covergroup declaration creates a
covergroup of anonymous type. In Questathisisreally “#cg#’ and invisible to the user.
However, because UCDB scope names must be visible during coverage analysis, Questa
transforms the anonymous name to the visible covergroup variable name. Thisis alowable

50 UCDB API Reference, v10.1

UCDB Basics
UCDB Data Models

because the embedded covergroup has other restrictions that result in a 1-to-1 mapping between
the covergroup type and the covergroup variable.

The example dump output shows clearly how other unexpected scopes — such as, “new”,
“post_randomize” — are created in the UCDB. Thisis because scopes are saved in the UCDB
prior to determining whether or not they contain coverage.

The presence of these scopes does illustrate how the UCDB captures the complete “ context
tree” of the elaborated design.

Design Units

The output of ucdbdump shows some of the interesting data associated with a design unit. This
is taken from the “fsm” example:

————————————— DESIGN UNIT -----------monmo-n
Name : work.top

Type : UCDB_DU_MODULE

Source type : VERI LOG

File info : nane =test.svline =0
Fl ags : 0x00000121

Attribute: name = DUSI GNATURE string = ogR JbAmBkQ®nX] eoj ; 1

The important points are:

* Name — the nameis composed as library.name for Verilog and
library.entity(architecture) for VHDL. In Verilog, the architecture notation may be used
for variants created by parameterization or optimization; however, these are merged
together to create a single design unit. The reason is that these variants may be created
arbitrarily by the optimizer; they could be artifacts not intended by the user. This does
have the consequence that the context tree in the UCDB will differ from the context tree
visible in Questain simulation. The sameistrue for VHDL design units which are
sometimes denoted library.entity(architecture)#index. The different index versions are
merged together to reflect the “canonical” design unit.

* Flags

o UCDB_ENABLED_STMT (0x00000002) through
UCDB_ENABLED_TOGGLEEXT (0x00000080) are required for code coverage to
appear in Questa's reports. There is an open enhancement to invert the sense of these
flags and by default to have code coverage appear if present; this would be less
surprising to third parties creating UCDB design units from scratch. But in the
current release of the UCDB, these flags are required in order for code coverage to
appear in the reports; these flags are created correctly by Questa itself.

o UCDB_SCOPE_UNDER_DU isaninternal flag to mark the scopes under the
design unit, if any, aswell asthe design unit itself.

UCDB API Reference, v10.1 51

UCDB Basics
UCDB Data Models

o UCDB_INST_ONCE flag indicates that there was only one instance of the design
unit so there is no code coverage roll-up stored under the design unit. This
optimization is less apparent when the UCDB is loaded into memory.

* DUSIGNATURE attribute — thisis acrucial attribute used to determine that the code
content of the design unit has not changed, so that line number mappings used in all
code coverage (except FSM and toggle) is still valid.

Test Data Records and History Nodes

In earlier versions of the database and API, there were only “test data records’ which were
designed to record information about the test run which produced the UCDB. It is not possible
to create a UCDB without a test data record.

L ater, test data records were extended, so that they became a special case of the “ history node”.
The history node records information about any process that creates a UCDB. In Questa, there
are three waysto create a UCDB:

* By running the smulator — The simulator will create a“test data record” with various
information about the simulation run.

* By XML test plan import — This creates a “testplan history node”.
* By merging — This creates a“ merge history node”.

Because of the merging process, whereby UCDBs may be combined in various waysto create
other UCDBS, history nodes are arranged in atree. The test data records and testplan history
nodes must be leaves of the tree. But amerge must have child nodes, which are the inputs to the
merge. The topology of the tree, in other words, allows each merge to be reproduced with its
original inputs.

The motivation of the history nodes, besides recording interesting information about each test,
merge, or test plan, isto alow each of these operations to be reproduced automatically by the
tool.

Any of these nodes may have user-defined attributes. Presently user-defined attributes are
heavily used with test data records, but they could be used in the other cases, too.

Test Plan Hierarchy and Tags

The UCDB has the facility for representing atest plan hierarchy. Ordinarily atest planis
created as a spreadsheet, Word document, or other file—and thereis some symbolic convention
in the tool to link between sections of the test plan and coverage objectsin the design. This
could be through fields in the document, through the covergroup comment, through Verilog-
2001 attributes, or any other mechanism.

52 UCDB API Reference, v10.1

UCDB Basics
UCDB Data Models

The association in the UCDB is made through a specialized data attribute called a“tag”. Thisis
nothing other than a string that is associated with a scope; there may be multiple tags per scope.
Any scope or test data record can be “tagged”. A test plan section is represented by aUCDB
scope of type UCDB_TESTPLAN. If it shares atag with any other scope not of type
UCDB_TESTPLAN, the coverage associated with that non-testplan scope is considered linked
to the section represented by the testplan scope. After that it isatool feature to calculate
coverage in some way that is meaningful based on the test plan and the coverage linked to it.

Note that any UCDB scope could be linked with the test plan, not just coverage scopes.
However, coveritems may not be linked with the test plan because the tag APl does not apply to
coveritems.

The “testplan” example shows atrivia test plan with two sections linked to two trivial
coverpoints. Creating atest plan is ordinarily atool feature, but this example shows how to
create one with the API, sincethisisthe APl User Guide; thisis the first example to introduce
the API itself rather than the datamodel. Inthiscaseit isnot possibleto create the data model in
the simplest possible way without using the API aswell as HDL source. Hopefully the
following exampleisintelligible without knowing the API —which isintroduced in the next
Chapter.

C Example (“testplan”):

ucdbT db = ucdb_QOpen(ucdbfile);
ucdbScopeT testplan, sectionl, section2, cvpi, cvpj;
if (db==0) return;

/* Create test plan scopes: */

testpl an = ucdb_Creat eScope(db, NULL, "t est pl an", NULL, 1, UCDB_NONE,
UCDB_TESTPLAN, 0) ;

sectionl = ucdb_Creat eScope(db, testpl an, "sectionl", NULL, 1, UCDB_NONE,
UCDB_TESTPLAN, 0) ;

section2 = ucdb_Creat eScope(db, testpl an, "secti on2", NULL, 1, UCDB_NONE,
UCDB_TESTPLAN, 0) ;

/* Look up coverpoint scopes: */
cvpi = ucdb_Mat chScopeByPat h(db,"/top/cg/i");
cvpj ucdb_Mat chScopeByPat h(db, "/top/cg/j");

/* Tag to link test plan scopes to coverpoint scopes */
ucdb_Addnhj Tag(db, sectionl,"1");

ucdb_Addnj Tag(db, cvpi, "1");

ucdb_Addhj Tag(db, section2,"2");

ucdb_AddCbj Tag(db, cvpj,"2");

/* Wite everything back to the same file */
ucdb_Wite(db, ucdbfile, NULL, 1, -1);
ucdb_C ose(db);

This example executes the following sections of code:

* Open the UCDB file, loading its contents into memory.

UCDB API Reference, v10.1 53

UCDB Basics
UCDB Data Models

» Create thethree test plan scopes. Note that the first one, “testplan”, is used subsequently
as the parent of “section1” and “section2” (the second argument to ucdb_CreateScope()
isthe parent node). This creates the parent-child relationship and thus the hierarchical

structure of the test plan.

* Look up the coverpoint scopes by path. Pathsin the UCDB use the path separator “/” by
default and otherwise concatenate the names of the scope on a downward traversal
through hierarchy. In this case “top” isthe module instance, “cg” the covergroup

underneath the instance, and “i” and

J

the coverpoints underneath the covergroup.

» Give sectionl the sametag as /top/cg/i, and section2 the same tag as /top/cg/j. Thisisall
that is necessary to make the test plan association with coverage.

* Writethe UCDB datain memory back to the samefile from which it wasread, and close
the UCDB handle in order to de-allocate its memory.

This resultsin the following data model :

Figure 2-22. Data Model for a Test Plan with Linked Coverage

top

scope
UCDB_INSTANCE

:

cg —_— Vtop/cv

scope
UCDB_COVERGROUP

scope

testplan —_— sectionl
scope scope
UCDB_TESTPLAN UCDB_TESTPLAN
Tag: “1”
—> section2

scope

UCDB_TESTPLAN

Tag: “2”

’

UCDB_COVERINSTANCE,'

=

scope -
UCDB_COVERPOINT |cph CeoVeRPOINT
Tag: "1 Count: 0
j @
scope -
UCDB_COVERPOINT UCDé:Oé%r{}eEnR]’POINT
Tag: 2" Count: 1

In this case, the shared tag names imply the red dashed-line links from UCDB_TESTPLAN
scopes to the UCDB_COVERPOINT scopes. Refer to the section Using Tags to Traverse from
Test Plan to Coverage Data for more information.

Thisis nearly the simplest possible data model for atest plan. Note that in Questathereisa
“SECTION” attribute used in the report, tags are composed in a more sophisticated way, tags
are automatically applied by vcover merge according to yet other attributes attached to test
plans, and test plan scopes may have user-defined attributes added from the test plan document

54

UCDB API Reference, v10.1

UCDB Basics
UCDB Data Models

— s0 that atest plan data structure created by Questa is more complex than the one shown here.
But the basic tree relationships will be of the same nature.

Memory Statistics

Thereisafacility inthe UCDB API for memory statistics. These are available in constant time
when aUCDB isloaded, so are designed for fast access.

The API callsare ucdb_GetMemoryStats() and ucdb_SetMemoryStats(). These use the
ucdbAttrValueT attribute value structure, but otherwise rely on two enumerators to create, in
effect, a 2-dimensional array of attributes. The enumerators are ucdoMemStatsEnumT and
ucdbM emStatsTypeEnumT, which are essentially a category and type, respectively.

The memory statistics APl isused internally by Questa.

UCDB API Reference, v10.1 55

UCDB Basics
UCDB Use Cases

UCDB Use Cases

Understanding the UCDB Data Modelsis a prerequisite to using the API. The API is more
general than the specific data models used to represent specific kinds of coverage. This section
discusses how to use the API. It makes some assumptions about the data model. It aso
describes specific use scenarios.

UCDB Access Modes

Y ou can open a UCDB file in the following ways:

* In-memory — open the UCDB file so that the entire UCDB data model liesin memory.
Thisisthe most general of the use models: all functions related to data access and
modification should work in this mode.

* Read-streaming — given afile name, the file is opened and closed within an API
function, but the user specifies a callback that is called for each datarecord in the
database. Effectively thismaintains anarrow “window” of datavisibility asthe database
istraversed, so its dataaccessislimited. Some types of data are maintained globally, but
the goal of this mode is to minimize the memory profile of the reading application.

» Write-streaming — open a database handle that must be used to write datain a narrowly
prescribed manner. Thisisthe most difficult mode to perfect, because to successfully
writethefile, datamust be created in requisite order with a precise sequence of API calls
— but it has the advantage that the data is streamed to disk without maintaining
substantial UCDB data structures, and so minimizes the memory profile of the writing
application.

* Summary read — thisis a constant-time read of a coverage summary stored within the
file. This allows overall statistics from the database to be read without traversing the
entire database. The disadvantage is that the summary coverage calculations are fixed
and cannot be customized in any way by the user.

Of these modes, the first one to discussis the easiest: in-memory mode. Others will be
discussed in separate sections.

The database handle type of the UCDB isucdbT which isavoid* pointing to a hidden structure
type of implementation-specific data associated with the database. This handle must be used
with nearly all API calls Opening a database in-memory istrivially easy:

ucdbT db = ucdb_QOpen(fil enane);

If the database handleis non-NULL, the open succeeded and the database handle can be used to
access all datain the database. Note the database is not tied in any way to the file on thefile
system. The database exists entirely in memory, and may be re-written to the samefile or a
different file after it is changed.

56 UCDB API Reference, v10.1

UCDB Basics
UCDB Use Cases

Writing the database to afileis simple if the database has been previously opened in-memory.
The write call can write subsets of the database — characterized by instance sub-sets or instance
tree sub-sets or by coverage type sub-sets. Without worrying about sub-sets of the database, the
basic write call isthis one:

ucdb_Wite(db, filenane, NULL, 1,-1);

The“NULL” means write the entire database, “1” is arecursive indicator that isirrelevant if
“NULL” isgiven, and “-1” indicates that all coverage types should be written (it is a coverage
scope type mask.)

Finally, the database in memory is de-allocated with this call:

ucdb_C ose(db);

Error Handling

Most API callsreturn status or invalid valuesin case of error. However, these error return cases
give no extrainformation about error circumstances. It is recommended that all standalone
applicationsinstall their own UCDB error handler. If the API application islinked with Questa,
installation of an error handler will not be allowed because Questa aready is linked with one.

The basic error handler looks something like this. All examples for this manual will have one.

voi d
error_handl er (voi d *dat a,
ucdbErrorT *errorlnfo)

fprintf(stderr, "9%\n", errorlnfo->nsgstr);
if (errorlnfo->severity == UCDB_MSG_ERROR)
exit(1);
}

The error-handler isinstalled as follows:
ucdb_Regi st er Error Handl er (error _handl er, NULL);

If thereis any user-specific data to be passed to the error-handler, a pointer to it would be
provided instead of NULL and that value would be passed as the void* first argument to the
callback.

Traverse a UCDB in Memory

Thisillustrates a callback-based traversal, showing all UCDB scope types. The
ucdb_CallBack() functionisaversatile function that isonly availablein-memory: given ascope
pointer (NULL in this case, meaning traverse the entire database) it traverses everything
recursively. The callback function, called “callback” in this case, is called for every scope,
every test record, and every coveritem in the part of the database being traversed. Design units

UCDB API Reference, v10.1 57

UCDB Basics
UCDB Use Cases

and test data records are only traversed when the entire database is being traversed, asin this
case.

C Example (“traverse-scopes’):

ucdbCBRet urnT

cal | back(
voi d* user dat a,
ucdbCBDat aT* cbdat a)

ucdbScopeT scope;

swi tch (cbdat a->reason) {

case UCDB_REASON DU

case UCDB_REASON_SCOPE:
scope = (ucdbScopeT) (cbdat a- >0bj);
printf("%\n", ucdb_GCet ScopeHi er Nane(cbdat a- >db, scope)) ;
br eak;

defaul t: break;

}
return UCDB_SCAN_CONTI NUE;

}

voi d
exanpl e_code(const char* ucdbfile)

ucdbT db = ucdb_Qpen(ucdbfile);
i f (db==NULL)
return;
ucdb_Cal | Back(db, NULL, cal | back, NULL) ;
ucdb_C ose(db);

}

The ucdbCBDataT* argument to the callback function gives information about the database
object for which the callback is executed. The “reason” element tells what kind of object it is.
There are also reasons for end-of-scope (useful for maintaining stacks, so that the callback can
know how many levels deep in the design or coverage tree is the current object), the test data
records, and coveritems themselves.

For the scope callbacks, REASON_DU and REASON_SCOPE, the “obj” element of
ucdbCBDataT isidentical to aucdbScopeT, which is ahandle to the current scope. In this
example, for stylistic reasons, the “obj” istype-cast explicitly into the “ scope’ variable.

The function ucdb_GetScopeHierName() returns a hierarchically composed name for the given
scope handle.

Read Coverage Data

This example illustrates how to read coverage counts for all coveritemsin al instances of a
database. Thisis also based upon the ucdb_CallBack() function for traversing the entire
database in memory.

58 UCDB API Reference, v10.1

UCDB Basics
UCDB Use Cases

C example (“read-coverage”):

/* Callback to report coveritem count */
ucdbCBRet ur nT

cal | back(
voi d* user dat a,
ucdbCBDat aT* cbdat a)
{
ucdbScopeT scope = (ucdbScopeT) (cbdat a- >obj);
ucdbT db = chdat a- >db
char* nane;
ucdbCover Dat aT cover dat a;
ucdbSour cel nf oT sour cei nf o;
switch (cbdata->reason) {
case UCDB REASON DU
/* Don't traverse data under a DU. see read-coverage2 */
return UCDB_SCAN_ PRUNE;
case UCDB_REASON CVBI N
scope = (ucdbScopeT) (cbdat a- >0bj);
/* Get coveritemdata from scope and coveri ndex passed in: */
ucdb_Get Cover Dat a(db, scope, cbdat a- >coveri ndex,
&nane, &cover dat a, &our cei nf 0) ;
if (nanme!=NULL && nane[0]!="\0") {
/* Coveritem has a nane, use it: */
printf("%%%: ",ucdb_Get ScopeHi er Nanme(db, scope),
ucdb_Get Pat hSepar at or (db) , nane) ;
} else {
/* Coveritem has no nanme, use [file:line] instead: */
printf("% [%:%l]: ", ucdb_Get ScopeHi er Nane(db, scope),
ucdb_Get Fi | eNane(db, &our cei nfo. fil ehandl e),
sourceinfo.line);
}
print_coverage_count (&cover dat a) ;
printf("\n");
br eak;
defaul t: break;
}
return UCDB_SCAN_CONTI NUE;
}

This example skips the code coverage stored under a design unit — see the “read-coverage2”
example for that, discussed below. If adesign unit scope is encountered in the callback, the
UCDB_SCAN_PRUNE return value instructs the callback generator to skip further callbacks
for data structures underneath the design unit.

The callback prints something for the UCDB_REASON_CVBIN callback. Thisisfor
coveritemsin the data model. The cbdata->0bj value is set to the parent scope of the coveritem,
and cbhdata->coverindex is the index that can be used to access the cover item. Datafor the
coveritem is accessed with ucdb_GetCoverData(). This retrieves the name, coverage data, and
source information for the coveritem. The source information is essential sometimes because
some coverage objects — specifically, statement coveritems — do not have names: they can only
be identified by the sourcefile, line, and token with which they are associated. More
information is available below on how source files are stored in the UCDB.

UCDB API Reference, v10.1 59

UCDB Basics
UCDB Use Cases

The coverage data itself is printed in this function:

voi d
print_coverage_count (ucdbCover Dat aT* cover dat a)

if (coverdata->flags & UCDB IS 32BIT) {
/* 32-bit count: */
printf("%l", coverdata->data.int32);

} else if (coverdata->flags & UCDB IS 64BIT) {
/* 64-bit count: */
printf("%I1d", coverdata->data.int64);

} else if (coverdata->flags & UCDB | S VECTOR) {
/* bit vector coveritem */
int bytelen = coverdata->bitlen/8 + (coverdata->bitlen¥)?1:0;
int i;
for (i=0; i<bytelen; i++) {

if (i) printf(" ");
printf("%®2x", coverdat a- >dat a. bytevector[i]);

}

This comprehensively shows how the coverage count must be printed. There are not currently
any source inputs or toolsthat create the UCDB_IS VECTOR type of coverage data, but 32-bit
and 64-bit platforms each create counts of their respective integer sizes, and those must be
handled gracefully.

read-coverage2 Example

What happensif you try to traverse the code coverage data underneath a design unit? The “read-
coverage?2” example shows away of handling it.

The problem isthe UCDB_INST_ONCE optimization where coverage datafor asingle-
instance design unit is stored only in the instance. For a per-design-unit coverage roll-up, it is
convenient to access data through the UCDB design unit scope — and indeed the UCDB API
allows that. However, the problem comes when printing the path to those scopes that were
accessed underneath the design unit. Because the datais actually stored underneath the instance,
the path prints the same whether it was accessed through the design unit or not. Extra code must
be written to determine how the data was accessed: via the design unit or through the instance
tree.

60 UCDB API Reference, v10.1

UCDB Basics
UCDB Use Cases

Partial C Callback Example (from “read-coverage?”):

struct dustate* du = (struct dustate*)userdata,;

swi tch (cbdat a->reason) {
/*
* The DU SCOPE/ ENDSCOPE | ogi ¢ di stingui shes those objects which

occur
* underneath a design unit. Because of the I NST_ONCE optinization,
it is
* otherw se inpossible to distinguish those objects by nane.
*/

case UCDB_REASON DU
du- >underneath = 1; du->subscope_counter = 0; break
case UCDB_REASON_SCOPE:
i f (du->underneath) ({
du- >subscope_count er ++;
}

br eak;
case UCDB_REASON ENDSCOPE
i f (du->underneath) ({
i f (du->subscope_counter)
du- >subscope_counter--;
el se
du- >underneath = 0;

}

br eak;

This requires some user data established for the callback function. The “du” user data pointer
has “underneath” which isaflag that is 1 while underneath a design unit, and a
“subscope_counter” for subscopes underneath the design unit. (FSM coverage, for example,
will create subscopes underneath a design unit.) Then if du->underneath is true, the application
can print something distinctive to indicate when a coveritem was really found through the
design unit rather than the instance:

read_coverage ../../data-nodel s/toggl e-enunitest.ucdb
/top/t/a: O (FROM DU)

/[top/t/b: 1 (FROM DU)

[top/t/c: 1
/[top/t/la: O
[top/t/b: 1
[top/t/c: 1

UCDB API Reference, v10.1 61

UCDB Basics
UCDB Use Cases

Find Objects in a UCDB
C Example (“find-object”):

ucdbCBRet ur nT

cal I back(
voi d* user dat a,
ucdbCBDat aT* cbdat a)

swi tch (cbdat a->reason) {
case UCDB_REASON_SCOPE:
print _scope(cbdat a- >db, (ucdbScopeT) (cbdat a- >obj)) ;
br eak;
case UCDB_REASON CVBI N
print_coveriten(cbdat a->db, (ucdbScopeT) (cbdat a- >obj),
cbdat a- >coveri ndex) ;
br eak;
defaul t: break;

}
return UCDB_SCAN_CONTI NUE

}

voi d
exanpl e_code(const char* ucdbfile, const char* path)

ucdbT db = ucdb_Open(ucdbfile);

i f (db==NULL)
return;
ucdb_Pat hCal | Back(db
0, /* don't recurse from found object */
pat h,

NULL, /* design unit nane does not apply */
UCDB_NONTESTPLAN_SCOPE, /* tree root type */
-1, /* match any scope type */
-1, /* match any coveritemtype */
cal | back, NULL);

ucdb_C ose(db);

}
The easiest way in the UCDB API to find particular objects by name in the databaseisthis
ucdb_PathCallBack() function. It has the added advantage of handling wildcards *" (for
multiple characters) and "7 (for a single character) in individua path component names.

The arguments to ucdb_PathCallBack(), in order, are:

* A database handle which must be opened with ucdb_Open().

* A recursion flag. In this case, since we are interested in finding scopes and not
everything underneath them, therefore the recursion isfalse.

* The path passed in from the command line of the example.

* Thedesign unit nameisNULL because it doesn't apply to theintent here. Paths could be
design-unit-relative. In that case, the design unit name must be given.

62 UCDB API Reference, v10.1

UCDB Basics
UCDB Use Cases

» Thetreeroot type must be given to distinguish between the two basic types of trees
available in the UCDB: the test plan tree or the design instance tree.

» The scope mask restricts the search to particular scope types; -1 in this case means all
scope types.

* The cover mask restricts the search to particular coveritem types; -1 in this case means
all coveritem types. An alternative isto set thisvalue to O, in which case only scopes
would be matched and not coveritems at all.

» The callback function.
» The private data for the callback function.

The print_scope() and print_coveritem() functions use scope or coveritem names, types, and
line numbers to display data about the object found in the database. Note that statement
coveritems will never be found by this APl because they have no names at al. Only alinear
search by filename, line number, and token number could find a particular statement coveritem.

The“sink” design supplied with examples/ucdb/ucdbcraw! has many different types of
coveragein it. Thisillustrates using the find_object example with a pattern that is known to
have multiple matches:

./find_object ../../../ucdbcraw /sink.ucdb '/top/mach/state/*’
Found scope '/top/ mach/state/states': type=20000000 |ine=33

Found scope '/top/ mach/state/trans': type=40000000 |ine=33

Found cover '/top/mach/state/st0': types=00000001/00000200 Iine=0
Found cover '/top/mach/state/stl': types=00000001/00000200 Iine=0
Found cover '/top/mach/state/st2': types=00000001/00000200 |ine=0
Found cover '/top/mach/state/st3' : types=00000001/00000200 |ine=0

Inthis case, “/top/mach/state” is both an FSM scope and a toggle scope. When matching all
children with “*”, this matches the transition and state child scopes of the FSM scope, and the
enum toggle bins. Source information for togglesis stored at the scope level (not at the bin
level). Therefore, the output for the toggle bins shows line=0.

Increment Coverage
C Example (“increment-cover”):

ucdbCBRet urnT

cal | back(
voi d* user dat a,
ucdbCBDat aT* cbdat a)

swi tch (cbdat a->reason) {
case UCDB_REASON CVBI N:
ucdb_I ncr enent Cover (cbdat a- >db, (ucdbScopeT) (cbdat a- >obj),
cbdat a- >coveri ndex, 1) ;
return UCDB_SCAN STOP;
br eak;
defaul t: break;

UCDB API Reference, v10.1 63

UCDB Basics
UCDB Use Cases

}
return UCDB_SCAN_CONTI NUE;

}
voi d
exanpl e_code(const char* ucdbfile, const char* path)
{
ucdbT db = ucdb_Qpen(ucdbfile);
i f (db==NULL)
return;
ucdb_Pat hCal | Back(db
0, /* don't recurse from found object */
pat h,
NULL, /* design unit nane does not apply */
UCDB_NONTESTPLAN_ SCOPE, /* tree root type */
-1, /* match any scope type */
-1, /* match any coveritemtype */
cal | back, NULL);
ucdb_Wite(db, ucdbfile,
NULL, /* save entire database */
1, /* recurse: not necessary with NULL */
-1); /* save all scope types */
ucdb_C ose(db);
}

Incrementing a coveritem issimple: thereisafunction to doit. Again, the ucdb_PathCallBack()
approach has the disadvantage that it only recognizes named items, which excludes statement
coveritems. But ucdb_IncrementCover could be applied to statement coveritemsiif their parent
scopes are identified. To increment a coveritem multiple times, it is recommended that a scope
pointer and coverindex be saved for later use.

The callback in this case uses the UCDB_SCAN_STOP return code to avoid iterating over the
entire database: the iteration is halted after recognizing the coveritem to increment.

The example_code() function illustrates saving the UCDB back toits original file. The origina
fileis closed by the operating system after ucdb_Open() completes, so thereisrealy no link
between the open UCDB handle “db” and the original file. The UCDB can be changed and
written back to the same file or any other file.

The ucdb_Save() arguments “db” and “ucdbfile” are obvious, the others less so:

* Third argument (NULL) — a scope from which to execute the save; if NULL, save the
entire database.

» Fourth argument (1) — arecursion flag, realy only needed if the scope handle in the
previous argument is non-NULL.

» Fifth argument (-1) — a scope mask, to indicate which scopes to save to the database.
This can be used, for example, to create a database with functional coverage only, or
code coverage only.

64 UCDB API Reference, v10.1

UCDB Basics
UCDB Use Cases

Remove Data from a UCDB

C example (“remove-data’):

ucdbCBRet ur nT

cal I back(
voi d* user dat a,
ucdbCBDat aT* cbdat a)

int rc;
ucdbScopeT scope = (ucdbScopeT) (cbdat a- >0bj) ;
ucdbT db = cbdat a- >db
char* nane
swi tch (cbdat a->reason) {
case UCDB_REASON_SCOPE
printf("Renoving scope %\ n", ucdb_Get ScopeH er Narme(db, scope));
ucdb_RenoveScope(db, scope);
return UCDB_SCAN_PRUNE;
case UCDB_REASON CVBI N:
ucdb_Get Cover Dat a(db, scope, cbdat a- >coveri ndex, &ane, NULL, NULL) ;
printf(
Renovi ng cover %/ %\ n", ucdb_Get ScopeHi er Nane(db, scope), nane) ;
rc = ucdb_RenoveCover (db, scope, chdat a- >coveri ndex) ;
if (rc!=0) {
printf("Unable to renmove cover %/ %\n"
ucdb_Get ScopeH er Nane(db, scope), nane);
}
br eak;
defaul t: break;

}
return UCDB_SCAN_CONTI NUE

b
voi d
exanpl e_code(const char* ucdbfile, const char* path)

ucdbT db = ucdb_Qpen(ucdbfile);
i nt mat ches;

i f (db==NULL)
return;
mat ches = ucdb_Pat hCal | Back(
db,
0, /* don't recurse from found object */
pat h,

NULL, /* design unit nane does not apply */
UCDB_NONTESTPLAN_SCOPE, /* tree root type */
-1, /* match any scope type */
-1, /* match any coveritemtype */
cal | back, NULL);
i f (matches==0)
printf("No matches for path\n");

el se
ucdb_Wite(db, ucdbfile,
NULL, /* save entire database */
1, /* recurse: not necessary with NULL */
-1); /* save all scope types */

ucdb_Cl ose(db);

UCDB API Reference, v10.1 65

UCDB Basics
UCDB Use Cases

Note
D This example does not work with wildcards.

The ucdb_RemoveScope() and ucdb_RemoveCover() functions are used to del ete objects from
the database. Thereisalimitation on ucdb_RemoveCover() in that it cannot delete toggle bins
for the most common types:. the 2-state and 3-state wires and registers — this is because toggle
bins are optimized and don't really exist in isolation. The toggle scope can be deleted, but not
individual binsin that case. Because of this, the error handler in this example does not call exit()
but allows the code to continue; otherwise there is an internal API error generated for trying to
remove atoggle scope of these kinds. Also, the return code from ucdb_RemoveCover() is
checked to be able to give an error message with a specific path to the object whose removal
failed.

When a scope isremoved, al its children are removed, too.

This example also checks the return code from ucdb_PathCallBack() to indicate when no
objects were matched by the given path. Otherwise, the application would remain silent.

Thisisone of those API applications whose use may be alittle dangerous:. for example, it would
be possible to delete an FSM transition scope, leaving a set of transitions which could be
inconsistent with the state values for the same FSM.

User-Defined Attributes and Tags in the UCDB

Tags are names that are associated with scopes and/or test data records in the database. These
names could be used for general purpose grouping in the database. There may be an
enhancement in the future that allows atag to reference another tag: that would pave ground for
hierarchical groups of otherwise unrelated objects.

Tags in the UCDB

In Questa, tags are used for making test traceability associations. Thisis explained in more
detail below.

C Example to print tags (“print-attrtags’):

voi d
print_tags(ucdbT db, ucdbScopeT scope)
{
int i, ntags = ucdb_Get Gbj NunTags(db, (ucdbChj T) scope);
const char* tagnane;
printf("Tags for %:\n", ucdb_Get ScopeH er Nanme(db, scope));
if (ntags > 0) {
for (i=0; i<ntags; i++) {
ucdb_Get oj I t hTag(db, (ucdbQbj T) scope, i, & agnane) ;
printf("% ",tagnane);

66 UCDB API Reference, v10.1

UCDB Basics
UCDB Use Cases

}
printf("\n");
}

This uses an integer-based iterator. First the number of tags are acquired with
ucdb_GetObjNumTags, then the function ucdb_GetObjlthTag() is used to acquire the tag name
for the i-th tag. Because these functions operate on both scopes (ucdbScopeT) and test data
records (ucdbTestT), there is a so-called polymorphic type ucdbObj T that can stand for both.
Some functions — queries as to object type or kind, queries about tags, and queries about
attributes — take these object handles rather than scope or test data record handles. However,
because thisis C and not C++, al these types are really void*, so they are interchangeable and
type unsafe. In this example the cast with “(ucdbObjT)” is used for readability; it is not strictly
necessary.

User-Defined Attributes in the UCDB

User-defined attributes are also names that can be associated with a UCDB aobject, but are more
powerful than tagsin what they can represent:

» They can appear with any type of object in the database: test data records, scopes, and
coveritems.

» Thereisaclassof attributes—where NULL is given as the ucdbObjT handle to the API
calls—that are called “globa” or “UCDB?” attributes. These are not associated with any
particular object in the database but instead are associated with the database itself. There
are afew of these used by Questa.

» User-defined attributes have values as well as names. The names are the so-called “key”
for the values. In other words, you can look up avalue by name.

» Attribute values can be of five different types:
o 32-bit integer
o 32-bit floating point (float).
o 64-bit floating point (double).
o Null-terminated string.

o A byte stream of any number of bytes with any values. Thisis useful for storing
unprintable characters or binary values that might contain O (and thus cannot be
stored as a null-terminated string.)

C example to print attributes (“read-attrtags’):

voi d
print_attrs(ucdbT db, ucdbScopeT scope, int coverindex)

{

const char* attrnane;

UCDB API Reference, v10.1 67

UCDB Basics
UCDB Use Cases

}

ucdbAt tr Val ueT*
char* cover nane;

attrval ue;

printf("Attributes for %", ucdb_Get ScopeHi er Nane(db, scope));
i f (coverindex>=0) {
ucdb_Get Cover Dat a(db, scope, coveri ndex, &over nane, NULL, NULL) ;

printf("%%:

} else {

\'n", ucdb_Get Pat hSepar at or (db), cover nane) ;

printf(":\n");

attrname = NULL;
while ((attrname

printf("\t%:

= ucdb_At tr Next (db, (ucdbObj T) scope, coveri ndex,
attrnane, &ttrvalue))) {
", attrname);

switch (attrval ue->type)

{

case UCDB_ATTR_I NT:
printf("int = %\n", attrval ue->u.ivalue);

br eak;

case UCDB_ATTR_FLOAT:
printf("float = %\n", attrval ue->u.fval ue);

br eak;

case UCDB_ATTR_DOUBLE:
printf("double = %f\n", attrval ue->u.dval ue);

br eak;

case UCDB_ATTR_STRI NG
printf("string = '9%"'\n",
attrval ue->u. svalue ? attrval ue->u.svalue : "(null)");

br eak;

case UCDB_ATTR_MEMBLK:
printf("binary, size = % ", attrval ue->u.nval ue.size);
if (attrval ue->u.nvalue.size > 0) {

i nt

printf("value =");
for (i=0; i<attrval ue->u.nval ue.size; i++)

printf("9®2x ", attrval ue->u.nvalue.datali]);

}
printf("\n");

br eak;
def aul t:

printf("ERROR UNKNOAN ATTRI BUTE TYPE (%d)\n",

attrval ue->type);

} /* end switch (attrval ue->type) */
} /* end while (ucdb_AttrNext(...)) */

Thefirst thing you might notice is that the iterator convention is different. Why isthat? The
simple answer is that there might not be a good reason. Because backward compatibility isa
design goal, other design decisions — good and bad — are enshrined for posterity because we
make the commitment not to abandon an API in the future. Once having an APl in acertain
form, it seems better to leave it as-is than change it for purely cosmetic reasons.

68

UCDB API Reference, v10.1

UCDB Basics
UCDB Use Cases

Thisiterator requires aloop like this:

attrname = NULL;
while ((attrname = ucdb_AttrNext (db, (ucdbCbj T) scope, coveri ndex,
attrnane, &ttrvalue))) {

The assignment of attrname to NULL is crucid; it starts the iteration. (A common bug in this
case isto leave the attrname variable uninitialized. If it happens to be 0, the loop may execute,
otherwise it will behave unpredictably, either crashing or doing nothing.)

If the attribute is for a scope, coveritem==(-1). If the attribute is for atest data record, the
second (ucdbObjT) argument must be aucdbTestT handle. If the attribute isfor the UCDB asa
whole, the second argument must be NULL.

The same attribute name as was returned by ucdb_AttrNext() must be passed to the function for
the next iteration. The ucdbAttrValueT* variable must be declared by the user and is set by
ucdb_AttrNext(). Thisvariable is changed to point to memory owned by the API.

The code, asillustrated above, must switch on attrvalue->type to print something appropriate
for the attribute value of the given type.

Some of the examples for adding datato a UCDB below show how to write user-defined
attributes. There is no special trick to writing them, just that you must create your own memory
for the attribute value(s); this memory is copied for the API's purposes to store with the UCDB.

Predefined Attribute Names in the UCDB
One thing you will notice in the ucdb.h header is #defines of thisform:

#defi ne UCDBKEY_SI MI'l ME "SI MTI VE"

Any of these macros starting with “UCDBKEY” are predefined attribute names. Y ou may re-
use these attribute names in different scopes, but it isinadvisable to re-use these attribute names
in the same scopes in which Questaitself creates them. More precisely, if you do, please know
what you are doing.

These attribute names and values are declared in ucdb.h so that you can be aware of them.

For the most part, the built-in attributes created by Questa must be read or written with the same
API hasfor any user-defined attribute. For test data records only, built-in attributes may also be
read or written with the API functions ucdb_GetTestData() and ucdb_AddTest().

Create a Test Plan in a UCDB

The data model example discussed in the section “Test Plan Hierarchy and Tags’ shows how to
create atrivially simple test plan from scratch. Some things to remark for the test plans created
by Questa:

UCDB API Reference, v10.1 69

UCDB Basics
UCDB Use Cases

Tag namesfor test plan sections in Questa are a concatenation of the test plan root name
and the section number. This guarantees that test plans can be merged together from
different files.

The Questatag CLI (viewcov mode command-line interface) is actually embedded as a
user-defined attribute in the test plan scope, with UCDBKEY _TAGCMD as the name.
The value is a string of semicolon-separated list of arguments to the coverage tag
commands; these commands are automatically executed by vcover merge.

Test plan sections have the UCDBKEY _SECTION attribute set to the literal section
number that must appear in the report.

The XML import for test plans can create any arbitrary user-defined attributes from the
test plan source. For example, if you want an attribute named “ Responsible” whose
valueisthe name of the person responsible for the section of thetest plan, that can be set
up. These attributes then appear in the GUI and can be used as search criteriawith the
CLI or GUI.

Using Tags to Traverse from Test Plan to Coverage Data

Thisillustrates a hand-coded recursive traversal of test plan scopes only, and for each test plan
scope, pursuing the linked objects that share the same tag. The fact is, ucdb_PathCallBack()
does this automatically; it considers the linked object to be a*“virtual child” of the test plan

scope.

C Example (“traverse-testplan”):

voi d
recurse_testplan(int |evel, ucdbT db, ucdbScopeT scope)

{

int t, numtags;
const char* tagnane;
ucdbScopeT subscope;

/[* Print test plan scope nane and recurse child test plan sections */
i ndent (I evel);

printf("%\n", ucdb_Get ScopeNanme(db, scope));

subscope=NULL;

whi | e ((subscope=ucdb_Next SubScope(db, scope, subscope, UCDB_TESTPLAN)))

recurse_testplan(level +1, db, subscope);

}

/* fromucdb. h: traverse non-testplan objects with the same tag nane */
nunt ags = ucdb_Get Obj NuniTags(db, (ucdbQhj T) scope);
for (t=0; t<nuntags; t++) {

i nt found;

ucdbObj T taggedobj ;

ucdb_Get oj I t hTag(db, (ucdbQbj T) scope, t, & agnane) ;

for (found=ucdb_Begi nTaggedbj (db, t agnane, & aggedobj) ;

found; found=ucdb_Next Taggedhj (db, & aggedobj)) {
i f (ucdb_Obj Ki nd(db, taggedobj) ==UCDB_0BJ_SCOPE

70

UCDB API Reference, v10.1

UCDB Basics
UCDB Use Cases

&&
ucdb_Get ScopeType(db, (ucdbScopeT) t aggedobj) ==UCDB_TESTPLAN)
conti nue;
/* tagged object is not a test plan scope: */
i ndent (| evel +1);
i f (ucdb_nj Ki nd(db, t aggedobj) ==UCDB_0OBJ_SCOPE)
printf("%\n", ucdb_Get ScopeH er Nane(db, (ucdbScopeT)t aggedobj));
el se if (ucdb_Obj Ki nd(db, t aggedobj) ==UCDB_0OBJ_TESTDATA)
printf("%\n", ucdb_Get Test Nane(db, (ucdbTest T) t aggedobj));

}

voi d
exanpl e_code(const char* ucdbfile)

ucdbScopeT subscope;

ucdbT db = ucdb_Open(ucdbfile);

i f (db==NULL)
return;

subscope=NULL;

whi | e ((subscope=ucdb_Next SubScope(db, NULL, subscope, UCDB_TESTPLAN))) {
recurse_testpl an(0, db, subscope);

}
ucdb_C ose(db);
}

The ucdb_NextSubScope function is an iterator that must start with aNULL pointer. One
common mistake with thisiterator is to confuse the “scope” and “subscope”. The traversal in
example_code() isatraversal of roots, because NULL is given as the scope. The sub-scopes are
returned, but these are root scopes with no parent. Note that the last argument to
ucdb_NextSubScope —the UCDB_TESTPLAN value —is a scope mask. Thisis one of those
cases where the scope type is used as a mask, justifying the implementation where each scope
type occupies one and only one bit. In this case, the iterator will return only test plan scopes.

The recurse_testplan() scope prints the test plan scope name with indentation and recurses into
test plan sub-scopes.

The complex second loop in recurse_testplan() is taken from an example in the ucdb.h header.
This acquires each tag from the test plan. (Even though Questa creates test plan sections with
one and only one tag, the UCDB has no such restriction in its data model.) The
ucdb_BeginTaggedObj() and ucdb_NextTaggedObj() use the tag name to return the list of
objects that share the tag. Note that tagged objects may be either scopes — test plan scopes,
module instance scopes, coverage scopes, design unit scopes, etc. — or test data records. The
ucdb_GetScopeType() function may only be used with scopes, so ucdb_ObjKind() is used first
to guarantee that the object is a scope.

If the loop drops through the continue statement, we are guaranteed that the current object
(taggedobyj) shares atag with the current test plan scope and is not itself atest plan scope. The
names are printed in two different fashions: one for other scopes and one for test data records.

UCDB API Reference, v10.1 71

UCDB Basics
UCDB Use Cases

The end result isasimpler version of the “coverage analyze -plan / -r” command that can be
used in viewcov mode in Questa. Thisis essentially the logic followed by the coverage analyze
command. Note, however, that “ coverage analyze” really relies on ucdb_PathCallBack() which
has the traversal logic built-in.

File Representation in the UCDB

File representation in the UCDB is designed to be efficient and capable. For efficiency, inside
most objects in the database source file information is stored as atriple: file number, line
number, and token number. File numbers need to relate to afile table. The UCDB has various
waysto create afile table, implicitly or explicitly. With Questaitself, file tables are stored with
design units. The file number is then the index into the file table of the design unit to which the
object belongs. However, in general, file handles may be mixed and matched among different
file tables. The example for this section (“filehandles’) uses both the design-unit file table
created by Questa and a global one created implicitly through the API.

For capability, afile is specified as two parts: the directory to which the file belongs and the
relative path to thefileitself. This allows a heuristic algorithm to try to find the file even if the
UCDB has been moved. A “heuristic” is not guaranteed to work. The heuristic includes possible
use of a Questa-specific environment variable (“MGC_WD”) that can be used explicitly to
point to source if the original directory no longer exists. Additionally, there isthe
MGC_LOCATION_MAP feature which allows mapping of directory prefixes between
different networks so that Questafiles can be portable between different file systems. The
UCDB implementation will make use of MGC_LOCATION_MAP features if present.

The example for this document is a simple one that does not illustrate all of the subtleties of the
UCDB file representation, but shows some simple scenarios.

Creating a File Handle From a File Name

In this case, Questa itself manages the file table. This has the disadvantage that each time afile
handleis created by name, there is a string-based |ook-up to ensure that the file table contains
only unique names.

C Example (“filehandles/create_filehandles.c”):

voi d

create_statenent_with fil ehandl e(ucdbT db,
ucdbScopeT parent,
ucdbFi | eHandl eT fil ehandl e,
int |ine,
i nt count)

ucdbCover Dat aT cover dat a;
ucdbSour cel nf oT srci nf o;
ucdbAttrVal ueT attrval ue;

i nt coveri ndex;

coverdata.type = UCDB_STMIBI N;

72 UCDB API Reference, v10.1

UCDB Basics
UCDB Use Cases

coverdata.flags = UCDB IS 32BIT; /* data type flag */
coverdata.data.int32 = count; /* must be set for 32 bit flag */
srcinfo.fil ehandl e = fil ehandl e;

srcinfo.line = line;

srci nfo.token = 0; [* fake token # */

coverindex = ucdb_Creat eNext Cover (db, parent,
NULL, /* name: statenments have none */

&cover dat a,

&sr ci nf o) ;

exanpl e_code(const char* ucdbfile)

”/* Let UCDB APl create a global file table for each unique filenane: */
ucdb_Creat eSrcFi | eHandl eByNane(db, &f i | ehandl e,

NULL, /* let APl create file table */
"test.sv",
pwd) ;

create_statenent_with fil ehandl e(db, | nst ance, fil ehandl e, 3, 1) ;

This shows two excerpts from the example. The ucdb_CreateSrcFileHandleByName() takes
these arguments:

e Database
* Filehandleto befilledin.

» Path to scope in which filetableisto reside. If NULL, that means aglobal file table.
Note, aglobal fileis most efficient, but Questa does not use this since it does per-design-
unit compilation and much of its source information is oriented around the design unit.

* Nameof file.
» Directory in which thefileisfound. This example relieson a“PWD” environment.

Thefile handleis assigned to the ucdbSourcelnfoT structure. The structure contains other
information for line number and token number. This structure is passed to API functions like
ucdb_CreateNextCover() and ucdb_CreateScope() and ucdb_Createl nstance() which create
new objects in the database. The section Add New Datato a UCDB discusses creation of new
objectsin more detail.

The token number is difficult to use unless you have access to atokenizer (lexical analyzer) for
each source language of interest.

Creating a File Handle From an Existing File Table

In this“filehandles’” example, Questaisinvoked on these source files:
Example (“filehandles/test.sv”):

nodul e top;

UCDB API Reference, v10.1 73

UCDB Basics
UCDB Use Cases

initial begin
/1 $display("hello");
/1 $display("there");
“include "test2.sv"
end

endnodul e

Example (“filehandles/test2.sv”):

/

/ $display "world";

Even though these source files have commented-out statements, the compiler did parse the
code, and Questa did create afile table inside the “work.top” design unit that has two entries.
Thefirst entry is“test.sv” and the second entry is “test2.sv”. Consequently, this code can be
used to create statements that use file handles from the existing design unit file table:

C Example (“filehandles/create filehandles.c”):

voi d

create_statenent_with_fil enunber(ucdbT db

ucdb

ucdbScopeT parent,
ucdbScopeT fil et abl e_scope,
int filenunber,

int |ine,

i nt count)

ucdbCover Dat aT cover dat a
ucdbSour cel nf oT srci nfo;
ucdbFi | eHandl eT fil ehandl e;
ucdbAttrVal ueT attrval ue;

i nt coveri ndex;

_Creat eFi | eHandl eByNun{db, & i | ehandl e, fil et abl e_scope, fil enunber);
coverdata.type = UCDB_STMIBI N;

coverdata.flags = UCDB | S 32BIT,; /* data type flag */
coverdata.data.int32 = count; /* must be set for 32 bit flag */
srcinfo.fil ehandl e = fil ehandl e;

srcinfo.line = line;

srci nfo.token = 0; [* fake token # */

coverindex = ucdb_Creat eNext Cover (db, parent,
NULL, /* nane: statenents have none */

&cover dat a,

&sr ci nf o) ;

/* Re-use file table fromDU: */
create_statenent_wi th _fil enunber(db,instance, du, 0, 4,1);
create_statenent _with fil enunber(db,instance,du,1,1,1);

Thisisthe more efficient approach to creating afile handle. It requires a handle to the scope
containing the file table (or NULL if using aglobal file table). The function
ucdb_CreateFileHandleByNum() is used to create afile handle from the given file table.

This creates two statements;

74

UCDB API Reference, v10.1

UCDB Basics
UCDB Use Cases

* First statement from file O (“test.sv”) from du'sfile table, at line 4, with count 1.
» Second statement from file 1 (“test2.sv”) from du'sfile table, at line 1, with count 1.

There are other ways to create file handles, as well. For example, the ucdb_CloneFileHandl&()
function can be used if you don't have access to the scope containing the file table, but only
have accessto avalid file handle. Y ou can clone the file handle, which means to use the same
file table, but with a different file number, such as a different offset into the table.

This example also did not illustrate how to create the file table in the first place (since that was

already done by Questafor the design unit.) That isvery easy: use ucdb_SrcFileTableAppend()
for each successivefile.

Dumping File Tables

Accessing afile name from afiletableistrivialy easy: use ucdb_GetFileName(). That has
already been used in the “read-coverage” example as away to identify a statement bin, since
statement bins have no names.

This example shows how to dump file tables throughout a database:

C Example (“filehandles/”dump_filehandles.c”):

voi d
dump_fil etabl e(ucdbT db, ucdbScopeT scope)
{

int file;

for (file=0; file<ucdb FileTabl eSi ze(db, scope); file++) {
if (file==0) {
if (scope)
printf("File Table for "%':\n",
ucdb_Get ScopeH er Nane(db, scope));
el se
printf("dobal File Table:\n");

printf("\t%\n", ucdb_Fil eTabl eNane(db, scope,file));

}
}
ucdbCBRet ur nT
cal I back(
voi d* user dat a,
ucdbCBDat aT* cbdat a)
{
swi tch (cbdat a->reason) {
case UCDB_REASON_DU:
case UCDB REASON SCOPE:
dump_fil et abl e(cbdat a- >db, (ucdbScopeT) (cbdat a- >obj)) ;
br eak;
def aul t: break;
}
return UCDB_SCAN_CONTI NUE;
}

UCDB API Reference, v10.1 75

UCDB Basics
UCDB Use Cases

voi d
exanpl e_code(const char* ucdbfile)

ucdbT db = ucdb_Qpen(ucdbfile);
printf("Dunping file tables for "%' ...\n", ucdbfile);
dunmp_fil et abl e(db, NULL);
ucdb_Cal | Back(db, NULL, cal | back, NULL) ;
ucdb_C ose(db);
}

First, the global filetableis dumped, with scope==NULL. Technically any scope can have afile
table — except for toggle scopes, which have limited capability for space efficiency (because
there are potentially many toggles.) There are some limitations on where afile handle may be
used for agiven file table. Basicaly, the scope with the file table must be an ancestor in the
UCDB hierarchy relative to the object that refersto it with afile handle.

Thereisafunction for dumping the file name directly from the table, ucdb_FileTableName().
The same name could be acquired indirectly by using ucdb_CreateFileHandleByNum() to get a
file handle from the table and then ucdb_GetFileName() to get aname from thefile handle. The
ucdb_FileTableName() does the same thing in a single step.

In the example, there are only two file tables: the one created by Questain the design unit, and
the global one created by “create filehandles’ that partially overlaps the design unit table:

Dunping file tables for 'test.ucdb’
d obal File Table:

test.sv
File Table for 'work.top':

test.sv

test2.sv

Add New Data to a UCDB

The single complex example “ create-ucdb/create_ucdb.c” creates a hardcoded UCDB from
scratch. The code that it uses could be adapted — with variations — to add objects to an existing
UCDB. After all, evenin the “create_ucdb.c” example, the database exists: it just starts out
empty and is added to with each call. The subsections below discuss each type of object in turn.

The exampleis not exhaustive. Statements, an enum toggle, and a covergroup are created as an
illustration. To create other types of objects, the user should refer to the chapter “UCDB Data
Models’. It also may help to reverse-engineer UCDB data created by Questa using the
ucdbdump example from exampl es/ucdb/ucdbdump.

Remember that the UCDB is more general than Questa. It isone thing to put datainto a UCDB,
another thing to get that datato display in Questa.

76 UCDB API Reference, v10.1

UCDB Basics
UCDB Use Cases

Add Design Unit to a UCDB
C Example (“create-ucdb”):

ucdbScopeT

create_design_unit (ucdbT db,
const char* dunane,
ucdbFi | eHandl eT file,
int line)

ucdbScopeT duscope;

ucdbSour cel nf oT srci nfo;

ucdbAttr Val ueT attrval ue;

srcinfo.filehandle = file;

srcinfo.line = line;

srci nfo.token = 0;

duscope = ucdb_Creat eScope(db,

NULL,

dunane,
&srci nf o,
1

UCDB_VLOG

/* fake token # */

/* DUs never have a parent */

/[* weight */
/* source | anguage */

UCDB DU MODULE, /* scope type */

/* flags:

UCDB_ENABLED_STMT | UCDB_ENABLED BRANCH |
UCDB_ENABLED_COND | UCDB_ENABLED EXPR |
UCDB_ENABLED_FSM | UCDB_ENABLED TOGGLE |
UCDB_I NST_ONCE | UCDB_SCOPE_UNDER DU) ;

attrval ue. type = UCDB_ATTR STRI NG

attrval ue. u. sval ue = "FAKE DU SI GNATURE";

ucdb_At t r Add(db, duscope, - 1, UCDBKEY_DUSI GNATURE, &at t r val ue) ;

return duscope;

}

One cardinal ruleisthat design units must be created before their corresponding instances.

Design units come in five types.

« UCDB_DU_MODULE: aVerilog or SystemVerilog module.

« UCDB_DU_ARCH: aVHDL architecture.

e UCDB_DU_PACKAGE: aVerilog, SystemVerilog or VHDL package.
» UCDB_DU_PROGRAM: a SystemVerilog program block.
» UCDB_DU_INTERFACE: a SystemVerilog interface.

One crucia fact about all these, except packages, is that differently parameterized versions of
the same design unit are merged together by Questa when saving a UCDB. Thisis because
different parameterizations may be created arbitrarily and capriciously by the optimizer. The
Structure window in Questa shows these parameterizations, but when a UCDB isloaded into
the coverage view mode GUI, the Structure window shows only the canonical module,

architecture, and so forth.

UCDB API Reference, v10.1

77

UCDB Basics
UCDB Use Cases

One peculiarity of Questaisthat it does not use the UCDB_SV language type except for types
of objects peculiar to SystemVerilog (such as interfaces.) A module will always have the
UCDB_VLOG language type.

The flags for the design unit have the requirement — in order for Questa's report to work
correctly — that flags be turned on to correspond to the different types of code coverage having
been compiled for the design unit. If these flags are not present, the report will not recognize the
corresponding code coverage type.

The UCDB_INST_ONCE flag is hardcoded in this case, but the user is responsible for
maintaining it. If you add an instance to adesign unit that already has a single instance, the flag
must be cleared. In this example, it isknown apriori that the design unit will only ever have a
single instance.

The flag UCDB_SCOPE_UNDER_DU isrequired for certain coverage CLI commands and
summary datato work correctly: it supplies the implementation for ucdb_Scopel sUnderDU()
and hasimplications for ucdb_CalcCoverageSummary(). If the flag is not set, some design-unit-
oriented coverage may be mistaken as being per-instance.

The UCDBKEY_DUSIGNATURE attribute is required to detect source code changes for the
files associated with the design unit.

Note that the Questaimplementation of the signature is not available asa public API. If avalid
signatureis not computed by the API user, it hasimplicationsfor the merge. If UCDBsfrom the
same design source are merged together, there will be no problem — but the potential problem of
merging files from different source would not be detected. (Merging from different sourceisa
problem for the UCDB because most code coverage objects, with the exception of FSMs and
toggles, are identified by source code only, i.e., by some combination of file, line, and token
number.)

The weight of a design unit has relevance to Questa's “ coverage analyze” command and the
“Test Tracking GUI”.

Add Module Instance to a UCDB
Thereislittle more to this than to use an API call. C Example (“create-ucdb”):

ucdb_Creat el nst ance(db, parent, i nst nane,

NULL, /* source info: not used in Questa */
1, [* weight */

UCDB_VLOG, /* source | anguage */

UCDB | NSTANCE, /* instance of nodul e/architecture */
duscope, /* reference to design unit */

UCDB I NST _ONCE);/* flags */

Because the UCDB is ahierarchical data structure, the parent must be given. (If NULL, that
createsthe instance at the top-level, i.e., createsit asroot.) Thisimplicitly adds the new instance
underneath the parent.

78 UCDB API Reference, v10.1

UCDB Basics
UCDB Use Cases

Theinstance name (instname) will become part of the path to identify the instance in the UCDB
hierarchy. If the name contains odd characters, it is good practice to turn it into an escaped (or
extended) identifier to alow path searching in Questa to work properly. The escaped identifier
syntax will be VHDL style for instances under a VHDL parent, Verilog style for instances
under a Verilog parent.

Source information may be given.

The weight may be relevant to the coverage analyze command and the Test Tracking GUI.
The scope type (UCDB_INSTANCE in this case) must map correctly to the given design unit
type:

» UCDB_INSTANCE for design unit type of UCDB_DU_MODULE or
UCDB_DU_ARCH.

 UCDB_PACKAGE for design unit type of UCDB_DU_PACKAGE.
* UCDB_INTERFACE for design unit type of UCDB_DU_INTERFACE.
« UCDB_PROGRAM for design unit type of UCDB_DU_PROGRAM.

The UCDB_INST_ONCE flag is set only for the case of the single instance of a given design
unit. If adding an additional instance, the flag must be cleared explicitly by the user. Hereis an
example:

ucdb_Set ScopeFl ag(db, scope, UCDB_| NST_ONCE, 0) ;

Add Statement to a UCDB
This has already been illustrated in the “filehandles” example. Hereisafull discussion.

C Example (“create-ucdb”):

voi d
creat e_stat enent (ucdbT db,
ucdbScopeT parent,
ucdbFi | eHandl eT fil ehandl e,
int |ine,
i nt count)

ucdbCover Dat aT cover dat a;
ucdbSour cel nf oT srci nfo;
ucdbAttrVal ueT attrval ue;

i nt coveri ndex;

coverdata.type = UCDB_STMIBI N;

coverdata.flags = UCDB | S 32BI T, /* data type flag */

coverdata. data.int32 = count; /* nmust be set for 32 bit flag */
srcinfo.fil ehandl e = fil ehandl e;

srcinfo.line = line;

srci nfo.token = 0; /* fake token # */

coverindex = ucdb_Creat eNext Cover (db, parent,

UCDB API Reference, v10.1 79

UCDB Basics
UCDB Use Cases

NULL, /* nane: statenents have none */
&cover dat a,
&sr ci nf o) ;
/* SINDEX attribute is used internally by Questa: */
attrval ue. type = UCDB_ATTR_I NT;
attrvalue.u.ivalue = 1;

ucdb_AttrAdd(db, parent, coveri ndex, UCDBKEY_STATEMENT | NDEX, &at trval ue);
}

Like any object to be created in the design or test bench or test plan hierarchy, thisrequires a
parent. The third argument to ucdb_CreateNextCover() is the name of the object. Note that
statements do not have a name as created by Questa. (Y ou can provide one, naturaly, but
Questa does not and will ignoreit.)

The & coverdata argument is a pointer to the ucdoCoverDataT structure. This structure contains
all the data associated with the bin except for the name and source information. The “data’ field
isaunion containing the coverage count: int32 for 32-bit platforms or int64 for 64-bit
platforms. In this example, it is hard-coded to 32-bits, which requires setting both the
appropriate field of the union and the corresponding flag. Other data fields are optionally
enabled based on the flags field of ucdbCoverDataT. Statements require only the datafield (the
coverage count).

The“SINDEX” user-defined attribute is used to determine the ordering of the statement on a
line. If the statement is the only one to appear on the line, “SINDEX” isalways 1. The second
statement on aline would have value 2, etc. Yes, thisis redundant with the token number.
Perhapsiit is an acknowledgement that the token number is unreliable, as previoudy discussed.
If this“SINDEX"” attribute is not given, the “ItemNo” column of Questa's statement coverage
details report (vcover report -code s -byfile -details ucdb) will not be correct.

Add Toggle to a UCDB
Toggles have special data characteristics which require they be created with a special API call.

C Example (“create-ucdb”):

voi d
create_enum toggl e(ucdbT db, ucdbScopeT parent)
{
ucdbCover Dat aT cover dat a;
ucdbScopeT toggl e;
toggl e = ucdb_Creat eToggl e(db, parent,
"t /* toggle name */

NULi_, /* canoni cal nanme */
0, /* exclusions flags */
UCDB_TOGGLE_ENUM /* toggle type */

UCDB TOGGLE | NTERNAL); [/* toggle "direction" */
coverdata.type = UCDB _TOGGLEBI N,
coverdata.flags = UCDB_ | S 32BI T, /* data type flag */
coverdata.data.int32 = 0; /* must be set for 32 bit flag */
ucdb_Cr eat eNext Cover (db, t oggl e,

80 UCDB API Reference, v10.1

UCDB Basics
UCDB Use Cases

"a", /* enum nanme */

&coverdat a,

NULL) ; /* source data */
coverdata.data.int32 = 1; /* must be set for 32 bit flag */
ucdb_Cr eat eNext Cover (db, t oggl e,

"b", /* enum name */

&cover dat a,

NULL) ; /* source data */

}

This corresponds to a source toggle declared like so in SystemV erilog:
enum{ a, b} t;

Note that the toggle has only name and no source information (so NULL values are passed to
ucdb_CreateNextCover()). Source info could be added later using ucdb_SetScopeSourcel nfo()
on toggle scopes.

The canonical name is used for wire (net) toggles, as described in the section Net Toggle with
Connected Net. The exclusions flags may apply to the toggle, so those can be given, too.

Finally, the toggle type and directionality (input, output, inout, or internal) are given.
Directionality really only applies to net toggles, but is set to internal for others.

Recall that an enum toggle has bins whose names correspond to the enum valuesin the source
language. If creating binsfor other types of toggles, use the appropriate UCDBBIN_TOGGLE _
#define value as declared in ucdb.h.

Add Covergroup to a UCDB

The covergroup is created in various stages. The covergroup for the “create-ucdb” example
looks like this:

enum{ a, b} t;
covergroup cg;

coverpoint t;
endgr oup

This requires creating a hierarchy like this:
1. cg
at
. a
i. b
Thetop level codeisthis:

C Example (“create-ucdb”):

UCDB API Reference, v10.1 81

UCDB Basics
UCDB Use Cases

cvg = create_covergroup(db,instance,"cg", filehandle, 3);
cvp = create_coverpoint(db,cvg,"t",filehandle, 4);

create_coverpoint_bin(db,cvp,"auto[a]",fil ehandle, 4,1,0,"a");
create_coverpoi nt _bin(db, cvp,"auto[b]",fil ehandl e, 4,1,1,"b");

The hierarchy isimplied by the use of the parent pointers, second argument to each of these
functions. The parent of “cg” is the instance whose scope handle is “instance”; thisis loaded
into the “cvg” handle. The “cvg” handleis used as the parent to create the “cvp” handle for the
coverpoint named “t”. The “cvp” handle isthen used as the parent of the bins.

The creation of the covergroup is this example:
C Example (“create-ucdb”):

ucdbScopeT

create_covergroup(ucdbT db,
ucdbScopeT parent,
const char* nane,
ucdbFi | eHandl eT fil ehandl e,

int line)
{
ucdbScopeT cvg;
ucdbSour cel nfoT srcinfo;
ucdbAt trVal ueT attrval ue;
srcinfo.fil ehandl e = fil ehandl e;
srcinfo.line = line;
srci nfo.token = 0; [* fake token # */
cvg = ucdb_Creat eScope(db, parent, nane,
&srci nf o,
1, /* fromtype_option.weight */
UCDB_VLOG, /* source | anguage type */
UCDB_COVERGROUP
0); [* flags */
/* Hardcoding attribute values to defaults for type_options: */
attrval ue.type = UCDB_ATTR I NT
attrval ue. u.ival ue = 100;
ucdb_AttrAdd(db, cvg, - 1, UCDBKEY_GQAL, &attrval ue)
attrval ue.u.ivalue = 0;
ucdb_At t r Add(db, cvg, - 1, UCDBKEY_STROBE, &at t r val ue) ;
attrval ue.type = UCDB_ATTR_STRI NG
attrval ue.u.svalue = "";
ucdb_AttrAdd(db, cvg, - 1, UCDBKEY_COMMENT, &at trval ue);
return cvg;
}

Much of the ucdb_CreateScope() usage has been discussed before. The only interesting thing to
note is the scope type (UCDB_COVERGROUP) and the fact that the source typeis
UCDB_VLOG. The source type could reasonably be UCDB_SV aswell, but Questa does not
create it that way. In fact, Questa does not really draw afine distinction between SystemVerilog
and Verilog.

The attributes are required to have full report capability for the covergroup. Because this
covergroup has option.per_instance the default of 0, the example creates type_option values

82 UCDB API Reference, v10.1

UCDB Basics
UCDB Use Cases

only. Note that type_option.weight is provided directly as an argument to ucdb_CreateScope().
The option.per_instance influences the topology of the covergroup tree itself; if there are no
covergroup objects with option.per_instance==1, then there will be no
UCDB_COVERINSTANCE scopes in the covergroup subtree.

Following is the creation of the coverpoint.
C Example (“create-ucdb”):

ucdbScopeT
create_coverpoint (ucdbT db,
ucdbScopeT parent,
const char* nane,
ucdbFi | eHandl eT fil ehandl e,

int line)
{
ucdbScopeT cvp;
ucdbSour cel nf oT srci nfo;
ucdbAttrVal ueT attrval ue;
srcinfo.filehandle = fil ehandl e;
srcinfo.line = line;
srcinfo.token = 0; /* fake token # */
cvp = ucdb_Creat eScope(db, parent, nane,
&srci nf o,
1, [* fromtype_option.weight */
UCDB_VLOG, /* source | anguage type */
UCDB_COVERPO NT,
0); [* flags */
/* Hardcoding attribute values to defaults for type options: */
attrval ue.type = UCDB_ATTR | NT;
attrval ue. u.ivalue = 100;
ucdb_At t r Add(db, cvp, - 1, UCDBKEY_GQAL, &attrval ue);
attrvalue.u.ivalue = 1;
ucdb_At tr Add(db, cvp, - 1, UCDBKEY_ATLEAST, &attrval ue);
attrval ue.type = UCDB_ATTR _STRI NG
attrval ue.u.svalue = "";
ucdb_At tr Add(db, cvp, - 1, UCDBKEY_COMVENT, &at t rval ue);
return cvp;
}

Thisisvery similar to the covergroup creation, except for the scope type, the parent (which is
the previously created covergroup), and the options — including the weight given to
ucdbCreateScope() -- which derive from the default values for the type_option structurein
coverpoint scope.

Finally, the bins are created as children of the coverpoint.

C Example (“create-ucdb”):

voi d
create_coverpoi nt _bi n(ucdbT db,
ucdbScopeT parent,
const char* nane,
ucdbFi | eHandl eT fil ehandl e,

UCDB API Reference, v10.1 83

UCDB Basics
UCDB Use Cases

}

int line,

int at_|east,

int count,

const char* binrhs) /* right-hand-side value */

ucdbSour cel nf oT srci nf o;
ucdbCover Dat aT cover dat a;
ucdbAttrVal ueT attrval ue;
i nt coveri ndex;
coverdata.type = UCDB_CVGBI N,
coverdata.flags = UCDB IS 32BIT | UCDB HAS GOAL | UCDB_HAS WEI GHT,;
coverdat a. goal = at_|east;
coverdat a. wei ght = 1;
coverdata. data.int32 = count;
srcinfo.fil ehandle = fil ehandl e;
srcinfo.line = 1line;
srci nfo.token = O; /* fake token # */
coverindex = ucdb_Creat eNext Cover (db, parent, nane,
&coverdat a, &srci nfo);
attrval ue.type = UCDB_ATTR _STRI NG
attrval ue. u. sval ue = bi nrhs;
ucdb_Att r Add(db, parent, coveri ndex, UCDBKEY_BI NRHSVALUE, &at t rval ue);

Thisissimilar to previous examples, except for these data:

UCDB_HAS GOAL indicatesthat the“goal” field of ucdbCoverDataT should be used.
This corresponds to the “at_least” value for the coverpoint: the threshold at which the
bin is considered to be 100% covered.

UCDB_HAS WEIGHT indicates that the “weight” field of the ucdbCoverDataT is
valid. Thisweight isidentical to the weight for the parent coverpoint, but is also set here
in case coverage is computed on a bin basis rather than for the coverpoint as awhole.
Thefield isuseful for coveritems with no explicit parent (e.g., statement bins.)

The BINRHSVALUE attribute is one added by Questa that depends on knowledge of
how the coverpoint is declared. This should be reverse-engineered from covergroup bin
declarations and using ucdbdump. The “bin rhsvalue” is the sampled value(s), on the
right-hand-side of the “=" in the bin declaration, that potentially cause(s) abin to
increment. In the LRM these are described as “associated” values or transitions. These
values vary depending on whether the bin has a single value or multiple, whether itisa
transition bin or not. It can be an enum value (asin the case illustrated above, if you ook
back at the top-level C code) or it can be another type of integral value, or transitions
among those values.

Currently in Questa, the BINRHSVALUE is accessible only through the UCDB API.

Test Data Records
C Example (“create-ucdb”):

voi d

84

UCDB API Reference, v10.1

UCDB Basics
UCDB Use Cases

create_testdata(ucdbT db,
const char* ucdbfile)

{
ucdb_AddTest (db
ucdbfil e,
"test", /[* test name */
UCDB_TESTSTATUS_CX, /* test status */
0.0, /* simulation time */
"ns", /* sinulation time units */
0.0, /* CPU tine */
"o, /* random seed */
NULL, /* test script: not used by Questa */
[* simulator argunents: */
"-coverage -do 'run -all; coverage save test.ucdb; quit' -c top ",
NULL, /* comrent */
0, [* conpul sory */
"20070824143300", /* fake date */
"userid" [* fake userid */
)
}

Thisisan example of creating test datathat is“faked” to be nearly identical to that created
automatically by Questafor the “create-ucdb” example. The differences are in the date and
userid, which cannot be reproduced since those will vary according to who runs the example
when.

All of the test data attributes (arguments to the function above) correspond to attributes names
that can be accessed using the UCDB attribute API. One of the chief uses of the attribute datais
to add user-defined attributes that can be added for any reason. In Questa, these will appear in
the UCDB Browser or the Test Tracking GUI if the test datarecord islinked asadirected test in
atest plan.

Any of these test data attributes can be created or accessed in Quest with the coverage attribute
command. They can be accessed with vcover attribute as well.

The format of the date is strict, the UCDB API Reference Manual describes how it can be
created (from a POSIX-compliant C library call, strftime().) The virtue of thisformat is that it
can be sorted alphabetically.

The “test script” argument to ucdb_AddTest() is not used, though it could be. The simulator
arguments are created automatically and can be used to re-run the test. The simulator arguments
should be quoted such that the arguments could be passed to a shell for running with the
simulator (vsimin this case.)

The comment istypically not used, but of course can be set within the tool. Thisis ageneral-
purpose comment that can be used for anything.

Create a UCDB from Scratch in Memory
C Example (“create-ucdb”):

UCDB API Reference, v10.1 85

UCDB Basics
UCDB Use Cases

voi d
exanpl e_code(const char* ucdbfile)

ucdbFi | eHandl eT fil ehandl e;

ucdbScopeT instance, du, cvg, cvp;

ucdbT db = ucdb_Open(NULL);

create_testdata(db, ucdbfile);

filehandl e = create_fil ehandl e(db, "test.sv");

du = create_design_unit(db,"work.top",filehandle, 0);

i nstance = create_instance(db, "top", NULL, du);
create_statenent (db,instance,fil ehandl e, 6, 1);
create_statenent (db,instance,fil ehandl e, 8,1);
create_statenent(db,instance,fil ehandle,9,1);
create_enum toggl e(db, i nstance);

cvg = create_covergroup(db,instance,"cg",filehandle, 3);
cvp = create_coverpoint(db,cvg,"t",filehandl e, 4);

creat e_coverpoi nt _bin(db, cvp,"auto[a]",filehandl e, 4,1,0,"a
create_coverpoi nt _bin(db, cvp,"auto[b]",fil ehandl e, 4,1,1,"Db"
printf("Witing UCDB file '%'\n", ucdbfile);

ucdb_Wite(db, ucdbfile, NULL, 1, -1);

ucdb_C ose(db);

)
)

}

Thisisthe top-level code that calls all the functions previously described in the section “Add
New Datato a UCDB?”. This reproduces — with afew exceptions described in the header
comment of create_ucdb.c —the UCDB created by Questa from this source:

SystemVerilog Example (“create-ucdb”):

nmodul e top;
enum{ a, b} t;
covergroup cg;
coverpoint t;
endgr oup
Cg CV = new,
initial begin

t = b;
cv. sampl e();
end
endnodul e

Many of the details have been discussed elsewhere. The only notable thing is the call to
ucdb_Open() with aNULL argument: this creates a completely empty UCDB in memory, to
which any data can be added. Note that because of tool requirements, it is not permissible to
create a UCDB without atest datarecord; the ucdb_Write() will not succeed if there is no test
data record.

The final ucdb_Close(db) is not strictly necessary because the memory used by the database
handle will be freed when the process finishes, but it is good practice to explicitly free the
memory associated with the database handle.

86 UCDB API Reference, v10.1

UCDB Basics
UCDB Use Cases

Read Streaming Mode

Read-streaming mode is a call-back based traversal of aUCDB as laid out on disk. It hasthe
advantage of reducing memory overhead, asthe UCDB is never fully loaded into memory.

The layout on disk is broadly thus:

Header with database version and other header information.

Global UCDB attributes can appear at any time at the top-level, but are ordinarily
written as early as possible.

Test data records.
Design units are written before instances of them.

Scopes (design units, instances, or any coverage scope) are written in a nested fashion:
meaning that the start of the scope is distinct from the end of the scope. Scopes that start
and end within another's start and end are children scopes. Thisis how the parent-child
relationships are recorded: the start of the parent is always written before the children.
The termination of the parent scope “pops’ the current scope back to its parent.

Coveritems are written immediately after the parent scope.
Attributes and tags are written after the initial header for the scope or coveritem.

Tail with summary data.

The presence of the tail isin some sense an implementation detail: the tail isloaded at the same
time as the header. This allows ucdb_GetCoverageSummary() to work.

Therulesfor read streaming mode are relatively ssimple. In general, available datafollows the
order in which dataislaid out on disk. The attributes, flags, etc., are complete with the read
object. There is no access to child scopes or coveritems at the time a scopeisread. The
implementation maintains the following data at all times:

All ancestors of a given scope or coveritem.

All design units.

All global UCDB attributes and other data global to the UCDB.
All test data records.

The summary data used by ucdb_GetCoverage(), ucdb_GetStatistics() and various other
functions described in the APl Reference as pertaining to global coverage statistics.

However, the inaccessibility of children means that any descendant nodes, or any descendants
of ancestors (what you might informally call “cousin nodes’ or “uncle nodes’) are not available.

UCDB API Reference, v10.1 87

UCDB Basics
UCDB Use Cases

The intuitive way to think of thisis as read streaming mode maintaining arelatively small
“window” into the data, that progresses through the file, with some global data available
generdly.

There are some other limitations, all of which relate to the fact that children are not available
except exactly when they are encountered within the streaming “window”:

Sincethe test plan tree isimplemented with tags, there is no way to know when reading
atest plan node what are the other nodes sharing the same tag. Test plan trees are
essentially unusable in read-streaming mode, though if you wished to build the
associations yourself, you could.

The functions like ucdb_PathCallBack() which require searching the database cannot
work.

Thefunctionslike ucdb_CalcCoverageSummary() which require traversing some subset
of the database cannot work.

The following shows a simple example adapted from one of the previously discussed in-
memory examples:

C Example (“read-streaming”):

ucdbCBRet ur nT
cal | back(

}

voi d* user dat a,
ucdbCBDat aT* cbdat a)

ucdbScopeT scope;

switch (cbdata->reason) {

case UCDB REASON DU

case UCDB_REASON_SCOPE
scope = (ucdbScopeT) (cbdat a- >0bj);
printf("%\n", ucdb_GCet ScopeHi er Nane(chdat a- >db, scope)) ;
br eak;

defaul t: break;

}
return UCDB_SCAN_CONTI NUE;

voi d
exanpl e_code(const char* ucdbfile)

}

ucdb_OpenReadSt r ean(ucdbfil e, cal | back, NULL) ;

The read streaming mode is based on the same callback type functions as ucdb_CallBack().
This example should look familiar: it isthe “traverse-scopes’ example. The “example_code’
function is different. The database handle is only available through the callback. The path to the
UCDB fileis given to the open call, and this calls the callback for each object in the database.

88

UCDB API Reference, v10.1

UCDB Basics
UCDB Use Cases

The big example examples/ucdb/ucdbdump is aread streaming mode application. It isa
thorough example of how to use the mode.

Write Streaming Mode

Write streaming mode is away of writing a UCDB with optimally low memory overhead. This
isthe hardest of all use cases of the UCDB API. In generdl, it should be avoided unless you fall
into one of the following circumstances:

* You areaprofessiona tool developer for whom memory overhead is a crucia concern.

* You are linked with the Questa kernel — asthrough PLI, VPI, or FLI —and want to
contribute your own data “on the fly” to a UCDB being saved with Questa's coverage
save command executed from vaim. Thisis discussed in the section “Using the
mti_ AddUCDBSaveCB FLI| Callback”.

It is much easier to create a UCDB from scratch in memory, as described earlier in the section
“Create aUCDB from Scratch in Memory”.

The “write-streaming” example among the “ userguide” examples shows the “ create-ucdb”
example adapted to write streaming mode. There is aso the examples/ucdb/writestr eam
example which was released earlier with Questa. This contains extensive comments on using
the mode. This document will restrict itself to relatively simple observations and the key
differences between the “write-streaming” example and the “ create-ucdb” example.

C Example (“create-ucdb”) top-level code:

voi d
exanpl e_code(const char* ucdbfile)

ucdbFi | eHandl eT fil ehandl e;

ucdbT db = ucdb_OpenWiteStreamucdbfile);
create_testdata(db, ucdbfile);

filehandle = create_fil ehandl e(db, "test.sv");
create_design_unit(db, "work.top", fil ehandl e, 0);
create_instance(db, "top", "work.top");
create_statenent (db, fil ehandl e, 6,1);
create_statenent (db, fil ehandl e, 8,1);
create_statenent (db, fil ehandl e, 9,1);

creat e_enum t oggl e(db);
create_covergroup(db, "cg", fil ehandl e, 3);
create_coverpoint(db,"t",filehandle, 4);
create_coverpoint_bin(db,"auto[a]",filehandle, 4,1,0,"a");
create_coverpoint_bin(db,"auto[b]",filehandle, 4,1,1,"b");

ucdb_WiteStreanScope(db); /* term nate coverpoint */
ucdb_WiteStreanScope(db); /* term nate covergroup */
ucdb_WiteStreanScope(db); /* terminate instance */

printf("Witing UCDB file '%'\n", ucdbfile);
ucdb_Cl ose(db);

UCDB API Reference, v10.1 89

UCDB Basics
UCDB Use Cases

The differences required to convert the in-memory creation of datato awrite-streaming creation
of data are as follows:

The open call isucdb_OpenWriteStream(), which gives the name of the output file. The
concept of write streaming isthat it writesto the file “asit goes along”. So you have to
create objects in the same order as was previously explained for read-streaming mode.
This imposes order-of-creation rules that must be clearly understood. The API is
designed to emit errorsin case functions are used in the wrong order, but this has not yet
been exposed to third-party developers for beta testing.

The parent pointersfor all creation API calls must be NULL. This emphasizes that the
level of hierarchy for creating the current object relies on the current context. Thiswill
be explained more deeply below. Because no parent pointers are used, the functionsin
the example are all of type void — except for the create filehandle() routine, because file
handles must be used when needed. (In this case, because thefile handleisglobal, it can
be used with any object.

The ucdb_WriteStream(db) call is used to terminate the creation of the current object.
For scopes, this terminates the creation of the beginning of the scope. Literally, this
creates the scope as a context, writes the name of the scope and other information to the
file, so that subsequent objects are known to be created as children of that scope. Note
that the API is actually relatively forgiving about use of ucdb_WriteStream(db). It is
really like a“flush” to disk. Y ou can do the experiment of removing
ucdb_WriteStream(db) from this example entirely, by placing thisline after the include
of ucdb.h:

#def i ne ucdb_WiteStreanm(db) ;

Thiswill still work exactly the same. The reason is that the API will flush the current
object before writing the next one if you call any ucdb_Create... API function; it calls
ucbd_WriteStream() implicitly. The utility of having the explicit “flush” capability of
ucdb_WriteStream() is for cases where you are re-using string storage (asin creating
objects from aloop). If you need to set up string storage in advance of calling
ucdb_CreateNextCover(), for example, then you must flush the current object before
calling ucdb_CreateNextCover(). Because the API isdesigned for efficiency, it does not
always copy string storage; it makes use of the string value when you call
ucdb_Writestream(), and after that you may change the value.

The ucdb_Createl nstanceByName() function must be used to create the instance. Thisis
name-based for the design unit rather than using a ucdbScopeT handle.

The ucdb_WriteStreamScope(db) call must be used to terminate the scope. More on this
In a moment.

The ucdb_Close(db) function terminates the write to the file as well as freeing the
database handle. Thiswrites the summary information which has been calculated asyou
were writing the contents of thefile.

90

UCDB API Reference, v10.1

UCDB Basics
UCDB Use Cases

The crucial fact of write streaming mode, besides various fairly arbitrary order-of-creation
rules, isthat the nesting of calls creates the design and test bench hierarchy. This means that
ucdb_WriteStreamScope(db) is not optional. It terminates a scope. Think of write streaming
mode as maintaining a “current scope”. (In fact it does.) When you create a new scope, it is
added under the current scope, then it itself becomes the current scope in turn. When a
coveritem is added, it is added to the current scope. When the current scope is terminated, the
current scope becomes the parent of that scope (or noneif that scope was itself at the top-level.)
The three callsto ucdb_WriteStreamScope(db) in the example are thus commented with the
type of the scope they terminate. If you wanted to write another coverpoint to the covergroup in
the write streaming example, you would have to create it after the line commented with “//
terminate coverpoint” but before the line commented with “// terminate covergroup”.

Because write streaming mode has crucial and sometimes peculiar dependencies on order of
creation, itisadifficult modeto use. But it is necessary to use when you want the most seamless
mode of integration with Questa, when you have code linked into Questa through an interface
like VPI.

UCDB API Reference, v10.1 91

UCDB Basics
UCDB in Questa and ModelSim

UCDB in Questa and ModelSim

This section isaimed at the (most likely professional) third-party developer who wants the most
transparent integration of coverage datawith Questa. Thisisfor cases where you have a model
linked with the simulation kernel through PLI, VPI, or FLI, and you want to take advantage of
the coverage save command of Questa. Thereisafacility for installing a callback through FLI,
which is the Questa/M odel Sim-proprietary simulator interface. Whenever Questa executes
“coverage save’, it calls your callback, whereupon you may use write-streaming mode to
contribute your own data to the UCDB being saved. This requires some elementary
understanding of the role the UCDB plays in the Questa architecture.

UCDB in the Tool Architecture

One common misconception about the UCDB is whether it exists asamemory imagein
simulation. It does not. Coverage datain simulation isintricately linked into the simulation
context tree (hierarchical name-based data structure), and is only extracted on demand and
written — using awrapper around the UCDB API's write streaming mode — to disk. The UCDB
only existsin memory in so-called “viewcov” mode, where there is no current facility for
linking in third-party C or C++ code. So if you want to participate in the UCDB in simulation,
your only choiceistoinstall the FLI callback described in the next section and write your data
in write streaming mode.

Figure 2-23 illustrates the tool architecture and the callback to be discussed. In the upper l€eft is
vsim in simulation mode, i.e., invoked on a design. When coverage save is invoked, the data
from the context tree is written to the UCDB using the UCDB write streaming API.

If ashared object is attached to the simulator, the UCDB save FLI callback operatesin this
order:

1. The callback (mysavecallback in this case) isinstalled.
2. Vsim code underlying coverage save initiates the save of the UCDB.

3. Incontextsfor which the callback isinstalled, vsim calls the callback function specified
by the user.

4. The user's callback makes write streaming API calls to write data into the same UCDB.
5. Thevsim code underlying coverage save continues to save to the UCDB file.

Steps 3 through 5 may repeat arbitrarily many times.

92 UCDB API Reference, v10.1

UCDB Basics
UCDB in Questa and ModelSim

Figure 2-23. Questa and the UCDB Save FLI Callback

vsim design

/“)\ FLI/PLI/VPI
\) \) @ Call mti_addUCDBSaveCB

context tree

coverage save »(3) mysavecallback

\

\

uCbDB

read-streaming API . .
/ vsim —viewcov ucdb

shared object

Y
ucdb_Open(ucdb)
vcover read-streaming API
or ucdb_Open(ucdb) P ———
|
/ ! ucdbT }
|
3rd-party in-memory APl
application
CLI/ GUI

The diagram further illustrates some important facts:

* Ingenera, the only Questatool where aUCDB image existsin memory (illustrated here
at the dashed box around “ucdbT” or aUCDB handle) isvsim in “viewcov mode” where
itisinvoked on aUCDB file. Thefileis opened in memory, and the CLI and GUI have
full in-memory facilities upon which to operate on the data.

* Ingenera, the vcover utility processes all its inputs using the read-streaming API.
(There are some exceptions to this, but the most commonly used applications, report and
merge, are exclusively read-streaming. Note that merge maintains its output in memory,
but its inputs are always read-streaming.)

» A third-party application may be either read-streaming or in-memory, as the developer
of the application chooses.

UCDB API Reference, v10.1 93

UCDB Basics
UCDB in Questa and ModelSim

Using the mti_AddUCDBSaveCB FLI Callback

The example save-callback demonstrates use of the callback to create the 2-bin covergroup
from the write-streaming example. The write-streaming code is not the interesting part of this
example; that is just copied from the previous example. The interesting part is use of the
callback and the interoperation of VPI and FLI (the Mentor Graphics proprietary Foreign
Language Interface.)

Note that the callback is designed to work on one and only one “region” (or scope: a module
instance in the example.) This means that if you have datain multiple scopes, you must install
the callback multiple times. However, this means that you only need install the callback for as
many scopes as you have coverage data to contribute.

The callback, as described above, is executed when the UCDB saveis, either automatically at
end of simulation or when the CL1 is used. The example usesthe CLI. (Note that if the Verilog
code uses $finish, which returns control to the operating system, the save must be set up in
advance in one of various ways.)

C Example (“save-callback”):

/*
* Register nynodel wth sinulator
*/
voi d regi ster_mynodel ()
{
s_vpi _systf_data systf_data;
systf_data.type = vpi SysFunc;
systf _data. sysfunctype = vpi SysFuncSi zed;
systf_data.tfname = "$nynodel ";
systf_data.calltf = mynodel;
systf_data. conpiletf = mynodel _set up;
systf_data.sizetf = NULL;
vpi _register_systf(&systf_data);
}
I+
* UCDB Save Call back
*/
voi d
mynodel _ucdb_save(ucdbT db,
nt i Regi onl dT region,
voi d* unused)

vpi _printf("Saving UCDB data from VPl nodel ...\n");
write_ucdb_data(db);

/*
* Regi ster UCDB Save Cal | back
*/
i nt nynodel _setup(char* unused)

vpi Handl e systf _handl e, scope_handl e;

94 UCDB API Reference, v10.1

UCDB Basics
UCDB in Questa and ModelSim

char* scope_nane;
nt i Regi onl dT FLI _scope_handl €;

/* Get name of enclosing scope through VPI */
systf_handl e = vpi _handl e(vpi SysTf Cal | , NULL) ;
scope_handl e = vpi _handl e(vpi Scope, systf_handl e) ;
scope_nanme = vpi _get_str(vpi Ful | Nanme, scope_handl e) ;

/* Convert to FLI region id type */
FLI _scope_handl e = nti _Fi ndRegi on(scope_nane);
scope_nhanme = nti _Get Regi onFul | Name(FLI _scope_handl e);

/* Install UCDB save cal | back */

vpi _printf("lInstalling UCDB Save Call back for 9% ...\n",scope_nane);
m i _AddUCDBSaveCB(FLI _scope_handl e, nynodel _ucdb_save, NULL) ;
return O;

}

Note that the callback uses FLI, while the model uses VPI. Somehow an FLI scope handle
(region 1D) must be derived from a VPI handle. The only way to do thisis by name —
specifically, “full name” which isafull path to the scope. In the example, “scope name” is
“top.inst” asreturned from VPI but “/top/inst” as returned from FLI. Fortunately, the two

different conventions for regarding the full name are interchangeable, and the FL | scope handle
isdirectly acquired.

The FL1 scope handle (region ID) is passed to the callback “mymodel_ucdb_save” but unused
in this example. There is also private datathat could be used as well, though unused here. The
implementation of “write_ucdb_data’ should look familiar:

C Example (“save-callback”):

voi d
wite ucdb_data(ucdbT db)

{
ucdbFi | eHandl eT fil ehandl e;

filehandl e = create_fil ehandl e(db, "test.sv");
create_covergroup(db, "cg", fil ehandl e, 3);
create_coverpoint(db,"t",fil ehandl e, 4);
create_coverpoint_bin(db,"auto[a]",filehandle, 4,1,0,"a");
create_coverpoint _bin(db,"auto[b]",filehandle, 4,1,1,"b");
ucdb_WiteStreanScope(db); /* term nate coverpoint */
ucdb_WiteStreantScope(db); /* term nate covergroup */

}

Thisis part of the top-level code from the “write-streaming” example. The codeis exactly the
same, and the functions called are exactly the same. The most important thing to realize is that
the enclosing scope — for the module instance “/top/inst” in this case — has already been started
or initialized by the UCDB save code from Questa, and will be terminated by Questa, too. The
context, in other words, is already assured. Any write-streaming mode UCDB API code may be
used in the callback. Questa should emit errors for mis-use of the API, and those should appear
inthetranscript. Itisnot allowed to install your own UCDB API error handler with VPI, FLI, or
DPI code, because the Questa kernel has already installed its own.

UCDB API Reference, v10.1 95

UCDB Basics
UCDB in Questa and ModelSim

Questa Compatibility

These compatibility commitments are made by Questa and its implementation of the UCDB
API:

e Questarelease 6.2b is the base release for the UCDB and API.
 TheUCDB API will load any UCDB created from the base rel ease onward.

» The header maintains strict backward compatibility from the base release onward. This
means that applications compiled against the base release will continue to compile and
continue to link.

* From Questa 6.3 onward, the UCDB AP isforward link compatible. This means that an
application can be compiled with an earlier version of the ucdb.h and still link with a
later version of the library archive or shared object (or DLL on Windows.) This alows
some flexibility in dynamically linking to the UCDB API by athird-party tool whose
releases may not be predictably synchronized with Questa's.

* Questa does not commit to backward compatibility with respect to data models. This
means that some applications may require changes when significant portions of the data
model change. Examples include the change to the covergroup data model with 6.4, or
the addition of an additional level of expression and condition hierarchy to capture UDP
vs. FEC coveragein 6.4.

Thislast is an important point. Complete backward compatibility of the APl is not the same as
complete backward compatibility of the data model. API compatibility means that an earlier
application will continue to compile and link. However, if it makes critical assumptions about
the data model that are no longer met, the application will not continue to work as expected.

Thisallows someflexibility to change data modelsin thetool. It also reflectsthe redlity that itis
difficult to know what assumptions an application might make. Some applications may be
sufficiently general that they always continue to work; others may not. Until data models are
standardized and can be verified to conform to the standard, the UCDB API developer should
be prepared to make occasional changes to an application when data models change. Thisis
expected to be arelatively uncommon case, but it has already happened in the transition from
Questa 6.3 t0 6.4.

96 UCDB API Reference, v10.1

Chapter 3
UCDB API Functions

The UCDB API functions are defined in the following function groups:

Source Files

Error Handler

Tests

Databases and Database Files
User-specified Attributes
Scopes

Coverage and Statistics Summaries
Coveritems

Toggles

Groups

Tags

Formal Data

Test Traceability

UCDB API Reference, v10.1

97

UCDB API Functions
Source Files

Source Files

Every UCDB object can potentially have a source file name stored with it. Different
applications have different requirements for how these are stored. Consequently, the UCDB
contains an object called a"file handle", which provides away of storing indirect referencesto
file names.

Simple Use Models

If you don’t care about file names and line numbers at all, you can create objects with NULL for
the ucdbSourcelnfoT argument, e.g.:

mycover = ucdb_Creat eNext Cover (db, par ent, name, &over dat a, NULL) ;
Alternatively, you can create afile and store it with the object.

ucdbSour cel nf oT sour cei nf o;
status = ucdb_Creat eSrcFil eHandl eByNange(
db,
&source_info.fil ehandl e,
NULL,
filenane,
fileworkdir);
source_info.line = nyline;
source_i nfo.token = myt oken
(voi d) ucdb_Creat eNext Cover (db, par ent, nane, &over dat a, &our cei nf 0) ;

This method creates a single global 1ook-up table for file names within the UCDB. File names
are stored efficiently for each object within the UCDB, and each unique file name string is
stored only once. Whichever means are used to store file names, you can always access the file
name, for example:

ucdbSour cel nf oT sour cei nf o;
ucdb_Get Cover Dat a(db, parent, i, &ane, &over dat a, &our cei nf 0) ;
if (sourceinfo.filehandle !'= NULL) {
printf("File nane is %\n",
ucdb_Get Fi | eNane(db, &ourceinfo.filehandle));

Scope Handle
typedef voi d* ucdbScopeT;

Scope handle.

Object Handle
typedef voi d* ucdbObjT;

Either ucdbScopeT or ucdbTestT.

98 UCDB API Reference, v10.1

UCDB API Functions
Source Files

File Handle
typedef voi d* ucdbFil eHandl eT;

File handle.

Source Information Type

typedef struct {

ucdbFi | eHandl eT fil ehandl e;
i nt l'i ne;
i nt t oken;

} ucdbSour cel nf oT,;

Source information for database objects

ucdb_CreateSrcFileHandleByName

i nt ucdb_CreateSrcFi | eHandl eByName(
db

ucdbT .
ucdbFi | eHandl eT* fil ehandl e,
ucdbScopeT scope,
const char* filenane,
const char* fileworkdir);
db Database.
filehandl e Filehandle returned.
scope File table scope, or NULL for the global table.
fil enanme Absolute or relative file name to look up in table.
fileworkdir Work directory for the file when filename is a path relative to

fileworkdir. Ignored if filename is an absolute path.

Creates afile handle for the specified file, from the file table associated with the given scope. If
filename is not found, it is added to the file table for the given scope. Returns O if successful, or
-1if error and ucdb_IsValidFileHandle(returnvalue) == O if error.

ucdb_CreateFileHandleByNum

i nt ucdb_Creat eFi | eHandl eByNum(
db

ucdbT ,
ucdbFi | eHandl eT* fil ehandl e,
ucdbScopeT scope,
i nt filenun;
db Database.
filehandl e Filehandle returned.
scope File table scope, or NULL for the global table.

UCDB API Reference, v10.1 99

UCDB API Functions
Source Files

fil enum Offset of thefilein the file table.

Creates afile handlefor the specified offset into the file table of the specified scope. Returns O if
successful, or -1 if error (for example, if filenum is out of bounds or no file table exists for the
scope) and ucdb_IsValidFileHandle(returnvalue) == O if error.

ucdb_CloneFileHandle

i nt ucdb_d oneFi | eHandl e(
ucdbT db,
ucdbFi | eHandl eT* fil ehandl e,
ucdbFi | eHandl eT* origfil ehandl e,

i nt filenun;
db Database.
filehandl e Filehandle returned.
origfilehandl e Filehandle to clone.
filenum Offset to the new filein the file table.

Creates afile handle cloned from the specified file handle, at the specified offset, in the same
table asthe cloned file. The file number (offset) must be in boundsfor thefiletable. Returns O if
successful, or -1 if error.

ucdb_CreateNullFileHandle

int ucdb_CreateNull Fil eHandl e(
ucdbFi | eHandl eT* filehandl e);

fil ehandl e Null filehandle returned.

Creates anew file handle. Returns O if successful, or -1 if error and
ucdb_lIsValidFileHandle(filehandle) == 0.

ucdb_IsValidFileHandle

int ucdb_IsValidFil eHandl e(

ucdbT db,

ucdbFi | eHandl eT* filehandl e);
db Database.
filehandl e Filehandle to test.

Checks whether or not the specified filehandle returned by a UCDB function isvalid. Use this
function for non-callback-based error-checking. Returns 1 if file handleisvalid, or O if invalid.

100 UCDB API Reference, v10.1

UCDB API Functions
Source Files

ucdb_GetFileName

const char* ucdb_Get Fi | eNamg(

ucdbT db,

ucdbFi | eHandl eT* filehandl e);
db Database.
filehandl e File handle.

Returnsthe file name of the file specified by filehandle, or NULL if error. Thisfunction triesto
reconstruct a valid file path from the file handle and the directory stored with it and the UCDB.
In the following algorithm, filename and fileworkdir refer to the corresponding arguments of
ucdb_CreateSrcFileHandleByName() or ucdb_SrcFileTableA ppend():

if (filenanme is an absolute path) return the path name
else (filename is a relative path)
if (filenanme exists at the relative path)
return fil ename
else if (filename exists relative to fil eworkdir)
return workdir/fil eworkdir
else if (filename exists relative to the the value of the environnent
vari abl e M3C WD)
return $MEC WY fi | enane
else if (filename exists relative to the directory fromwhich the
UCDB file was opened — i.e., the directory extracted fromthe
file given to ucdb_Open() or equival ent)
return that dir/fil enane
else if (filename exists relative to the directory extracted fromthe
ORI GFI LENAME attribute of the first test record — i.e.
representing the file into which the UCDB was originally saved)
return that dir/fil enane
el se return fil enane.

If the filename was created as an absolute path, it must be correct. Otherwise only the last case
indicates that the file was not found, and the original filename is returned for lack of anything
better.

ucdb_GetFileNum

i nt ucdb_Get Fi | eNun{

ucdbT db,

ucdbFi | eHandl eT* filehandl e);
db Database.
filehandl e File handle.

Returns the file number of the file specified by filehandle, or -1 if error.

UCDB API Reference, v10.1 101

UCDB API Functions
Source Files

ucdb_GetFileTableScope

ucdbScopeT ucdb_Get Fi | eTabl eScope(
db

ucdbT ,

ucdbFi | eHandl eT* filehandl e);
db Database.
filehandl e File handle.

Returns the scope of the table of the file specified by filehandle. Returns NULL if the specified
file handleis not valid or if the table os the global file table. Also calls an error handler (if
installed) when the file handleis not valid.

ucdb_SrcFileTableAppend

i nt ucdb_SrcFil eTabl eAppend(
db

ucdbT ,
ucdbFi | eHandl eT* fil ehandl e,
ucdbScopeT scope,
const char* filenane,
const char* fileworkdir);
db Database.
filehandl e Filehandle returned.
scope File table scope, or NULL for the global table.
fil ename Absolute or relative file name to look up in table.
fileworkdir Work directory for the file when filename is a path relative to

fileworkdir. Ignored if filename is an absolute path.

Creates afile handle for the specified file, from the file table associated with the given scope.
The filename is added to the file table for the given scope, so the filename is assumed to be
unigue. To check for duplicate file names, use ucdb_CreateSrcFileHandleByName. Returns O if
successful, or -1 if error and ucdb_IsValidFileHandle(returnvalue) == O if error.

ucdb_FileTableSize

int ucdb_Fil eTabl eSi ze(

ucdbT db,
ucdbScopeT scope) ;
db Database.
scope File table scope, or NULL for the global table.

Returns the number of filesin the file table associated with the specified scope, or -1 if error.

102 UCDB API Reference, v10.1

UCDB API Functions
Source Files

ucdb_FileTableName

const char* ucdb_Fil eTabl eName(

ucdbT db,

ucdbScopeT scope

i nt i ndex) ;
db Database.
scope File table scope, or NULL for the global table.
i ndex File table index of thefile.

Returns the name of the file with the specified index in the file table for the specified scope, or
NULL if error.

ucdb_FileTableRemove

i nt ucdb_Fil eTabl eRenove(

ucdbT db,
ucdbScopeT scope,
const char* filenane);
db Database.
scope File table scope, or NULL for the global table.
fil ename File to remove from the table, or NULL for the whole table.

No effect in streaming modes. Removes the specified file from the file table for the specified
scope (or the entire table if filenameis NULL). Returns O if successful, or -1 if error.

ucdb_FileInfoToString

const char* ucdb_Fil el nfoToString(

ucdbT db,
ucdbSour cel nfoT* source_i nfo);
db Database.
file_info Source file information handle.

Returns a string representation of the file handle in the specified ucdbSourcel nfoT item, or
NULL if error. Thisis equivalent to caling:

ucdb_Get Fi | eNanme(db, &source_info->fil ehandl e)

The returned string only remains valid until the next call of thisroutine. To be used, the user
must copy the returned string before the next call to this function.

UCDB API Reference, v10.1 103

UCDB API Functions
Error Handler

Error Handler

The most convenient error-handling mode is to use ucdb_RegisterErrorHandler() before any
UCDB calls. The user’s error callback, afunction pointer of type ucdb_ErrorHandler, is called
for any error produced by the system.

Alternatively, function return values can be checked. In general, functions that return a handle
return NULL (or invalid handle) on error (they return the handle otherwise). Functions that
return an int return non-zero on error (O otherwise).

Message Severity Type

typedef enum {
UCDB_MSG_| NFQ,
UCDB_NMSG_WARNI NG
UCDB_MSG_ERROR

} ucdbMsgSeverityT;

Error Type
typedef struct ucdbErr_s {
i nt msgno; /* Message identifier */
ucdbMsgSeverityT severity; /* Message severity */
const char* nsgstr; /* Raw nmessage string */

} ucdbErrorT,

Error Handler

typedef void (*ucdb_ErrorHandl er) (void* userdata, ucdbErrorT* errdata);

ucdb_RegisterErrorHandler

voi d ucdb_Regi st er Error Handl er (
ucdb_Error Handl er errHandl e,

voi d* user dat a) ;
err Handl e Error handler handle.
user dat a User-specified data for the error handler.

Registers the specified error handler that is called whenever an APl error occurs.

ucdb_IsModified

int ucdb_I shvbdi fi ed(
ucdbT db) ;

db Database.

Returns 1 if the database was modified after it was loaded into memory, or O if error.

104 UCDB API Reference, v10.1

UCDB API Functions
Error Handler

ucdb_ModifiedSinceSim

i nt ucdb_Mbdi fi edSi nceSi m(
ucdbT db) ;

db Database.

Returns 1 if the database was modified after it was it was saved from the simulation, or O if
error. For merged databases, if all the input databases are unmodified, the merged output is
unmodified. Otherwise if any fileis modified, the output database is modified.

ucdb_SuppressModified

i nt ucdb_Suppresshbdi fi ed(

ucdbT db
i nt yes);
db Database.

If yesis 1, additional changesto the specified database do not “modify” the database. If yesis
0, changes to the specified database do “modify” the database. This function suppresses both
the in-memory-modified flag and the modified-since-simulation flag, so both the functions
ucdb_IsModified() and ucdb_ModifiedSinceSim() return O if a change is made while the
modify flags are suppressed.

UCDB API Reference, v10.1 105

UCDB API Functions
Tests

Tests

If a UC database was created as aresult of asingle test run, the database has a single test data
record associated with it. If it was created as aresult of atest merge operation, the UC database
should have multiple sets of test data. The functions defined in this section can be used to create
sets of test data. Each test data record should be associated with the name of the UC database
file in which the database was first stored.

For efficiency, history nodes (ucdbHistoryNodeT) and associated functions use different test
records for different situations (like merging) (rather than creating the same or similar test
record for each database operation). Test data record nodes (ucdbTestStatusT) are a subset of
history nodes.

Test Type
typedef ucdbHi st oryNodeT ucdbTestT;

Test Status Type

typedef enum {
UCDB_TESTSTATUS (K,

UCDB_TESTSTATUS WARNI NG, /* test warning ($warning called) */
UCDB_TESTSTATUS ERRCR, /* test error ($error called) */
UCDB TESTSTATUS FATAL, /* fatal test error ($fatal called)*/
UCDB_TESTSTATUS_M SSI NG, /* test not run yet */
UCDB TESTSTATUS MERGE ERROR /* testdata record was nmerged with

i nconsi stent data val ues */

} ucdbTest St at usT,;

History Node Types
typedef voi d* ucdbHi st or yNodeT,;

History Node Kind Types

typedef enum {

UCDB_HI STORYNODE NONE, /* no node or error */
UCDB_HI STORYNODE MERCE, /* interior merge node */
UCDB_HI STORYNODE_TEST, /* test |eaf node */
UCDB_HI STORYNODE _TESTPLAN, /* test plan | eaf node */

} ucdbHi st or yNodeKi ndEnunT;

106 UCDB API Reference, v10.1

UCDB API Functions
Tests

ucdb_AddTest

ucdbTest T ucdb_AddTest (
ucdbT db,

const char* fil enane, /* ORI GFI LENAMVE */
const char* t est nane, [* TESTNANME * [
ucdbTest Stat usT test_stat us, [* TESTSTATUS */
doubl e sintine, [* S| MI'l ME * [
const char* siminme_units, /* TIMEUNIT * [
doubl e real tine, [/ * CPUTI ME */
const char* seed, [* SEED */
const char* conmand, /* TESTCND * [
const char* si mar gs, [* VSI MARGS */
const char* conment , [* TESTCOMVENT * [
i nt compul sory, /* COVPULSORY */
const char* dat e, [* DATE */
const char* userid); [* USERNAME */

db Database to hold the test.

filename Name of UCDB file to which the database was saved.

test nane Test name. Must be unique for each test run.

test _status
sintine

siminme_units

Test status.
Simulation run time of test (in Simtime_units).
Simulation time units.

real time CPU run time of test.

seed Randomization seed used for the test.

command Test script arguments.

si mar gs Simulator arguments.

conment User-specified comment.

compul sory 1if arequired test, or O if not.

date Time of start of simulation, specified as a string. Output of

strftime with format " %Y %m%d%H%M %S", for example,
4:00:30 PM January 5, 2008 is coded as “20080105160030".

userid ID of the user who created the file.

Adds the specified test data to the database. Used to capture a single set of datafrom atest’s
coverage results saved to aUCDB from simulation. The filename must be the name of the file
that later will be saved. The filenameis given explicitly to aid in copying test data records.
Returns a new test handle, or NULL if error.

UCDB API Reference, v10.1 107

UCDB API Functions
Tests

ucdb_AddPotentialTest

ucdbTest T ucdb_AddPot enti al Test (

ucdbT db,
const char* t est nane) ;
db Database to hold the test.
t est nane Test name. Must be unique for each test run.

Adds atest data record with the specified test name and test_status of
UCDB_TESTSTATUS MISSING. All other fields have invalid values. Used to tag atest data
record for tests not yet run. Returns a new test handle, or NULL if error.

ucdb_GetTestData

i nt ucdb_Get Test Dat a(

ucdbT db,
ucdbTest T t est,
const char** fil enane, /* ORI G-I LENAME * [
const char** t est nane, [* TESTNAME * [
ucdbTest St at usT* test status, [* TESTSTATUS */
doubl e* simine, [* SI M ME */
const char** sinminme_units, [/* TIMEUNIT */
doubl e* cputi ne, /* CPUTI ME */
const char** seed, [/ * SEED * [
const char** conmand, /* TESTCMD * [
const char** si mar gs, [* VSI MARGS */
const char** comrent , [* TESTCOMVENT */
int* conpul sory, /* COVPULSORY */
const char** dat e, /* DATE * [
const char** userid); /* USERNAME */

db Database.

t est Test.

filename Name of UCDB file first associated with the test.

t est nanme Test name.

test status Test status.

sintine Simulation run time of test (in sSimtime_units).

sinmtinme_units Simulation time units.

realtinme CPU run time of test.

seed Randomization seed used for the test.

command Test script arguments.

si mar gs Simulator arguments.

coment User-specified comment.

108 UCDB API Reference, v10.1

UCDB API Functions
Tests

conpul sory 1if arequired test, or O if not.

date Time of start of simulation, specified as a string. Output of
strtime with format " %Y %m%d%H%M %S", for example,
4:00:30 PM January 5, 2008 is coded as “20080105160030" .

userid ID of the user who created the file.

Gets the data for the specified test in the specified database. Allocated values (strings, date and
attributes) must be copied if the user wants them to persist.Returns O if successful, or non-zero

if error.

ucdb_GetTestName

const char* ucdb_Get Test Nanmg(

ucdbT db,

ucdbTest T test);
db Database.
t est Test.

Returns the test name for the specified test handle from the specified opened database, or NULL
if error.

ucdb_NextTest

ucdbTest T ucdb_Next Test (

ucdbT db,
ucdbTest T test);

db Database.

t est Test or NULL for first test handle.

Returns the next (or first) test handle from the specified opened database, or NULL if error.

ucdb_CloneTest
ucdbTest T ucdb_C oneTest (

ucdbT target db,
ucdbTest T test,
ucdbSel ect Fl agsT cl onefl ags) ;
targetdb Target database for the cloned test.
t est Source test.
cl onef | ags UCDB_CLONE_ATTRS (to clone attributes) or O (to omit
attributes).

No effect if targetdb isin streaming mode. Creates an exact copy of the specified test record.
Returns handle to the cloned test, or NULL if error.

UCDB API Reference, v10.1 109

UCDB API Functions
Tests

ucdb_RemoveTest

i nt ucdb_RenoveTest (

ucdbT db,

ucdbTest T test);
db Database.
t est Test.

No effect if db isin streaming mode. Removes the specified test from the database. Returns O if
successful, or -1 if error.

ucdb_NumTests

i nt ucdb_NuniTest s(
ucdbT db) ;

db Database.

Reliable with in-memory mode but only worksin streaming mode after all test records are read
or written. Returns the number of tests associated with the specified database, or -1 if error (for
example, if the value cannot be calculated yet in streaming mode).

ucdb_CreateHistoryNode

ucdbHi st or yNodeT ucdb_Cr eat eH st or yNode(

ucdbT db,
char * pat h,
ucdbHi st or yNodeKi ndEnumTl ki nd) ;
db Database.
pat h Testplan path. Must be a valid pathname (cannot be NULL). Set

to merge file pathname if kind isUCDB_HISTORYNODE _-
MERGE, otherwise, set to file pathname.

ki nd History node kind.

Creates a history node of the specified kind in the specified database. History node has default
values of path for FILENAME and the current execution directory for RUNCWD. Returns
handle to the created history node, or NULL if error or if node already exists. Returned node is
owned by the routine and should not be freed by the caller.

110 UCDB API Reference, v10.1

UCDB API Functions
Tests

ucdb_AddHistoryNodeChild

i nt ucdb_AddHi st or yNodeChi | d(
ucdbT db,
ucdbHi st or yNodeT par ent,
ucdbHi st or yNodeT child);

db Database.
par ent Parent history node.
child Child history node.

Sets the specified node to be a child node of the specified parent node. Each history node
appears exactly once in the history trees. In particular, every child can have at most one parent;
once ucdb_AddHistoryNodeChild assigns a parent to achild, the child cannot be reassigned to a
different parent; and a child node cannot be (directly or indirectly) its own parent. Returns non-
zero if successful, or O if error.

ucdb_NextHistoryNode

ucdbHi st or yNodeT ucdb_Next Hi st or yNode(
ucdbT db,
ucdbHi st or yNodeT hi st or ynode,
ucdbHi st or yNodeKi ndEnunil ki nd) ;

db Database.
hi st or ynode History node or NULL.
ki nd History node kind.

Returns the next history node of the same kind as the specified history node, or if historynodeis
NULL, returns the first history node of the specified kind. Returns NULL if error or if node
does not exist. History node “order” is vendor specific. Returned node is owned by the routine
and should not be freed by the caller.

ucdb_HistoryRoot

ucdbHi st or yNodeT ucdb_Hi st or yRoot (
ucdbT db) ;

db Database.

Returns the unique history node that has no parent, or NULL if error or if multiple roots exist.
Returned node is owned by the routine and should not be freed by the caller. Thisroutine
assumes that only one history node is defined.

UCDB API Reference, v10.1 111

UCDB API Functions
Tests

ucdb_NextHistoryRoot

ucdbHi st or yNodeT ucdb_Next Hi st or yRoot (
ucdbT db,
ucdbHi st or yNodeT hi st or ynode,
ucdbHi st or yNodeKi ndEnumTl ki nd) ;

db Database.
hi st or ynode History node or NULL.
ki nd History node kind.

Returns the next orphan (parentless) history node of the same kind as the specified history node,
or if historynode is NULL, returns the first orphan history node of the specified kind. Returns
NULL if node does not exist. History node “order” is vendor specific. Returned node is owned
by the routine and should not be freed by the caller. This routine assumes multiple history roots
are possible (i.e., a collection subtree orphans).

ucdb_NextHistoryLookup

ucdbHi st or yNodeT ucdb_Next Hi st or yLookup(
db

ucdbT ,

ucdbHi st or yNodeT hi st or ynode,
const char* attri but ekey,
const char* attri but eval ue,

ucdbHi st or yNodeKi ndEnunmT ki nd) ;

db Database.

hi st or ynode History node or NULL.

attribut ekey UCDB_ATTR_STRING attribute key.
attributeval ue Attribute value.

ki nd History node kind.

Returns the next history node of the same kind as the specified history node that has an attribute
matching the specified key/value pair, or if historynode is NULL, returns the first history node
of the specified kind that has an attribute matching the specified key/value pair. Returns NULL
if error or if node does not exist. History node “order” is vendor specific. Returned nodeis
owned by the routine and should not be freed by the caller.

112 UCDB API Reference, v10.1

UCDB API Functions
Tests

ucdb_GetHistoryNodeParent

ucdbHi st or yNodeT ucdb_Cet Hi st or yNodePar ent (

ucdbT db,
ucdbHi st or yNodeT child);
db Database.
child History node.

Returns the parent of the specified history node, or NULL if error or if specified nodeis aroot
node. Returned node is owned by the routine and should not be freed by the caller.

ucdb_GetNextHistoryNodeChild

ucdbHi st or yNodeT ucdb_Get Next Hi st or yNodeChi | d(
ucdbT db,
ucdbHi st or yNodeT par ent,
ucdbHi st or yNodeT child);

db Database.
par ent Parent history node.
child Child history node or NULL.

Returns the next history node after the specified child history node, or if childisNULL, returns
thefirst history node of the specified parent history node. Returns NULL if error or if next node
does not exist. History node “order” is vendor specific. Returned node is owned by the routine
and should not be freed by the caller.

ucdb_CloneHistoryNode

ucdbHi st or yNodeT ucdb_C oneHi st or yNode(

ucdbT target db,

ucdbT sour cedb,

ucdbHi st or yNodeT hi st or ynode) ;
t ar get db Target database for the copied node.
sour cedb Source database containing the node to copy.
hi st or ynode History node to copy.

Creates an exact copy (including attributes) of the specified history node. Returns the history
node for the copy, or NULL if error or if the target history node exists.

UCDB API Reference, v10.1 113

UCDB API Functions
Tests

ucdb_GetHistoryKind

ucdbScopeTypeT ucdb_Get Hi st or yKi nd(
db

ucdbT ,
ucdbScopeT obj ect);
db Database.
obj ect Object.

Polymorphic function (aliased to ucdb_GetObj Type) for acquiring an object type. Returns
UCDB_HISTORYNODE_TEST (object is atest data record),
UCDB_HISTORYNODE_TESTPLAN (object isatest plan record),
UCDB_HISTORYNODE_MERGE (object is amerge record), scope type ucdbScopeTypeT
(object is not of these), or UCDB_SCOPE_ERROR if error. This function can return avalue
with multiple bits set (for history data objects). Return value must not be used as a mask.

ucdb_CalculateHistorySignature

char* ucdb_Cal cul at eHi st orySi gnat ur e(
ucdbT .
char* file);

db Database.
file File.

Returns a history signature of the specified file, or NULL if error. The returned string is owned
by the routine and must not be freed by the caller. If afile’'s contents remain unmodified,
recalculating the file' s history signature produces the same results. Conversely, when thefileis
modified, the resulting signature will also be changed. Use this mechanism to check whether or
not afile has become "dirty".

114 UCDB API Reference, v10.1

UCDB API Functions
Databases and Database Files

Databases and Database Files

A UCDB database existsin two forms: an in-memory image accessible with a database handle,
and a persistent form on the file system. There are read streaming and write streaming modes
that minimize the memory usage in the current process. These streaming modes keep only a
small “window” of datain memory; and once you have moved onward in reading or writing,
you cannot revisit earlier parts of the database. Random access is not possible.

Y ou use the functions defined in this section to run the following operations:

Opening afile and creating an in-memory image.

Reading from a persistent database and creating an in-memory image are combined in
the same function: ucdb_Open(), which always creates a valid database handle. If a
filenameisgiven to ucdb_Open(), thein-memory image is populated from the persistent
database in the named file.

Some parts of the data model can be accessed without fully populating the in-memory
dataimage, if and only if no other calls have been made since ucdb_Open() that require
accessing the in-memory image. In particular, the following data can be accessed in
constant time regardless of the size of the UCDB:

* ucdb_CalcCoverageSummary (scope==NULL and test_mask==NULL)
* ucdb_GetCoverage

e ucdb_GetStatistics

* ucdb_GetMemoryStats

Writing to afile from an in-memory image.

This operation can be performed at any time with the ucdb_Write() function. This
function transfers all of (or a subset of) the in-memory image to the named persistent
database file, overwriting the fileif it previously existed.

Deleting the in-memory image.

This operation is done with the ucdb_Closeg() function. After this call, the database
handleis no longer valid.

Using write streaming mode.

To create a UCDB with minimal memory overhead, use ucdb_OpenWriteStream() to
create a UCDB handle whose use is restricted. In particular, objects must be created in
the following prescribed order:

a. Create UCDB attributesfirst. Creating UCDB attributes at the beginning of the file
is not enforced to alow the case of UCDB attributes created at the end of the output
(which might be necessary for attributes whose values must be computed as a result
of traversing the data during write).

UCDB API Reference, v10.1 115

UCDB API Functions
Databases and Database Files

b. Create TestData.

c. Create scopes. Creating DU scopes before corresponding instance scopes. If a scope
contains coverage items, create those first. If a scope contains child scopes, create
those after coveritems,

There are other restrictions as well; see comments for individual functions. For
example, accessing immediate ancestors is OK, but accessing siblingsisnot (nor is
it OK to access an ancestor’ s siblings).

The function ucdb_WriteStream() must be used in write streaming mode to finish
writing a particular object. The function ucdb_WriteStreamScope() must be used to
finish writing a scope and to resume writing the parent scope. In write streaming
mode, the ucdb_Close() function must be used to finish the file being written to and
to free any temporary memory used for the database handle.

Using read streaming mode

The read streaming mode operates with callbacks. The persistent database is opened
with aucdb_OpenReadStream() call that passes control to the UCDB system which then
initiates callbacks to the given callback function. Each callback function returns a
"reason” that identifies the data valid for the callback and enough information to access
the data. Note the following information on read streaming mode callback order:

a. INITDB isawaysthefirst callback.

b. UCDB attributes created first in write streaming mode are available, as are UCDB
attributes created with in-memory mode.

c. All TEST callbacksfollow; after the next non-TEST callback there will be no more
TEST callbacks.

d. DU calbacks must precede their first associated instance SCOPE callbacks, but
need not immediately precede them.

e. SCOPE, DU and CVBIN callbacks can occur in any order, except for the DU before
first instance rule—although nesting level isimplied by the order of callbacks.

f. ENDSCOPE callbacks correspond to SCOPE and DU callbacks and imply a"pop"
in the nesting of scopes and design units.

g. ENDDB callbacks can be used to access UCDB attributes written at the end of the
file, if created in write streaming modes.

Opening UCDB in streaming mode to read data through callbacks without creating an
in-memory database.

Use the ucdb_OpenReadStream() read API to open a UCDB in stream mode with a
callback function of type ucdb_CBFuncT along with user data (which can be NULL).
The callback function is called for all UCDB objects present in the database, with an
object of type ucdbCBDataT with the user data.

116

UCDB API Reference, v10.1

UCDB API Functions
Databases and Database Files

Callback Reason Type

typedef enum {

UCDB_REASON_| NI TDB, /* Start of the database,

apply initial settings */
UCDB_REASON_DU, [* Start of a design unit scope */
UCDB_REASON TEST, [* Test pl an obj ect */
UCDB_REASON_SCOPE, /* Start of a scope object */
UCDB_REASON_CVBI N, [* Cover item */
UCDB_REASON_ENDSCOPE /* End of a scope,

i ncludi ng design units */
UCDB_REASON_ ENDDB, /* End of database (database handl e

still valid) */

UCDB_REASON PLANHI STORY, /* Testplan history object */
UCDB_REASON MERGEHI STORY /* Merge history object */
} ucdbCBReasonT;

Callback Return Type

typedef enum {

UCDB_SCAN_CONTI NUE = -1, /* Continue to scan ucdb file */
UCDB_SCAN_STCOP = -2, [* Stop scanning ucdb file */
UCDB_SCAN PRUNE = -3 /* Prune the scanning of the ucdb file at

thi s node. Scanni ng conti nues but
i gnores processing of this node’'s
children. NOTE: This enumvalue is
currently disallowed in read
stream ng node. */

} ucdbCBRet ur nT;

Read Callback Data Type
typedef struct ucdbCBDat aS {

ucdbCBReasonT reason; /* Reason for this call back */
ucdbT db; [/ * Dat abase handle, to use in APls */
ucdbObj T obj ; /* ucdbScopeT or ucdbTestT */
i nt coveri ndex; /[* | f UCDB_REASON CVBI N, index of
coveritem * [

} ucdbCBDat aT;

Function Type for Use with ucdb_OpenReadStream|()

typedef ucdbCBReturnT (*ucdb_CBFuncT) \
(voi d* userdata, ucdbCBDataT* cbdata);

ucdb_Open
ucdbT ucdb_Open(
const char* nane) ;
nane File system path.

Creates an in-memory database, optionally populating it from the specified file. Returns a
database handle if successful, or NULL if error.

UCDB API Reference, v10.1 117

UCDB API Functions
Databases and Database Files

ucdb_OpenReadStream

i nt ucdb_OpenReadSt r eam(
const char* nane,
ucdb_CBFuncT cbfunc,

voi d* userdat a) ;
name File system path.
cbf unc User-supplied callback function.
user dat a User-supplied function data.

Opens a database for streaming read mode from the specified file. Returns O if successful, or -1
if error.

ucdb_OpenWriteStream

ucdbT ucdb_OpenWiteStrean
const char* nane);

nane File system path (write permission must exist for thefile).

Opens datain write streaming mode, overwriting the specified file. Returns arestricted database
handle if successful, or NULL if error.

ucdb_WriteStream

int ucdb_WiteStreamn
ucdbT db) ;

db Database.

Finishes awrite of current object to the persistent database file in write streaming mode. This
operation is like a flush, which completes the write of whatever was most recently created in
write streaming mode. Multiple ucdb_WriteStream() calls cause no harm because if the current
object has already been written, it is not be written again. The specified database handle must
have been previously opened with ucdb_OpenWriteStream(). Returns O if successful, or -1 if
error.

ucdb_WriteStreamScope

int ucdb_WiteStreantcope(
ucdbT db) ;

db Database.

Finishes awrite of the current scope (similar to the flush operation of ucdb_WriteStream) and
pops the stream to the parent scope. (i.e., terminates the current scope and reverts to its parent).
Objects created after this belong to the parent scope of the scope just ended. Unlike
ucdb_WriteStream, this function cannot be called benignly multiple times asit aways causes a

118 UCDB API Reference, v10.1

UCDB API Functions
Databases and Database Files

reversion to the parent scope. This process is the write streaming analogue of the
UCDB_REASON_ENDSCOPE callback in read streaming mode. The specified database
handle must have been previously opened with ucdb_OpenWriteStream(). Returns O if
successful, or -1 if error.

ucdb_Write

int ucdb Wite(
ucdbT db,
const char* file,
ucdbScopeT scope,

i nt recurse,
i nt covertype);
db Database. The database handle "db" cannot have been opened for
one of the streaming modes.
file File name (write permission must exist for thefile).
scope Scope or NULL if all objects.
recurse Non-recursiveif 0. If non-zero, recurse from specified scope or
ignored if scope==NULL.
covertype Cover types (see “Cover Types’ on page 158) to save or -1 for
everything.

Copies the entire in-memory database or the specified subset of the in-memory database to a
persistent form stored in the specified file, overwriting the specified file. Returns O if successful,
or -1if error.

ucdb_Close

i nt ucdb_d ose(
ucdbT db) ;

db Database.

Invalidates the specified database handle and frees all memory associated with the handle,
including the in-memory image of the database, if not in one of the streaming modes. If db was
opened with ucdb_OpenWriteStream(), this functional call has the side-effect of closing the
output file. Returns O if successful, or non-zero if error.

ucdb_DBVersion

i nt ucdb_DBVer si on(
ucdbT db) ;

db Database.

UCDB API Reference, v10.1 119

UCDB API Functions
Databases and Database Files

Returnsinteger version of the AP library, or anegative value if error. If the database handle
was created from afile (i.e., ucdb_Open with non-NULL file name or ucdb_OpenReadStream)
this call returns the version of the database file itself. That is, the version of the API that
originally created the file. Otherwise, (i.e., ucdb_Open with NULL filename or
ucdb_OpenWriteStream), this function is the same as ucdb_APIVersion().

ucdb_APIVersion

i nt ucdb_API Version();

Returns the current integer version of the API library. For afile to be readable:

ucdb_API Versi on() ©>= ucdb_DBVer si on(db)

ucdb_SetPathSeparator

i nt ucdb_Set Pat hSepar at or (
db

ucdbT

char separator);
db Database.
separ at or Path separator.

Setsthe path separator for the specified database. See *“ ucdb_GetScopeHierName” on page 140,
“ucdb_MatchCallBack” on page 148, “ucdb_MatchCallBack” on page 148 and
“ucdb_MatchCallBack” on page 148. The path separator is stored with the persistent form of
the database. Returns O if successful, or -1 if error.

ucdb_GetPathSeparator

char ucdb_Get Pat hSepar at or (
ucdbT db) ;

db Database.

Returns the path separator for the specified database, or “0” if error.

ucdb_Filename

const char* ucdb_Fi | enamg(
ucdbT db) ;

db Database.

Returns the file name from which the specified database was read or the most recent file name
written, or NULL if none.

120 UCDB API Reference, v10.1

UCDB API Functions
User-specified Attributes

User-specified Attributes

User-defined attributes are associated with objects in the database—scopes, coveritems, or
tests—or with the database itself (global attributes). They are key-value pairs that can be
traversed or looked up by key. Key/value string storage is maintained by the API. With set
routines (which add key/value pairs), passed-in strings are copied to storage maintained by the
API. You must not de-allocate individual strings returned by the API. On reading from or
writing to memory, values returned are always owned by the API. They are good until the next
call. The memory for keysis always good.

For attributes of coveritems, the coveritems are identified by a combination of the parent scope
handle (pointer) and an integer index for the coveritem. To use the attribute functions for a
scope only, the integer index must be set to -1. For history node objects, the index must always
be-1. If afunction is given an attribute handle, if that handleis of type
UCDB_ATTR_ARRAY, thentheindex must beavaluefromOto array size—1. Thearray size
may be queried using the ucdb_AttrArraySize() function. If the attribute handle is of type
UCDB_ATTR_HANDLE, then the index must be —1.

Attribute Type

typedef enum{

UCDB_ATTR_| NT,

UCDB_ATTR_FLOAT,

UCDB_ATTR_DOUBLE

UCDB_ATTR_STRI NG

UCDB_ATTR_MEMBLK

UCDB_ATTR_| NT64,

UCDB_ATTR HANDLE, /* Refers to other attributes: for nesting */

UCDB_ATTR_ARRAY /* Handl e used to refer to an attribute array */
} ucdbAttr TypeT;

Attribute Value Type
typedef struct {

ucdbAt tr TypeT type; /* Val ue type */
uni on {
int64_t i64val ue /[* 64-bit integer value */
int ival ue; /* Integer val ue */
float fval ue; /* Float val ue */
doubl e dval ue; /* Doubl e val ue */
const char* svalue; /* String val ue */
struct {
int size; /* Size of menory bl ock, nunber of bytes */
unsi gned char* data; /* Starting address of nenory bl ock */
} nval ue;
ucdbAt trHandl eT attrhandle; /* for HANDLE and ARRAY */
Pous

} ucdbA{trvaIueT;

UCDB API Reference, v10.1 121

UCDB API Functions

Use

r-specified Attributes

ucdb_AttrGetNext

const char* ucdb_Attr Get Next (

ucdbT
ucdbObj T

i nt

const char*

db,
obj,
coveri ndex,
key,

ucdbAt tr Val ueT** val ue);

db

obj

coveri ndex

key

val ue

Database.

Object type: ucdbScopeT, ucdbHistoryNodeT, or NULL (for
global attribute).

Index of coveritem. If obj is ucdbScopeT, specify -1 for scope.
Previous key or NULL to get the first attribute.
Attribute value returned.

Returns the next attribute key and gets the corresponding attribute value from the specified
database object, or returns NULL when done traversing attributes. Do not use free or strdup on
keys. Memory for the returned key is owned by the API. To preserve the old key, just use
another char* variable for it. For example, to traverse the list of attributes for a scope:

const char* key = NULL;

ucdbAt tr Val ueT* val ue;

whil e (key = ucdb_AttrGet Next (db, obj, -1, key, &al ue)) {
printf("Attribute "% is ", key);
print_attrval ue(val ue);

}

ucdb_AttrAdd

int ucdb_AttrAdd(
ucdbT
ucdbObj T
i nt
const char*

db,
obj,
coveri ndex,
key,

ucdbAt tr Val ueT* val ue);

db
obj

coveri ndex
key

val ue

Database.

Object type: ucdbScopeT, ucdbTestT, or NULL (for global
attribute).

Index of coveritem. If obj isucdbScopeT, specify -1 for scope.
Attribute key.
Attribute value.

Adds the specified attribute (key/value) to the specified database object or global attribute list.
The attribute value is copied to the system. Returns O if successful, or -1 if error.

122

UCDB API Reference, v10.1

UCDB API Functions
User-specified Attributes

ucdb_AttrRemove

int ucdb_AttrRenove(

ucdbT db,
ucdbOhj T obj ,
i nt coveri ndex,
const char* key);
db Database.
obj Object type: ucdbScopeT, ucdbTestT, or NULL (for global

coveri ndex

key

attribute).
Index of coveritem. If obj is ucdbScopeT, specify -1 for scope.
Key or NULL to remove the first attribute.

Removes the attribute that has the specified key from the specified database object or global
attribute list. Returns O if successful, or -1 if error.

ucdb_AttrGet

int ucdb_AttrGet (

ucdbT db,
ucdboj T obj,
i nt coveri ndex,
const char* key,
ucdbAt tr Val ueT* val ue);
db Database.
obj Object type: ucdbScopeT, ucdbHistoryNodeT, or NULL (for

coveri ndex

key

val ue

global attribute).

Index. If obj isucdbScopeT, specify -1 for scope. Valid index for
coveritem is ucdbAttrHandleT:

« array index (if typeisUCDB_ATTR_ARRAY)

o -1(if typeisUCDB_ATTR_HANDLE)

Not necessary if obj isucdbAttrHandleT and itstypeis
UCDB_ATTR_ARRAY.

Attribute value returned.

Gets the attribute value for the specified object/key or global attribute value if obj isSNULL.
Returns 1 if amatchisfound, or Oif error.

UCDB API Reference, v10.1

123

UCDB API Functions
User-specified Attributes

ucdb_AttrArraySize

int ucdb_AttrArraySi ze(

ucdbT db,
ucdbAttr Handl eT arrayhandl e);
db Database.
arrayhandl e Attribute array handle.

Returns the size (max index + 1) of the attribute array, or -1 if error (i.e., typeis not
UCDB_ATTR_ARRAY).

124 UCDB API Reference, v10.1

UCDB API Functions
Scopes

Scopes

Scopes functions manage the design hierarchy and coverage scopes. The UCDB database is
organized hierarchically in parallel with the the design database, which consists of atree of
modul e instances, each of a given module type.

Note the following about scopes functions:

* hierarchical identifiers

» If ascopetypeisVerilog or SystemVerilog, Verilog escaped identifiers syntax is
assumed for a path within that scope.

» If ascopetypeisVHDL, VHDL extended identifiers are assumed. The escaped
identifier syntax is sensitive to the scope type so that escaped identifiers can appear
in the user’ s accustomed syntax. If a scope typeis VHDL, the entity, architecture
and library can be encoded in the name.

e attributes
« char* attributes can be omitted with aNULL value.

* int attributes can be omitted with a negative value.

Scope Type
typedef unsigned int ucdbScopeTypeT,;

#defi ne UCDB_TOGGLE | NT64_LI TERAL(0x0000000000000001)

/* cover scope: toggle coverage scope */
#def i ne UCDB_BRANCH | NT64_LI TERAL(0x0000000000000002)

/* cover scope: branch coverage scope */
#def i ne UCDB_EXPR | NT64_LI TERAL(0x0000000000000004)

/* cover scope: expression coverage scope */
#defi ne UCDB_COND | NT64_LI TERAL(0x0000000000000008)

/* cover scope: condition coverage scope */
#defi ne UCDB_I NSTANCE | NT64_LI TERAL(0x0000000000000010)

/* HDL scope: Design hierarchy instance */
#def i ne UCDB_PROCESS | NT64_LI TERAL(0x0000000000000020)

/* HDL scope: process */
#defi ne UCDB_BLOCK | NT64_LI TERAL(0x0000000000000040)

/* HDL scope: vhdl block, vlog begin-end */
#defi ne UCDB_FUNCTI ON | NT64_LI TERAL(0x0000000000000080)

/* HDL scope: function */
#def i ne UCDB_FORKJO N | NT64_LI TERAL(0x0000000000000100)

/* HDL scope: Verilog fork-join block */
#defi ne UCDB_GENERATE | NT64_LI TERAL(0x0000000000000200)

/* HDL scope: generate block */
#defi ne UCDB_GENERI C | NT64_LI TERAL(0x0000000000000400)

/* cover scope: generic scope type */
#def i ne UCDB_CLASS | NT64_LI TERAL(0x0000000000000800)

/* HDL scope: class type scope */
#def i ne UCDB_COVERGROUP | NT64_LI TERAL(0x0000000000001000)

/* cover scope: covergroup type scope */

UCDB API Reference, v10.1

125

UCDB API Functions

Scopes

#defi ne UCDB_COVERI NSTANCE | NT64_LI TERAL(0x0000000000002000)

/* cover scope: covergroup instance scope */
#def i ne UCDB_COVERPO NT | NT64_LI TERAL(0x0000000000004000)

/* cover scope: coverpoint scope */
#def i ne UCDB_CROSS | NT64_LI TERAL(0x0000000000008000)

/* cover scope: cross scope */
#defi ne UCDB_COVER | NT64_LI TERAL(0x0000000000010000)

/* cover scope: directive (SVA/ PSL) cover */
#def i ne UCDB_ASSERT | NT64_LI TERAL(0x0000000000020000)

/* cover scope: directive (SVA/ PSL) assert */
#def i ne UCDB_PROGRAM | NT64_LI TERAL(0x0000000000040000)

/* HDL scope: SV programinstance */
#def i ne UCDB_PACKAGE | NT64_LI TERAL(0x0000000000080000)

/* HDL scope: package instance */
#defi ne UCDB_TASK | NT64_LI TERAL(0x0000000000100000)

/* HDL scope: task */
#defi ne UCDB_| NTERFACE | NT64_LI TERAL(0x0000000000200000)

/* HDL scope: SV interface instance */
#defi ne UCDB_FSM | NT64_LI TERAL(0x0000000000400000)

/* cover scope: FSM coverage scope */
#defi ne UCDB_TESTPLAN | NT64_LI TERAL(0x0000000000800000)

/* test scope: for test plan item™*/
#def i ne UCDB_DU MODULE | NT64_LI TERAL(0x0000000001000000)

/* design unit: for instance type */
#defi ne UCDB_DU_ARCH | NT64_LI TERAL(0x0000000002000000)

/[* design unit: for instance type */
#defi ne UCDB_DU_PACKAGE | NT64_LI TERAL(0x0000000004000000)

/* design unit: for instance type */
#def i ne UCDB_DU_PROGRAM | NT64_LI TERAL(0x0000000008000000)

/* design unit: for instance type */
#defi ne UCDB_DU_| NTERFACE | NT64_LI TERAL(0x0000000010000000)

/[* design unit: for instance type */
#defi ne UCDB_FSM STATES | NT64_LI TERAL(0x0000000020000000)

/* cover scope: FSM states coverage scope */
#def i ne UCDB_FSM TRANS | NT64_LI TERAL(0x0000000040000000)

/* cover scope: FSMtransitions

coverage scope*/

#def i ne UCDB_GROUP | NT64_LI TERAL(0x0000000080000000)

/* group scope */
#defi ne UCDB_TRANSI TI ON | NT64_LI TERAL(0x0000000100000000)

/* cover scope: covergroup transition scope */
#defi ne UCDB_RESERVED SCOPE | NT64_LI TERAL(OxFFO0000000000000)

/* RESERVED scope type */
#def i ne UCDB_SCOPE_ERRORUCDB_SCOPE_ERROR
| NT64 LI TERAL(0x0000000000000000) /[* error return code */

#def i ne UCDB_FSM SCOPE ((ucdbScopeMaskTypeT) \

(UCDB_FSM | UCDB_FSM STATES | UCDB_FSM TRANS))

#def i ne UCDB_CODE_COV_SCOPE ((ucdbScopeMaskTypeT) \
(UCDB_BRANCH | UCDB_EXPR | UCDB_COND | UCDB _TOGGLE |
UCDB_BLOCK))

#def i ne UCDB_DU ANY ((ucdbScopeMaskTypeT) \
(UCDB_DU_MODULE | UCDB_DU ARCH | UCDB_DU_PACKAGE | \
UCDB_DU_PROGRAM | UCDB_DU_| NTERFACE))

#def i ne UCDB_CVG _SCOPE ((ucdbScopeMaskTypeT) \
(UCDB_COVERGROUP | UCDB_COVERI NSTANCE | UCDB_COVERPO NT |

#def i ne UCDB_FUNC COV_SCOPE ((ucdbScopeMaskTypeT) \
(UCDB_CVG_SCOPE | UCDB_COVER))

#def i ne UCDB_COV_SCOPE ((ucdbScopeMaskTypeT) \

UCDB_FSM SCOPE | \

UCDB_CROSS))

126 UCDB API Reference, v10.1

UCDB API Functions
Scopes

(UCDB_CODE_COV_SCOPE | UCDB_FUNC_COV_SCOPE) \
#def i ne UCDB_VERI F_SCOPE ((ucdbScopeMaskTypeT) \
(UCDB_COV_SCOPE | UCDB_ASSERT | UCDB_CGENERI C))
#def i ne UCDB_HDL_SUBSCOPE ((ucdbScopeMaskTypeT) \
(UCDB_PROCESS | UCDB BLOCK | UCDB_FUNCTION | UCDB_FORKJO N | \
UCDB_GENERATE | UCDB_CLASS | UCDB_TASK))
#defi ne UCDB_HDL_| NST_SCOPE ((ucdbScopeMaskTypeT) \

(UCDB_I| NSTANCE | UCDB_PROGRAM | UCDB_PACKAGE | UCDB_I NTERFACE))
#def i ne UCDB_HDL_ DU SCOPE ((ucdbScopeMaskTypeT) (UCDB DU ANY))
#def i ne UCDB_HDL_SCOPE ((ucdbScopeMaskTypeT) \

(UCDB_HDL_SUBSCOPE | UCDB_HDL_I NST_SCOPE | UCDB_HDL_DU_SCOPE))
#defi ne UCDB_NONTESTPLAN SCOPE ((ucdbScopeMaskTypeT) (~UCDB_TESTPLAN))
#def i ne UCDB_NO SCOPES ((ucdbScopeMaskTypeT) | NT64_ZERO)

#def i ne UCDB_ALL_SCOPES ((ucdbScopeMaskTypeT) | NT64_NEGL)

Source Type

Enumerated type to encode the source type of a scope, if needed. Note that scope type can have
an effect on how the system regards escaped identifiers within the design hierarchy.

typedef enum {

UCDB_VHDL,

UCDB_VLCG, /[* Verilog * [
UCDB_SV, [* SystenVeril og */
UCDB_SYSTEMC,

UCDB_PSL_VHDL, /* assert/cover in PSL VHDL */
UCDB_PSL_VLOG /* assert/cover in PSL Verilog */
UCDB_PSL_SV, /* assert/cover in PSL SystenVerilog */
UCDB PSL_SYSTEMC, /* assert/cover in PSL SystenC */
UCDB_E,

UCDB_VERA,

UCDB_NONE, /* not inportant */
UCDB_OTHER, /* user-defined attribute */
UCDB_VLOG_AMS, /* Verilog Anal og M xed Signal */
UCDB_VHDL_ANS, /* VHDL Anal og M xed Signal */

UCDB_SPI CE,

UCDB_MATLAB,

UCDB_C,

UCDB_CPP,

UCDB_SOURCE ERROR = -1 /* for error cases */
} ucdbSour ceT;

Flags Type
typedef unsigned int ucdbFl agsT;

/* Flags for scope data */

#define UCDB | NST_ONCE 0x00000001 /* Instance is instantiated only
once; code coverage is stored only
in the instance. */

/* Flags that indicate whether the scope was conpiled with the */
/* correspondi ng type of code coverage enabl ed. */
#defi ne UCDB_ENABLED STMI 0x00000002 /* statenent coverage */
#def i ne UCDB_ENABLED BRANCH 0x00000004 /* branch coverage */
#def i ne UCDB_ENABLED COND 0x00000008 /* condition coverage */

UCDB API Reference, v10.1 127

UCDB API Functions

Scopes

#defi ne UCDB_ENABLED EXPR 0x00000010 /* expression coverage */
#def i ne UCDB_ENABLED FSM 0x00000020 /* FSM cover age */
#def i ne UCDB_ENABLED TOGGLE 0x00000040 /* toggle coverage */
#defi ne UCDB_ENABLED TOGGLEEXT 0x00000080 /* extended (3-state)

toggl e */
#defi ne UCDB_SCOPE_UNDER_DU 0x00000100 /* whether or not scope is

/* under a design unit */

#def i ne UCDB_SCOPE_EXCLUDED 0x00000200

#def i ne UCDB_SCOPE_PRAGVA_EXCLUDED 0x00000400

#def i ne UCDB_SCOPE_PRAGVA CLEARED 0x00000800

#def i ne UCDB_SCOPE_GOAL_SPECI FI ED 0x00001000

#defi ne UCDB_SCOPE_AUTO EXCLUDED 0x00002000

#define UCDB I S TOP_NODE 0x00008000 /*for top-level toggle node*/
#define UCDB | S | MMEDI ATE_ASSERT 0x00010000 /*for SV i nmedi ate asserts*/
/* Reuse these two flag val ues for covergroup scopes */

#define UCDB | S E PER I NST 0x00008000 /* for covergroup */
#define UCDB_| S_E_PER TYPE 0x00010000 /* instance scopes */

[* For Zero Information in "flags" */

#defi ne UCDB_SCOPE_| FF_EXI STS 0x00100000

#def i ne UCDB_SCOPE _SAMPLE TRUE 0x00200000 /* No bin under the scope

is sanpled */

/* Two-bit Expression/Condition short circuit information flags applicable
to UCDB_EXPR and UCDB_COND scopes only. Two bits are overl oaded by
re-usi ng UCDB_SCOPE_| FF_EXI STS and UCDB_SCOPE_SAMPLE_TRUE fl ags whi ch
are applicable to the covergroup scopes only. The two bits carry
meani ngful information only when used together

00: Short circuit enabl ed

01: Short circuit partially enabled

10: Short circuit disallowed

11: Short circuit disabled (Sane as flag UCDB_SCOPE SAMPLE TRUE)

/* Flags that specify whether the short circuit is enabled or disabled at
the Design Unit level. */

#def i ne UCDB_SCOPE_SCKT_PART_ENABLED 0x00100000

#def i ne UCDB_SCOPE_SCKT_DI SALLOWVED 0x00200000

#def i ne UCDB_SCOPE_SCKT_DI SABLED 0x00300000

/* Flag for checking if DU had short circuiting disabled for coverage */
#defi ne UCDB_DI SABLED SHORTCKT 0x00400000

/* Flag for checking if a DU had UDP coverage enabl ed for expr/cond
coverage */

#def i ne UCDB_EXPRCOND_UDP 0x00800000

/*Flag for checking if it is a PA coverage scope */

#def i ne UCDB_PACOVERAGE 0x02000000

/* Flag used only on binodal expressions to trigger Extended FEC
Anal ysis */

#defi ne UCDB_EXPRCOND_EXT_FEC 0x01000000

/* Flag set on last row of Extended FEC table */
#def i ne UCDB_EXPRCOND _LAST_FEC ROW 0x00080000

#defi ne UCDB_SCOPEFLAG MARK 0x08000000 /* flag for temporary mark */
#def i ne UCDB_SCOPE_| NTERNAL 0xF0000000 /* flags for internal use */
#def i ne UCDB_SCOPEFLAG MARK 0x08000000 /* flag for tenmporary mark */
#defi ne UCDB_SCOPE_| NTERNAL O0xF0000000 /* flags for internal use */

128

UCDB API Reference, v10.1

UCDB API Functions
Scopes

ucdb_CreateScope
ucdbScopeT ucdb_Creat eScope(

ucdbT db,
ucdbScopeT par ent,
const char* name,
ucdbSour cel nf oT* srci nf o,
i nt wei ght ,
ucdbSour ceT sour ce,
ucdbScopeTypeT type,
ucdbFl agsT flags);
db Database.
par ent Parent scope. If NULL, creates the root scope.
nane Name to assign to scope.
srcinfo
wei ght Weight to assign to the scope. Negative indicates no weight.
source Source of scope.
type Type of scopeto create.
flags Flags for the scope.

Creates the specified scope beneath the parent scope. Returns the scope handle if successful, or
NULL if error. In write streaming mode, "name" is not copied, so it should be kept unchanged
until the next ucdb_WriteStream* call or the next ucdb_Create* call.

Use ucdb_Createlnstance for UCDB_INSTANCE or UCDB_COVERINSTANCE scopes.

ucdb_ComposeDUName

const char*
ucdb_ConposeDUNarme(

const char* i brary_nane,
const char* primary_nane,
const char* secondary_nane);
l'ibrary_nane Library name.
pri mary_nane Primary name.
secondary_nane Secondary name.

Composes as design unit scope name for specified design unit. Returns handle to the parsed
design unit scope name for the specified component names, or -1 if error. The
ucdb_ComposeDUName and ucdb_ParseDUName utilities use a static dynamic string (one for
the "Compose" function, one for the "Parse" function), so values are only valid until the next
call to the respective function. To hold a name across separate calls, the user must copy it.

UCDB API Reference, v10.1 129

UCDB API Functions
Scopes

ucdb_ParseDUName
voi d ucdb_Par seDUNang(

const char*
const char**
const char**
const char**

du_nane,

i brary_nane,
prinmary_nane,
secondary_nane);

du_nane
l'ibrary_nane
primary_nane

secondary_nane

Design unit name to parse.

Library name returned by the call.
Primary name returned by the call.
Secondary name returned by the call.

Getsthe library name, primary name, and secondary name for the design unit specified by
du_name. Design unit scope name has the form:

I'ibrary_nane. primary_nane(secondary_nane)

The ucdb_ComposeDUName and ucdb_ParseDUName utilities use a static dynamic string (one
for the"Compose" function, one for the "Parse" function), so values are only valid until the next
call to the respective function. To hold a name across separate calls, the user must copy it.

ucdb_Createlnstance

ucdbScopeT ucdb_Creat el nst ance(

ucdbT db,
ucdbScopeT parent,
const char* nane,
ucdbSour cel nf oT* fileinfo,
i nt wei ght,
ucdbSour ceT sour ce,
ucdbScopeTypeT type,
ucdbScopeT du_scope,
i nt flags);
db Database.
par ent Parent of instance scope. If NULL, creates a new root scope.
nanme Name to assign to scope.
fileinfo
wei ght Weight to assign to the scope. Negative indicates no weight.
source Source of instance.
type Type of scopeto create: UCDB_INSTANCE or

UCDB_COVERINSTANCE.

130

UCDB API Reference, v10.1

UCDB API Functions
Scopes

du_scope

flags

Previously-created scope that is usually the design unit. If typeis
UCDB_INSTANCE, then du_scope hastype UCDB_DU_*. If
typeisUCDB_COVERINSTANCE, then du_scope has type
UCDB_COVERGROUP to capture the instance -> type of the
instance relationship for the covergroup instance.

Flags for the scope.

Creates an instance scope of the specified design unit type under the specified parent. Not
supported in streaming modes; use ucdb_Createl nstanceByName() in write streaming mode.
Returns a scope handle, or NULL if error.

ucdb_CreatelnstanceByName

ucdbScopeT ucdb_Creat el nst anceByNamg(
db

ucdbT
ucdbScopeT par ent,
const char* nane,
ucdbSour cel nf oT* fileinfo,
i nt wei ght ,
ucdbSour ceT sour ce,
ucdbScopeTypeT type,
char* du_nane,
i nt flags);
db Database.
par ent Parent of instance scope. In write streaming mode, should be
NULL. For other modes, NULL creates aroot scope.
nane Name to assign to scope.
fileinfo
vei ght Weight to assign to the scope. Negative indicates no weight.
source Source of instance.
type Type of scopeto create: UCDB_INSTANCE or
UCDB_COVERINSTANCE.
du_name Name of previously-created scope of the instance’ s design unit or
the coverinstance’ s covergroup type.
flags Flags for the scope.

Creates an instance of the specified named design unit under the specified parent scope. Returns
ascope handle, or NULL if error.

UCDB API Reference, v10.1

131

UCDB API Functions
Scopes

ucdb_CreateCross
ucdbScopeT ucdb_Creat eCross(

ucdbT db,
ucdbScopeT par ent,
const char* name,
ucdbSour cel nf oT* fileinfo,
i nt wei ght ,
ucdbSour ceT sour ce,
i nt num poi nts,
ucdbScopeT* poi nts);
db Database.
par ent Parent scope: UCDB_COVERGROUP or
UCDB_COVERINSTANCE.
name Name to assign to cross scope.
fileinfo
wei ght Weight to assign to the scope. Negative indicates no weight.
source Source of cross.
num poi nt's Number of crossed coverpoints.
poi nt's Array of scopes of the coverpoints that comprise the cross scope.

These coverpoints must aready exist in the parent.

Creates the specified cross scope under the specified parent (covergroup or cover instance)
scope. Returns a scope handle for the cross, or NULL if error.

ucdb_CreateCrossByName

ucdbScopeT ucdb_Cr eat eCr ossByName(
db

ucdbT ,

ucdbScopeT par ent,

const char* namne,

ucdbSour cel nf oT* fileinfo,

i nt wei ght ,

ucdbSour ceT source,

i nt num poi nts,

char** poi nt _nanes) ;
db Database.
par ent Parent scope: UCDB_COVERGROUP or

UCDB_COVERINSTANCE.

name Name to assign to cross scope.
fileinfo Associated source information. Can be NULL.
wei ght Weight to assign to the scope. Negative indicates no weight.
source Source of cross.

132 UCDB API Reference, v10.1

UCDB API Functions
Scopes

num poi nts

poi nt _nanes

Number of crossed coverpoints.

Array of names of the coverpoints that comprise the cross scope.
These coverpoints must already exist in the parent.

Creates the specified cross scope under the specified parent (covergroup or cover instance)
scope. Returns a scope handle for the cross, or NULL if error.

ucdb_CreateTransition

ucdbScopeT ucdb_CreateTransition(

ucdbT db,
ucdbScopeT par ent,
const char* nane,
ucdbSour cel nf oT* fileinfo,
i nt wei ght ,
ucdbSour ceT sour ce,
ucdbScopeT iten);
db Database.
par ent Parent scope: UCDB_COVERGROUP or
UCDB_COVERINSTANCE.
nane Name of coveritem. Can be NULL.
fileinfo Associated source information. Can be NULL.
wei ght Weight to assign to the scope. Negative indicates no weight.
sour ce Source of the transition.
item Array of coverpoint scopes: must exist in the parent.

Creates atransition scope under the given parent. In write-streaming mode, name is not copied;
it should be preserved unchanged until the next ucdb_WriteStream* call or the next
ucdb_Create* call. Returns the scope pointer, or NULL if error.

ucdb_CreateTransitionByName

ucdbScopeT ucdb_CreateTransi ti onbyNange(

ucdbT db,
ucdbScopeT parent,
const char* nane,
ucdbSour cel nf oT* fileinfo,
i nt wei ght,
ucdbSour ceT source,
char* i tem nane);
db Database.
par ent Parent scope: UCDB_COVERGROUP or

UCDB_COVERINSTANCE.

UCDB API Reference, v10.1

133

UCDB API Functions

Scopes
name Name of coveritem. Can be NULL.
fileinfo Associated source information. Can be NULL.
vei ght Weight to assign to the scope. Negative indicates no weight. Not
applicable to toggles.
source Source of the transition.
i tem name Transition item: must exist in the parent.

Creates atransition scope under the given parent. In write-streaming mode, name is not copied;
it should be preserved unchanged until the next ucdb_WriteStream* call or the next
ucdb_Create* call. Returns the scope pointer, or NULL if error.

ucdb_InstanceSetDU

i nt ucdb_I nst anceSet DU

ucdbT db,
ucdbScopeT i nst ance,
ucdbScopeT du_scope) ;
db Database (must contain instance and du_scope).
i nst ance Scope of the instance.
du_scope Previoudly-created scope that is usually the design unit. If typeis

UCDB_INSTANCE, then du_scope hastype UCDB_DU _*. If
typeis UCDB_COVERINSTANCE, then du_scope has type
UCDB_COVERGROUP to capture the instance -> type of the
instance relationship for the covergroup instance.

Sets the specified design unit scope handle in the specified instance. Returns O if successful, or -

1

if error.

ucdb_CloneScope

ucdbScopeT ucdb_Cl oneScope(

ucdbT t arget db,

ucdbScopeT t ar get parent,

ucdbT sour cedb,

ucdbScopeT scope,

ucdbSel ect Fl agsT cl onefl ags,

i nt i s_recursive);
targetdb Database context for clone.

t ar get par ent
sour cedb
scope

cl onef |l ags

Parent scope of clone.

Source database.

Source scope to clone.

Flags specifying what to copy.

134

UCDB API Reference, v10.1

UCDB API Functions
Scopes

i s_recursive If non-zero, recursively clones subscopes. If 0, only clones the
specified scope.

Has no effect when targetdb is in streaming mode. Creates a copy of the specified scope under
the specified destination scope (targetparent). Predefined attributes are created by default.
Returns the scope handle of the cloned scope, or -1 if error.

ucdb_RemoveScope

i nt ucdb_RenoveScope(

ucdbT db,
ucdbScopeT scope) ;

db Database.

scope Scope to remove.

Has no effect when db isin streaming mode. Removes the specified scope from its parent scope,
along with all its subscopes and coveritems. When a scope is removed, that scope handle
immediately becomes invalid along with all of its subscope handles. Those handles cannot be
used in any API routines. Returns O if successful, or -1 if error.

ucdb_ScopeParent

ucdbScopeT ucdb_ScopePar ent (
db

ucdbT ,

ucdbScopeT scope) ;
db Database.
scope Scope.

Returns the parent scope handle of the specified scope, or NULL if none or error.

ucdb_ScopeGetTop

ucdbScopeT ucdb_ScopeGet Top

ucdbT db,

ucdbScopeT scope) ;
db Database.
scope Scope.

Returns the top-level scope (i.e., the scope with no parent) above the specified scope, or NULL
if error.

UCDB API Reference, v10.1 135

UCDB API Functions
Scopes

ucdb_GetScopeName

const char* ucdb_Get ScopeNane(
db

ucdbT ,

ucdbScopeT scope) ;
db Database.
scope Scope.

Returns the non-hierarchical string name of the specified scope, or NULL if error.

ucdb_SetScopeName

i nt ucdb_Set ScopeNarme(

ucdbT
ucdbScopeT scope,
const char* name) ;
db Database.
scope Scope.
nane Name to assign to scope.

Sets the name of the specified scope. Returns -1 if error.

ucdb_GetScopeType

ucdbScopeTypeT ucdb_Get ScopeType(
db

ucdbT ,

ucdbScopeT scope) ;
db Database.
scope Scope.

Returns the scope type of the specified scope, or UCDB_SCOPE_ERROR if error.

ucdb_GetScopeSourceType

ucdbSour ceT ucdb_Get ScopeSour ceType(
db

ucdbT ,

ucdbScopeT scope) ;
db Database.
scope Scope.

Returns the source of the specified scope, or UCDB_SOURCE_ERROR if error.

136 UCDB API Reference, v10.1

UCDB API Functions
Scopes

ucdb_GetScopeFlags

ucdbFl agsT ucdb_Get ScopeFl ags(
db

ucdbT ,

ucdbScopeT scope) ;
db Database.
scope Scope.

Returns the scope flags of the specified scope, or -1 if error.

ucdb_SetScopeFlags

voi d ucdb_Set ScopeFl ags(
d

ucdbT
ucdbScopeT scope,
ucdbFl agsT flags);
db Database.
scope Scope.
flags Flagsto assign to scope.

Sets the flags of the specified scope.

ucdb_GetScopeFlag

i nt ucdb_Get ScopeFl ag(

ucdbT
ucdbScopeT scope,
ucdbFl agsT mask) ;
db Database.
scope Scope.
mask Flag bit to match with scope flags.

Returns 1 if the scope’ s flag bit matches the specified mask, otherwise, no match.

ucdb_SetScopeFlag

voi d ucdb_Set ScopeFl ag(

ucdbT
ucdbScopeT scope,
ucdbFl agsT mask,
i nt bi tval ue);
db Database.
scope Scope.

UCDB API Reference, v10.1 137

UCDB API Functions

Scopes
mask Flag bits to set.
bi t val ue Value (0 or 1) to set mask hits.

Sets bits in the scope’ s flags fiel ds corresponding to the mask to the specified bit value (O or 1).

ucdb_GetScopeSourcelnfo

i nt ucdb_Get ScopeSour cel nf o(
db

ucdbT
ucdbScopeT scope,
ucdbSour cel nf oT* sour cei nfo);
db Database.
scope Scope.
sour cei nfo Returned source information (file/line/token). Memory for

source information string is allocated by the system and must not
be de-allocated by the user.

Gets the source information for the specified scope. Returns O if successful, or non-zero if error.

ucdb_SetScopeSourcelnfo

i nt ucdb_Set ScopeSour cel nf o(

ucdbT
ucdbScopeT scope,
ucdbSour cel nf oT* sour cei nf o) ;
db Database.
scope Scope.
sourceinfo Source information (file/line/token) to store for the specified

scope.

Sets the source information for the specified scope. Returns O if successful, or non-zero if error.

ucdb_SetScopeFileHandle

i nt ucdb_Set ScopeFi | eHandl e(
db

ucdbT
ucdbScopeT scope,
ucdbFi | eHandl eT* filehandl e);
db Database.
scope Scope.
fil ehandl e File handle to set for the scope.

Setsthe file handle for the specified scope. Does not apply to toggle nodes. API maintains the
file handle string storage—do not free. Returns O if successful, or non-zero if error.

138 UCDB API Reference, v10.1

UCDB API Functions
Scopes

ucdb_GetScopeWeight

i nt ucdb_Get ScopeWei ght (

ucdbT ,

ucdbScopeT scope) ;
db Database.
scope Scope.

Returns the weight for the specified scope, or -1 if error. Note that toggle nodes have no weight
and always return 1.

ucdb_SetScopeWeight

i nt ucdb_Set ScopeWei ght (

ucdbT db,
ucdbScopeT scope,
i nt wei ght) ;
db Database.
scope Scope.
wei ght Weight to assign to scope.

Sets the weight for the specified scope. Returns O if successful, or -1 if error. Not applicable to
toggle nodes.

ucdb_GetScopeGoal

i nt ucdb_GCet ScopeGoal (

ucdbT db,
ucdbScopeT scope,
float* goal);

db Database.

scope Scope.

goal Goal returned.

Getsthe goal for the specified scope. For UCDB_CVG_SCOPE type, converts from the integer

value (see ucdb_SetScopeGoal). Returns 1 if found, or O if not found. Not applicable to toggle
nodes.

UCDB API Reference, v10.1 139

UCDB API Functions
Scopes

ucdb_SetScopeGoal

i nt ucdb_Set ScopeGoal (

ucdbT db,

ucdbScopeT scope,

fl oat goal);
db Database.
scope Scope.
goal Goal vaue.

Sets the goal for the specified scope. For UCDB_CVG_SCOPE types, convertsto the integer
value (in the SystemVerilog LRM, option.goal and type_option.goal are defined as integers).
Returns O if successful, or -1 if error. Not applicable to toggle nodes.

ucdb_GetScopeHierName

const char* ucdb_Get ScopeHi er Name(

ucdbT)

ucdbScopeT scope) ;
db Database.
scope Scope.

Returns pointer to hierarchical name of scope, or NULL if error. Hierarchical path separator is
as set for the current database (see “hierarchical identifiers’ on page 125).

ucdb_GetlnstanceDU

ucdbScopeT ucdb_Get | nst anceDU(

ucdbT db,

ucdbScopeT scope) ;
db Database.
scope

Instance scope (i.e., scope typeis UCDB_INSTANCE).

Returns the handle of the design unit scope of the specified instance scope, or NULL if error.

Note: thiscall can return the UCDB_COVERGROUP scope for aUCDB_COVERINSTANCE
aswell.

ucdb_GetlnstanceDUName

char* ucdb_GCet | nst anceDUName(
ucdbT db,

ucdbScopeT scope);

db Database.
scope

Instance scope (i.e., scope typeis UCDB_INSTANCE).

140 UCDB API Reference, v10.1

UCDB API Functions
Scopes

Returns the handle of the design unit scope name of the specified instance scope, or NULL if
error. Note: this call can return the UCDB_COV ERGROUP scope name for a
UCDB_COVERINSTANCE aswell. Handle must not to be de-allocated or saved in streaming
modes. If not in in-memory mode, handle must be copied.

ucdb_GetNumCrossedCvps

i nt ucdb_Get NuntCr ossedCvps(

ucdbT db,
ucdbScopeT scope,
int* num poi nt s);
db Database.
scope Cross scope.
num poi nt s Number of coverpoints returned.

Gets the number of crossed coverpoints of the specified cross scope. Returns O if successful, or
non-zero if error.

ucdb_GetlthCrossedCvp

int ucdb_GetlthCrossedCvp(

ucdbT db,
ucdbScopeT scope,
i nt i ndex,
ucdbScopeT* poi nt _scope) ;
db Database.
scope Cross scope.
i ndex Coverpoint index in the cross scope.
poi nt _scope Crossed coverpoint scope returned.

Getsthe crossed coverpoint of the scope specified by the coverpoint index in the specified cross
scope. Returns O if successful, or non-zero if error.

ucdb_GetlthCrossedCvpName

char* ucdb_GCet |t hCrossedCvpNane(

ucdbT db,
ucdbScopeT scope,
i nt i ndex) ;
db Database.
scope Cross scope.
i ndex Coverpoint index in the cross scope.

UCDB API Reference, v10.1 141

UCDB API Functions
Scopes

Returns the handle of the name of the crossed coverpoint of the scope specified by the
coverpoint index in the specified cross scope, or NULL if error.

ucdb_GetTransitionltem

ucdbScopeT ucdb_Get Transi tionltem

ucdbT db,
ucdbScopeT scope) ;

db Database.

scope Transition scope.

Returns the transition item scope, or NULL if error (for example, scopeis not atransition
scope).

ucdb_GetTransitionltemName

char* ucdb_Get Transi ti onl t enNane(

ucdbT db,
ucdbScopeT scope) ;

db Database.

scope Transition scope.

Returns the transition item scope name, or NULL if error (for example, scope is not atransition
scope).

ucdb_NextPackage

ucdbScopeT ucdb_Next Package(

ucdbT db,
ucdbScopeT package) ;
db Database.
package Package or NULL to return the first package.

Returns the next package following the specified package in the database, NULL if packageis
the last package, or UCDB_SCOPE_ERROR if error.

142 UCDB API Reference, v10.1

UCDB API Functions
Scopes

ucdb_NextDU

ucdbScopeT ucdb_Next DU

ucdbT db,
ucdbScopeT du);
db Database.
du Design unit or NULL to return the first design unit.

Returns the next design unit following the specified design unit in the database, NULL if
package is the last package, or UCDB_SCOPE_ERROR if error.

ucdb_MatchDU

ucdbScopeT ucdb_Mat chDU(

ucdbT db,
const char* nane) ;
db Database.
name Design unit name to match.

Returns the design unit scope with the specified name, or NULL if no match isfound.

ucdb_NextSubScope

ucdbScopeT ucdb_Next SubScope(

ucdbT db,

ucdbScopeT parent,

ucdbScopeT scope,

ucdbScopeMaskTypeT scopenmask);
db Database.
par ent Parent scope or NULL for top-level modules.
scope Previous child scope or NULL to start traversal.
scopemask Scope type mask.

Returns the next child scope in the iteration that has a scope type that matches the specified
scope mask, or NULL if last element or error. Setting scope == NULL startsthe traversal;
replacing scope with the previous returned scope runs the next iteration; areturn value of NULL
indicates the call isthe last iteration. If parent scope is NULL, theiteration is through the top-
level modulesin the design.

UCDB API Reference, v10.1 143

UCDB API Functions
Scopes

ucdb_NextScopelnDB

ucdbScopeT ucdb_Next Scopel nDB(
db

ucdbT

ucdbScopeT scope,

ucdbScopeMaskTypeT scopenmask);
db Database.
scope Previous child scope or NULL to start traversal.
scopemask Scope type mask.

Returns the next child scope in the iteration that has a scope type that matches the specified
scope mask, or NULL if last element or error. Setting scope == NULL starts the traversal;
replacing scope with the previous returned scope runs the next iteration; areturn value of NULL
indicates the call isthe last iteration. Traversal starts with the first top level scopein the
database and iterates through all matching scopes.

ucdb_NextinstOfDU

ucdbScopeT ucdb_Next | nst OF DU(

ucdbT db,

ucdbScopeT i nstance,

ucdbScopeT du);
db Database.
i nstance Previous instance or NULL to start traversal.
du Design unit scope (i.e.,, UCDB_DU _*).

Returns the next instance in theiteration, or NULL if last element or error. Setting instance ==
NULL starts the traversal; replacing instance with the previous returned instance runs the next
iteration; areturn value of NULL indicates the call isthe last iteration.

ucdb_ScopelsUnderDU

i nt ucdb_Scopel sUnder DU(

ucdbT db,

ucdbScopeT scope);
db Database.
scope Scope.

Returns 1 if scope is under a design unit (scope typeisin UCDB_HDL_DU_SCOPE), O if not,
or -1 if error. Does not work currently for scopes beneath single-instance design units, because
of UCDB_INST_ONCE optimization (where the node is under the instance).

144 UCDB API Reference, v10.1

UCDB API Functions
Scopes

ucdb_ScopelsUnderCoverlnstance

i nt ucdb_Scopel sUnder Cover | nst ance(

ucdbT db,

ucdbScopeT scope) ;
db Database.
scope Scope.

Returns 1 if scopeisunder aUCDB_COVERINSTANCE scope (scope type must be
UCDB_COVERPOINT or UCDB_CROSS), 0if not, or -1 if error.

ucdb_CallBack

i nt ucdb_Cal | Back(

ucdbT db,
ucdbScopeT start,
ucdb_CBFuncT cbf unc,
voi d* userdata);
db Database.
start Starting scope or NULL to traverse entire database.
cbf unc User-supplied callback function.
user dat a User-supplied function data.

In-memory mode only. Traverses the part of the database rooted at and below the specified
starting scope, issuing calls to cbfunc along the way. Returns O if successful, or -1 with error.

ucdb_PathCallBack

i nt ucdb_Pat hCal | Back(

ucdbT

i nt

const char*
const char*

db,
recurse,
pat h,
du_nane

ucdbScopeMaskTypeT root _nask,
ucdbScopeMaskTypeT scope_nask
ucdbScopeMaskTypeT cover_mask

ucdb_CBFuncT cbf unc,

voi d* userdat a) ;
dab Database.
recurse

Non-recursiveif 0. If non-zero, recurse from matched du_name
or scopes specified by path. Note that scope_mask and
cover_mask are applied AFTER recursion. Recursion proceeds
from all scopes matching the (possibly wildcarded) path, after
which callbacks are generated only for scopes and covers
(including those specified by the path itself) that share a bit with
the scope or cover mask.

UCDB API Reference, v10.1

145

UCDB API Functions
Scopes

pat h Path interpreted as follows:
¢ if du_name==NULL.: absolute path.
* if du_name!=NULL.: path isrelative to design units matching
du_name.
If pathis"/" itistreated as"*", which matches all roots or all
paths under a design unit. Wildcards can be given to match
multiple results. Uses UCDB path separator (*hierarchical
identifiers” on page 125) and escaped identifier rulesin a
context-sensitive fashion. Current wildcard symbols:
* — matches any substring within alevel of hierarchy
? — preceding character is optional
[int:int] — matches any integer index in range
{int|*} to{int | *} — matches any integer index in range
{int | *} downto {int | *} — matches any integer index in
range
To match wildcard characters literally, use the appropriate
escaped identifier syntax.
du_nane Design unit name. Name is specified in the form:

[ibrary. primary(secondary)

where secondary matches for VHDL only. Multiple matches are
possible if library or secondary is absent (even for Verilog
design units, if the simulator created an artificial secondary). If
path is also specified, then path is relative to all matching design
units.

root _nask If set, matches start from aroot that satisfies 1 bit of this mask.
Ignored if du_name specified asthisfield appliesto the top level
only. Typically set to UCDB_TESTPLAN or UCDB_NON-
TESTPLAN_SCOPE to choose atestplan tree or non-testplan
tree.

scope_nask Only match scopes that satisfy 1 bit of this mask.

cover _mask Only match coveritems that satisfy 1 bit of this mask.

cbf unc User-supplied callback function. Only these callback reasons
(ucdbCBReasonT) are generated: UCDB_REASON_DU,
UCDB_REASON_SCOPE, UCDB_REASON_CVBIN, and
UCDB_REASON_ENDSCOPE.

userdat a User-supplied function data.

In-memory mode only. This callback mechanism is more flexible than ucdb_CallBack (it
implements wildcarded paths, filtering according to type, and so on). Traverses the database as
specified, issuing calls to cbfunc as specified aong the way. Returns number (0 or more) of
matches, or -1 if error. When recursing through atest plan scope, the scope has as “virtual
children” the design or coverage scopes with which it is linked through common tags, which
reflects the fact that these scopes contribute to the test plan scope’ s coverage. The same notion
appliesto matching "*" children of atest plan scope, which matches both real test plan children
aswell as scopes linked to the test plan scope with tags.

146 UCDB API Reference, v10.1

UCDB API Functions
Scopes

Examples:

ucdb_Pat hCal | Back(db, 0, "/top/a*", NULL, UCDB_NONTESTPLAN_ SCOPE, \
UCDB_HDL | NST_SCCPE, 0, f, d);

Call back for all HDL instance scopes that start with "/top/a’.
ucdb_Pat hCal | Back(db, O, NULL, "dunane",-1,-1,0,f,d);

Call back for al design units with the name "duname". This may match multiple
architectures or library implementations of the design unit.

ucdb_Pat hCal | Back(db, 0, "myvec*", "wor k. duname(myarch) ", \
-1, UCDB_TOGCLE, 0, f, d);

Within the VHDL architecture "work.duname(myarch)"”, call back for al toggle scopes
whose names start with "myvec".

ucdb_Pat hCal | Back(db, 1,"/top/a", NULL, UCDB_NONTESTPLAN_SCOPE, \
UCDB_COVERGROUP| UCDB_COVERPQOI NT| UCDB_CRCSS, 0, f, d) ;

Call back for al covergroup, cross, and coverpoint scopesthat lie under "/top/a’. Only if
"[top/a" is a covergroup scope will "/top/a" itself be a callback.

ucdb_Pat hCal | Back(db, 1, "/t op/a", NULL, UCDB_NONTESTPLAN_SCOPE
UCDB_ COVERGROUP| UCDB_COVERPQO NT| UCDB_CRCSS, UCDB_CVGBI N, f, d)

Same callback as above, but includes bin callbacks as well.

ucdb_MatchTests

i nt ucdb_Mat chTest s(

ucdbT db,
const char* t est nane,
ucdb_CBFuncT cbf unc,
voi d* userdat a) ;
db Database.
t est nane Test name pattern. Current wildcard symbols:

* — matches any substring within alevel of hierarchy

? — preceding character is optional
To match wildcard characters literally, the appropriate escaped
identifier syntax must be used.

cbf unc User-supplied callback function. Only UCDB_REASON_TEST
callback reasons (ucdbCBReasonT) are generated.

user dat a User-supplied function data.

In-memory mode only. Generates callbacks for tests whose testname attribute matches the
specified testname pattern. Returns number (0 or more) of matches, or -1 if error.

UCDB API Reference, v10.1 147

UCDB API Functions

Scopes

ucdb_MatchCallBack

i nt ucdb_Mat chCal | Back(

ucdbT
const char*
const char*

db,
pattern,
du_nane,

ucdbScopeMaskTypeT root nask,
ucdbScopeMaskTypeT scope_nask,
ucdbScopeMaskTypeT cover_nmask

ucdb_CBFuncT
voi d*

cbf unc,
userdata);

db

pattern

du_name

root mask
scope_nask
cover _mask
cbf unc

userdata

Database.

Name pattern. Current wildcard symbols:
* — matches any substring within alevel of hierarchy
? — preceding character is optional
[int:int] — matches any integer index in range
{int|*} to{int | *} — matches any integer index in range
{int | *} downto {int | *} — matches any integer index in
range
To match wildcard characters literally, use the appropriate
escaped identifier syntax.

Design unit name. Name is specified in the form:
library. primary(secondary)

where secondary matches for VHDL only. Multiple matches are
possibleif library or secondary is absent (even for Verilog
design units, if the smulator created an artificial secondary).

If set, matches start from aroot that satisfies 1 bit of this mask.
Only match scopes that satisfy 1 bit of this mask.

Only match coveritems that satisfy 1 bit of this mask.
User-supplied callback function.

User-supplied function data.

In-memory mode only. Matches the specified name pattern for any name in the entire instance
tree or within specified design units. Recursively searches the subtree and generates callbacks
for all named objects matching the pattern. Returns number (O or more) of matches, or -1 if

error.

148

UCDB API Reference, v10.1

UCDB API Functions
Coverage and Statistics Summaries

Coverage and Statistics Summaries

Summary coverage statistics interface allows quick access to aggregated coverage and statistics
for different kinds of coverage, and some overall statistics for the database.

Summary Coverage Data Type

Summary data type (ucdbSummaryEnumT) has the following nomenclature conventions:

* DU

Coverage numbers that accumulate per-design-unit aggregations. Coverage from all
instances of a design unit are merged into, and stored with the design unit itself. The
summaries are then computed by traversing design units (not design instances). In our
UCDB, this occurs for code coverage only.

* INST

Vaues that accumulate all results from the entire instance tree. Design instances (not
design units) are traversed. Notethat UCDB_CVG_INST coverage refersto covergroup
instances, not design instances, which is coverage for exactly those covergroup objects
that have option.per_instance set to 1 in the SystemVerilog source (weighted by
option.weight). If no such covergroup objects exist, UCDB_CVG_INST coverageisO.

/* For backward conpatibility in enumliteral names. */
#define UCDB_EXPR_I NST UCDB_UDP_EXPR | NST

#defi ne UCDB_EXPR_DU UCDB_UDP_EXPR DU
#define UCDB_COND_| NST UCDB_UDP_COND_| NST
#defi ne UCDB_COND_DU UCDB_UDP_COND_DU
typedef enum {
UCDB_CVG _TYPE, /* 0 Covergroup type coverage == $get_coverage()
val ue */
UCDB_CVG | NST, /* 1 Covergroup instances (option.per_instance==1) ,

i f any, weighted average */
UCDB_COVER | NST, /* 2 Cover directive, weighted average, per design
i nstance */

UCDB_SC | NST, /* 3 SystenC functional coverage, per design
i nstance */
UCDB_ZI N_| NST, /* 4 0-1n checkerware coverage, per design

i nstance */
UCDB_STMT _| NST, /* 5 statenment coverage, per design instance */
UCDB_STMT_DU, /* 6 statement coverage, per design unit */
UCDB_BRANCH_ I NST, /* 7 branch coverage, per design instance */
UCDB_BRANCH_DU, /* 8 branch coverage, per design unit */
UCDB_UDP_EXPR | NST,/* 9 UDP expression coverage, per design instance */
UCDB_UDP_EXPR DU, [/* 10 UDP expression coverage, per design unit */
UCDB_UDP COND I NST,/* 11 UDP condition coverage, per design instance */
UCDB_UDP_COND DU, /* 12 UDP condition coverage, per design unit */
UCDB_TOGGLE_I NST, /* 13 toggle coverage, per design instance */

UCDB_TOGGLE DU, /* 14 toggle coverage, per design unit */
UCDB FSM ST INST, /* 15 FSM state coverage, per design instance */
UCDB_FSM ST_DU, /* 16 FSM state coverage, per design unit */

UCDB FSM TR INST, /* 17 FSMtransition coverage, per design inst */

UCDB API Reference, v10.1 149

UCDB API Functions
Coverage and Statistics Summaries

UCDB_FSM TR _DU, /* 18 FSM transition coverage, per design unit */

UCDB_USER | NST, /* 19 user-defined coverage, per design instance */

UCDB_ASSERT_PASS | NST, /* 20 Assertion directive passes, per design
i nstance */

UCDB_ASSERT FAI L_| NST, [* 21 Assertion directive failures, per
design instance */

UCDB_ASSERT_VPASS | NST, [* 22 Assertion directive vacuous passes,

per design instance */

UCDB_ASSERT DI SABLED I NST, /* 23 Assertion directive disabled, per
design instance */

UCDB_ASSERT _ATTEMPTED | NST,/* 24 Assertion directive attenpted, per
design instance */

UCDB_ASSERT _ACTI VE_I NST, /* 25 Assertion directive active, per
design instance */

UCDB_CVP_I NST, /* 26 Coverpoint/cross wei ghted average, al
cover poi nt and cross declarations */

UCDB_DI RECTED_TESTS, [* 27 Reserved */

UCDB_FEC EXPR | NST, /* 28 Focused expression coverage, per
desi gn i nstance */

UCDB_FEC EXPR DU, /* 29 Focused expression coverage, per
design unit */

UCDB_FEC COND_| NST, /* 30 Focused condition coverage, per
design instance */

UCDB_FEC COND_DU, /* 31 Focused condition coverage, per

design unit */

UCDB_ASSERT SUCCESS I NST, /* 32 Assertion directives that succeeded:
never failed, passed at |east once (if
pass counts available.) */

UCDB_EXPRESSI ON_| NST, /* 33 Expression coverage, per design
i nstance */

UCDB_EXPRESSI ON_DU, /* 34 Expression coverage, per design unit */
UCDB_CONDI TI ON_I NST, /* 35 Condition coverage, per design inst */
UCDB_CONDI TI ON_DU, /* 36 Condition coverage, per design unit */
UCDB_FSM | NST, /* 37 FSM state coverage, per design instance */
UCDB_FSM DU, /* 38 FSM state coverage, per design unit */
UCDB_TP_COVERAGE /* 39 Testplan coverage for nmerged files

with testplans */
UCDB_N SUMVARY ENUM T /* 40 Can be used for array bounds */

} ucdbSunmar yEnunT;

Coverage Structure

Stores values for a particular enumerator.

typedef struct {

fl oat coverage_pct; /* floating point coverage val ue, percentage */
fl oat goal pct; /* floating point goal, percentage */

i nt num coveritens; /* total nunber of coveritens (bins) */

i nt num cover ed; /* number of coveritens (bins) covered */

} ucdbCover ageT;

Vaues for num_coveritems depend on the type of coverage:

Enumerator Type Number of:

CVG& SV cover gr oup bins

150

UCDB API Reference, v10.1

UCDB API Functions
Coverage and Statistics Summaries

COVER
STMT*
BRANCH*
EXPR*
COND*
TOGGLE*
FSM ST*
FSM TR*
ASSERT*

BL OCK*

SVA or PSL cover
st at ement

branch

expr essi on

condi tion
toggl e

FSM st at e

FSM transition

SVA or PSL assert

Bl ock

Coverage Summary Structure
Stores all statistics returned by ucdb_GetCoverageSummary().

typedef enum {

/* Bit O set
/* Bit 1 set

cover directives or statements
statements

branches (including implicit elses)
known-value truth table rows
known-value truth table rows
toggles (scopesin UCDB)

FSM states

FSM transitions

assert directives or statements

Thisvalue is amost always the number of
coveritems covered, except for ASSERT_PASS*
(number of assertion passes) and ASSERT_FAIL*
(number of assertion failures).

blocks

inplies "merge -totals" file */
inmplies "nmerge -testassociated" file */
UCDB_SUMVARY_FLAG none = 0

UCDB_SUVWWARY _FLAG is_nerge_totals = 1,
UCDB_SUMMARY _FLAG i s _nerge_testassociated = 2

UCDB_SUWMMARY_FLAG i s_nerge

} ucdbSummrar yFl agsEnunT;

typedef struct {

i nt
i nt
i nt
i nt

num_i nst ances;

=3

/* nunber of design instances */

num cover poi nts; /* nunber of SV coverpoint and*/

/* cross types */

num cover groups; /* nunber of SV covergroup types*/

num dus;
ucdbSurmmar yFl agsEnunil f | ags;
ucdbCover ageT

} ucdbCover ageSunmmar yT,;

Memory Statistics Types

/* number of design units */

cover age[UCDB_N_SUMVARY_ENUM T] ;

Memory statistics are summary statistics for simulator memory usage. For merged data, the
merged output is the maximum of the merged inputs.

The following type is an enumerator for the category of statistics merged.

typedef enum {

UCDB API Reference, v10.1

151

UCDB API Functions
Coverage and Statistics Summaries

UCDB_NMEMSTATS COVERGROUP, /* cover group */
UCDB_MEMSTATS ASSERT, /* assertion */
UCDB_MEMSTATS CONSTRAI NT, /* constraint sol ver */
UCDB_MEMSTATS_CLASS, /* cl asses */
UCDB_MEMSTATS_DYNAM C, /* dynami c objects */
UCDB_MEMSTATS OTHER, /* other categories */

UCDB_MEMSTATS_ENDCATEGORY /* marker past |ast value */
} ucdbMentst at sEnunf;

The following type is an enumerator for the type of statistic.

typedef enum{

UCDB_MEMSTATS MAXMEM /* Al categories: naximum nenory usage
hi gh water mark) -- bytes */
UCDB_MEMSTATS_PEAKTI ME, /* Al categories: peak nmenory tine */
UCDB_MEMSTATS_CURRVEM /* Al categories: current nenory
usage (in bytes) at tinme of saving
the UCDB file */
UCDB_MEMSTATS NUMOBJECTS, /* Al categories: nunber of objects */
UCDB_MEMSTATS_ENDTYPE /* marker past |ast val ue */

} ucdbMenfst at sTypeEnun;

ucdb_SetGoal

i nt ucdb_Set Goal (

ucdbT db,
ucdbSurmar y Enumr type,
fl oat per cent age) ;
db Database.
type Summary coverage type.
percent age Goal to set for the coverage type. Aggregated coverage is
compared to this percentage to determine whether the goal is
satisfied.

Sets the goal percentage for the specified type of aggregated coverage. Returns O if successful,
or non-zero if error.

ucdb_GetGoal

float ucdb_Get Goal (
ucdbT db,
ucdbSunmar y Enuni type);

db Database.
type Summary coverage type.

Returns the goal for the specified type of aggregated coverage. The goal is a percentage, 0.0 to
100.0. Returns non-negative goal value if successful, or -1.0 if error.

152 UCDB API Reference, v10.1

UCDB API Functions
Coverage and Statistics Summaries

ucdb_SetWeightPerType

i nt ucdb_Set Wi ght Per Type(
ucdbT db,
ucdbSurmar yEnumr type,
i nt wei ght) ;
db Database.
type Summary coverage type.
wei ght Weight to set for the coverage type. Weights are non-negative

integers, used to compute total coverage numbersasin
ucdb_GetTotal Coverage.

Sets the weight for the specified type of aggregated coverage. Returns O if successful, or non-
zero if error.

ucdb_GetWeightPerType

i nt ucdb_Get Wi ght Per Type(
ucdbT db,
ucdbSunmar y Enunmr type);

db Database.
type Summary coverage type.

Returns the weight for the specified type of aggregated coverage. Returns non-negative goal
value if successful, or -1.0if error.

ucdb_GetCoverageSummary

i nt ucdb_Get Cover ageSunmmar y(
const char* nane,
ucdbCover ageSumar y T* dat a) ;

nane File system path.
dat a Coverage summary returned.

Gets coverage summary statistics. The specified file is opened, seeked to the location of
previously computed summary statistics, and immediately closed. See “Opening afile and
creating an in-memory image.” on page 115 for the “ efficient” read option. Returns O if
successful, or non-zero if error.

UCDB API Reference, v10.1 153

UCDB API Functions
Coverage and Statistics Summaries

ucdb_GetCoverage

float ucdb_Get Cover age(

ucdbT ,
ucdbSurmar yEnumr type,
int* num cover ed_bi ns,
int* num total bins);
db Database.
type Summary coverage type.
num cover ed_bi ns Number of covered binsfor the coverage type, or NULL if not
Set.
num_t ot al _bi ns Total number of bins for the coverage type, or NULL if not set.

Returns the aggregated coverage of the specified type. The returned value might not equal:
num covered _bins / numtotal bins

for cases where coveritems can be weighted differently and for SystemV erilog covergroups (for
which coverage is not only weighted but is calculated hierarchically). A return value of -1.0
indicates the coverage is not applicable (i.e., no coveritems of theimplied type arein the
database, so num_total_hinsis 0). Other negative return values indicate error.

Note
D If any significant data has changed since the last call, this call forces an expensive

recal culation using the entire database. The aggregated coverage is automatically

recalculated with ucdb_Close, if necessary. However, if no significant data changes were

made since the file was opened or the last call to ucdb_GetCoverage, this call remains an

efficient operation—it is maintained as summary datain the database, for fast retrieval.

ucdb_GetStatistics

int ucdb_GetStatistics(

ucdbT db,

i nt* num cover gr oups,

i nt* num cover poi nt s,

int* num i nst ances,

int* num dus) ;
db Database.
num cover gr oups Number of covergroup types.
num_cover poi nts Number of covergroup coverpoints.
num i nst ances Number of design instances.
num dus Number of design units.

Gets overall statistics for the database. Returns O if successful, or non-zero if error.

154 UCDB API Reference, v10.1

UCDB API Functions
Coverage and Statistics Summaries

Note: if any significant data has changed since the last call, this call forces an expensive

recal culation using the entire database. The statistics are automatically recalculated with
ucdb_Close, if necessary. However, if no significant data changes were made since the last call
toucdb_GetStatistics, thiscall remains an efficient operation—it is maintained as summary data
in the database, for fast retrieval.

ucdb_CalcCoverageSummary

i nt ucdb_Cal cCover ageSunmar y(
ucdbT db,
ucdbScopeT scope,
i nt recurse_instances,
ucdbCover ageSumar y T* dat a,
ucdbBi t Vect or T* test _mask);
db Database.
scope Scope. Entire database if NULL.
recurse_i nstances Recursion instances flag.

 For non-testplan scopes, this flag causes arecursion into
subscopes of types matching the mask
UCDB_HDL_INST_SCOPE.

* For testplan scopes, this causes recursion into scopes of type
UCDB_TESTPLAN. Onetype of recursion always occurs
with testplan scopes: following non-testplan scopesthat share
atag with the "scope" given to this routine.

dat a Coverage summary data.

test mask Optional test mask. If set, the database must have been created
with all coveritems containing a cover test mask (i.e., asaresult
of running a "test-associated merge"). Only coveritems matching
the test mask are considered covered in the calculation, which is
prone to some error and can be improved with additional datain
the future. Setting test_ mask to NULL will calculate coverage
based on current bin values only.

In-memory mode only. Calculates coverage summary statistics, the same data as above, on a
subset of an opened database. When called on an instance, function reports by-DU coverage
only for the case where UCDB_INST_ONCE is set for the instance. Here, by-DU coverage and
instance coverage are identical. When called on the entire database, coverage from all DUs and
all instances are counted.

Note
D If called with aNULL scope and NULL test_mask, this call can be made on an open

database handle without fully populating the in-memory dataimage, see “Opening afile
and creating an in-memory image.” on page 115.

UCDB API Reference, v10.1 155

UCDB API Functions
Coverage and Statistics Summaries

ucdb_GetTotalCoverage

i nt ucdb_GCet Tot al Cover age(

ucdbT ,

ucdbQbj T obj ,

float* total coverage,

ucdbBi t Vect or T* test _mask);
db Database.
obj Object type (ucdbScopeT or ucdbTestT). All roots if NULL.
total coverage Total coverage.

» For acoverage scope, thisisthe total coverage calculated in a
way similar to ucdb_CalcCoverageSummary().

» Themode set with ucdb_SetExprCondM ode() sel ectsfocused
expressions/conditions or UDP expression/conditions to
contribute to total coverage.

» For adesign instance, thisis the weighted average of
coverage per type, for al types found in the design subtree
rooted at that instance. This coverage uses weights as set
from ucdb_SetWeightPerType() and retrieved by
ucdb_GetWeightPerType().

 For aleaf testplan scope, coverage is the weighted average of
all design instance or coverage scopes sharing the same tag.

» For anon-leaf testplan scope, coverage is the weighted
average of coverage of all children. If the non-leaf testplan
scope shares atag with design or coverage scopes, those
collectively are equally weighted as one child testplan
instance, asif avirtual child testplan scope shared atag with
all the other design and coverage scopes.

 Test datarecords with status attribute values
UCDB_TESTSTATUS OK and
UCDB_TESTSTATUS WARNING count as 100%; other
test data records count as 0%.

Assertion results are included in the form of "% non-vacuously
passed"”, which isthe percentage of assertionsthat non-vacuously
passed at least once (i.e, NoON-zero Non-vacuous pass count).

test mask Optional test mask. If set, the database must have been created
with all coveritems containing a cover test mask (i.e., asaresult
of running a "test-associated merge"). Only coveritems matching
the test mask are considered covered in the calculation, which is
prone to some error and can be improved with additional datain
the future. Setting test_ mask to NULL will calculate coverage
based on current bin values only.

This calculates a single coverage number (as a percentage, 0.0-100.0) for a scopein the
database. Returns 1 if the scope had any coverage data. Returns O if none were found and sets
total_coverageto-1.0. Returns -1 if error.

156 UCDB API Reference, v10.1

UCDB API Functions
Coverage and Statistics Summaries

ucdb_GetMemoryStats

i nt ucdb_Get MenorySt at s(

ucdbT db,
ucdbMentt at sEnunT cat egory,
ucdbMentt at sTypeEnunl type,
ucdbAt tr Val ueT** val ue);
db Database.
cat egory Memory statistics category.
type Statistics type for the memory statistics category.
val ue Memory statistics value returned.

Gets memory usage statistics for the specified statistics type for the specified statistics category.
Returns O if successful, 1 if the statistic does not apply, or -1 if error.

ucdb_SetMemoryStats

int ucdb_Set MenorySt at s(

ucdbT db,
ucdbMenst at sEnunT cat egory,
ucdbMentt at sTypeEnunil t ype,
ucdbAt tr Val ueT** val ue) ;
db Database.
cat egory Memory statistics category.
type Statistics type for the memory statistics category.
val ue Memory statistics value to set.

Sets memory usage statistics for the specified statistics type for the specified statistics category.
Returns O if successful, or non-zero if error.

UCDB API Reference, v10.1 157

UCDB API Functions

Coveritems

Coveritems

Cover Types

typedef unsigned int ucdbCover TypeT,;

/* Bits for ucdbCover TypeT:

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

#def i
#def i

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

#def i

ne

ne

ne

ne

ne

ne

ne

ne

ne

ne

ne

ne

ne

ne
ne

ne

ne

ne

ne

ne

ne

ne

ne

ne

UCDB_CVGBI N
UCDB_COVERBI N
UCDB_ASSERTBI N
UCDB_SCBI N
UCDB_ZI NBI N
UCDB_STMTBI N
UCDB_BRANCHBI N
UCDB_EXPRBI N
UCDB_CONDBI N
UCDB_TOGGLEBI N
UCDB_PASSBI N
UCDB_FSMBI N
UCDB_USERBI N

UCDB_GENERI CBI N
UCDB_COUNT

UCDB_FAI LBI N
UCDB_VACUOUSBI N
UCDB_DI SABLEDBI N
UCDB_ATTEMPTBI N
UCDB_ACTI VEBI N
UCDB_| GNOREBI N
UCDB_| LLEGALBI N

UCDB_DEFAULTBI N

UCDB_PEAKACTI VEBI N

*/
| NT64_LI TERAL(0x0000000000000001)
/* For SV Cover groups

| NT64_LI TERAL(0x0000000000000002)
/* For cover directives: pass

| NT64_LI TERAL(0x0000000000000004)
/* For assert directives: fai

| NT64_LI TERAL(0x0000000000000008)
/* For SystenC transactions

| NT64_LI TERAL(0x0000000000000010)
/* For 0-in Checkerware

| NT64_LI TERAL(0x0000000000000020)
/* For Code coverage(Statenent)

| NT64_LI TERAL(0x0000000000000040)
/* For Code coverage(Branch)

| NT64_LI TERAL(0x0000000000000080)
/* For Code coverage(Expression)

| NT64_LI TERAL(0x0000000000000100)
/* For Code coverage(Condition)

| NT64_LI TERAL(0x0000000000000200)
/* For Code coverage(Toggle)

| NT64_LI TERAL(0x0000000000000400)
/* For assert directives:
| NT64_LI TERAL(0x0000000000000800)
/* For FSM coverage

| NT64_LI TERAL(0x0000000000001000)
/* User-defined coverage
UCDB_USERBI N

| NT64_LI TERAL(0x0000000000002000)
/* user-defined count, not
| NT64_LI TERAL(0x0000000000004000)
/* For cover directives: fai
| NT64_LI TERAL(0x0000000000008000)
/* For assert: vacuous pass count
| NT64_LI TERAL(0x0000000000010000)
/* For assert: disabled count

| NT64_LI TERAL(0x0000000000020000)
/* For assert: attenpt count

| NT64_LI TERAL(0x0000000000040000)
/* For assert: active thread count
| NT64_LI TERAL(0x0000000000080000)
/* For SV Covergroups

| NT64_LI TERAL(0x0000000000100000)
/* For SV Covergroups

| NT64_LI TERAL(0x0000000000200000)
/* For SV Cover groups

| NT64_LI TERAL(0x0000000000400000)
/* For assert:

pass count

count

*/
*/
*/
*/
*/
*/
*/
*/
*/

*/

in coverage*/

*/
*/
*/
*/
*/
*/
*/

*/

max active thread count*/

158

UCDB API Reference, v10.1

UCDB API Functions
Coveritems

#def i ne UCDB_RESERVED
#defi ne
#def i ne UCDB_BLOCKBI N
#def i ne UCDB_USERBI TS

#def i ne

Coveritem Types

UCDB_RESERVEDBI N

| NT64_LI TERAL(0x0000000000800000)

/* For other APl use

/* For SV cross products

*/

UCDB_CROSSPRODUCTBI N | NT64_LI TERAL(0x0000000001000000)

*/

| NT64_LI TERAL(0x0000000002000000)

/* For code (block) coverage

*/

| NT64_LI TERAL(0xO0000000FC000000)

/* For user-defined coverage
| NT64_LI TERAL(OXxFC00000000000000)

/* Reserved

#def i ne UCDB_COVERGROUPBI NS ((ucdbCover MaskTypeT)\

(UCDB_CVGBI N |
#def i ne UCDB_FUNC_COV

(UCDB_COVERGROUPBI NS |

#def i ne UCDB_CODE_COV
(UCDB_STMTBI N |
| UCDB_TOGGLEBI N |

UCDB_| GNOREBI N |

UCDB_BRANCHBI N |

UCDB_| LLEGALBI N |
((ucdbCover MaskTypeT)\
UCDB_COVERBI N | UCDB_SCBI N))
((ucdbCover MaskTypeT)\
UCDB_EXPRBI N |
UCDB_FSMBI N))

#def i ne UCDB_ASSERTI ONBI NS ((ucdbCover MaskTypeT)\

(UCDB_ASSERTBI N |

| UCDB_ATTEMPTBI N |
#defi ne UCDB_NO BI NS
#def i ne UCDB_ALL_BI NS

Flags for Coveritem Data

UCDB_PASSBI N |

UCDB_VACUQUSBI N |

UCDB_ACTI VEBI N |
((ucdbCover MaskTypeT) | NT64_ZERO)
((ucdbCover MaskTypeT) | NT64_NEGL)

*/
*/

UCDB_DEFAULTBI N))

UCDB_CONDBI N \

UCDB_DI SABLEDBI N \

UCDB_PEAKACTI VEBI N))

*/
*/
*/
*/
*/
*/

*/
*/
*/
*/

*/
*/

*/
*/

*/
*/
*/
*/

#define UCDB_| S 32BIT 0x00000001 /* data is 32 bits

#define UCDB IS 64BIT 0x00000002 /* data is 64 bits

#define UCDB | S VECTOR 0x00000004 /* data is actually a vector

#defi ne UCDB_HAS GOAL 0x00000008 /* goal included

#def i ne UCDB_HAS WEI GHT 0x00000010 /* weight included

#defi ne UCDB_EXCLUDE_PRAGVA 0x00000020 /* excluded by pragma

#defi ne UCDB_EXCLUDE_FI LE 0x00000040 /* excluded by file; does not
count in total coverage

#def i ne UCDB_LOG ON 0x00000080 /* for cover/assert directives:
control s simul ator output

#defi ne UCDB_ENABLED 0x00000100 /* generic enabled flag; if
di sabl ed, still counts in total
cover age

#define UCDB HAS LIMT 0x00000200 /* for limting counts

#def i ne UCDB_HAS ACTI ON 0x00000400 /* for assert directives, refer
to "ACTION' in attributes

#def i ne UCDB_| S FSM RESET 0x00000400 /* For fsmreset states

#define UCDB | S ASSERT DEBUG 0x00000800 /* for assert directives, if
true, has 4 counts

#define UCDB | S TLW ENABLED 0x00001000 /* for assert directives

#define UCDB | S FSM TRAN 0x00002000 /* for FSM coveritens, is a
transition bin

#define UCDB_| S BR ELSE 0x00004000 /* for branch ELSE coveritemns

#defi ne UCDB_CLEAR PRAGVA 0x00008000

#define UCDB | S ECS NOTE 0x00010000 /* for directives active at end
of simulation

#def i ne UCDB_EXCLUDE | NST 0x00020000 /* for instance-specific
excl usi ons

#def i ne UCDB_EXCLUDE_AUTO 0x00040000 /* for automatic exclusions

*/

UCDB API Reference, v10.1

1

59

UCDB API Functions
Coveritems

#define UCDB | S CROSSAUTO 0x00400000 /* covergroup auto cross bin */

/* For Zero Information in "flags" */
#define UCDB_BI N_| FF_EXI STS 0x00100000 /* covergroup bin has no iff */
#def i ne UCDB_BI N_SAMPLE TRUE 0x00200000 /* covergroup bin is

not sanpl ed */
#define UCDB | S CROSSAUTO 0x00400000 /* covergroup auto cross bin */
#def i ne UCDB_COVERFLAG MARK 0x00800000 /* flag for tenporary mark */

#def i ne UCDB_USERFLAGS OxFFO00000 /* reserved for user flags */
#def i ne UCDB_FLAG MASK OxFFFFFFFF
#def i ne UCDB_EXCLUDED (UCDB_EXCLUDE FILE | UCDB_EXCLUDE PRAGVA \

| UCDB_EXCLUDE_I NST | UCDB_EXCLUDE_AUTO)

Coveritem Data Type

typedef union {

ui nt 64_t i nt 64; /[* if UCDB IS 32BIT */
ui nt 32_t i nt 32; /* if UCDB_IS 64BIT */
unsi gned char* bytevector; /* if UCDB IS VECTOR */
} ucdbCover Dat aVal ueT;
typedef struct {
ucdbCover TypeT type; /* type of coveritem */
ucdbFl agsT fl ags; /* as above, validity of fields bel ow */
ucdbCover Dat aVal ueT dat a;
i nt goal ; /[* if UCDB_HAS GOAL; determ nes whether
or not a bin is covered; (like
at |l east in covergroup) */
i nt wei ght ; /* if UCDB_HAS WEI GHT */
i nt limt; /[* if UCDB_HAS LIMT */
i nt bitlen; /* length of data.bytevector in bits,

extra bits are | ower order bits of
the last byte in the byte vector */
} ucdbCover Dat aT;

ucdb_CreateNextCover

i nt ucdb_Creat eNext Cover (

ucdbT db,

ucdbScopeT parent,

const char* nane,

ucdbCover Dat aT* dat a,

ucdbSour cel nf oT* sour cei nfo);
db Database.
par ent Scope in which to create the coveritem.
nane Name to give the coveritem. Can be NULL.
dat a Associated data for coverage.
sour cei nfo Associated source information.

Creates the next coveritem in the given scope. Returns the index number of the created
coveritem, -1 if error.

160 UCDB API Reference, v10.1

UCDB API Functions
Coveritems

ucdb_CloneCover

i nt ucdb_d oneCover (

ucdbT t arget db,

ucdbScopeT t ar get parent,

ucdbT sour cedb,

ucdbScopeT sour ceparent,

i nt coveri ndex,

ucdbSel ect Fl agsT cl onefl ags) ;
targetdb Database context for clone.

t ar get par ent
db

par ent
coveri ndex

cl onefl ags

Parent scope of clone.

Source database.

Source scope.

Source coverindex.
UCDB_CLONE_ATTRSor 0.

Has no effect when targetdb isin streaming mode. Creates a copy of the specified coveritem in
the specified scope (targetparent). Predefined attributes are created by default. Returns the
coverindex if successful, or -1 if error.

ucdb_RemoveCover

i nt ucdb_RenoveCover (

ucdbT
ucdbScopeT
i nt

db,
parent,
coveri ndex);

db
par ent

coveri ndex

Database.
Parent scope of coveritem.
Coverindex of coveritem to remove.

Has no effect when db isin streaming mode. Removes the specified coveritem from its parent.
Returns O if successful, or -1 if error. Coveritems cannot be removed from scopes of type
UCDB_ASSERT (instead, remove the whole scope). Similarly, coveritems from scopes of type
UCDB_TOGGLE with toggle kind UCDB_TOGGLE_SCALAR, UCDB_TOGGLE -
SCALAR_EXT, UCDB_TOGGLE_REG_SCALAR, or UCDB_TOGGLE_REG -
SCALAR_EXT cannot be removed (instead, remove the whole scope).

UCDB API Reference, v10.1

161

UCDB API Functions
Coveritems

ucdb_MatchCoverinScope
i nt ucdb_WMat chCover | nScope(

ucdbT db,

ucdbScopeT par ent,

const char* nane) ;
db Database.
par ent Parent scope of coveritem.
nane Coveritem name to match.

Gets covereitem from database if it existsin the specified scope. Returns coveritem index, or -1
if error.

ucdb_IncrementCover

i nt ucdb_I ncrenent Cover (

ucdbT db,
ucdbScopeT par ent,
i nt coveri ndex,
i nt64_t i ncrement);
db Database.
par ent Parent scope of coveritem.
coveri ndex Coverindex of coveritem in parent scope.
i ncrenent Increment count to add to current count.

Increments the data count for the coveritem, if not avector item. Returns O if successful, or -1 if
error.

ucdb_GetCoverFlags

ucdb_Fl agsT ucdb_Get Cover Fl ags(

ucdbT db,
ucdbScopeT par ent,
i nt coveri ndex;
db Database.
par ent Parent scope of coveritem.
coveri ndex Coverindex of coveritem in parent scope.

Returns the flags for the specified coveritem, or NULL if error.

162 UCDB API Reference, v10.1

UCDB API Functions
Coveritems

ucdb_GetCoverFlag

i nt ucdb_Get Cover Fl ag(

ucdbT db,
ucdbScopeT par ent,
i nt coveri ndex,
ucdbFl agsT mask) ;
db Database.
par ent Parent scope of coveritem.
coveri ndex Coverindex of coveritem in parent scope.
mask Flag mask to match.

Returns 1 if coveritem’sflag bit matches the specified mask, O if the coveritem has flag bits not
matching the specified mask, or -1 if the coveritem does not have any flag bits.

ucdb_SetCoverFlag

voi d ucdb_Set Cover Fl ag(

ucdbT db,
ucdbScopeT par ent,
i nt coveri ndex,
ucdbFl agsT mask,
i nt bi t val ue);
db Database.
par ent Parent scope of coveritem.
coveri ndex Coverindex of coveritem in parent scope.
mask Flag mask.
bi t val ue Vauetoset: Oor 1.

Sets bits in the coveritem’ s flag field with respect to the given mask.

ucdb_GetCoverType

ucdbCover TypeT ucdb_Get Cover Type(

ucdbT db,
ucdbScopeT par ent,
i nt coveri ndex);
db Database.
par ent Parent scope of coveritem.
coveri ndex Coverindex of coveritem in parent scope.

Returns the cover type of the specified coveritem. or O if error.

UCDB API Reference, v10.1 163

UCDB API Functions
Coveritems

ucdb_GetCoverData
i nt ucdb_Get Cover Dat a(

ucdbT db,

ucdbScopeT par ent,

i nt coveri ndex,

char** nane,

ucdbCover Dat aT* dat a,

ucdbSour cel nf oT* sour cei nf o) ;
db Database.
par ent Parent scope of coveritem.
coveri ndex Coverindex of coveritem in parent scope.
name Name returned (failbin, passhin, vacuousbin, disabledbin,

attemptbin, activebin or peakactivebin).

dat a Data returned.
sourceinfo Source information returned.

Gets name, data and source information for the specified coveritem. Returns O if successful, or
non-zero if error. The user must save the returned data as the next call to this function can
invalidate the returned data. Note: any of the data arguments can be NULL (i.e., that datais not
retrieved).

ucdb_SetCoverData

i nt ucdb_Set Cover Dat a(

ucdbT db,
ucdbScopeT par ent,
i nt coveri ndex,
ucdbCover Dat aT* dat a);
db Database.
par ent Parent scope of coveritem.
coveri ndex Coverindex of coveritem in parent scope.
data Datato set.

Sets datafor the specified coveritem. Returns O if successful, or non-zero if error. The user must
ensure the datafields are valid.

ucdb_SetCoverCount

i nt ucdb_Set Cover Count (

ucdbT db,
ucdbScopeT par ent,
i nt coveri ndex,
int64_t count);

db Database.

164 UCDB API Reference, v10.1

UCDB API Functions
Coveritems

par ent
coveri ndex

count

Parent scope of coveritem.
Coverindex of coveritem in parent scope.
Cover count value to set.

Sets the count for the specified coveritem. Returns O if successful, or non-zero if error.

ucdb_SetCoverGoal

i nt ucdb_Set Cover Goal (

ucdbT db,
ucdbScopeT par ent,
i nt coveri ndex,
i nt goal);
db Database.
par ent Parent scope of coveritem.

coveri ndex

goal

Coverindex of coveritem in parent scope.
Cover goal valueto set.

Sets the goal for the specified coveritem. Returns O if successful, or non-zero if error.

ucdb_SetCoverLimit

i nt ucdb_Set CoverLimt(

ucdbT db,
ucdbScopeT par ent,
i nt coveri ndex,
i nt limt);
db Database.
par ent Parent scope of coveritem.

coveri ndex

limt

Coverindex of coveritem in parent scope.
Cover limit value to set.

Setsthe limit for the specified coveritem. Returns O if successful, or non-zero if error.

ucdb_SetCoverWeight

i nt ucdb_Set Cover Wi ght (

ucdbT ,
ucdbScopeT par ent,
i nt coveri ndex,
i nt wei ght) ;
db Database.
par ent Parent scope of coveritem.

UCDB API Reference, v10.1

165

UCDB API Functions

Coveritems
coveri ndex Coverindex of coveritem in parent scope.
wei ght Cover weight value to set.

Sets the weight for the specified coveritem. Returns O if successful, or non-zero if error.

ucdb_GetScopeNumCovers

i nt ucdb_Get ScopeNunCover s(
db

ucdbT ,

ucdbScopeT scope) ;
db Database.
scope Scope.

Returns the number of coveritemsin the specified scope (which can be 0), or -1 if error.

ucdb_GetECCoverNumHeaders

i nt ucdb_Get ECCover NunHeader s(

ucdbT db,

ucdbScopeT scope) ;
db Database.
scope Scope.

Returns the number of UDP header columns for Expression and Condition coveragein the
specified scope (which can be 0), or -1 if error. For example, to get al the header columns:

num col ums = ucdb_Get ECCover NunHeader s(db, cviten)

for (i =0; i < numcolums; i++) {

char* header;

status = ucdb_Get ECCover Header (db, cvitem i, &header);
}

ucdb_GetECCoverHeader

i nt ucdb_Get ECCover Header (

ucdbT db,
ucdbScopeT scope,
i nt i ndex,
char** header) ;
db Database.
scope Scope.
i ndex Index.
header Header string returned.

166 UCDB API Reference, v10.1

UCDB API Functions
Coveritems

Gets the indexed UDP header string of Expression and Condition coverage. Returns O if
successful, or 1if error.

ucdb_NextCoverinScope

i nt ucdb_Next Cover | nScope(

ucdbT db,
ucdbScopeT par ent,
int* coveri ndex,
ucdbCover MaskTypeT cover mask);
db Database.
par ent Parent scope of coveritem.
coveri ndex Index of coveritem in parent.
cover mask Mask for type of coveritem.

Given a coveritem and cover type mask, gets the next coveritem from the scope. Start with a
coverindex == -1 to return the first coveritem in the scope. Returns O at end of traversal, -1 if
error.

ucdb_NextCoverinDB

i nt ucdb_Next Cover | nDB(

ucdbT db,
ucdbScopeT par ent,
int* coveri ndex,
ucdbCover MaskTypeT cover mask);
db Database.
par ent Parent scope of coveritem.
coveri ndex Index of coveritem in parent.
cover mask Mask for type of coveritem.

Given a coveritem and cover type mask, gets the next coveritem from the scope. Start with a
coverindex == -1 and parent == NULL to return the first coveritem in the database. Returns O at
end of traversal, -1 if error.

UCDB API Reference, v10.1 167

UCDB API Functions
Toggles

Toggles

Toggles are the most common type of object in atypical code coverage database. Therefore,
they have a specific interface in the API which can be restricted for optimization purposes. Net
toggles can be duplicated throughout the database through port connections. They can be
reported once rather than in as many different local scopes asthey appear (this requires anet id).

typedef enum {
UCDB_TOGGLE_ENUM /* Enum type object */
UCDB_TOGGLE_ | NT, /* Integer type object */
UCDB_TOGGLE REG SCALAR=4, /* Scalar, one bit reg */
UCDB_TOGGELE_REG SCALAR EXT, /* Extended toggle of scalar reg */

UCDB TOGGLE SCALAR, /* Scal ar net or std logic_bit */

UCDB TOGGLE SCALAR EXT /* Ext toggle of scalar net or
std _logic_bit */

UCDB_TOGGLE REAL /* Real type object */

} ucdbToggl eTypeT,;

typedef enum {

UCDB_TOGGLE | NTERNAL, /* non-port: internal wire or variable */
UCDB_TOGGELE_I N, [* input port */
UCDB_TOGGLE_QUT, /* output port */
UCDB_TOGGLE_| NOUT /[* inout port */

} ucdbToggl ebirT;

ucdb_CreateToggle

ucdbScopeT ucdb_Creat eToggl e(

ucdbT db,

ucdbScopeT par ent,

const char* nane,

const char* canoni cal _nane,

ucdbFl agsT flags,

ucdbToggl eTypeT toggl e_type,

ucdbToggl eDir T toggle dir);
db Database.
par ent Scope in which to create the toggle.
nane Name to give the toggle object.
canoni cal _nane Canonical name for the toggle object. Identifies unique toggles.

Toggles with the same canonical_name must count once when
traversed for areport or coverage summary.

flags Exclusion flags.
toggl e_type Toggletype.
toggle dir Toggle direction.

Creates the specified toggle scope beneath the given parent scope. Returns a handle to the
created scope (type UCDB_TOGGLE), or NULL if error.

168 UCDB API Reference, v10.1

UCDB API Functions
Toggles

ucdb_GetTogglelnfo

i nt ucdb_GCet Toggl el nf o(

ucdbT ,
ucdbScopeT t oggl e,
const char** canoni cal _nane,
ucdbToggl eTypeT* t oggl e_type,
ucdbToggl ebi r T* toggle_dir);
db Database.
toggl e Toggle scope containing the information..
canoni cal _name Canonica name for the toggle object. May be NULL for
unconnected nets, enum, int, and reg type toggles. Memory for
canonical_nameis alocated by the system and must not be de-
allocated by the user.
toggl e_type Toggletype.
toggle_dir Toggle direction.

Returns toggle-specific information associated with the specified toggle scope. Returns O if
successful, -1 if error.

ucdb_GetToggleCovered

i nt ucdb_GCet Toggl eCover ed(

ucdbT db,
ucdbScopeT t oggl e) ;
db Database.
toggl e Toggle scope containing the information..

Returns 1 if toggle is covered, O if toggle is uncovered and -1 if an error.

ucdb_GetBCoverinfo

i nt ucdb_Get BCover I nf o(

ucdbT db,
ucdbScopeT coveritem
int* has_el se,
int* i scase,
int* num el nts);
db Database.
coveritem Coveritem.
has_el se 1 if branch has else clause; 0 otherwise.
i scase 1 if branch is a CASE statement; O otherwise.
numelnts Number of elementsin branch. 1 if a CASE branch.

Returns 1 if branch is a CASE statement; O otherwise (IF statement).

UCDB API Reference, v10.1 169

UCDB API Functions
Groups

Groups

Groups are used to maintain bus structures in the database. They provide additional support for
part-sel ect toggle nodes, particularly with the support for wildcard ranges provided by group
SCOopes.

Group Kind Type

#def i ne UCDB_GROUP_MASK _PACKED 0x1000
#def i ne UCDB_GROUP_MASK_ORDERED 0x2000
typedef enum{

UCDB_GROUP_BASI C = 0x0001,
UCDB_GROUP_UNPACKED STRUCT = 0x0002,
UCDB_GROUP_UNPACKED UNI ON = 0x0003,
UCDB_GROUP_UNPACKED ARRAY = (0x0004| UCDB_GROUP_MASK_ORDERED) ,
UCDB_GROUP_ASSOC_ARRAY = 0x0005,

UCDB_GROUP_PACKED_STRUCT
(UCDB_GROUP_UNPACKED_STRUCT| UCDB_GROUP_MASK_PACKED) ,
UCDB_GROUP_PACKED UNI ON =
(UCDB_CGROUP_UNPACKED _UNI ON| UCDB_GROUP_IMASK _PACKED) ,
UCDB_GROUP_PACKED ARRAY =
(UCDB_GROUP_UNPACKED_ARRAY| UCDB_GROUP_NMASK_PACKED)
} ucdbG oupKi nd;

Wildcard Matching

General wildcard matching supports:

* Matches one or more characters. Only spans one scope, so * matches|[2], but does not
match [2][4].

? Matchesasingle character.

The following range pattern searches require group SCopes:

e (number)

e [number]

e [number:number]

e (number to number)

e (number downto number)

170 UCDB API Reference, v10.1

UCDB API Functions
Groups

ucdb_CreateGroupScope
ucdbScopeT ucdb_Creat eG oupScope(

ucdbT db
ucdbScopeT par ent,
ucdbG oupKi nd ki nd,
char* narne,
ucdbFl agsT fl ags,
i nt nunber Of RangePai r s,
i nt* rangePai rs) ;
db Database.
par ent Parent scope.
ki nd Group kind.
name Name to assign to the group scope.
flags Flags.

nunber Of RangePai r s

rangePairs

Number of range pairs. Only used for ordered groups.
Range pairs. Only used for ordered groups.

Creates the specified group scope beneath the parent scope. Returns the scope handle if
successful, or NULL if error. In write streaming mode, name and rangePairs are not copied, so
they should be kept unchanged until the next ucdb_WriteStream* call or the next ucdb_Create*

cal.

ucdb_GetGrouplinfo

i nt ucdb_Get G oupl nf o(

ucdbT
ucdbScopeT
ucdbG oupKi nd*
const char**

group,

ki nd,

name,

nunber Of RangePai r s,
rangePai rs);

int*
int**
db
gr oup
ki nd
nane

nunber O RangePai rs

rangePairs

Database.

Group scope.

Group kind.

Name of the group scope.

Number of range pairs. Only used for ordered groups.
Range pairs. Only used for ordered groups.

Gets the group-specific information (kind, name, number OfRangePairs and rangePairs) for the
specified group scope. Returns O if successful, or -1 if error.

UCDB API Reference, v10.1

171

UCDB API Functions
Groups

ucdb_ExpandOrderedGroupRangeList

i nt ucdb_ExpandOr der edG oupRangelLi st (

ucdbT db,
ucdbScopeT group,
i nt nunber O RangePai r s,
int* rangePai rs);
db Database.
group Group scope. Must be UCDB_GROUP_PACKED_ARRAY or

UCDB_GROUP_UNPACKED_ARRAY type.
number O RangePai rs Number of range pairs.
rangePairs Range pairs.

Expands the range pairs for the specified group with the specified list of range pairs according
to the following rules:

» A range that does not overlap an existing range is added to the range list.

* A range that encloses one or more existing ranges replaces the enclosed ranges.
* Arangethat (partially) overlaps an existing range expands that range.

* A range completely enclosed in an existing range is ignored.

Returns O if successful, -1 if error.

ucdb_GetOrderedGroupElementByIndex

ucdbScopeT ucdb_Get Or der edG oupEl enent Byl ndex(

ucdbT db,
ucdbScopeT par ent,
i nt i ndex) ;
db Database.
group Parent ordered group scope. Must be

UCDB_GROUP_PACKED_ARRAY or
UCDB_GROUP_UNPACKED_ARRAY type.

i ndex Index of the child.

Returns the handle of the child element of the specified ordered group scope that has the
specified index, or NULL if error or if no element corresponds to the index. For example, for
the ordered group corresponding to bug[3:0]:

* index = 1 returns the right-most range number (0)
* index = 4 returns the left-most range number (3)

Function is used in memory mode only.

172 UCDB API Reference, v10.1

UCDB API Functions
Tags

Tags

A tagisagroup of strings associated with a scope. Scopes can have associated tags for
grouping: when items share a tag they are associated together. In particular, when
UCDB_TESTPLAN scopes share tags with coverage scopes that contain coveritems, the
association can be used to do traceability analysis tests. The following example traverses al
non-testplan scopes that share a tag with a given testplan scope:

if (ucdb_ObjKi nd(db, obj)==UCDB_0BJ_SCOPE &&
ucdb_Get ScopeType(db, (ucdbScopeT) obj) ==UCDB_TESTPLAN) {
int t, numags = ucdb_Get ScopeNuniTags(db, scope);
const char* tagnane;
for (t=0; t<nuntags; t++) {
int found;
ucdbObj T taggedobj ;
ucdb_Get Scopel t hTag(db, scope, t, & agnane) ;
for (found=ucdb_Begi nTaggedbj (db, t agnane, &t aggedobj) ;
found; found=ucdb_Next Taggedhj (db, & aggedobj)) {
if (ucdb_QbjKind(db, taggedobj)==UCDB_0OBJ_ SCCPE &&
ucdb_Get ScopeType(db, (ucdbScopeT) t aggedobj) ==UCDB_TESTPLAN
) conti nue;
/* Now taggedobj is a non-testplan obj sharing a tag with */
/* obj -- put your code here */
}
}
}

Here is an example of traversing all scopesfor all tagsin aUCDB file:

ucdbT db = ucdb_Qpen(fil enane);
const char* tagname = NULL;
whil e (tagname = ucdb_Next Tag(db, tagnanme)) ({
i nt found;
ucdbScopeT scope;
for (found=ucdb_Begi nTagged(db, t agnane, &cope);
found;
f ound=ucdb_Next Tagged(db, &cope)) {
[* Put your code here */
}
}

Important: Thistraversal cannot nest. Code inside this loop cannot re-use the
BeginTagged/NextTagged functions.

Object Mask Type

typedef enum {

UCDB_OBJ_ERRCR = 0, [* Start of the db, apply initial settings */
UCDB_OBJ_TESTDATA = 1, /* Testdata object */
UCDB_0OBJ_SCOPE = 2, /* Scope obj ect */
UCDB_0OBJ_COVER = 4, /* Cover object */
UCDB OBJ_ANY = -1 /* ucdbScopeT or ucdbHi st oryNodeT */

} ucdbObj MaskT,;

UCDB API Reference, v10.1 173

UCDB API Functions
Tags

Enum type for different object kinds. Thisisabit mask for the different kinds of objectsthat are
tagged. Mask values can be ANDed and ORed together.

ucdb_ObjKind

ucdbObj MaskT ucdb_Cbj Ki nd(

ucdbT db,

ucdbObj T obj);
db Database.
obj Oby.

Returns object type (ucdbScopeT or ucdbTestT) for the specified object, or
UCDB_OBJ ERROR if error.

ucdb_GetObjType

ucdbObj TypeT ucdb_Get Ohj Type(
db

ucdbT)
ucdbScopeT obj ect);
db Database.
obj ect Object.

Polymorphic function (aliased to ucdb_GetHistoryKind) for acquiring an object type. Returns
UCDB_HISTORYNODE_TEST (object is atest data record),
UCDB_HISTORYNODE_TESTPLAN (object isatest plan record),
UCDB_HISTORYNODE_MERGE (object is amerge record), scope type ucdbScopeTypeT
(object is not of these), or UCDB_SCOPE_ERROR if error. This function can return avalue
with multiple bits set (for history data objects). Return value must not be used as a mask.

ucdb_AddObjTag

i nt ucdb_AddObj Tag(

ucdbT db,

ucdbObj T obj ,

const char* tag);
db Database.
obj Object (ucdbScopeT or ucdbTestT).
tag Tag.

Adds atag to agiven object. Returns 0 if successful, or non-zero if error. Error includes null tag
or tag with’\n’ character.

174 UCDB API Reference, v10.1

UCDB API Functions
Tags

ucdb_RemoveObjTag

i nt ucdb_RenoveObj Tag(

ucdbT ,

ucdbbj T obj ,

const char* tag);
db Database.
obj Object (ucdbScopeT or ucdbTestT).
tag Tag.

Removes the given tag from the object. Returns O if successful, or non-zero if error.

ucdb_GetObjNumTags

i nt ucdb_Get Gbj NunTags(

ucdbT ,
ucdbCbj T obj);
db Database.
obj Object (ucdbScopeT or ucdbTestT).

Gets the number of tags from a given object. Returns number of tags, or O if error or no tags.

ucdb_GetObjlthTag

int ucdb_Get Obj It hTag(

ucdbT ,
ucdbObj T obj ,
i nt i ndex,
const char** tag);
db Database.
obj Object (ucdbScopeT or ucdbTestT).
i ndex Tag index.
tag Tag.

Gets an indexed tag from a given object. Returns O if successful, or non-zero if error.

ucdb_SetObjTags

i nt ucdb_Set Obj Tags(

ucdbT db,

ucdboj T obj ,

i nt nunt ags,

const char** tag_array);
db Database.

UCDB API Reference, v10.1 175

UCDB API Functions

Tags
obj Object (ucdbScopeT or ucdbTestT).
nunt ags Size of tag_array, 0 to clear al flags.
tag_array Array of string handles.

Sets all tags for agiven aobject (replaces previoustags). Returns O if successful, or non-zero if
error.

ucdb_BeginTaggedObj

i nt ucdb_Begi nTaggedbj (

ucdbT db,
const char* t agnane,
ucdbObj T* p_obj);
db Database.
t agname Tag to match.
p_obj Object (ucdbScopeT or ucdbTestT).

In-memory mode only. Gets the first object that exists with the given tag. Returns 1 if the tag
existsin the database, or O if not. When the function returns 1, *p_obj isnon-NULL.

ucdb_NextTaggedObj

i nt ucdb_Next TaggedQbj (

ucdbT db,
ucdbObj T* p_obj);
db Database.
p_obj Object (ucdbScopeT or ucdbTestT).

In-memory mode only and must be called immediately after ucdb_BeginTaggedObj—the
function re-uses tag from the previous call. Gets the next obj that exists with the given tag.
Returns 1 if the next object exists in the database, or O if not. When it returns 1, *p_obj is non-
NULL.

ucdb_NextTag

i nt ucdb_Next Tag(

ucdbT db,

const char* t agnane) ;
db Database.
t agname Tag name.

In-memory mode only. Iterator function for returning the set of all tagsin the UCDB file.
Returns NULL when traversal isdone or -1 with error.

176 UCDB API Reference, v10.1

UCDB API Functions
Formal Data

Formal Data

A UCDB test isthe result of functional verification analysis performed by a simulator or a
formal verification tool. A formal test isaucdbTestT object that is also associated with special
information that describes a particular formal analysis session (ucdb_AssocFormallnfoTest).
Thisinformation (see Formal Tool Info Type) describes:

* how, when and where the formal test ran
» scope of theformal analysis

» location of detailed results

e environment assumptions

Formal analysis gives two types of results:

e assertion information

Formal analysis of an assertion results in an indication of the formal status of the
assertion under the test assumptions for the scope of the assertion. For example: the
assertion is proven; a counterexample exists that makes the assertion fail; or the formal
analysisisinconclusive (among other possible statuses, see Formal Status Enum).

* coverage information

Formal analysis of acover statement or an assertion returns coverage information such
as cover statement coverage, line coverage, stimulus coverage and assertion witnesses
that the assertions can be exercised Y ou model this functionality using the same scopes
and coverage items as for simulation, in conjunction with additional facilities for formal
verification.

A UCDB formal environment attribute (see Formal Coverage Context) indicates the context for
interpreting the coverage data obtained from aformal analysis session. Coverage “contexts’
support various formal coverage use models, for example:

» “Coveragereachability” isthe primary objective of theformal analysissession or itisan
ancillary by-product of the formal analysis session.

» “Coverage’ describes the controllability of the design based on the formal assumptions
or it indicates the design logic observable by assertions.

Formal coverage context shows how different types of coverage information (see Cover Types)
were obtained and how you should interpret them.

UCDB API Reference, v10.1 177

UCDB API Functions
Formal Data

Note
D In general, al arguments returned by the formal routines are only valid aslong as the db

database remains open. Once the db database is closed, these arguments are invalid and
should not be accessed in any way. If acaller of the formal routines needs access to the
returned values beyond the lifetime of the db database, it must make copies of them.

Formal Status Enum

typedef enum {

UCDB_FORMAL _NONE, /* No formal info (default) */
UCDB_FORMAL_FAI LURE, [* Fails */

UCDB_FORMAL_ PROCF, /* Proven to never fail */

UCDB_FORMAL_ VACUQOUS, /* Assertion is vacuous as defined by the

assertion | anguage */
UCDB_FORMAL | NCONCLUSI VE, /* Proof failed to conplete */
UCDB_FORMAL _ASSUMPTI CON, /* Assertion is an assunme */
UCDB_FORMAL_CONFLI CT /* Data nerge conflict */
} ucdbFormal St at usT;

Formal test result for a particular asserted or assumed property.

Formal Environment Type

typedef voi d* ucdbFornal EnvT;

Formal Tool Info Type

typedef struct ucdbFornal Tool I nfoS {

char* fornmal _tool; /* tool nanme */

char* formal _tool _version; /* tool version */

char* formal _tool _setup; [* setup file (text) */
char* formal _tool _db; /* database file (binary) */
char* fornmal tool rpt; [* report file (text) */
char* fornal tool |og; /* log file (text)

} ucdbFor mal Tool I nf oT;

Structure identifying the test as aformal test and indicating tool-specific information about the
formal analysisrun.

Formal Coverage Context

#def i ne UCDB_FORMAL_COVERAGE_CONTEXT_STI MULUS \
" UCDB_FORMAL_COVERAGE_CONTEXT_STI MULUS"
#def i ne UCDB_FORMAL_COVERAGE_CONTEXT RESPONSE \
" UCDB_FORMAL_COVERAGE_CONTEXT_REPONSE"
#defi ne UCDB_FORMAL_COVERAGE_CONTEXT TARGETED \
" UCDB_FORMAL_COVERAGE_CONTEXT TARGETED'
#def i ne UCDB_FORMAL_COVERAGE_CONTEXT_ANCI LLARY \
" UCDB_FORMAL_COVERAGE_CONTEXT_ANCI LLARY"
#def i ne UCDB_FORMAL_COVERAGE_CONTEXT | NCONCLUSI VE_ANALYSI S \
" UCDB_FORMAL_COVERAGE_CONTEXT_| NCONCLUSI VE_ANALYSI S

178 UCDB API Reference, v10.1

UCDB API Functions
Formal Data

Formal coverage context is astring that indicates the context for interpreting formal coverage
information. This string can be one of the following predefined UCDB formal context attribute
values, a user-defined string specific to the tool/application, or NULL (i.e., no formal coverage
context specified).

UCDB_FORMAL_COVERAGE_CONTEXT_STIMULUS

Coverage information associated with the test approximates the set of legal stimuli
permitted within the constraints of the formal verification run. For example, for this
formal coverage context, you can check that the test’ s formal assumptions do not over-
or under-constrain the formal analysis.

UCDB_FORMAL_COVERAGE_CONTEXT_RESPONSE

Coverage information associated with the test identifies the structures under observation
by the assertions. For example, knowing the logic verified by formal analysis helps you
determine the “completeness’ of the assertion instrumentation of the design.

UCDB_FORMAL_COVERAGE_CONTEXT_TARGETED

Coverage information associated with the test is used for comprehensive coverage
analysis. For example, one purpose might be to identify the controllable elements of the
design. Another might be to evaluate the particular assumptions applied.

UCDB_FORMAL_COVERAGE_CONTEXT_ANCILLARY

Coverage information associated with the test is a by-product of formal analysisand is
not the primary objective for the formal test. Results provide coverage information
helpful in understanding what was exercised, but that information is not necessarily
comprehensive. For example the main objective of the formal verification test might be
to prove assertions and find counterexamples. Here, parts of the design not in the fanin
of the formal properties are typically ignored by the formal tool. So, coverageisaside
effect of the formal analysis.

UCDB_FORMAL_COVERAGE_CONTEXT_INCONCLUSIVE_ANALYSIS

Coverage information associated with the test helps you analyze assertions with
inconclusive formal analysis results (i.e., assertions with
UCDB_FORMAL_INCONCLUSIVE status).

UCDB API Reference, v10.1 179

UCDB API Functions
Formal Data

ucdb_SetFormalStatus

i nt ucdb_Set For nal St at us(

ucdbT db,
ucdbTest T test,
ucdbScopeT assertscope,
ucdbFormal St at usT formal _status);
db Database.
t est UCDB test object.
assertscope Scope of the assertion.
formal _status Assert formal status.

Sets the formal status of the specified assertion with respect to the specified test. Not supported
in read streaming mode. Thisis aroutine that sets a value, so in write streaming mode this
routine can only be called while the scope of the assertion is actively being written. Returns O if
successful, or non-zero if error (and formal status is unchanged). Returns an error if any
argument iIsSNULL.

ucdb_GetFormalStatus

i nt ucdb_GCet Fornal St at us(

ucdbT db,

ucdbTest T t est,

ucdbScopeT assert scope,

ucdbFor nal St at usT* formal _status);
db Database.
t est UCDB test object.
assertscope Scope of the assertion.
formal _status Assert formal status returned.

Gets the formal status of the specified assertion with respect to the specified test. Not supported
in write streaming mode. Thisis aroutine that gets a value, so in read streaming mode this
routine can only be called while the scope of the assertion is actively being read. Neither
iteration of assertscopes paired with agiven test nor iteration of test with a given assertscopeis
supported. Returns O if successful, or non-zero if error (and formal status is not returned).
Returns an error if any argument isNULL.

ucdb_SetFormalRadius

i nt ucdb_Set For nmal Radi us(

ucdbT db,
ucdbTest T test,
ucdbScopeT assertscope,
i nt r adi us,
char* cl ock);

db Database.

180 UCDB API Reference, v10.1

UCDB API Functions

Formal Data
t est UCDB test object.
assert scope Scope of the assertion.
radi us Radius expressed in clock cycles. Exact meaning depends on the

assertion’s status:
* UCDB_FORMAL_INCONCLUSIVE
Proof radius (if abounded proof is reported) or -1 (if no
bounded proof is reported).
 UCDB_FORMAL_FAILURE
Counterexampl e depth.

cl ock Assertion clock specified as a hierarchical name string. Can be
NULL.

Sets the formal radius (proof radius or counterexample depth) for the specified assertion with
respect to the specified test. Not supported in read streaming mode. Thisisaroutine that sets a
value, so in write streaming mode this routine can only be called while the scope of the assertion
is actively being written. Returns O if successful, or non-zero if error (and formal radiusis
unchanged). Returns an error if any argument except clock is NULL.

ucdb_GetFormalRadius
i nt ucdb_GCet For mal Radi us(

ucdbT db,
ucdbTest T test,
ucdbScopeT assertscope,
int* radi us,
char** cl ock);
db Database.
t est UCDB test object.
assertscope Scope of the assertion.
radi us Radius returned (expressed in clock cycles). Exact meaning

depends on the assertion’ s status:
» UCDB_FORMAL_INCONCLUSIVE
Proof radius (if abounded proof is reported) or -1 (if no
bounded proof is reported).
« UCDB_FORMAL_ FAILURE
Counterexampl e depth.

cl ock Assertion clock returned (specified as a hierarchical name
string). If NULL, the clock isNULL or theformal radius was not
Set.

Gets the formal radius for the specified assertion with respect to the specified test and gets the
associated clock for the radius. Not supported in write streaming mode. Thisis aroutine that
gets values, so in read streaming mode this routine can only be called while the scope of the
assertion is actively being read. Neither iteration of assertscopes paired with a given test nor
iteration of test with a given assertscope is supported. Returns O if successful, or non-zero if
error (and radius/clock are not returned). Returns an error if any argument is NULL.

UCDB API Reference, v10.1 181

UCDB API Functions
Formal Data

ucdb_SetFormalWitness

i nt ucdb_Set For mal Wt ness(

ucdbT db,

ucdbTest T test,

ucdbScopeT assertscope,

char* witness file or _dir);
db Database.
t est UCDB test object.
assertscope Scope of the assertion.

witness_file_or_dir Pathtoawaveform file or directory containing waveform files,
expressed as a string. Waveform files can be in any standard or
widely-used format.

Sets witness waveforms for the specified assertion with respect to the specified test. A witness
is a counterexample (for afailed property) or a sanity waveform (for a proven property). Not
supported in read streaming mode. Thisisaroutine that setsavalue, so in write streaming mode
thisroutine can only be called while the scope of the assertion is actively being written. Returns
0 if successful, or non-zero if error (and witness waveform information is unchanged). Returns
an error if any argument isNULL.

ucdb_GetFormalWitness

i nt ucdb_Get Fornal Wt ness(

ucdbT db,

ucdbTest T t est,

ucdbScopeT assert scope,

char** witness_file_or_dir);
db Database.
t est UCDB test object.
assertscope Scope of the assertion.

witness_file_or_dir Witnessstring returned. String is the path to a witness waveform
file or adirectory containing witness waveform files (expressed
in astandard or widely-used format).

Gets witness waveforms for the specified assertion with respect to the specified test. A witness
is acounterexample (for afailed property) or a sanity waveform (for a proven property). Not
supported in write streaming mode. Thisisaroutine that gets avalue, so in read streaming
mode this routine can only be called while the scope of the assertion is actively being read.
Neither iteration of assertscopes paired with a given test nor iteration of test with agiven
assertscope is supported. Returns 0 if successful, or non-zero if error (and witness file_or_dir is
not returned). Returns an error if any argument is NULL.

182 UCDB API Reference, v10.1

UCDB API Functions
Formal Data

ucdb_SetFormallyUnreachableCoverTest

i nt ucdb_Set For mal | yUnr eachabl eCover Test (

ucdbT db,
ucdbTest T test,
ucdbScopeT cover scope,
i nt coveri ndex);
db Database.
t est UCDB test object.
cover scope Scope of the cover item.
coveri ndex Index of the cover item in the cover scope.

Sets the formally-unreachable status flag for the specified cover item with respect to the
specified test. Use this function in conjunction with ucdb_AssocCoverTest, which indicates
whether or not the coverage item is reachable with respect to the test. With these two flags, you
can indicate the status of the cover item with respect to aformal test: covered by formal, proven
unreachable, or unknown coverage status (i.e., if both flags are clear).

Not supported in read streaming mode. Thisis aroutine that sets avalue, so in write streaming
mode this routine can only be called while the scope of the cover item is actively being written.
Returns 0 if successful, or non-zero if error (and formally-unreachable status flag is unchanged).
Returns an error if any argument isNULL.

ucdb_ClearFormallyUnreachableCoverTest

i nt ucdb_d ear For mal | yUnr eachabl eCover Test (

ucdbT db,
ucdbTest T test,
ucdbScopeT cover scope,
i nt coveri ndex);
db Database.
t est UCDB test object.
cover scope Scope of the cover item.
coveri ndex Index of the cover item in the cover scope.

Clears the formally-unreachabl e status flag (see ucdb_SetFormallyUnreachableCoverTest) for
the specified cover item with respect to the specified test. Not supported in read streaming
mode. Thisisaroutine that sets avalue, so in write streaming mode this routine can only be
called while the scope of the cover item is actively being written. Returns O if successful, or
non-zero if error (and formally-unreachable status flag is unchanged). Returns an error if any
argument isNULL.

UCDB API Reference, v10.1 183

UCDB API Functions
Formal Data

ucdb_GetFormallyUnreachableCoverTest

i nt ucdb_GCet For mal | yUnr eachabl eCover Test (

ucdbT db,
ucdbTest T test,
ucdbScopeT cover scope,
i nt coveri ndex,
int* unreachabl e_fl ag);
db Database.
t est UCDB test object.
cover scope Scope of the cover item.
coveri ndex Index of the cover item in the cover scope.
unreachabl e_f | ag Flag value returned:

* 0— coverage item possibly reachable
* 1— coverage item formally unreachable

Gets the formally-unreachable status flag for the specified cover item with respect to the
specified test. Not supported in write streaming mode. Thisis aroutine that gets avalue, so in
read streaming mode this routine can only be called while the scope of the cover itemisactively
being read. Neither iteration of coverscopes paired with a given test nor iteration of test with a
given coverscope is supported. Returns O if successful, or non-zero if error (and formally-
unreachable status flag is not returned). Returns an error if any argument isNULL.

ucdb_AddFormalEnv

ucdbFor mal EnvT ucdb_AddFor mal Env(

ucdbT db,
const char* nane,
ucdbScopeT scope) ;
db Database.
name Environment name.
scope Scope indicating the part of the design analyzed by formal
verification.

Creates anew formal environment object. A formal environment describes the scope of a
formal test and the environmental assumptions used to perform the formal analysis. Returnsthe
handle for the new environment (if successful); returns the handle for an existing environment
(if name and scope match those of an existing formal environment); or returns NULL if error.
Names of formal environments must be unique, so it isan error if name matches an existing
formal environment’s name, but the two scopes do not match. Not supported in read streaming
mode. Thisisaroutine that writesinformation, so in write streaming mode this routine can only
be called while the scope of the environment is actively being written.

Once aformal environment is created, use ucdb AssocAssumptionFormal Env repeatedly to
associ ate assumption scopes with the environment. Then, use ucdb_AssocFormallnfoTest to
associate the formal environment with formal tests run under those environmental constraints.

184 UCDB API Reference, v10.1

UCDB API Functions
Formal Data

ucdb_AssocAssumptionFormalEnv

i nt ucdb_AssocAssunpti onFor rmal Env(
db

ucdbT

ucdbFor nal EnvT formal _env,

ucdbScopeT assunpti on_scope);
db Database.
formal _env UCDB formal environment.
assunpti on_scope Scope of an assumption.

Adds the specified assumption to the specified formal environment (created with
ucdb_AddFormalEnv). Not supported in read streaming mode. Thisis aroutine that writes a
value, so in write streaming mode this routine can only be called while the scope of the
assumption is actively being written. Returns O if successful, or non-zero if error (and
assumption is not added to the environment).

ucdb_AssocFormalinfoTest

i nt ucdb_AssocFor mal | nf oTest (

ucdbT db,
ucdbTest T test,
ucdbFor mal Tool I nfoT* fornal _tool _info,
ucdbFor nal EnvT formal _env,
char* formal _cov_context);
db Database.
t est UCDB test object.
formal _tool _info Formal tool information (see Formal Tool Info Type).
formal _env UCDB formal environment.

formal _cov_context Formal coverage context (see Formal Coverage Context).

Adds aformal environment, tool-specific information and aformal coverage context to the
information for atest, which in effect makestest aformal test. Returns O if successful, or non-
zero if error (and the formal information is not added to the test).

ucdb_NextFormalEnv

ucdbFor nal EnvT ucdb_Next For mal Env(

ucdbT db,
ucdbFor mal EnvT formal _env);
db Database.
formal _env UCDB formal environment (or NULL, to return the first formal
environment).

UCDB API Reference, v10.1 185

UCDB API Functions
Formal Data

Returnsthe handle for the first formal environment (if formal_envisNULL), or the next formal
environment after formal_env, or NULL (if formal_env is the last environment added by
ucdb_AddFormalEnv or if error).

ucdb_NextFormalEnvAssumption

ucdbScopeT ucdb_AssocAssunpt i onFor mal Env(

ucdbT db,
ucdbFor nal EnvT formal _env,
ucdbScopeT assunpti on_scope) ;
db Database.
formal _env UCDB formal environment.
assunption_scope Scope of an assumption added to formal_env using

ucdb_AssocAssumptionFormalEnv or NULL.

Returns the handle for the first assumption added to formal_env (if assumption_scopeis
NULL), or the next formal environment after formal_env, or NULL (if assumption_scopeisthe
last assumption added to formal_env or if error). Not supported in streaming mode (only
supported in memory mode).

ucdb_FormalEnvGetData

i nt ucdb_For mal EnvGet Dat a(

ucdbT db,
ucdbFor mal EnvT formal _env,
const char** nane,
ucdbScopeT* scope) ;
db Database.
formal _env UCDB formal environment.
name Environment name returned.
scope Scope returned indicating the part of the design analyzed by

formal verification.

Getsthe name and scope of the specified formal environment. Not supported in streaming mode
(only supported in memory mode). Returns O if successful, or non-zero if error (and the formal
environment information is not updated).

186 UCDB API Reference, v10.1

UCDB API Functions
Formal Data

ucdb_FormalTestGetInfo

i nt ucdb_For mal Test Get | nf o(

ucdbT db,
ucdbTest T test,
ucdbFor mal Tool I nfoT** fornmal _tool _info,
ucdbFor mal EnvT* formal _env,
char** formal _cov_context);
db Database.
t est UCDB test object.
formal _tool info Formal tool information returned.
formal _env UCDB formal environment returned.

formal _cov_cont ext Formal coverage context returned.

Gets the formal environment, tool information and formal coverage context for the specified
formal test (from data created by ucdb_AssocFormallnfoTest). This function allocates and
owns the memory for the returned values formal_tool info and formal _cov_context, so the
calling code should not “free” the memory these arguments point to. Returns O if successful, or
non-zero if error (and the formal test information is not returned).

UCDB API Reference, v10.1 187

UCDB API Functions
Test Traceability

Test Traceability

API for associating tests and coverage objects. Coveritems or scopes may be associated with
one of the ucdbTestT records in the database through this API.

NOTE on the tests and coverage object association: For compactness, thisisimplemented asa
bit vector associated with each coverage object, where each bit correspondsto atest in thelist of
test data recordsin the database. Consequently, thisis dependent on the ordering of test data
records being stable. If test datarecords are removed (with ucdb_RemoveTest()), all test-
coverage associations can be invalidated.

Some test traceability support functions use the ucdbBitVectorT structure, which contains a
vector whose bits correspond to the test data records in the database.

typedef struct {

unsi gned char* bi tvector; [* LSBs are filled first */
i nt bi tl engt h; /* length in bits */
i nt byt el engt h; /* length in bytes */

} ucdbBit VectorT,;

This structure is used for efficient implementation. When using ucdb_SetCoverTestMask() or
other functions reading the bit vector, bitlength takes priority over bytelength, either will be
ignored if set to -1. Both may not be set to -1. Setting length to O will erase the attribute.

The following optional defines enforce the conventions for bitlength vs. bytelength in
ucdbBitVectorT structures:

#def i ne ucdb_Set Bi t Vect or Lengt hBi t s(bi tvector, nunbits) \
{ (bitvector).bitlength = (nunbits); \
(bitvector).bytelength = ((((bitvector).bitlength)/8) \
+ ((((bitvector).bitlength)¥8) ? 1 : 0));}

#def i ne ucdb_Set Bi t Vect or Lengt hByt es(bi t vect or, nunbytes) \
{ (bitvector).bytelength = (nunbytes); \
(bitvector).bitlength = ((bitvector).bytelength) * 8 ;}

#defi ne ucdb_GCet Bi t Vect or Lengt hByt es(bitvector) \
((bitvector).bitlength >= 0 ? \
(((bitvector).bitlength/8) + (((bitvector).bitlength¥®) ? 1 : 0)) \
(bitvector). bytel ength)

#defi ne ucdb_GCet Bi t Vect or Lengt hBi t s(bitvector) \
((bitvector).bitlength >= 0 ? \
(bitvector).bitlength \
(bitvector).bytelength * 8)

188 UCDB API Reference, v10.1

UCDB API Functions
Test Traceability

ucdb_AssocCoverTest

i nt ucdb_AssocCover Test (

ucdbT db,

ucdbTest T t est dat a,

ucdbScopeT scope,

i nt coveri ndex);
db Database.
test data Test datarecord.
scope Scope.

coveri ndex

Index of coveritem. If -1, associate scope.

Associates a scope or coveritem with the given test data record. This may be done for any
purpose, but is most logically done to indicate that the given test incremented or covered the

bin; in-memory mode only.

bounds.)

Returns O if successful, -1 for failure (e.g., coverindex out-of -

ucdb_NextCoverTest

ucdbTest T ucdb_Next Cover Test (

db,

scope,
coveri ndex,
test);

ucdbT
ucdbScopeT
i nt
ucdbTest T
db
scope

coveri ndex

t est

Database.

Scope.

Index of coveritem. If -1, scope only.
Test.

In-memory mode only. Gets the next test record associated with the given scope or coveritem.
Returns the first record with NULL asinput, or returns NULL when list is exhausted.

ucdb_GetCoverTestMask

i nt ucdb_GCet Cover Test Mask(

ucdbT db,
ucdbScopeT scope,
i nt coveri ndex,
ucdbBi t Vect or T* mask) ;

db Database.

scope Scope.

coveri ndex

mask

Index of coveritem. If -1, scope only.
Database bit vector.

UCDB API Reference, v10.1

189

UCDB API Functions
Test Traceability

Gets a bit vector whose bits correspond to the associated test data records in the database. First
bit (mask.bitvector[0]& 0x01) correspondsto first test retrieved by ucdb_NextTest(), subsequent
bits correspond in order to subsequent test datarecords. If tests are saved in an array, this
allows quick retrieval of all associated testsin asingle call. Returns O if successful, or -1 if
error. mask.bitvector == NULL if none, lengths == 0.

This function always sets both bitlength and bytelength on the bitvector. Note: bitvector storage
is not to be de-allocated by the user.

ucdb_SetCoverTestMask

i nt ucdb_Set Cover Test Mask(

ucdbT db,
ucdbScopeT scope,
i nt coveri ndex,
ucdbBi t Vect or T* mask) ;
db Database.
scope Scope.
coveri ndex Index of coveritem. If -1, scope only.
mask Database bit vector.

Writes a bit vector whose bits correspond to the associated test data records in the database.
Thisisfor write-streaming versions of the APl and is not as fool proof as
ucdb_AssocCoverTest(). See details for read function above. Returns O if successful, or -1 if
error.

When initializing a mask, be careful with the rules for setting bitlength and bytelength, (see
above). Note: bitvector storage is copied by this routine.

ucdb_OrCoverTestMask

i nt ucdb_Or Cover Test Mask(

ucdbT db,
ucdbBi t Vect or T* mask,
ucdbTest T test);
db Database.
mask Database bit vector.
t est Test.

ORs the required bit for the given test data record. Returns O if successful, non-zero if error.

190 UCDB API Reference, v10.1

Appendix A
UCDB Organization

A UCDB fileis organized into two sections:

o Test section.

» Coverage section.

Test Section

The test section of a UC database contains information about the test or set of tests that were
used to generate the coverage data. If the file was created by merging multiple databases, the
database contains multiple test records. When creating a database, first define information about
the test from which coverage datais acquired (see“ucdb_AddTest” on page 107). In addition to
afixed list of fields (Table A-1), any of which may be NULL or unused, there are user-defined

attributes.
Table A-1. Fields of a Test Record

Field Value Description

t est name string Name of the coverage test.

sintine doubl e Simulation time of completion of the test.

sintime_units string Unitsfor smulation time: "fs’, "ps’, "ns’, "us", "ms", "sec",
“min", "hr".

real time double CPU time for completion of the test.

seed string Randomization seed for the test. (Same as the seed value
provided by the "-sv_seed" vsim option.)

comand string Test script arguments. Used to capture "knob settings" for
parameterizabl e tests, as well as the name of the test script.

date string Timefile was saved. For example, this might be astring like
"'20060105160030", which represents 4:00:30 PM January 5,
2006 (output of strftime with the format
"%Y %m%d%H%M %S").

si mar gs string Simulator command line arguments.

userid string User ID of user who ran the test.

conpul sory bool ean Whether (1) or not (0) this test should be considered

compulsory (i.e., a“must-run” test.

UCDB API Reference, v10.1

191

UCDB Organization
Test Section

Table A-1. Fields of a Test Record

Field Value Description

comrent string String (description) saved by the user associated with the test

test_status i nt Status of test: fatal error ($fatal was called), error ($error was
called), warning ($warning was called) or OK.

filename string Name of the origina file, to which the test was first written.

Test records are a subset of history nodes, which have the attributes shown in Table A-2

Table A-2. Attributes of a History Node
Attribute Value Description

filename string Pathname of the merged file
(UCDB_HISTORYNODE_MERGE), test file
(UCDB_HISTORYNODE_TEST), or testplan file
(UCDB_HISTORYNODE_TESTPLAN).

cndl i ne string Command line used to create resulting UCDB file associated
with filename.

runcwd string Working directory where cmdline was executed.

cputine double (Optiona) CPU time for the execution of cmdline.

hi st comrent string (Optional) String used as a general-purpose comment.

pat h string (UCDB_HISTORYNODE_TESTPLAN only) Testplan path.

xnl sour ce string (UCDB_HISTORYNODE_TESTPLAN only) XML file
pathname.

signature string (UCDB_HISTORYNODE_TESTPLAN only, optional)
Source-based signature used to determine if the xmlsource
fileisstale.

nunt est s integer (UCDB_HISTORYNODE_MERGE only) Number of tests
merged.

192 UCDB API Reference, v10.1

UCDB Organization
Coverage Section

Coverage Section

The coverage section of a UC database contains the coverage data, organized in a hierarchy of
scopes related to the design, testbench, and test plan.

Scope Nodes

Coverage data in the database form a tree of nodes, called scopes, generally corresponding to
the design hierarchy. All nodes except the root node have a pointer to their parent. If the design
hierarchy is not relevant to coverage, it need not be represented in the UCDB.

Nodes can have children: other scope nodes or coverage items. Design units (for example,
Verilog modules or VHDL architectures) also are represented as scopes, because sometimes
coverage for adesign unit is often represented as a union of the coverage of all instances of the
design unit. Typically, only code coverage is represented under the design unit. Note that a
design unit with a single instance a higher-level design are not stored (only the instance is
stored).

Scope nodes can represent:

» Design hierarchy: instances of modules, function scope, packages, and so on.

» Hierarchy for coverage counts. For example:
» Scopesto contain different counts for expression rows in expression coverage.
» Scopesto represent SystemV erilog covergroups.
If there is no coverage hierarchy (e.g., with statement coverage) noneis used.

* Test planitems.

These are optional, but are required for some use models of test traceability analysis. In
particular, if you want the UCDB to represent associ ations between test plan items and
coverage items using built-in "tags’ (see “Tags’ on page 173), then atest plan item
scope should exist in the database.

Coveritems

Coveritems (coverage items) are always children of parent scopes and each coverageitemis
only accessible through its parent scope. This property of a UCDB allows optimizations related
to efficiently storing a sets of coverage items that always lie in certain scopes.

A coveritem isasingle count or vector of bits, generally used to compute coverage, represented
in the database. 1n some coverage models (for example, SystemV erilog covergroups)
coveritems these represent "bins'—the UCDB architecture is expanded to represent more types
of coverage data.

UCDB API Reference, v10.1 193

UCDB Organization
Coverage Section

A coveritem is only accessed through a handle to its parent scope and an index uniquely
identifying it within the scope. The user can query a scope for how many coveritemsit contains.

Nesting Rules

The UCDB does some light enforcement of HDL nesting rules, but strictly enforces nesting
rules for coverage scopes, coveritems and testplan scopes. The "covergroup” scopes are for
generic use. For clarity, different types of coverage (assertion, statement, FSM, and so on) are
given separate scopes, although the UCDB coverage hierarchy could have been built using only
"covergroup” scopes only (COVERGROUP, COVERINSTANCE, COVERPOINT, and

CROSS).

Table A-3 shows the netlisting rules enforced by the UCDB.

Table A-3. Nesting Rules Enforced by UCDB

Hierarchical
Object Rules
HDL SCOPE Can contain any of: HDL SCOPE, COVER SCOPE and

UCDB_| NSTANCE

UCDB_PACKAGE

UCDB_PROGRAM

UCDB_| NTERFACE

DU SCOPE (i .e.,

UCDB_DU_*)
COVER SCCPE

STANDALONE COVERITEM.

Is one of the following scope types: UCDB_INSTANCE,
UCDB_PACKAGE, UCDB_PROGRAM, UCDB_PACKAGE,
UCDB_INTERFACE, UCDB_PROCESS, UCDB_GENERATE,
UCDB_TASK, UCDB_FUNCTION, UCDB_FORKJOIN,
UCDB_BLOCK, UCDB_CLASS, or UCDB_GENERIC

Containsa"DU" (design unit) or a"type" pointer to one of:
UCDB_DU_MODULE or UCDB_DU_ARCH.

Containsa"DU" (design unit) or a"type" pointer to a
UCDB_DU_PACKAGE.

Containsa"DU" (design unit) or a"type" pointer to a
UCDB_DU_PROGRAM.

Containsa"DU" (design unit) or a"type" pointer to a
UCDB_DU_INTERFACE.

Can contain: code coverage coveritems.

Is one of the following scope types: UCDB_COVERGROUP,
UCDB_COVERINSTANCE, UCDB_COVERPOINT,
UCDB_CROSS, UCDB_BRANCH, UCDB_EXPR, UCDB_COND,
UCDB_TOGGLE, UCDB_FSM, UCDB_ASSERT, UCDB_COVER,
UCDB_BLOCK, UCDB_CVGBINSCOPE,
UCDB_ILLEGALBINSCOPE, UCDB_IGNOREBINSCOPE,
UCDB_CROSSPRODUCT, UCDB_CROSSPRODUCT _ITEM.

194

UCDB API Reference, v10.1

UCDB Organization
Coverage Section

Table A-3. Nesting Rules Enforced by UCDB

Hierarchical

Object Rules

STANDAL ONE Is one of the following coveritem types: UCDB_STMTBIN,
COVERI TEM

UCDB_TESTPLAN
UCDB_COVERGROUP

UCDB_CROSS

UCDB_COVERPO NT

UCDB_CVGBI NSCOPE

UCDB_
| LLEGALBI NSCOPE

UCDB_
| GNOREBI NSCOPE

UCDB_USERBIN, UCDB_COUNT.
Can contain only aUCDB_TESTPLAN scope.

Can contain only the following scope types:
UCDB_COVERINSTANCE, UCDB_COVERPOINT,
UCDB_CROSS.

Must refer to at least two scopes of type UCDB_COVERPOINT,
which must have the same parent as the UCDB_CROSS.
UCDB_CROSS scope can contain only:

» UCDB_CVGBINSCOPE scopes

» UCDB_ILLEGALBINSCOPE scopes
UCDB_IGNOREBINSCOPE scopes
UCDB_CVGBIN coveritems
UCDB_ILLEGALBIN coveritems
UCDB_IGNOREBIN coveritems
« UCDB_DEFAULT coveritems

UCDB_COVERPOINT scope can contain only:
UCDB_CVGBINSCOPE scopes
UCDB_ILLEGALBINSCOPE scopes
UCDB_IGNOREBINSCOPE scopes

UCDB_CVGBIN coveritems

UCDB_ILLEGALBIN coveritems

UCDB_IGNOREBIN coveritems

UCDB_DEFAULT coveritems (can be ORed with each of the
other bin typesto indicate a default bin of the given type).

UCDB_CVGBINSCOPE scope can contain only:
 UCDB_CVGBIN coveritems
e UCDB_ILLEGALBIN coveritems
« UCDB_IGNOREBIN coveritems
« UCDB_DEFAULT coveritems

UCDB_UCDB_ILLEGALBINSCOPE scope can contain only:
 UCDB_CVGBIN coveritems
e UCDB_ILLEGALBIN coveritems
« UCDB_IGNOREBIN coveritems
« UCDB_DEFAULT coveritems

UCDB_IGNOREBINSCOPE scope can contain only:
 UCDB_CVGBIN coveritems
e« UCDB_ILLEGALBIN coveritems
« UCDB_IGNOREBIN coveritems
« UCDB_DEFAULT coveritems

UCDB API Reference, v10.1

195

UCDB Organization
Coverage Section

Table A-3. Nesting Rules Enforced by UCDB

Hierarchical
Object

Rules

UCDB_COVERI NSTANCE

UCDB_ASSERT

UCDB_ASSERTBI N

UCDB_COVER

UCDB_COVERBI N

UCDB_STMTBI N
UCDB_BRANCH
UCDB_EXPR

UCDB_COND

UCDB_TOGGLE

Can contain the only the following scope types:
UCDB_COVERPOINT and UCDB_CROSS.

Must contain UCDB_ASSERTBIN and can contain any of the
following coveritems. UCDB_VACUOUSBIN,
UCDB_DISABLEDBIN, UCDB_ATTEMPTSBIN,
UCDB_ACTIVEBIN, UCDB_PEAKACTIVEBIN or
UCDB_PASSBIN. No coveritem type can be represented more than
once. Note: UCDB_ASSERTBIN indicates assertion failures.
UCDB_PASSBIN contributes toward aggregated coverage.

Contains assert-fail count or boolean. Can be a direct descendant of
the enclosing instance scope.

Must contain exactly one UCDB_COVERBIN (indicating non-
Vacuous Coverage passes Of SUCCESSES).

Contains non-vacuous cover pass count or boolean. Can be a direct
descendant of the enclosing instance scope.

Can appear in any HDL scope.
Must contain only UCDB_BRANCHBIN coveritems.

Used in a 3-level hierarchy:

» UCDB_EXPR top node contains name and source info.

» UCDB_EXPR second-level nodes are named "FEC" and "UDP"
for different representations of expression coverage
UCDB_EXPRBIN coveritems.

The coveritem name is a description of the expression truth table row.
Can appear in any HDL scope or another UCDB_EXPR scope. Must
contain only UCDB_EXPR scopes and UCDB_EXPR coveritems.

Used in a 3-level hierarchy:

» UCDB_COND top node contains name and source info.

* UCDB_COND second-level nodes are named "FEC" and "UDP"
for different representations of condition coverage
UCDB_CONDBIN coveritems.

The coveritem name is a description of the expression truth table row.
Can appear in any HDL scope or another UCDB_COND scope. Must
contain only UCDB_COND scopes and UCDB_COND coveritems.

Must contain only UCDB_TOGGLEBIN coveritems (coveritem
name is the name of toggle transition). For extended toggles:
coveritems 0 and 1 are the low->high and high->low transitions, and
coveritems 2-5 are the Z transitions. Toggle nodes, because of their
abundance, are lighter-weight structures than all other typesin the
database, lacking some data that other scopes have.

196

UCDB API Reference, v10.1

UCDB Organization
Coverage Section

Table A-3. Nesting Rules Enforced by UCDB

Hierarchical
Object Rules
UCDB_FSM Must contain the two subscopes UCDB_FSM_STATES and

UCDB_FSM STATES
UCDB_FSM TRANS
UCDB_BLOCK

UCDB_HI ERARCHY

Attributes

UCDB_FSM_TRANS.
Must contain UCDB_FSMBIN coveritems.
Must contain UCDB_FSMBIN coveritems.

Can appear in any HDL scope or another UCDB_BL OCK scope.
Must contain only UCDB_BL OCK scopes, UCDB_BLOCKBIN
coveritems and UCDB_STMTBIN.

Light-weight hierarchy node that can have any other scope nodes as
parents or children. Supports the user-defined attribute mechanism but
not other attributes (such as design unit, source references, and so on).
Useful for representing hierarchies that can be merged. The following
functions cannot use the UCDB_HIERARCHY scope: ucdb_*File*,
ucdb_InstanceSetDU, ucdb_* ScopeFlags, ucdb_* ScopeSourceType,
ucdb_* ScopeSourcelnfo, ucdb_* ScopeWeight, ucdb_* ScopeGoal,
ucdb_GetlnstanceDU*, ucdb_*Tag*.

UCDB attributes provide a faster access mechanism for some frequently accessed attributes,
compared to user-defined attributes. Table A-3 shows the UCDB predefined attributes.

Attribute Type

Table A-4. UCDB Defined Attributes
Macro Definition

Test Attributes

SI MTI ME string UCDBKEY_SI MII ME Simulation time.

TIMEUNI T string UCDBKEY_TI MEUNI T Time unit for SSIMTIME.

CPUTI ME string UCDBKEY_CPUTI ME CPU time.

DATE string UCDBKEY_DATE Time at which the UCDB save was

initiated.

VS| MARGS string UCDBKEY_SI MARGS Simulator command line arguments.

USERNAVE string UCDBKEY_USERNAME Name of the user who ran the test.

TESTSTATUS ucdbTest- UCDBKEY_ Status of the simulation run.
StatusT TESTSTATUS

TESTNAMVE string UCDBKEY_TESTNAME Name of the test.

(,\JIIE:VSFI LE- string UCDBKEY_FI LENAVE Database filename that the test was

originaly written to.

UCDB API Reference, v10.1

197

UCDB Organization
Coverage Section

Table A-4. UCDB Defined Attributes

Attribute Type

Macro

Definition

SEED string
TESTCVD string
TESTCOVWMENT string
COVPULSORY int (0] 1)

RUNCWD string

Code Coverage Attributes

#S| NDEX# int (>0)
#BOOUNT# int
#BTYPE# int (0]1)

#BHASELSE# int (0] 1)

#EHEADER# string

#FSM D# string

#FSTATEVAL# i nt

UCDBKEY_SEED

UCDBKEY_TESTCNVD

UCDBKEY_
TESTCOMVENT

UCDBKEY _
COVPUL SORY

UCDBKEY_RUNCWD

UCDBKEY _
STATEMENT | NDEX

UCDBKEY_BRANCH_
COUNT

UCDBKEY_BRANCH_
| SCASE

UCDBKEY_BRANCH_
HASELSE

UCDBKEY_EXPR_
HEADERS

UCDBKEY_FSM | D

UCDBKEY_FSM -
STATEVAL

SystemVerilog cover groups Attributes

Bl NRHS string

UCDBKEY _
Bl NRHSVAL UE

0 or the seed provided by the -sv_seed
vsim option.

String provided by the user intended for
test arguments.

General-purpose comment provided with
the test.

Whether (1) or not (0) thetestis
compulsory.

When this attribute exists, it holds the
working directory of the simulation from
which the UCDB was saved.

Statement number of a statement or
expression in adesign unit, starting at 1.

Total count of a branch scope (sum of
true counts of individual branch cover
items plus the count of the else branch).

Branch type: if-else (0) or case (1).

Whether (1) or not (0) branch hasan else
clause.

Header strings for each column of the
table separated by ’;’. Used on
expression or condition scopes.

Symbolic namefor an FSM state, usually
derived from the state variable. Used
with FSM coverages

Value of an FSM state. Used on FSM
coverage state coveritems.

RHS value of abin, astring that
describes the sampled values that
potentially could cause the particular bin
to increment. Used on SV coverpoint
coveritems (bins).

198

UCDB API Reference, v10.1

UCDB Organization
Coverage Section

Table A-4. UCDB Defined Attributes
Attribute Type Macro Definition

#GOAL# i nt UCDBKEY_GOAL The option.goal or type_option.goa of
the object. Used on SV covergroup,
Coverpoint or Cross SCopes.

#GOAL# fl oat UCDBKEY_GOAL Arbitrary goal that can have an effect (as
for TESTPLAN scopes) in GUIs or
reports. Used on other types of scopes.

ATLEAST int UCDBKEY_ATLEAST The option.at_least or

type _option.at_least of the object. Used
on SV covergroup, coverpoint or cross
scopes.

COVVENT string UCDBKEY_COWMMENT The option.comment or
type_option.comment of the object. Used
on SV covergroup, coverpoint or cross

scopes.
AUTOBI NMAX i nt UCDBKEY _ The option.auto_bin_max of the object.
AUTGBI NMAX Used on SV covergroup or coverpoint
Scopes.
DETECT- int (O0]1) UCDBKEY_ The option.detect_overlap of the object.
OVERLAP DETECTO/ERLAP Used on SV covergroup or coverpoint
SCopes.
PRI NT- i nt UCDBKEY_NUWMPRI NT The option.cross_num_print_missing of
M SSING M SSING the object. Used on SV covergroup or
Cross Scopes.
STROBE int (0]1) UCDBKEY_STROBE Thetype option.strobe of the object.
Used on SV covergroup scopes.
#CROSSERR# int (0]1) UCDBKEY._- When 1, indicates a cross type coverage
CROSSERRCR calculation not supported by the
simulator (i.e., when crossed coverpoints
are parameterized with different numbers
of binsin different covergroup
instances). Used on SV covergroup
Scopes.
NUVBAMPLED i nt UCDBKEY _ Optional sample count for covergroups
NUMSAMPLED
#SAVPLESH UCDBKEY_SAMPLES Array of sample counts, for level 2
merge

Cover and Assertion Memory Profile Attributes

MEM_ASSERT UCDBKEY_MEM_ Current memory.
ASRTCURR

UCDB API Reference, v10.1 199

UCDB Organization
Coverage Section

Table A-4. UCDB Defined Attributes

Attribute Type Macro Definition

MEM_ASSERT UCDBKEY_MEM_ Peak memory.
ASRTPEAK

CMLTTHREADS UCDBKEY_ Cumulative threads.

_ASR CMLTTHREADS_ASRT

TI VE_ UCDBKEY_MEM_ Time of peak.

PEAKVEM PEAKTI NE

Covergroup Memory Profile Attributes

PERSI STMEM_
CvG

TRANSMEM_
VG

TRANSPEAK

PEAKTI ME

UCDBKEY_MEM_
CVGPERST ST

UCDBKEY_MEM_
CVGTRANS

UCDBKEY MEM_
CVGTRANS_PEAK

UCDBKEY_MEM_
CVGTRANS
PEAKTI VE

Assertion Directive Attributes

#ACTI ON# i nt

(0l 1] 2)

PROOFRADI US i nt

SEVERI TY

General Attributes

bi nary:
bit vector

MERGED

TAGCMD string

#SECTI ON# string

#DUSI G- string

NATURE#

UCDBKEY_ASSERT _
ACTI ON

UCDBKEY_ASSERT _
PROOFRADI US

UCDBKEY_ASSERT _
SEVERI TY

UCDBKEY_
TESTVECTOR

UCDBKEY _
TESTDATA_MERGED

UCDBKEY_TAGCMD

UCDBKEY_SECTI ON

UCDBKEY_-
DUSI GNATURE

Persistent memory.
Transient memory.
Transient peak.

Time of pesk.

Simulator action performed when the
assertion fails: continue (0), break (1) or
exit (2). Used on assertion objects.

Proof radius from formal analysis of the
assertion.

Severity metric for the assertion.

Indicates which tests caused the object to
be covered. Used on bins and
UCDB_TOGGLE coverage scope.

Semi colon-separated arguments to
"coverage tag" command. This supports
implicit tagging during merge, so asto
associate test planswith coverage for test
traceability. Used for
UCDB_TESTPLAN scopes.

Section number within test plan. Used
for UCDB_TESTPLAN scopes.

MD5 signature string of a source design
unit.

200

UCDB API Reference, v10.1

UCDB Organization
Coverage Section

Table A-4. UCDB Defined Attributes

Attribute Type Macro Definition
#COV# fl oat UCDBKEY_COV Used by coverage analysis to cache a
computed total coverage number. Used
for any scope.
MERGELEVEL int (1/2) UCDBKEY_ Used with mergefiles.
MERGEL EVEL 1. Default merge, test datais merged,

the union of bins are merged, with
integer counts incremented and
vector counts ORed.

2. Testsare associated with most binsas
abit vector indicating what test
caused them to be covered. For
vector bins, this means non-zero. For
UCDB_COVER scopes, this means
cover count > at_least; for
UCDB_ASSERT scopes, this means
fail count > O; for UCDB_TOGGLE
scopes, this means all bins covered
(>0) except for
UCDB_TOGGLE_ENUM types,
where individual bins>0. Also:
NUMSAMPLED attributes for
UCDB_COVERGROUP and
UCDB_COVERINSTANCE scopes
are combined into a binary attribute
caled "SAMPLED" that is an array
of as many integers as there are tests.

Table A-5. UCDB Defined Objects
Attribute Macro Definition

Some UCDB bin names ar e predefined to identify which count valueisfor a particular
coveritem. These names ar e the names of coveritems, where applicable.

true_branch UCDBBI N_BRANCH T Branch true bins.

fal se_branch UCDBBI N_BRANCH F Branch true bins.

el se_branch UCDBBI N BRANCH E else count

all _false branch UCDBBI N BRANCH AF All false count when thereis no else
part.

toggl e_| ow UCDBBI N_TOGGLE_L 2-state toggle bins

t oggl e_hi gh UCDBBI N_TOGGLE_H 2-state toggle bins

toggle h_| UCDBBI N TOGGLE_EXT_H L 3-state (extended) toggles

UCDB API Reference, v10.1 201

UCDB Organization
Coverage Section

Table A-5. UCDB Defined Objects

Attribute Macro Definition

toggle | h UCDBBI N_TOGGLE EXT L_H 3-state (extended) toggles
toggle z | UCDBBI N TOGGLE_EXT_Z L 3-state (extended) toggles
toggle | _z UCDBBI N TOGGLE EXT_L_Z 3-state (extended) toggles
toggle h z UCDBBI N_TOGGLE EXT H Z 3-state (extended) toggles
toggle z h UCDBBI N TOGGLE_EXT_Z H 3-state (extended) toggles
unknown UCDBBI N_EXPRCOND_UNKNOWN Unknown value row.

Some of the UCDB scope names ar e hard coded to distinguish between different natures
of scopes.

FEC UCDBSCOPE_FEC Name of FEC scope.
UDP UCDBSCOPE_UDP Name of UDP scope.

UCDB select flags used to specify different objectstypesin variousroutines, such as
making clones, printing objects, and so on.

0x0001 UCDB_SELECT_TAGS Select scope tags.

0x0002 UCDB_SELECT_ATTRS Select user defined attributes.

0x0004 UCDB_SELECT_COVERS Select covers (does not work with
copy in streaming modes).

0x0008 UCDB_SELECT_FI LETABS Select file tables.

0x0010 UCDB_SELECT_SOURCEI NFO Select source information (print
only).

Oxffffffff UCDB_SELECT_ALL Select al flags above.

Generic UCDB Handle

#i f ndef DEFI NE_UCDBT

#def i ne DEFI NE_UCDBT

typedef voi d* ucdbT; /* generic handle to a UCDB */
#endi f

Size-critical Types

#if defined (_MSC_VER)

typedef unsigned __int64 uint64_t;
typedef signed __int64 int64_t;
typedef unsigned __int32 uint32_t;
#el i f defined(__MNGMB2_)

#i ncl ude <stdint. h>

#elif defined(__I|inux)

#i ncl ude <inttypes. h>

#el se

202 UCDB API Reference, v10.1

UCDB Organization
Coverage Section

#i ncl ude <sys/types. h>

#if defined(__STRICT_ANSI)

#ifdef _LP64

typedef long int64_t;

t ypedef unsigned long uint64_t;

#el se

typedef long long int64_t;

typedef unsigned long | ong uint64 t;

#endi f

#endi f

#endi f

#i fdef W N32

#define I NT64_LI TERAL(val) ((int64_t)val)

#defi ne | NT64_ZERO ((int64_t)0)

#defi ne | NT64_ONE ((int64_t)1)

#def i ne | NT64_NEGL ((int64_t)-1)

#el se

#define INT64_LI TERAL(val) (val ##LL)

#define | NT64_ZERO (OLL)

#define | NT64_ONE (1LL)

#define | NT64_NEGL (-1LL)

#endi f

typedef uint64_t ucdbCover TypeT; /'l typedef for one of these
typedef uint64_t ucdbCover MaskTypeT,; /1 typedef for a set of these.

UCDB API Reference, v10.1 203

UCDB Organization
Coverage Section

204 UCDB API Reference, v10.1

Appendix B: UCDB Diff BNF

any_diff_line ;== diff_line | diff_comment | summary _line
diff_comment :== -- comment_text --

summary_line :== SSthd_format

diff_line :==diff_file location diff_text

diff_file_location :== <> | << |>>

diff_text :== ucdb_structural_type primary_key diff_aspect [diff_details]
ucdb_structural_type :== Scope | Bin | Historynode | UCDBRoot
primary_key :== scope_key | bin_key | historynode_key

scope_key :== ucdb_scope type_string "ucdb_hiername"

bin_key :==ucdb_bhin_type string "ucdb_hiername" "coveritemname"
ucdb_scope _type_string :== Branch | Toggle | Covergroup | ...
ucdb_bin_type string :== BranchBin | ToggleBin | StatementBin | ...
historynode key :=="historynode logical _name"

diff_aspect :== Structural | Attribute | Flag | Flagfield | Tag | DU | Source | Count | Goal
| Weight | Limit | Bitlen | Kind | Sourceinfo | Version

diff_value :== attribute diff value | integer integer | float float | first_value second_value

attribute_diff_value :==
"attribute_name" attribute_type [attribute type] "attribute value" ["attribute value']

attribute_type :==Int | Float | Double | String | Memblk | Long | Handle | Array
attribute_value :== numeric_value | string | memblk_representation

memblk_representation :== num_bytesbytessMEMBLK | num_bytesbytes:hex_byte list

Manual Title, V0.0_0 205

: UCDB Diff BNF

historynode type string :== Test | Merge | Testplan
num_bytes :== integer
hex_byte list ;== xx[_xX]

X := hex_digit

206 Manual Title, V0.0_0

ABCDEFGHI

JKLMNOPQRSTUVWXYZ

— A —
Access modes, 56
Adding a covergroup, 81
Adding adesign unit, 77
Adding module instances, 78
Adding new data, 76
Adding statements, 79
Adding toggles, 80
All counts, 39
Assert formal mode type, 170, 178
Assertion data, 38
Assertions
all counts, 39
Attribute names, 69
Attribute type, 121
Attribute value type, 121
Attributes, 197
history nodes, 191
user-defined, 67

— B —

Bins
Cross, 45

Branch coverage, 20
Verilog if-else, 21
VHDL if-elsif-else, 22

—C—
Callback reason type, 117
Callback return type, 117
Case statements, 24
Code coverage, 18
condition coverage, 25
Cover types, 158
Coverage

conditions, 25

expressions, 25

FSMs, 28

increment, 63

toggles, 29

Coverage structure, 150
Coverage summary structure, 151
Covergroup coverage

SystemVerilog, 42
Covergroups

adding, 81

Cross, 42

in classes, 49

in packages, 47
Coveritem data type, 160
Coveritem types, 159
Coveritems, 14, 193
coveritems, 14
Covers

PSL, 37

SVA, 37
Creating aUCDB, 85
Cross bins, 45
CROSSSBINIDX, 45
CROSSUBINIDX, 45

—D—
Data models, 18
Defined objects, 201
Design unit scopes, 15
Design units, 51
adding, 77
Dumping file tables, 75

— E—

Enum toggles, 31

Error handler, 104

Error handling, 57

Error type, 104

Expression coverage, 25
Extended register toggles, 32

— F—

Fail counts
Assertions, 38

fail counts, 38

UCDB API Reference, v10.1

Index

ABCDEFGHI JKLMNOPQRSTUVWXY Z

FEC-style coverage, 27

File handle, 99

File handles
creating from afile name, 72
creating from afiletable, 73

File representation, 72

Filetables
dumping, 75

Find objects, 62

Flags for coveritem data, 159

Flags type, 127

FLI, 92

Formal test, 177

FSM coverage, 28

Functions
ucdb_AddHistoryNodeChild, 111
ucdb_AddObjTag, 174
ucdb_AddPotential Test, 108
ucdb_AddTest, 107
ucdb_APIVersion, 120
ucdb_AssocCoverTest, 189
ucdb_AttrAdd, 122
ucdb_AttrArraySize, 124
ucdb_AttrGet, 123
ucdb_AttrGetNext, 122
ucdb_AttrRemove, 123
ucdb_BeginTaggedObj, 176
ucdb_CalcCoverageSummary, 155
ucdb_CalculateHistorySignature, 114
ucdb_CallBack, 145
ucdb_CloneCover, 161
ucdb_CloneFileHandle, 100
ucdb_CloneHistoryNode, 113
ucdb_CloneScope, 134
ucdb_CloneTest, 109
ucdb Close, 119
ucdb_ComposeDUName, 129
ucdb_CreateCross, 132
ucdb_CreateCrossByName, 132
ucdb_CreateFileHandleByNum, 99
ucdb_CreateGroupScope, 171
ucdb_CreateHistoryNode, 110
ucdb_Createlnstance, 130
ucdb_Createl nstanceByName, 131
ucdb_CreateNextCover, 160

ucdb_CreateNullFileHandle, 100
ucdb_CreateScope, 129
ucdb_CreateSrcFileHandleByName, 99
ucdb_CreateToggle, 168
ucdb_CreateTransition, 133
ucdb_CreateTransitionByName, 133
ucdb DBVersion, 119
ucdb_ExpandOrderedGroupRangeL.ist,
172
ucdb_FilelnfoToString, 103
ucdb_Filename, 120
ucdb_FileTableName, 103
ucdb _FileTableRemove, 103
ucdb_FileTableSize, 102
ucdb_GetBCoverinfo, 169
ucdb_GetCoverage, 154
ucdb_GetCoverageSummary, 153
ucdb_GetCoverData, 164
ucdb_GetCoverFlag, 162, 163
ucdb_GetCoverTestMask, 189
ucdb_GetCoverType, 163
ucdb GetECCoverHeader, 166
ucdb_GetECCoverNumHeaders, 166
ucdb_GetFileName, 101
ucdb_GetFileNum, 101
ucdb_GetFileTableScope, 102
ucdb GetGoal, 152
ucdb_GetGrouplnfo, 171
ucdb_GetHistoryKind, 114
ucdb_GetHistoryNodeParent, 113
ucdb_GetlnstanceDU, 140
ucdb_GetlnstanceDUName, 140
ucdb_GetlthCrossedCvp, 141
ucdb_GetlthCrossedCvpName, 141
ucdb_GetNextHistoryNodeChild, 113
ucdb_GetNumCrossedCvps, 141
ucdb_GetObjlthTag, 175
ucdb_GetObjNumTags, 175
ucdb_GetObj Type, 174
ucdb_GetOrderedGroupElementBylndex,
172
ucdb_GetPathSeparator, 120
ucdb_GetScopeFlag, 137
ucdb_GetScopeFlags, 137
ucdb_GetScopeGoal, 139

208

UCDB API Reference, v10.1

ABCDEFGHI JKLMNOPQRSTUVWXY Z

ucdb_GetScopeHierName, 140
ucdb_GetScopeName, 136
ucdb_GetScopeNumCovers, 166
ucdb_GetScopeSourcelnfo, 138
ucdb_GetScopeSourceType, 136
ucdb_GetScopeType, 136
ucdb_GetScopeWeight, 139
ucdb_GetStatistics, 154
ucdb_GetTestData, 108
ucdb_GetTestName, 109
ucdb_GetToggleCovered, 169
ucdb_GetTogglelnfo, 169
ucdb_GetTotal Coverage, 156
ucdb_GetTransitionltem, 142

ucdb_GetTransitionltemName, 142

ucdb_GetWeightPerType, 153
ucdb_HistoryRoot, 111
ucdb_IncrementCover, 162
ucdb_InstanceSetDU, 134
ucdb_IsModified, 104
ucdb_IsvalidFileHandle, 100
ucdb_MatchCallBack, 148
ucdb_MatchCoverlnScope, 162
ucdb _MatchDU, 143

ucdb MatchTests, 147
ucdb_ModifiedSinceSim, 105
ucdb_NextCoverinDB, 167
ucdb_NextCoverlnScope, 167
ucdb_NextCoverTest, 189
ucdb_NextDU, 143
ucdb_NextHistoryL ookup, 112
ucdb_NextHistoryNode, 111
ucdb_NextHistoryRoot, 112
ucdb_NextlnstOfDU, 144
ucdb_NextPackage, 142
ucdb_NextScopelnDB, 144
ucdb_NextSubScope, 143
ucdb _NextTag, 176
ucdb_NextTaggedObj, 176
ucdb NextTest, 109
ucdb_NumTests, 110
ucdb_ObjKind, 174
ucdb_Open, 117
ucdb_OpenReadStream, 118
ucdb_OpenWriteStream, 118

ucdb_OrCoverTestMask, 190
ucdb_ParseDUName, 130
ucdb_PathCallBack, 145
ucdb_RegisterErrorHandler, 104
ucdb_RemoveCover, 161
ucdb_RemoveObjTag, 175
ucdb_RemoveScope, 135
ucdb_RemoveTest, 110
ucdb_ScopeGetTop, 135

ucdb_Scopel sUnderCoverlnstance, 145

ucdb_ScopelsUnderDU, 144
ucdb_ScopeParent, 135
ucdb_SetCoverCount, 164
ucdb_SetCoverData, 164
ucdb_SetCoverFlag, 163
ucdb_SetCoverGoal, 165
ucdb_SetCoverLimit, 165
ucdb_SetCoverTestMask, 190
ucdb_SetCoverWeight, 165
ucdb_SetGoal, 152
ucdb_SetObjTags, 175
ucdb_SetPathSeparator, 120
ucdb_SetScopeFileHandle, 138
ucdb_SetScopeFlag, 137
ucdb_SetScopeFlags, 137
ucdb_SetScopeGoal, 140
ucdb_SetScopeName, 136
ucdb_SetScopeSourcelnfo, 138
ucdb_SetScopeWeight, 139
ucdb_SetWeightPerType, 153
ucdb_SrcFileTableAppend, 102
ucdb_SuppressModified, 105
ucdb Write, 119

ucdb WriteStream, 118
ucdb_WriteStreamScope, 118

— G —
Generic UCDB handle, 202
Group kind type, 170
Group toggles, 35

— H—
Hierarchical nodes, 14
Hierarchy

design/coverage, 14
History node kind types, 106

UCDB API Reference, v10.1

209

ABCDEFGH

JKLMNOPQRSTUVWXYZ

History node types, 106
History nodes, 52, 191

S
Immediate assert, 41

Increment coverage, 63
In-memory, 56

- M=
Memory statistics, 55
Message severity type, 104
ModelSim, 92
Module instances

adding, 78

— N —
Nesting rules, 194
Net toggles, 33

— 0 —
Object handle, 98
Object mask type, 173

—P—
Pass/Fail, 41

Predefined attribute names, 69
PSL Covers, 37

Questa, 92
compatibility, 96

— R —
Read callback datatype, 117
Read coverage data, 58
Read-streaming, 56
Read-streaming mode, 18, 87
Remove data, 65

—S—
Save FLI callback, 92
save-callback, 94
Scope handle, 98
Scope nodes, 193
Scopetype, 125
Scope types, 15
Scopes, 14, 193
scopes, 14

Size-critical types, 202
Source information type, 99
Source type, 127
Sparse cross bins, 45
Statement coverage

with generates, 19
Statements

adding, 79
Summary coverage data type, 149
Summary read, 56
SVA Covers, 37
SystemVerilog

covergroup coverage, 42

— T—
Tags, 52, 173
user-defined, 66
Test datarecords, 52, 84
Test plan hierarchy, 52
Test plans
creating, 69
Test records, 191
Test section, 191
Test status type, 106
Test traceability, 188
Test type, 106
Toggle coverage, 29
Toggles, 168
adding, 80
enums, 31
extended registers, 32
group, 35
nets, 33
VHDL integers, 30
Tool architecture, 92
Traversing atest plan, 70
Traversing UCDB In memory, 57

—U—
UCDB

creating in memory, 85
UDP-style coverage, 27
User-defined attributes, 67
User-defined tags, 66

210

UCDB API Reference, v10.1

ABCDEFGHI JKLMNOPQRSTUVWXY Z

—V —
VHDL integer toggles, 30

— W —
Wildcard matching, 170
Write-streaming, 56
Write-streaming mode, 89

UCDB API Reference, v10.1 211

ABCDEFGHI JKLMNOPQRSTUVWXY Z

212 UCDB API Reference, v10.1

End-User License Agreement

The latest version of the End-User License Agreement is available on-line at:
www.mentor.com/eula

IMPORTANT INFORMATION

USE OF ALL SOFTWARE IS SUBJECT TO LICENSE RESTRICTIONS. CAREFULLY READ THIS
LICENSE AGREEMENT BEFORE USING THE PRODUCTS. USE OF SOFTWARE INDICATES
CUSTOMER’S COMPLETE AND UNCONDITIONAL ACCEPTANCE OF THE TERMS AND
CONDITIONS SET FORTH IN THIS AGREEMENT. ANY ADDITIONAL OR DIFFERENT PURCHASE
ORDER TERMS AND CONDITIONS SHALL NOT APPLY.

END-USER LICENSE AGREEMENT (*Agreement”)

Thisis a legal agreement concerning the use of Software (as defined in Section 2) and hardwar e (collectively
“Products’) between the company acquiring the Products (“ Customer”), and the Mentor Graphics entity that
issued the corresponding quotation or, if no quotation was issued, the applicable local Mentor Graphics entity
(“Mentor Graphics’). Except for license agreementsrelated to the subject matter of this license agreement which
are physically signed by Customer and an authorized representative of Mentor Graphics, this Agreement and the
applicable quotation contain the parties entire understanding relating to the subject matter and super sede all
prior or contemporaneous agreements. |f Customer does not agreeto thesetermsand conditions, promptly return
or, in the case of Software received electronically, certify destruction of Software and all accompanying items
within five days after receipt of Software and receive a full refund of any license fee paid.

ORDERS, FEESAND PAYMENT.

1.1. To the extent Customer (or if agreed by Mentor Graphics, Customer’'s appointed third party buying agent) places and
Mentor Graphics accepts purchase orders pursuant to this Agreement (“Order(s)”), each Order will constitute a contract
between Customer and Mentor Graphics, which shall be governed solely and exclusively by the terms and conditions of this
Agreement, any applicable addenda and the applicable quotation, whether or not these documents are referenced on the
Order. Any additional or conflicting terms and conditions appearing on an Order will not be effective unless agreed in
writing by an authorized representative of Customer and Mentor Graphics.

1.2. Amounts invoiced will be paid, in the currency specified on the applicable invoice, within 30 days from the date of such
invoice. Any past due invoices will be subject to the imposition of interest charges in the amount of one and one-half
percent per month or the applicable legal rate currently in effect, whichever is lower. Prices do not include freight,
insurance, customs duties, taxes or other similar charges, which Mentor Graphics will state separately in the applicable
invoice(s). Unlesstimely provided with avalid certificate of exemption or other evidence that items are not taxable, Mentor
Graphics will invoice Customer for all applicable taxes including, but not limited to, VAT, GST, sales tax and service tax.
Customer will make all payments free and clear of, and without reduction for, any withholding or other taxes; any such
taxes imposed on payments by Customer hereunder will be Customer’s sole responsibility. If Customer appoints a third
party to place purchase orders and/or make payments on Customer’s behalf, Customer shall be liable for payment under
Orders placed by such third party in the event of default.

1.3. All Products are delivered FCA factory (Incoterms 2000), freight prepaid and invoiced to Customer, except Software
delivered electronically, which shall be deemed delivered when made available to Customer for download. Mentor
Graphics retains a security interest in all Products delivered under this Agreement, to secure payment of the purchase price
of such Products, and Customer agrees to sign any documents that Mentor Graphics determines to be necessary or
convenient for usein filing or perfecting such security interest. Mentor Graphics' delivery of Software by electronic means
is subject to Customer’s provision of both a primary and an alternate e-mail address.

GRANT OF LICENSE. The software installed, downloaded, or otherwise acquired by Customer under this Agreement,
including any updates, modifications, revisions, copies, documentation and design data (“ Software”) are copyrighted, trade
secret and confidential information of Mentor Graphics or its licensors, who maintain exclusive title to all Software and retain
all rights not expressly granted by this Agreement. Mentor Graphics grants to Customer, subject to payment of applicable
license fees, a nontransferable, nonexclusive license to use Software solely: (@) in machine-readable, object-code form (except
as provided in Subsection 5.2); (b) for Customer’s internal business purposes; (c) for the term of the license; and (d) on the
computer hardware and at the site authorized by Mentor Graphics. A site is restricted to a one-half mile (800 meter) radius.
Customer may have Software temporarily used by an employee for telecommuting purposes from locations other than a
Customer office, such as the employee's residence, an airport or hotel, provided that such employee's primary place of
employment is the site where the Software is authorized for use. Mentor Graphics' standard policies and programs, which vary
depending on Software, license fees paid or services purchased, apply to the following: (a) relocation of Software; (b) use of
Software, which may be limited, for example, to execution of a single session by a single user on the authorized hardware or for
arestricted period of time (such limitations may be technically implemented through the use of authorization codes or similar
devices); and (c) support services provided, including eligibility to receive telephone support, updates, modifications, and
revisions. For the avoidance of doubt, if Customer requests any change or enhancement to Software, whether in the course of

http://www.mentor.com/eula

receiving support or consulting services, evaluating Software, performing beta testing or otherwise, any inventions, product
improvements, modifications or developments made by Mentor Graphics (at Mentor Graphics' sole discretion) will be the
exclusive property of Mentor Graphics.

ESC SOFTWARE. If Customer purchases a license to use development or prototyping tools of Mentor Graphics' Embedded
Software Channel (“ESC”), Mentor Graphics grants to Customer a nontransferable, nonexclusive license to reproduce and
distribute executable files created using ESC compilers, including the ESC run-time libraries distributed with ESC C and C++
compiler Software that are linked into a composite program as an integral part of Customer’s compiled computer program,
provided that Customer distributes these files only in conjunction with Customer’s compiled computer program. Mentor
Graphics does NOT grant Customer any right to duplicate, incorporate or embed copies of Mentor Graphics' real-time operating
systems or other embedded software products into Customer’s products or applications without first signing or otherwise
agreeing to a separate agreement with Mentor Graphics for such purpose.

BETA CODE.

4.1. Portions or all of certain Software may contain code for experimental testing and evaluation (“Beta Code’), which may not
be used without Mentor Graphics’ explicit authorization. Upon Mentor Graphics' authorization, Mentor Graphics grants to
Customer a temporary, nontransferable, nonexclusive license for experimental use to test and evaluate the Beta Code
without charge for alimited period of time specified by Mentor Graphics. This grant and Customer’s use of the Beta Code
shall not be construed as marketing or offering to sell alicense to the Beta Code, which Mentor Graphics may choose not to
release commercialy in any form.

4.2. If Mentor Graphics authorizes Customer to use the Beta Code, Customer agrees to evaluate and test the Beta Code under
normal conditions as directed by Mentor Graphics. Customer will contact Mentor Graphics periodically during Customer’s
use of the Beta Code to discuss any malfunctions or suggested improvements. Upon completion of Customer’s evaluation
and testing, Customer will send to Mentor Graphics a written evaluation of the Beta Code, including its strengths,
weaknesses and recommended improvements.

4.3. Customer agrees to maintain Beta Code in confidence and shall restrict access to the Beta Code, including the methods and
concepts utilized therein, solely to those employees and Customer location(s) authorized by Mentor Graphics to perform
beta testing. Customer agrees that any written evaluations and all inventions, product improvements, modifications or
developments that Mentor Graphics conceived or made during or subsequent to this Agreement, including those based
partly or wholly on Customer’s feedback, will be the exclusive property of Mentor Graphics. Mentor Graphics will have
exclusiverights, title and interest in al such property. The provisions of this Subsection 4.3 shall survive termination of this
Agreement.

RESTRICTIONS ON USE.

5.1. Customer may copy Software only as reasonably necessary to support the authorized use. Each copy must include all
notices and legends embedded in Software and affixed to its medium and container as received from Mentor Graphics. All
copies shall remain the property of Mentor Graphics or its licensors. Customer shall maintain a record of the number and
primary location of all copies of Software, including copies merged with other software, and shall make those records
available to Mentor Graphics upon request. Customer shall not make Products available in any form to any person other
than Customer’s employees and on-site contractors, excluding Mentor Graphics competitors, whose job performance
requires access and who are under obligations of confidentiality. Customer shall take appropriate action to protect the
confidentiality of Products and ensure that any person permitted access does not disclose or use it except as permitted by
this Agreement. Customer shall give Mentor Graphics written notice of any unauthorized disclosure or use of the Products
as soon as Customer learns or becomes aware of such unauthorized disclosure or use. Except as otherwise permitted for
purposes of interoperability as specified by applicable and mandatory local law, Customer shall not reverse-assemble,
reverse-compile, reverse-engineer or in any way derive any source code from Software. Log files, datafiles, rule files and
script files generated by or for the Software (collectively “Files’), including without limitation files containing Standard
Verification Rule Format (“SVRF") and Tcl Verification Format (“ TVF") which are Mentor Graphics' proprietary syntaxes
for expressing process rules, constitute or include confidential information of Mentor Graphics. Customer may share Files
with third parties, excluding Mentor Graphics competitors, provided that the confidentiality of such Filesis protected by
written agreement at least as well as Customer protects other information of a similar nature or importance, but in any case
with at least reasonable care. Customer may use Files containing SVRF or TVF only with Mentor Graphics products. Under
no circumstances shall Customer use Software or Files or allow their use for the purpose of developing, enhancing or
marketing any product that is in any way competitive with Software, or disclose to any third party the results of, or
information pertaining to, any benchmark.

5.2. If any Software or portions thereof are provided in source code form, Customer will use the source code only to correct
software errors and enhance or modify the Software for the authorized use. Customer shall not disclose or permit disclosure
of source code, in whole or in part, including any of its methods or concepts, to anyone except Customer’s employees or
contractors, excluding Mentor Graphics competitors, with a need to know. Customer shall not copy or compile source code
in any manner except to support this authorized use.

5.3. Customer may not assign this Agreement or the rights and duties under it, or relocate, sublicense or otherwise transfer the
Products, whether by operation of law or otherwise (“ Attempted Transfer”), without Mentor Graphics’ prior written
consent and payment of Mentor Graphics' then-current applicable relocation and/or transfer fees. Any Attempted Transfer
without Mentor Graphics' prior written consent shall be a materia breach of this Agreement and may, at Mentor Graphics
option, result in the immediate termination of the Agreement and/or the licenses granted under this Agreement. The terms

10.

11.

12.

of this Agreement, including without limitation the licensing and assignment provisions, shall be binding upon Customer’s
permitted successors in interest and assigns.

5.4. The provisions of this Section 5 shall survive the termination of this Agreement.
SUPPORT SERVICES. To the extent Customer purchases support services, Mentor Graphics will provide Customer updates

and technical support for the Products, at the Customer site(s) for which support is purchased, in accordance with Mentor
Graphics' then current End-User Support Terms located at http://supportnet.mentor.com/about/legal/.

AUTOMATIC CHECK FOR UPDATES; PRIVACY. Technological measures in Software may communicate with servers
of Mentor Graphics or its contractors for the purpose of checking for and notifying the user of updates and to ensure that the
Software in useislicensed in compliance with this Agreement. Mentor Graphics will not collect any personally identifiable data
in this process and will not disclose any data collected to any third party without the prior written consent of Customer, except to
Mentor Graphics' outside attorneys or as may be required by a court of competent jurisdiction.

LIMITED WARRANTY.

8.1. Mentor Graphics warrants that during the warranty period its standard, generally supported Products, when properly
installed, will substantially conform to the functional specifications set forth in the applicable user manual. Mentor
Graphics does not warrant that Products will meet Customer’s requirements or that operation of Products will be
uninterrupted or error free. The warranty period is 90 days starting on the 15th day after delivery or upon installation,
whichever first occurs. Customer must notify Mentor Graphics in writing of any nonconformity within the warranty period.
For the avoidance of doubt, this warranty applies only to the initial shipment of Software under an Order and does not
renew or reset, for example, with the delivery of (a) Software updates or (b) authorization codes or aternate Software under
a transaction involving Software re-mix. This warranty shall not be valid if Products have been subject to misuse,
unauthorized modification or improper installation. MENTOR GRAPHICS ENTIRE LIABILITY AND CUSTOMER'S
EXCLUSIVE REMEDY SHALL BE, AT MENTOR GRAPHICS OPTION, EITHER (A) REFUND OF THE PRICE
PAID UPON RETURN OF THE PRODUCTS TO MENTOR GRAPHICS OR (B) MODIFICATION OR
REPLACEMENT OF THE PRODUCTS THAT DO NOT MEET THIS LIMITED WARRANTY, PROVIDED
CUSTOMER HAS OTHERWISE COMPLIED WITH THIS AGREEMENT. MENTOR GRAPHICS MAKES NO
WARRANTIES WITH RESPECT TO: (A) SERVICES; (B) PRODUCTS PROVIDED AT NO CHARGE; OR (C) BETA
CODE; ALL OF WHICH ARE PROVIDED “ASIS.”

8.2. THE WARRANTIES SET FORTH IN THIS SECTION 8 ARE EXCLUSIVE. NEITHER MENTOR GRAPHICS NOR
ITSLICENSORS MAKE ANY OTHER WARRANTIES EXPRESS, IMPLIED OR STATUTORY, WITH RESPECT TO
PRODUCTS PROVIDED UNDER THIS AGREEMENT. MENTOR GRAPHICS AND ITS LICENSORS
SPECIFICALLY DISCLAIM ALL IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NON-INFRINGEMENT OF INTELLECTUAL PROPERTY .

LIMITATION OF LIABILITY. EXCEPT WHERE THIS EXCLUSION OR RESTRICTION OF LIABILITY WOULD BE
VOID OR INEFFECTIVE UNDER APPLICABLE LAW, IN NO EVENT SHALL MENTOR GRAPHICS OR ITS
LICENSORS BE LIABLE FOR INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES (INCLUDING
LOST PROFITS OR SAVINGS) WHETHER BASED ON CONTRACT, TORT OR ANY OTHER LEGAL THEORY, EVEN
IFMENTOR GRAPHICSOR ITS LICENSORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. IN
NO EVENT SHALL MENTOR GRAPHICS OR ITSLICENSORS' LIABILITY UNDER THIS AGREEMENT EXCEED
THE AMOUNT RECEIVED FROM CUSTOMER FOR THE HARDWARE, SOFTWARE LICENSE OR SERVICE GIVING
RISE TO THE CLAIM. IN THE CASE WHERE NO AMOUNT WAS PAID, MENTOR GRAPHICS AND ITS LICENSORS
SHALL HAVENOLIABILITY FOR ANY DAMAGES WHATSOEVER. THE PROVISIONS OF THISSECTION 9 SHALL
SURVIVE THE TERMINATION OF THIS AGREEMENT.

HAZARDOUS APPLICATIONS. CUSTOMER ACKNOWLEDGES IT IS SOLELY RESPONSIBLE FOR TESTING ITS
PRODUCTS USED IN APPLICATIONS WHERE THE FAILURE OR INACCURACY OF ITS PRODUCTS MIGHT
RESULT IN DEATH OR PERSONAL INJURY (“HAZARDOUS APPLICATIONS"). NEITHER MENTOR GRAPHICS
NOR ITS LICENSORS SHALL BE LIABLE FOR ANY DAMAGES RESULTING FROM OR IN CONNECTION WITH
THE USE OF MENTOR GRAPHICS PRODUCTS IN OR FOR HAZARDOUS APPLICATIONS. THE PROVISIONS OF
THIS SECTION 10 SHALL SURVIVE THE TERMINATION OF THIS AGREEMENT.

INDEMNIFICATION. CUSTOMER AGREES TO INDEMNIFY AND HOLD HARMLESS MENTOR GRAPHICS AND
ITS LICENSORS FROM ANY CLAIMS, LOSS, COST, DAMAGE, EXPENSE OR LIABILITY, INCLUDING
ATTORNEYS FEES, ARISING OUT OF OR IN CONNECTION WITH THE USE OF PRODUCTS AS DESCRIBED IN
SECTION 10. THE PROVISIONS OF THIS SECTION 11 SHALL SURVIVE THE TERMINATION OF THIS
AGREEMENT.

INFRINGEMENT.

12.1. Mentor Graphics will defend or settle, at its option and expense, any action brought against Customer in the United States,
Canada, Japan, or member state of the European Union which alleges that any standard, generally supported Product
acquired by Customer hereunder infringes a patent or copyright or misappropriates a trade secret in such jurisdiction.
Mentor Graphicswill pay costs and damages finally awarded against Customer that are attributable to the action. Customer
understands and agrees that as conditions to Mentor Graphics' obligations under this section Customer must: (a) notify
Mentor Graphics promptly in writing of the action; (b) provide Mentor Graphics all reasonable information and assistance

http://supportnet.mentor.com/about/legal/

13.

14.

15.

16.

17.

18.

to settle or defend the action; and (c) grant Mentor Graphics sole authority and control of the defense or settlement of the
action.

12.2. If aclaimismade under Subsection 12.1 Mentor Graphics may, at its option and expense, (a) replace or modify the Product
so that it becomes noninfringing; (b) procure for Customer the right to continue using the Product; or (c) require the return
of the Product and refund to Customer any purchase price or license fee paid, less a reasonable allowance for use.

12.3. Mentor Graphics has no liability to Customer if the action is based upon: (&) the combination of Software or hardware with
any product not furnished by Mentor Graphics; (b) the modification of the Product other than by Mentor Graphics; (c) the
use of other than a current unaltered release of Software; (d) the use of the Product as part of an infringing process; (€) a
product that Customer makes, uses, or sells; (f) any Beta Code or Product provided at no charge; (g) any software provided
by Mentor Graphics' licensors who do not provide such indemnification to Mentor Graphics' customers; or
(h) infringement by Customer that is deemed willful. In the case of (h), Customer shall reimburse Mentor Graphics for its
reasonabl e attorney fees and other costs related to the action.

12.4. THIS SECTION 12 IS SUBJECT TO SECTION 9 ABOVE AND STATES THE ENTIRE LIABILITY OF MENTOR
GRAPHICS AND ITS LICENSORS FOR DEFENSE, SETTLEMENT AND DAMAGES, AND CUSTOMER’S SOLE
AND EXCLUSIVE REMEDY, WITH RESPECT TO ANY ALLEGED PATENT OR COPYRIGHT INFRINGEMENT
OR TRADE SECRET MISAPPROPRIATION BY ANY PRODUCT PROVIDED UNDER THIS AGREEMENT.

TERMINATION AND EFFECT OF TERMINATION. If a Software license was provided for limited term use, such license
will automatically terminate at the end of the authorized term.

13.1. Mentor Graphics may terminate this Agreement and/or any license granted under this Agreement immediately upon written
notice if Customer: (a) exceeds the scope of the license or otherwise fails to comply with the licensing or confidentiality
provisions of this Agreement, or (b) becomes insolvent, files a bankruptcy petition, institutes proceedings for liquidation or
winding up or entersinto an agreement to assign its assets for the benefit of creditors. For any other material breach of any
provision of this Agreement, Mentor Graphics may terminate this Agreement and/or any license granted under this
Agreement upon 30 days written notice if Customer fails to cure the breach within the 30 day notice period. Termination of
this Agreement or any license granted hereunder will not affect Customer’s obligation to pay for Products shipped or
licenses granted prior to the termination, which amounts shall be payable immediately upon the date of termination.

13.2. Upon termination of this Agreement, the rights and obligations of the parties shall cease except as expressly set forth in this
Agreement. Upon termination, Customer shall ensure that all use of the affected Products ceases, and shall return hardware
and either return to Mentor Graphics or destroy Software in Customer’s possession, including all copies and
documentation, and certify in writing to Mentor Graphics within ten business days of the termination date that Customer no
longer possesses any of the affected Products or copies of Software in any form.

EXPORT. The Products provided hereunder are subject to regulation by local laws and United States government agencies,
which prohibit export or diversion of certain products and information about the products to certain countries and certain
persons. Customer agrees that it will not export Products in any manner without first obtaining al necessary approval from
appropriate local and United States government agencies.

U.S. GOVERNMENT LICENSE RIGHTS. Software was developed entirely at private expense. All Software is commercial
computer software within the meaning of the applicable acquisition regulations. Accordingly, pursuant to US FAR 48 CFR
12.212 and DFAR 48 CFR 227.7202, use, duplication and disclosure of the Software by or for the U.S. Government or aU.S.
Government subcontractor is subject solely to the terms and conditions set forth in this Agreement, except for provisions which
are contrary to applicable mandatory federal laws.

THIRD PARTY BENEFICIARY. Mentor Graphics Corporation, Mentor Graphics (Ireland) Limited, Microsoft Corporation
and other licensors may be third party beneficiaries of this Agreement with the right to enforce the obligations set forth herein.

REVIEW OF LICENSE USAGE. Customer will monitor the access to and use of Software. With prior written notice and
during Customer’s normal business hours, Mentor Graphics may engage an internationally recognized accounting firm to
review Customer’s software monitoring system and records deemed relevant by the internationally recognized accounting firm
to confirm Customer’ s compliance with the terms of this Agreement or U.S. or other local export laws. Such review may include
FLEXIm or FLEXnet (or successor product) report log files that Customer shall capture and provide at Mentor Graphics'
request. Customer shall make records available in electronic format and shall fully cooperate with data gathering to support the
license review. Mentor Graphics shall bear the expense of any such review unless a material non-complianceisrevealed. Mentor
Graphics shall treat as confidential information all information gained as a result of any request or review and shall only use or
disclose such information as required by law or to enforce its rights under this Agreement. The provisions of this Section 17
shall survive the termination of this Agreement.

CONTROLLING LAW, JURISDICTION AND DISPUTE RESOLUTION. The owners of certain Mentor Graphics
intellectual property licensed under this Agreement are located in Ireland and the United States. To promote consistency around
the world, disputes shall be resolved as follows: excluding conflict of laws rules, this Agreement shall be governed by and
construed under the laws of the State of Oregon, USA, if Customer islocated in North or South America, and the laws of Ireland
if Customer is located outside of North or South America. All disputes arising out of or in relation to this Agreement shall be
submitted to the exclusive jurisdiction of the courts of Portland, Oregon when the laws of Oregon apply, or Dublin, Ireland when
the laws of Ireland apply. Notwithstanding the foregoing, all disputesin Asiaarising out of or in relation to this Agreement shall
be resolved by arbitration in Singapore before a single arbitrator to be appointed by the chairman of the Singapore International

19.

20.

Arbitration Centre (“SIAC”) to be conducted in the English language, in accordance with the Arbitration Rules of the SIAC in
effect at the time of the dispute, which rules are deemed to be incorporated by reference in this section. This section shall not
restrict Mentor Graphics' right to bring an action against Customer in the jurisdiction where Customer’s place of businessis
located. The United Nations Convention on Contracts for the International Sale of Goods does not apply to this Agreement.

SEVERABILITY. If any provision of this Agreement is held by a court of competent jurisdiction to be void, invalid,
unenforceable or illegal, such provision shall be severed from this Agreement and the remaining provisions will remain in full
force and effect.

MISCELLANEOUS. This Agreement containsthe parties’ entire understanding relating to its subject matter and supersedes all
prior or contemporaneous agreements, including but not limited to any purchase order terms and conditions. Some Software
may contain code distributed under a third party license agreement that may provide additional rights to Customer. Please see
the applicable Software documentation for details. This Agreement may only be modified in writing by authorized
representatives of the parties. Waiver of terms or excuse of breach must be in writing and shall not constitute subsequent
consent, waiver or excuse.

Rev. 100615, Part No. 246066

	InfoHub
	Table of Contents
	List of Figures
	List of Tables
	Chapter 1 Introduction
	Terminology

	Chapter 2 UCDB Basics
	UCDB Data Hierarchy
	Scopes and Coveritems
	Design Unit Scopes
	UCDB Scope Types

	UCDB Data Models
	Code Coverage Roll-Ups in Design Units and Instances
	Statement Coverage
	Statement Coverage with Generates

	Branch Coverage
	Branch Coverage of Verilog if-else
	Branch Coverage of VHDL if-elsif-else
	Case Statements

	Expression and Condition Coverage
	UDP-Style Expression and Condition Coverage
	FEC-Style Expression Condition Coverage

	Finite State Machine (FSM) Coverage
	Toggle Coverage
	VHDL Integer Toggles
	Enum Toggles
	Extended Register Toggle
	Net Toggle with Connected Net

	Groups
	SVA and PSL Covers
	Assertion Data
	Assertions with Fail Counts Only
	Assertion with All Counts Using -assertdebug
	Immediate Assert with Pass/Fail

	SystemVerilog Covergroup Coverage
	Covergroup with a Cross
	Sparse Cross Bin Representation
	CROSSSBINIDX and CROSSUBINIDX
	Covergroup in Package with Multiple Instances
	Covergroup in a Class (Embedded Covergroup)

	Design Units
	Test Data Records and History Nodes
	Test Plan Hierarchy and Tags
	Memory Statistics

	UCDB Use Cases
	UCDB Access Modes
	Error Handling
	Traverse a UCDB in Memory
	Read Coverage Data
	read-coverage2 Example

	Find Objects in a UCDB
	Increment Coverage
	Remove Data from a UCDB
	User-Defined Attributes and Tags in the UCDB
	Tags in the UCDB
	User-Defined Attributes in the UCDB
	Predefined Attribute Names in the UCDB
	Create a Test Plan in a UCDB

	Using Tags to Traverse from Test Plan to Coverage Data
	File Representation in the UCDB
	Creating a File Handle From a File Name
	Creating a File Handle From an Existing File Table
	Dumping File Tables

	Add New Data to a UCDB
	Add Design Unit to a UCDB
	Add Module Instance to a UCDB
	Add Statement to a UCDB
	Add Toggle to a UCDB
	Add Covergroup to a UCDB

	Test Data Records
	Create a UCDB from Scratch in Memory
	Read Streaming Mode
	Write Streaming Mode

	UCDB in Questa and ModelSim
	UCDB in the Tool Architecture
	Using the mti_AddUCDBSaveCB FLI Callback
	Questa Compatibility

	Chapter 3 UCDB API Functions
	Source Files
	Simple Use Models
	Scope Handle
	Object Handle
	File Handle
	Source Information Type
	ucdb_CreateSrcFileHandleByName
	ucdb_CreateFileHandleByNum
	ucdb_CloneFileHandle
	ucdb_CreateNullFileHandle
	ucdb_IsValidFileHandle
	ucdb_GetFileName
	ucdb_GetFileNum
	ucdb_GetFileTableScope
	ucdb_SrcFileTableAppend
	ucdb_FileTableSize
	ucdb_FileTableName
	ucdb_FileTableRemove
	ucdb_FileInfoToString

	Error Handler
	Message Severity Type
	Error Type
	Error Handler
	ucdb_RegisterErrorHandler
	ucdb_IsModified
	ucdb_ModifiedSinceSim
	ucdb_SuppressModified

	Tests
	Test Type
	Test Status Type
	History Node Types
	History Node Kind Types
	ucdb_AddTest
	ucdb_AddPotentialTest
	ucdb_GetTestData
	ucdb_GetTestName
	ucdb_NextTest
	ucdb_CloneTest
	ucdb_RemoveTest
	ucdb_NumTests
	ucdb_CreateHistoryNode
	ucdb_AddHistoryNodeChild
	ucdb_NextHistoryNode
	ucdb_HistoryRoot
	ucdb_NextHistoryRoot
	ucdb_NextHistoryLookup
	ucdb_GetHistoryNodeParent
	ucdb_GetNextHistoryNodeChild
	ucdb_CloneHistoryNode
	ucdb_GetHistoryKind
	ucdb_CalculateHistorySignature

	Databases and Database Files
	Callback Reason Type
	Callback Return Type
	Read Callback Data Type
	Function Type for Use with ucdb_OpenReadStream()
	ucdb_Open
	ucdb_OpenReadStream
	ucdb_OpenWriteStream
	ucdb_WriteStream
	ucdb_WriteStreamScope
	ucdb_Write
	ucdb_Close
	ucdb_DBVersion
	ucdb_APIVersion
	ucdb_SetPathSeparator
	ucdb_GetPathSeparator
	ucdb_Filename

	User-specified Attributes
	Attribute Type
	Attribute Value Type
	ucdb_AttrGetNext
	ucdb_AttrAdd
	ucdb_AttrRemove
	ucdb_AttrGet
	ucdb_AttrArraySize

	Scopes
	Scope Type
	Source Type
	Flags Type
	ucdb_CreateScope
	ucdb_ComposeDUName
	ucdb_ParseDUName
	ucdb_CreateInstance
	ucdb_CreateInstanceByName
	ucdb_CreateCross
	ucdb_CreateCrossByName
	ucdb_CreateTransition
	ucdb_CreateTransitionByName
	ucdb_InstanceSetDU
	ucdb_CloneScope
	ucdb_RemoveScope
	ucdb_ScopeParent
	ucdb_ScopeGetTop
	ucdb_GetScopeName
	ucdb_SetScopeName
	ucdb_GetScopeType
	ucdb_GetScopeSourceType
	ucdb_GetScopeFlags
	ucdb_SetScopeFlags
	ucdb_GetScopeFlag
	ucdb_SetScopeFlag
	ucdb_GetScopeSourceInfo
	ucdb_SetScopeSourceInfo
	ucdb_SetScopeFileHandle
	ucdb_GetScopeWeight
	ucdb_SetScopeWeight
	ucdb_GetScopeGoal
	ucdb_SetScopeGoal
	ucdb_GetScopeHierName
	ucdb_GetInstanceDU
	ucdb_GetInstanceDUName
	ucdb_GetNumCrossedCvps
	ucdb_GetIthCrossedCvp
	ucdb_GetIthCrossedCvpName
	ucdb_GetTransitionItem
	ucdb_GetTransitionItemName
	ucdb_NextPackage
	ucdb_NextDU
	ucdb_MatchDU
	ucdb_NextSubScope
	ucdb_NextScopeInDB
	ucdb_NextInstOfDU
	ucdb_ScopeIsUnderDU
	ucdb_ScopeIsUnderCoverInstance
	ucdb_CallBack
	ucdb_PathCallBack
	ucdb_MatchTests
	ucdb_MatchCallBack

	Coverage and Statistics Summaries
	Summary Coverage Data Type
	Coverage Structure
	Coverage Summary Structure
	Memory Statistics Types
	ucdb_SetGoal
	ucdb_GetGoal
	ucdb_SetWeightPerType
	ucdb_GetWeightPerType
	ucdb_GetCoverageSummary
	ucdb_GetCoverage
	ucdb_GetStatistics
	ucdb_CalcCoverageSummary
	ucdb_GetTotalCoverage
	ucdb_GetMemoryStats
	ucdb_SetMemoryStats

	Coveritems
	Cover Types
	Coveritem Types
	Flags for Coveritem Data
	Coveritem Data Type
	ucdb_CreateNextCover
	ucdb_CloneCover
	ucdb_RemoveCover
	ucdb_MatchCoverInScope
	ucdb_IncrementCover
	ucdb_GetCoverFlags
	ucdb_GetCoverFlag
	ucdb_SetCoverFlag
	ucdb_GetCoverType
	ucdb_GetCoverData
	ucdb_SetCoverData
	ucdb_SetCoverCount
	ucdb_SetCoverGoal
	ucdb_SetCoverLimit
	ucdb_SetCoverWeight
	ucdb_GetScopeNumCovers
	ucdb_GetECCoverNumHeaders
	ucdb_GetECCoverHeader
	ucdb_NextCoverInScope
	ucdb_NextCoverInDB

	Toggles
	ucdb_CreateToggle
	ucdb_GetToggleInfo
	ucdb_GetToggleCovered
	ucdb_GetBCoverInfo

	Groups
	Group Kind Type
	Wildcard Matching
	ucdb_CreateGroupScope
	ucdb_GetGroupInfo
	ucdb_ExpandOrderedGroupRangeList
	ucdb_GetOrderedGroupElementByIndex

	Tags
	Object Mask Type
	ucdb_ObjKind
	ucdb_GetObjType
	ucdb_AddObjTag
	ucdb_RemoveObjTag
	ucdb_GetObjNumTags
	ucdb_GetObjIthTag
	ucdb_SetObjTags
	ucdb_BeginTaggedObj
	ucdb_NextTaggedObj
	ucdb_NextTag

	Formal Data
	Formal Status Enum
	Formal Environment Type
	Formal Tool Info Type
	Formal Coverage Context
	ucdb_SetFormalStatus
	ucdb_GetFormalStatus
	ucdb_SetFormalRadius
	ucdb_GetFormalRadius
	ucdb_SetFormalWitness
	ucdb_GetFormalWitness
	ucdb_SetFormallyUnreachableCoverTest
	ucdb_ClearFormallyUnreachableCoverTest
	ucdb_GetFormallyUnreachableCoverTest
	ucdb_AddFormalEnv
	ucdb_AssocAssumptionFormalEnv
	ucdb_AssocFormalInfoTest
	ucdb_NextFormalEnv
	ucdb_NextFormalEnvAssumption
	ucdb_FormalEnvGetData
	ucdb_FormalTestGetInfo

	Test Traceability
	ucdb_AssocCoverTest
	ucdb_NextCoverTest
	ucdb_GetCoverTestMask
	ucdb_SetCoverTestMask
	ucdb_OrCoverTestMask

	Appendix A UCDB Organization
	Test Section
	Coverage Section
	Scope Nodes
	Coveritems
	Nesting Rules
	Attributes
	Generic UCDB Handle
	Size-critical Types

	Appendix B : UCDB Diff BNF
	Index
	End-User License Agreement
	Documentation Feedback

