
Unified Coverage Data Base
(UCDB) API Reference

Software Version 10.1

© 1995-2011 Mentor Graphics Corporation
All rights reserved.

This document contains information that is proprietary to Mentor Graphics Corporation. The original recipient of this
document may duplicate this document in whole or in part for internal business purposes only, provided that this entire
notice appears in all copies. In duplicating any part of this document, the recipient agrees to make every reasonable
effort to prevent the unauthorized use and distribution of the proprietary information.

This document is for information and instruction purposes. Mentor Graphics reserves the right to make
changes in specifications and other information contained in this publication without prior notice, and the
reader should, in all cases, consult Mentor Graphics to determine whether any changes have been
made.

The terms and conditions governing the sale and licensing of Mentor Graphics products are set forth in
written agreements between Mentor Graphics and its customers. No representation or other affirmation
of fact contained in this publication shall be deemed to be a warranty or give rise to any liability of Mentor
Graphics whatsoever.

MENTOR GRAPHICS MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE.

MENTOR GRAPHICS SHALL NOT BE LIABLE FOR ANY INCIDENTAL, INDIRECT, SPECIAL, OR
CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING BUT NOT LIMITED TO LOST PROFITS)
ARISING OUT OF OR RELATED TO THIS PUBLICATION OR THE INFORMATION CONTAINED IN IT,
EVEN IF MENTOR GRAPHICS CORPORATION HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

RESTRICTED RIGHTS LEGEND 03/97

U.S. Government Restricted Rights. The SOFTWARE and documentation have been developed entirely
at private expense and are commercial computer software provided with restricted rights. Use,
duplication or disclosure by the U.S. Government or a U.S. Government subcontractor is subject to the
restrictions set forth in the license agreement provided with the software pursuant to DFARS 227.7202-
3(a) or as set forth in subparagraph (c)(1) and (2) of the Commercial Computer Software - Restricted
Rights clause at FAR 52.227-19, as applicable.

Contractor/manufacturer is:
Mentor Graphics Corporation

8005 S.W. Boeckman Road, Wilsonville, Oregon 97070-7777.
Telephone: 503.685.7000

Toll-Free Telephone: 800.592.2210
Website: www.mentor.com

SupportNet: supportnet.mentor.com/
Send Feedback on Documentation: supportnet.mentor.com/user/feedback_form.cfm

TRADEMARKS: The trademarks, logos and service marks ("Marks") used herein are the property of
Mentor Graphics Corporation or other third parties. No one is permitted to use these Marks without the
prior written consent of Mentor Graphics or the respective third-party owner. The use herein of a third-
party Mark is not an attempt to indicate Mentor Graphics as a source of a product, but is intended to
indicate a product from, or associated with, a particular third party. A current list of Mentor Graphics’
trademarks may be viewed at: www.mentor.com/terms_conditions/trademarks.cfm.

http://www.mentor.com
http://supportnet.mentor.com/
http://supportnet.mentor.com/user/feedback_form.cfm
http://www.mentor.com/terms_conditions/trademarks.cfm

UCDB API Reference, v10.1 3

Table of Contents

Chapter 1
Introduction. 11

Terminology . 12

Chapter 2
UCDB Basics . 13

UCDB Data Hierarchy. 14
Scopes and Coveritems . 14
Design Unit Scopes. 15
UCDB Scope Types . 15

UCDB Data Models. 18
Code Coverage Roll-Ups in Design Units and Instances . 18
Statement Coverage . 18
Branch Coverage. 20
Expression and Condition Coverage. 25
Finite State Machine (FSM) Coverage . 28
Toggle Coverage. 29
Groups. 35
SVA and PSL Covers . 37
Assertion Data. 38
SystemVerilog Covergroup Coverage . 42
Design Units . 51
Test Data Records and History Nodes . 52

UCDB Use Cases. 56
UCDB Access Modes . 56
Error Handling . 57
Traverse a UCDB in Memory. 57
Read Coverage Data . 58
Find Objects in a UCDB. 62
Increment Coverage . 63
Remove Data from a UCDB. 65
User-Defined Attributes and Tags in the UCDB . 66
Using Tags to Traverse from Test Plan to Coverage Data . 70
File Representation in the UCDB . 72
Add New Data to a UCDB . 76
Test Data Records . 84
Create a UCDB from Scratch in Memory. 85
Read Streaming Mode. 87
Write Streaming Mode . 89

UCDB in Questa and ModelSim . 92
UCDB in the Tool Architecture . 92
Using the mti_AddUCDBSaveCB FLI Callback . 94
Questa Compatibility . 96

Table of Contents

4 UCDB API Reference, v10.1

Chapter 3
UCDB API Functions . 97

Source Files . 98
ucdb_CreateSrcFileHandleByName. 99
ucdb_CreateFileHandleByNum . 99
ucdb_CloneFileHandle . 100
ucdb_CreateNullFileHandle . 100
ucdb_IsValidFileHandle . 100
ucdb_GetFileName . 101
ucdb_GetFileNum. 101
ucdb_GetFileTableScope . 102
ucdb_SrcFileTableAppend . 102
ucdb_FileTableSize. 102
ucdb_FileTableName . 103
ucdb_FileTableRemove . 103
ucdb_FileInfoToString . 103

Error Handler . 104
ucdb_RegisterErrorHandler . 104
ucdb_IsModified . 104
ucdb_ModifiedSinceSim. 105
ucdb_SuppressModified . 105

Tests . 106
ucdb_AddTest . 107
ucdb_AddPotentialTest. 108
ucdb_GetTestData. 108
ucdb_GetTestName. 109
ucdb_NextTest . 109
ucdb_CloneTest . 109
ucdb_RemoveTest. 110
ucdb_NumTests . 110
ucdb_CreateHistoryNode . 110
ucdb_AddHistoryNodeChild . 111
ucdb_NextHistoryNode . 111
ucdb_HistoryRoot . 111
ucdb_NextHistoryRoot . 112
ucdb_NextHistoryLookup. 112
ucdb_GetHistoryNodeParent . 113
ucdb_GetNextHistoryNodeChild . 113
ucdb_CloneHistoryNode. 113
ucdb_GetHistoryKind . 114
ucdb_CalculateHistorySignature . 114

Databases and Database Files . 115
ucdb_Open . 117
ucdb_OpenReadStream. 118
ucdb_OpenWriteStream . 118
ucdb_WriteStream . 118
ucdb_WriteStreamScope. 118
ucdb_Write . 119

Table of Contents

UCDB API Reference, v10.1 5

ucdb_Close . 119
ucdb_DBVersion. 119
ucdb_APIVersion . 120
ucdb_SetPathSeparator . 120
ucdb_GetPathSeparator. 120
ucdb_Filename . 120

User-specified Attributes . 121
ucdb_AttrGetNext. 122
ucdb_AttrAdd . 122
ucdb_AttrRemove . 123
ucdb_AttrGet. 123
ucdb_AttrArraySize . 124

Scopes . 125
ucdb_CreateScope. 129
ucdb_ComposeDUName . 129
ucdb_ParseDUName. 130
ucdb_CreateInstance . 130
ucdb_CreateInstanceByName. 131
ucdb_CreateCross . 132
ucdb_CreateCrossByName. 132
ucdb_CreateTransition . 133
ucdb_CreateTransitionByName . 133
ucdb_InstanceSetDU. 134
ucdb_CloneScope . 134
ucdb_RemoveScope . 135
ucdb_ScopeParent. 135
ucdb_ScopeGetTop. 135
ucdb_GetScopeName . 136
ucdb_SetScopeName . 136
ucdb_GetScopeType . 136
ucdb_GetScopeSourceType . 136
ucdb_GetScopeFlags. 137
ucdb_SetScopeFlags . 137
ucdb_GetScopeFlag . 137
ucdb_SetScopeFlag. 137
ucdb_GetScopeSourceInfo . 138
ucdb_SetScopeSourceInfo . 138
ucdb_SetScopeFileHandle . 138
ucdb_GetScopeWeight . 139
ucdb_SetScopeWeight . 139
ucdb_GetScopeGoal . 139
ucdb_SetScopeGoal . 140
ucdb_GetScopeHierName. 140
ucdb_GetInstanceDU . 140
ucdb_GetInstanceDUName . 140
ucdb_GetNumCrossedCvps . 141
ucdb_GetIthCrossedCvp. 141
ucdb_GetIthCrossedCvpName . 141
ucdb_GetTransitionItem . 142

Table of Contents

6 UCDB API Reference, v10.1

ucdb_GetTransitionItemName . 142
ucdb_NextPackage . 142
ucdb_NextDU . 143
ucdb_MatchDU. 143
ucdb_NextSubScope . 143
ucdb_NextScopeInDB . 144
ucdb_NextInstOfDU. 144
ucdb_ScopeIsUnderDU . 144
ucdb_ScopeIsUnderCoverInstance . 145
ucdb_CallBack . 145
ucdb_PathCallBack. 145
ucdb_MatchTests . 147
ucdb_MatchCallBack . 148

Coverage and Statistics Summaries . 149
ucdb_SetGoal . 152
ucdb_GetGoal . 152
ucdb_SetWeightPerType . 153
ucdb_GetWeightPerType . 153
ucdb_GetCoverageSummary . 153
ucdb_GetCoverage . 154
ucdb_GetStatistics. 154
ucdb_CalcCoverageSummary. 155
ucdb_GetTotalCoverage . 156
ucdb_GetMemoryStats . 157
ucdb_SetMemoryStats . 157

Coveritems . 158
ucdb_CreateNextCover. 160
ucdb_CloneCover . 161
ucdb_RemoveCover . 161
ucdb_MatchCoverInScope . 162
ucdb_IncrementCover. 162
ucdb_GetCoverFlags. 162
ucdb_GetCoverFlag . 163
ucdb_SetCoverFlag. 163
ucdb_GetCoverType . 163
ucdb_GetCoverData . 164
ucdb_SetCoverData . 164
ucdb_SetCoverCount . 164
ucdb_SetCoverGoal . 165
ucdb_SetCoverLimit . 165
ucdb_SetCoverWeight . 165
ucdb_GetScopeNumCovers . 166
ucdb_GetECCoverNumHeaders . 166
ucdb_GetECCoverHeader. 166
ucdb_NextCoverInScope . 167
ucdb_NextCoverInDB . 167

Toggles. 168
ucdb_CreateToggle . 168
ucdb_GetToggleInfo . 169

Table of Contents

UCDB API Reference, v10.1 7

ucdb_GetToggleCovered . 169
ucdb_GetBCoverInfo . 169

Groups . 170
ucdb_CreateGroupScope . 171
ucdb_GetGroupInfo . 171
ucdb_ExpandOrderedGroupRangeList. 172
ucdb_GetOrderedGroupElementByIndex. 172

Tags . 173
ucdb_ObjKind. 174
ucdb_GetObjType. 174
ucdb_AddObjTag . 174
ucdb_RemoveObjTag . 175
ucdb_GetObjNumTags . 175
ucdb_GetObjIthTag . 175
ucdb_SetObjTags . 175
ucdb_BeginTaggedObj . 176
ucdb_NextTaggedObj . 176
ucdb_NextTag. 176

Formal Data . 177
ucdb_SetFormalStatus . 180
ucdb_GetFormalStatus . 180
ucdb_SetFormalRadius . 180
ucdb_GetFormalRadius . 181
ucdb_SetFormalWitness . 182
ucdb_GetFormalWitness. 182
ucdb_SetFormallyUnreachableCoverTest . 183
ucdb_ClearFormallyUnreachableCoverTest. 183
ucdb_GetFormallyUnreachableCoverTest . 184
ucdb_AddFormalEnv . 184
ucdb_AssocAssumptionFormalEnv . 185
ucdb_AssocFormalInfoTest . 185
ucdb_NextFormalEnv. 185
ucdb_NextFormalEnvAssumption . 186
ucdb_FormalEnvGetData . 186
ucdb_FormalTestGetInfo . 187

Test Traceability . 188
ucdb_AssocCoverTest . 189
ucdb_NextCoverTest . 189
ucdb_GetCoverTestMask . 189
ucdb_SetCoverTestMask . 190
ucdb_OrCoverTestMask . 190

Appendix A
UCDB Organization . 191

Test Section . 191
Coverage Section . 193

Scope Nodes . 193
Coveritems . 193

Table of Contents

8 UCDB API Reference, v10.1

Nesting Rules . 194
Attributes. 197

Appendix B: UCDB Diff BNF . 205

Index

End-User License Agreement

UCDB API Reference, v10.1 9

List of Figures

Figure 2-1. Basic Design/Coverage Hierarchy . 14
Figure 2-2. Design/Coverage Hierarchy with Design Units . 17
Figure 2-3. Data Model for Verilog Statements . 19
Figure 2-4. Data Model for Verilog Statements in Generate Blocks. 20
Figure 2-5. Data Model for a Verilog if-else-if . 22
Figure 2-6. Data Model for a VHDL if-elsif . 23
Figure 2-7. Data Model for a case Statement . 25
Figure 2-8. Data Model for an Expression. 26
Figure 2-9. Data Model for a Finite State Machine . 28
Figure 2-10. Data Model for a VHDL Integer Toggle. 31
Figure 2-11. Data Model for an Enum Toggle . 32
Figure 2-12. Data Model for an Extended Register Toggle. 33
Figure 2-13. Data Model for a Connected Net Toggle . 34
Figure 2-14. Data Model for a Group . 36
Figure 2-15. Data Model for SVA and PSL Cover Directives . 38
Figure 2-16. Data Model for Assertions (with Fail Count Only) . 39
Figure 2-17. Data Model for an Assertion (with All Counts) . 40
Figure 2-18. Data Model for an Immediate Assertion with Pass/Fail Counts 41
Figure 2-19. Data Model for a Cross . 43
Figure 2-20. Data Model for a Covergroup (with Per-Instance Coverage) 48
Figure 2-21. Data Model for an Embedded Covergroup . 50
Figure 2-22. Data Model for a Test Plan with Linked Coverage. 54
Figure 2-23. Questa and the UCDB Save FLI Callback . 93

10 UCDB API Reference, v10.1

List of Tables

Table A-1. Fields of a Test Record . 191
Table A-2. Attributes of a History Node . 192
Table A-3. Nesting Rules Enforced by UCDB . 194
Table A-4. UCDB Defined Attributes . 197
Table A-5. UCDB Defined Objects . 201

UCDB API Reference, v10.1 11

Chapter 1
Introduction

UCDB API is an application programming interface for the Unified Coverage Database
included in the Questa SV/AFV and ModelSim SE products. The UCDB and its API are
completely independent of Questa and ModelSim, however UCDBs are easily created with
these tools. In this document, the term Questa refers to both the Questa and the ModelSim SE
systems.

Questa software uses the UCDB API for saving, reading, reporting on and merging UCDB
format databases. The Questa GUI features are based on the UCDB API as are the command-
line interface features in the coverage view mode:

shell prompt> vsim -viewcov ucdb_file

Questa UCDB format databases are created with the coverage save command and UCDBs can
be externally processed with the vcover commands (see the Questa User Guide and Reference
manuals). For simple tasks such as generating a coverage report or merging coverage data, use
the corresponding Questa tool features. Use the UCDB API for more complex tasks such as:

• Importing data into a UCDB or Questa database from another source.

• Exporting data to a database that has a format not supported by Questa (for example, an
SQL database or a graphing package).

• Analyzing coverage data in a way not supported by any tool.

• Loading coverage data into a UCDB from a VPI application linked with Questa (that
will be saved by Questa).

UCDBs can be read from, and written to, using the C-based UCDB API. A UCDB can be
created with the API; data can be added to an existing UCDB; and a UCDB can be traversed
and analyzed with the read API. The UCDB API library supports both memory efficient modes
(read/write streaming modes) and a fully-populated data model (in-memory mode).

The UCDB API library is in mti_install_dir/questasim/platform/libucdb.a (UNIX) and ucdb.lib
(Windows). The annotated header file is mti_install_dir/questasim/include/ucdb.h. Examples
illustrating how to compile various UCDB API applications are in
mti_install_dir/questasim/examples/ucdb.

UCDB API Reference, v10.112

Introduction

Terminology
• Child — node that is a descendant of another, where “decent” means nesting in a design

hierarchy, in a coverage hierarchy or as a subset of data categorized with the parent.

• Coverage scope — scope that represents a coverage grouping of some kind.

• Coveritem — leaf node in a UCDB (i.e., a node not capable of having child nodes) used
to store a coverage count.

• Design hierarchy — part of the UCDB data model representing the design, testbench,
and coverage.

• Design unit — scope that represents a Verilog (or SystemVerilog) module or a VHDL
entity-architecture.

• Design unit list — set of all design units in a UCDB.

• History node — generalized test data record that captures information about the
database merges and test plan imports used to create the UCDB.

• Instance — scope that represents a component instance (for example, a module
instantiation) in the design hierarchy.

• Node — general term for a scope or coveritem.

• Parent — ancestor node (of a child), which represents a higher level of design hierarchy,
a higher level of coverage hierarchy or a grouping.

• Scope — hierarchical object in a UCDB (i.e., a node capable of having child nodes).

• Tag — name associated with a scope—typically used to link test plan scopes with
instance, coverage, or design unit scopes—similar to a user-defined attribute with a
name but not a value.

• Test plan hierarchy — data model structure (whose nodes are linked to coverage,
instance or design unit data structures) used to analyze coverage in the context of a test
plan.

• Test plan scope (or test plan section) — scope that represents part of a test plan.

• Test data record — data model structure that stores information about the test and the
tool from which the UCDB was created.

• User-defined attribute — name-value pair (explicitly added by the user) that is not part
of the UCDB primary data model.

UCDB API Reference, v10.1 13

Chapter 2
UCDB Basics

The UCDB is a general-purpose database for storing verification data. Most of this is of a
coverage nature, therefore the name “Unified Coverage Database”. But the UCDB can store
more types of data:

• Code coverage data — statement, branch, expression, condition, toggle, and FSM.

• Functional coverage data — from SystemVerilog covergroups, and SVA or PSL
“cover” statements.

• Assertion data — from SVA or PSL “assert” statements.

• History data — information about any number of test runs, merges, or imports that
produced data in the UCDB.

• User-defined data.

• Design hierarchy — so that coverage and assertion data appear in the proper design or
testbench context.

• Design units — needed to represent design hierarchy fully; these can correspond to
Verilog modules or VHDL entity/architecture pairs.

• Test plan hierarchy — so that coverage items can be related to a test plan, and
verification data can be analyzed in terms of the test plan rather than in isolation.

UCDB API Reference, v10.114

UCDB Basics
UCDB Data Hierarchy

UCDB Data Hierarchy

Scopes and Coveritems
Designs and testbenches are hierarchically organized. Design units (Verilog modules or VHDL
entity/architectures) can be hierarchical, though they are not always. Test plans can be
hierarchical. Even coverage data (of which the SystemVerilog covergroup is the best example)
can be hierarchical. Therefore, the UCDB needs some general way to store hierarchical
structures.

The UCDB has scopes (also referred to as hierarchical nodes), which store hierarchical
structures (i.e., elements of a database that can have children). Coverage data and assertion data
are stored as counters, which indicate how many times something happened in the design. For
example, they count how many times a sequence completed, how many times a bin incremented
or how many times a statement executed.. In UCDB terminology, these types of counters and
some associated data are called coveritems. These counters are database leaf nodes, which
cannot have children.

Tree models of hierarchical organization are central to the UCDB. Figure 2-1 is an illustration
of a simple hierarchy.

Figure 2-1. Basic Design/Coverage Hierarchy

 Seedtop Seedchild1

 Seedchild2

 Seedacovergroup Seedacoverpoint

stmt

stmt

bin1

bin2

scope scope

scope

scopescope

coveritem

coveritem

coveritem

coveritem

UCDB Basics
UCDB Data Hierarchy

UCDB API Reference, v10.1 15

Design Unit Scopes
For representing an HDL design, a simple hierarchy as shown above is not sufficient. For
example, take this SystemVerilog code that corresponds to the tree in Figure 2-1:

module top;
int i;
covergroup acovergroup;

acoverpoint: coverpoint i {
bins bin1 = { 0 };
bins bin2 = { 1 };

}
endgroup
acovergroup acovervar = new;
submodule child1();
submodule child2();

endmodule
module submodule;

initial $display("hello from %m");
endmodule

The scopes top, child1, and child2 represent the module instances of this design hierarchy. The
design units (SystemVerilog modules) need to be represented also.

In a UCDB created by Questa with code coverage, there will be code coverage associated with
the design unit. This is the union of code coverage from the instances of the design unit. This is
calculated by the kernel, and because it is available immediately from the kernel, it is stored
directly in the UCDB. This requires that the UCDB store another scope to correspond to the
design unit.

Questa also stores source file information with the design unit. (This is not a requirement of a
UCDB, but happens to be the case when one is created from Questa.)

From each module instance scope, its corresponding design unit may be accessed; in fact, the
design unit must exist prior to creating the instance.

UCDB Scope Types
Because the UCDB needs to distinguish between module instances, design units, and even other
scopes like those for covergroups and coverpoints, the UCDB has a scope type associated with
every scope. This scope type is the C type ucdbScopeTypeT.

Scope types are in these categories (found in the ucdb.h):

• HDL scope — these are the basic building blocks of the design hierarchy, or named
scopes (in the true HDL sense, rather than the UCDB sense) in the design.

• Design unit scope — these must be provided for those HDL scopes which have
corresponding design units.

UCDB API Reference, v10.116

UCDB Basics
UCDB Data Hierarchy

• Cover scope — these are used to introduce hierarchy in coverage objects, essentially to
group them together.

• Group scope — these are used to maintain bus structures for supporting part selects and
supporting a general bus data model.

• Test plan scope — a scope to represent part of a test plan hierarchy; this is unique
because it can only have children that are other test plan scopes.

These relationships must exist between HDL scopes that are instances of a given design unit
scope:

• UCDB_INSTANCE has a corresponding UCDB_DU_MODULE or
UCDB_DU_ARCH scope as its design unit.

• UCDB_PROGRAM has a corresponding UCDB_DU_PROGRAM scope as its design
unit.

• UCDB_PACKAGE has a corresponding UCDB_DU_PACKAGE scope as its design
unit. Note that, though VHDL and SystemVerilog do not have actual instances of
packages in the language, tools like Questa do represent a package twice: the
UCDB_PACKAGE corresponds to the top-level node in the instance tree, and
UCDB_DU_PACKAGE to the definition of the package.

• UCDB_INTERFACE has a corresponding UCDB_DU_INTERFACE scope as its
design unit.

Figure 2-2 revisits the hierarchy of Figure 2-1 and shows how design unit scopes exist to
represent the SystemVerilog code given above. The ucdbScopeTypeT values for the scopes are
given, as well as coveritem types which have not yet been discussed. Links from the HDL
scopes to the design unit scopes are indicated as red dashed lines.

Note that the design unit scopes (UCDB_DU_MODULE in this case) have no special
relationships among them; they are not really part of design hierarchy, though they represent a
crucial part of the design.

In this example, the statement coverage coveritem (UCDB_STMTBIN) exists in both module
instances (/top/child1 and top/child2) as well as the design unit scope (submodule). This shows
one of the uses of the design unit scope: not only does it allow us to determine that child1 and
child2 are instances of the same module, but any design-unit-wide data can reside “inside” the
design unit scope.

UCDB Basics
UCDB Data Hierarchy

UCDB API Reference, v10.1 17

Figure 2-2. Design/Coverage Hierarchy with Design Units

 Seedtop Seedchild1

 Seedchild2

 Seedacovergroup Seedacoverpoint

stmt

stmt

bin1

bon2

scope scope

scope

scopescope

coveritem

coveritem

coveritem

coveritem

UCDB_INSTANCE UCDB_INSTANCE

UCDB_INSTANCE

UCDB_STMTBIN

UCDB_STMTBIN

UCDB_CVGBIN

UCDB_CVGBIN

UCDB_COVERGROUP UCDB_COVERPOINT

 Seedtop

scope
UCDB_DU_MODULE

 Seedsubmodule stmt

scope
coveritemUCDB_DU_MODULE

UCDB_STMTBIN

UCDB API Reference, v10.118

UCDB Basics
UCDB Data Models

UCDB Data Models
The UCDB API is a very general one that creates certain objects – such as scopes, coveritems,
test data records – with certain names, types, and attributes. This allows creation of many
different potential data models.

The data models are important because they capture assumptions about how Questa creates a
UCDB data structure for a given kind of coverage. Other tools might be able to read and make
sense of different data structures, but Questa will not.

This is only to say that the UCDB API itself is more general than Questa: many different kinds
of coverage hierarchies could be created through the API, but only a small subset of those will
be valid input to Questa.

Over time, the Questa assumptions will be refined and fewer assumptions made. This document
sets out to describe the minimum set of assumptions so that a UCDB can be read by Questa.

Code Coverage Roll-Ups in Design Units and Instances
In releases prior to 6.4, Questa created code coverage underneath both design units and
instances. The coverage under the design unit was the union of coverage under all instances.
This was done primarily to make coverage analysis by design unit faster.

From 6.4 onward, the code coverage roll-up – as it is called, the aggregation of design-unit-
based coverage from instances of those design units – is done implicitly (or “on-the-fly”) when
the database is loaded into memory. However, when accessed using read streaming mode, the
nature of the storage cannot be hidden, since read streaming mode reflects exactly what is laid
out on disk. In that case, coverage never appears underneath design units.

In releases prior to 6.4, the design unit roll-up was skipped (not stored) when there was only a
single instance of the design unit – because in that case, the roll-up would be identical to the
instance. This was an optimization, though one that is necessarily exposed to the user in read
streaming mode.

Statement Coverage
Statement coverage data is created simply as a coveritem, with no hierarchy.

Verilog Example (“statement”):

module top;
initial $display("hello world");

endmodule

UCDB Basics
UCDB Data Models

UCDB API Reference, v10.1 19

Figure 2-3. Data Model for Verilog Statements

Note how in Figure 2-3 the statement bin does not appear with the design unit also; this is
because of the UCDB_INST_ONCE optimization described in the section Design Units.

Statement Coverage with Generates
Verilog Example (“statement-generate”):

module top;
bottom #0 inst0();
bottom #1 inst1();

endmodule
module bottom;

parameter clause = 0;
if (clause == 0)
begin: clause0

initial $display("hello from %m");
end
else
begin: clause1

initial $display ("hello from %m");
end

endmodule

There are a number of interesting things to note here:

• UCDB_GENERATE scopes are created for the generate blocks. These must be created
even if the generate block does not have a name generated by the user (the “begin: label”
constructs in the example). Having different generate blocks for different scopes would
handle the case of the for-generate where different blocks correspond to the same line of
source.

• The statements appear inside the generate scopes as well as the design unit scopes. In
Figure 2-4, the line number associated with the statement is shown to distinguish
between the two statements.

• While the code coverage from generate blocks could be merged into the instance – for
example, having another set of merged statement coveritems as children of the

 Seedtop stmt

scope
coveritemUCDB_INSTANCE

UCDB_STMTBIN

 Seedtop

scope
UCDB_DU_MODULE

Flag: UCDB_INST_ONCE

UCDB API Reference, v10.120

UCDB Basics
UCDB Data Models

UCDB_INSTANCE scopes in this example – that is not a requirement of the data
model. Questa does this aggregation on the fly, so never stores any redundant data with
the instances themselves. (Yes, this philosophy is inconsistent with design units, where
redundant data is stored.)

Figure 2-4. Data Model for Verilog Statements in Generate Blocks

Branch Coverage
Branch coverage falls into 3 special cases:

1. Verilog if-else — in which case a single UCDB_BRANCH scope has 2 coveritems, one
each for the if and else branches.

2. VHDL if-elsif-else — in which case there are as many coveritems as the if-cascade has
clauses.

3. Verilog and VHDL case statements — in which case there is one coveritem per value in
the case statement.

Additionally, branch coverage has extra information in the scope:

• BCOUNT attribute — total number of times the test was executed. This is useful if the
branch does not have an “else” clause.

• BTYPE attribute — to distinguish between branch and if-else

• BHASELSE attribute — to distinguish between if-else branches having an else and
those which do not.

 Seedtop

 Seedinst1 Seedclause1 stmt

scope

scopescope
coveritem

UCDB_INSTANCE

UCDB_STMTBIN
UCDB_INSTANCE UCDB_GENERATE

 Seedtop

scope
UCDB_DU_MODULE

 Seedbottom

scope
UCDB_DU_MODULE

Line: 23

 Seedinst0 Seedclause0 stmt

scopescope
coveritem

UCDB_STMTBIN
UCDB_INSTANCE UCDB_GENERATE

Line: 19

UCDB Basics
UCDB Data Models

UCDB API Reference, v10.1 21

Branch Coverage of Verilog if-else
SystemVerilog Example (“branch-vlog-if”):

module top;
 bit x = 0;
 bit y = 0;
 always @(x or y) begin
 if (x)
 $display("x is true");
 else if (y)
 $display("y is true");
 end
 initial begin
 #1; x = 1;
 #1; x = 0;
 #1; y = 1;
 end
endmodule

In Figure 2-5, the design unit is omitted. This is the first data model drawing where coverage
counts are indicated. Some data is redundant, but this describes the basic components of the
data model:

• UCDB_BRANCH scopes are named according to type of coverage and line number.
(Note: in Questa 6.3, these scopes are named “dummy_coverage_scope”, the naming
according to line number is new to 6.4.)

• BCOUNT is the sum of if and else counts (even if the “else” is lacking, as in the line 7
branch.)

• BTYPE is 0 for these cases to indicate an “if” as opposed to a “case” statement.

• BHASELSE is 0 for the line 7 branch to indicate that it does not have an else clause.

• “if_branch” is the coveritem name for the true clause of the branch.

• “else_branch” is the coveritem name for the false clause of the branch if it has an
explicit “else”.

• “all_false_branch” is the coveritem name for the missing else.

UCDB API Reference, v10.122

UCDB Basics
UCDB Data Models

Figure 2-5. Data Model for a Verilog if-else-if

Branch Coverage of VHDL if-elsif-else
VHDL Example (“branch-vhdl-if”):

library IEEE;
use IEEE.STD_LOGIC_1164.all;
use std.textio.all;
entity top is end;
architecture arch of top is
 signal x : std_logic := '0';
 signal y: std_logic := '0';
 begin
 branch: process
 variable myoutput : line;
 begin
 wait until x'event or y'event;
 if (x = '1') then
 write(myoutput,string'("x is true"));
 writeline(output,myoutput);
 elsif (y = '1') then
 write(myoutput,string'("y is true"));
 writeline(output,myoutput);
 end if;
 end process branch;

 Seedtop

scope
UCDB_INSTANCE

 Seed#branch#15#

scope coveritem
UCDB_BRANCHBINUCDB_BRANCH

Count: 1BCount: 3
BType: 0
BHasElse: 1

if_branch

Line: 15

coveritem
UCDB_BRANCHBIN
Count: 2

else_branch

Line: 17

 Seed#branch#17#

scope coveritem
UCDB_BRANCHBINUCDB_BRANCH

Count: 1BCount: 2
BType: 0
BHasElse: 0

if_branch

Line: 17

coveritem
UCDB_BRANCHBIN
Count: 1

all_false_branch

Line: 17

UCDB Basics
UCDB Data Models

UCDB API Reference, v10.1 23

 drive: process
 begin
 wait for 10 ns;
 x <= '1';
 wait for 10 ns;
 x <= '0';
 wait for 10 ns;
 y <= '1';
 wait;
 end process drive;
end architecture;

Figure 2-6. Data Model for a VHDL if-elsif

This is the VHDL branch to correspond to the previous Verilog one. In this case, the design unit
is shown to illustrate the difference between VHDL and Verilog design units: the scope type is
different, and the architecture name follows the entity name in parenthesis. (These diagrams
omit the work library name, which varies depending how the module or architecture was
compiled. Technically that is part of the design unit name in the UCDB, too.)

The most obvious difference is that there is a single UCDB_BRANCH scope rather than
multiple ones. This is because VHDL has the “elsif” syntax that allows a branch to have
multiple paths rather than just 2 paths. Some things are in common:

• The first branch coveritem is called “if_branch”.

• The last coveritem is called “all_false_branch” if there is no explicit “else”.

• If there were an explicit “else”, the last coveritem would be called “else_branch”.

• The attributes with the UCDB_BRANCH scope carry the same meanings.

 Seedtop

scope
UCDB_INSTANCE

 Seed#branch#24#

scope coveritem
UCDB_BRANCHBINUCDB_BRANCH

Count: 1BCount: 3
BType: 0
BHasElse: 0

if_branch

Line: 24

coveritem
UCDB_BRANCHBIN
Count: 1

true_branch

Line: 27

coveritem
UCDB_BRANCHBIN
Count: 1

all_false_branch

Line: 24

 Seedtop (arch)

scope
UCDB_DU_ARCH

UCDB API Reference, v10.124

UCDB Basics
UCDB Data Models

And some things are different:

• Coveritems to correspond to “elsif” branches are called “true_branch”.

• The UCDB_BRANCH scope may have arbitrarily many coveritem children to
correspond to all the “elsif” branches in the VHDL if construct.

Case Statements
SystemVerilog Example (“branch-case”):

module top;
 int x = 0;
 always @(x)
 case (x)
 1: $display("x is 1");
 2: $display("x is 2");
 default: $display("x is neither 1 nor 2");
 endcase
 initial begin
 #1; x = 1;
 #1; x = 2;
 #1; x = 3;
 end
endmodule

This is very similar to the if-elsif construct. The key difference is that the “BTYPE” attribute
has value 1, and that all the coveritems are named “true_branch”.

Note how there is no way in the data model to distinguish between the explicit values in the case
statement and the default value. (There are differences in the line numbers stored with the
coveritems, so the difference could be determined from source if available.)

UCDB Basics
UCDB Data Models

UCDB API Reference, v10.1 25

Figure 2-7. Data Model for a case Statement

Expression and Condition Coverage
Expression coverage is defined to be the truth table coverage for an expression used to drive a
continuous assignment. Condition coverage is defined to be the truth table coverage for an
expression in a branch.

SystemVerilog Example (“expr-cond”):

module top;
 logic a = 0;
 logic b = 0;
 assign c = (a|b);
 always @(c)
 if (a || b)
 $display("a or b");
 initial begin
 #1; a = 1;
 #1; a = 0;
 #1; a = 1'bx;
 end
endmodule

Note the example is configured by default for expression coverage only. It can be configured for
either expression coverage, condition coverage, or both. Expression coverage is for line 14;
condition coverage is for line 16.

 Seedtop

scope
UCDB_INSTANCE

 Seed#branch#14#

scope coveritem
UCDB_BRANCHBINUCDB_BRANCH

Count: 1BCount: 3
BType: 1
BHasElse: 0

true_branch

Line: 15

coveritem
UCDB_BRANCHBIN
Count: 1

true_branch

Line: 16

coveritem
UCDB_BRANCHBIN
Count: 1

true_branch

Line: 17

 Seedtop

scope
UCDB_DU_MODULE

UCDB API Reference, v10.126

UCDB Basics
UCDB Data Models

Figure 2-8. Data Model for an Expression

The data model for expression/condition coverage is split into two styles, each represented
simultaneously by default. (There is a way to turn off FEC-style coverage, with the -nocoverfec
switch to vopt, for example.) The UDP-style coverage is underneath the node named “UDP”.
UDP stands for “user-defined primitive” which really means “truth table.” Verilog UDPs use a
truth table syntax in their specification and the names of the UDP-style coverage bins are
similar to Verilog UDP row specifications.

FEC-style coverage is also a truth-table-based coverage, but of a different kind of truth table.
FEC stands for “focused expression coverage”. While a UDP-style truth table is somewhat
arbitrarily generated to have a minimal number of rows, the FEC-style truth table considers
each input independently, where each row in the truth table corresponds to a change in a
particular input, where that input affects the output. Complete coverage in FEC guarantees that
each input changed. FEC is also sometimes called MCDC (modified condition decision
coverage).

 Seed#expr#14#

scope
UCDB_EXPR

 SeedUDP

scope coveritem
UCDB_EXPRBINUCDB_EXPR

Count: 1#EHEADER#=’a
b
(a|b)’

 Seedtop

scope
UCDB_INSTANCE

 Seedtop

scope
UCDB_DU_MODULE

1–1

coveritem
UCDB_EXPRBIN
Count: 0

–11

coveritem
UCDB_EXPRBIN
Count: 2

000

coveritem
UCDB_EXPRBIN
Count: 1

unknown

 SeedFEC

scope coveritem
UCDB_EXPRBINUCDB_EXPR

#FECSTR#={00}

a_0

Count: 2

coveritem
UCDB_EXPRBIN
#FECSTR#={10}

a_1

Count: 1

coveritem
UCDB_EXPRBIN
#FECSTR#={00}

b_0

Count: 2

coveritem
UCDB_EXPRBIN
#FECSTR#={01}

b_1

Count: 0

UCDB Basics
UCDB Data Models

UCDB API Reference, v10.1 27

If this test case were configured for condition coverage instead, the differences would be:

• UCDB_COND scope type instead of UCDB_EXPR.

• UCDB_CONDBIN coveritem type instead of UCDB_EXPRBIN.

• EHEADER would be the same except for the last line: “(a || b)”.

• Difference in line numbers, of course.

• Difference in the coverage enabled flags in the design unit: see more on design units,
below.

UDP-Style Expression and Condition Coverage
Probably the easiest illustration of how the “UDP” sub-tree data model corresponds to UDP-
style expression coverage is to show the report generated by Questa:

Line 4 Stmt 1 assign c = (a|b);
Expression totals: 2 hits of 3 rows = 66.7%
Truth Table: a
 |b
 hits ||(a | b)
 Row 1: 1 1-1
 Row 2: ***0*** -11
 Row 3: 2 000
 unknown: 1

The columns of the truth table are stored with the EHEADER attribute with the expression
scope. This is a newline-separated string. The coveritem names correspond literally to the rows
of the truth table: “1-1”, “-11”, “000”, and “unknown”. Note that the “unknown” coveritem
does not contribute to coverage; its presence is necessary for the report only.

FEC-Style Expression Condition Coverage
The FEC sub-tree data model is likewise explained by the Focused Expression View portion of
the report:

Line 14 Item 1 assign c = (a|b);
Expression totals: 3 hits of 4 rows = 75.0%
 Rows: hits Fec Targets Matching input patterns
 -------- -------- -------------- ----------------------
 Row 1: 2 a_0 { 00 }
 Row 2: 1 a_1 { 10 }
 Row 3: 2 b_0 { 00 }
 Row 4: ***0*** b_1 { 01 }

This is very similar to the UDP style data model, except that the bin names are “Fec Targets” –
meaning, the specific input transition represented by the row. With the “-fecanalysis” option,
the report shows matching input patterns, which are associated as the attribute “#FECSTR#”
with each bin.

UCDB API Reference, v10.128

UCDB Basics
UCDB Data Models

Finite State Machine (FSM) Coverage
SystemVerilog Example (“fsm”):

module top;
 bit clk = 0;
 bit i = 0;
 bit reset = 1;
 enum { stR, st0 } state;
 always @(posedge clk or posedge reset)
 begin
 if (reset)
 state = stR;
 else
 case(state)
 stR: if (i==0) state = st0;
 endcase
 end
 always #10 clk = ~clk;
 always @(state) $display(state);
 initial begin
 $display(state);
 @(negedge clk);
 @(negedge clk) reset = 0;
 @(negedge clk);
 $stop;
 end
endmodule

Figure 2-9. Data Model for a Finite State Machine

 Seedstate

scope
UCDB_FSM

 Seedtrans

scope coveritem
UCDB_FSMBINUCDB_FSM_TRANS

Flag: IS_FSM_TRANS

 Seedtop

scope
UCDB_INSTANCE

stR–>st0

coveritem
UCDB_FSMBIN
Flag: IS_FSM_TRANS

stR–>stR

coveritem
UCDB_FSMBIN
Flag: IS_FSM_TRANS

st0–>stR

 Seedstate

scope coveritem
UCDB_FSMBINUCDB_FSM_STATES

FStateVal: ”0”

stR

Count: 2

coveritem
UCDB_FSMBIN
FStateVal: ”1”

st0

Count: 1

FSMID=”state”

Count: 1

Count: 2

Count: 0

UCDB Basics
UCDB Data Models

UCDB API Reference, v10.1 29

The finite state machine is represented as a two-level hierarchy of coverage scopes: the topmost
one for the state machine itself (whose “FSMID” is identified as an attribute) and two child
scopes: one for states and one for transitions. These are distinguished by name and scope type.
The state machine scope itself (of type UCDB_FSM) is identified by the name of the state
variable if possible – note this does mean that it can take the same name as a toggle coverage
scope for exactly the same variable in HDL source. Refer to Toggle Coverage for more
information.

The state coveritems are named according to the state name. An integer form of the state name
is held in the attribute FSTATEVAL and used in the report.

The transition coveritems are named according to the transition. The flag IS_FSM_TRAN is
used to distinguish a coveritem of type UCDB_FSMBIN when it is an FSM transition bin.

Toggle Coverage
There are six basic types of toggle coverage:

• Integer toggles (VHDL only with Questa) — some unique number of integer values are
maintained up to a configurable tool limit (with Questa.) The toggle is covered if the
toggle is assigned any value.

Note
In Questa, Verilog or SystemVerilog integer types are broken into constituent bits, so
become net or register toggles.

• Enum toggles — The toggle is covered if all the enum values have been assigned.

• Register toggles, 2 transition — Covered if toggled from 0->1 and 1->0.

• Net toggles, 2 transition — Covered if toggled from 0->1 and 1->0. Net (or wire)
toggles must be reported without redundancy: in other words, connected nets are
reported only once, by the top-most or canonical name. This checking for redundancy is
sometimes called “unaliasing” because two connected nets in different levels of
hierarchy are really aliases of each other. The top-most net is usually considered to have
the canonical name for all connected nets.

• Extended register toggles, with 6 transitions — Adds Z transitions. Covered if it toggles
from 1->0 and 0->1 without any z transitions, otherwise it must show all transitions:
0->1, 1->0, 0->Z, Z->0, 1->Z, and Z->1.

• Extended net toggles, with 6 transitions — Adds Z transitions, with coverage rules
similar to register toggles. Unaliasing or elimination of redundancy among connected
nets also occurs.

UCDB API Reference, v10.130

UCDB Basics
UCDB Data Models

VHDL Integer Toggles
VHDL example (“toggle-int”):

library IEEE;
use IEEE.STD_LOGIC_1164.all;
use std.textio.all;
entity top is
end;
architecture arch of top is
 signal x : integer := 0;
 begin
 branch: process
 variable myoutput : line;
 begin
 wait until x'event;
 write(myoutput,x);
 writeline(output,myoutput);
 end process branch;
 drive: process
 begin
 wait for 10 ns;
 x <= 1;
 wait;
 end process drive;
end architecture;

The UCDB_TOGGLE scope is named the same as the variable or signal being covered; if it
were also a finite state machine variable, the name would thus appear twice in the database.

The scope has specific information relevant to toggles, two fields of which are visible in
Figure 2-10:

• Type — These types are the ucdbToggleTypeT enum values that correspond to the six
types of toggles.

• Dir (Direction) — The ucdbToggleDirT enum values: INTERNAL, IN, OUT, and
INOUT. These are used by the report software to restrict the subset of toggles being
reported upon.

• Canonical Name — The canonical name of the toggle node if it is a wire and is not the
top-most node. This is not shown in the example because it is NULL.

UCDB Basics
UCDB Data Models

UCDB API Reference, v10.1 31

Figure 2-10. Data Model for a VHDL Integer Toggle

The integer toggle has bins for both of the values it assumes: “0” and “1”. The bins are named
according to the integer value of the signal.

Note
If there were no data changes (no events) on the integer signal, there would be no bins for
the toggle scope in the UCDB. However, because the default integer value is counted as a
bin value, it is not possible to have only one bin for the integer toggle; it has at least the
default value plus some set of other values to which it was assigned (up to a configurable
tool limit with the ToggleMaxIntValues variable in the modelsim.ini file.)

Enum Toggles
SystemVerilog Example (“toggle-enum”):

module top;
 enum { a, b, c } t = a;
 initial begin
 #1; t = c;
 #1; t = b;
 end
endmodule

This is very similar to the VHDL Integer Toggles, except with the toggle type equal to ENUM.
The coveritems are named according to enum values. In this case, the default value is explicitly
not covered, to distinguish between an explicit and implicit assignment to that value. In this
particular simulation, “b” and “c” are covered while “a” is not, so the toggle “/top/t” itself is
uncovered.

 Seedtop

scope
UCDB_INSTANCE

 Seedx

scope coveritem
UCDB_TOGGLEBINUCDB_TOGGLE

Count: 1Type: INT
Dir: INTERNAL

0

coveritem
UCDB_TOGGLEBIN
Count: 1

1

UCDB API Reference, v10.132

UCDB Basics
UCDB Data Models

Figure 2-11. Data Model for an Enum Toggle

Extended Register Toggle
This shows an example of the extended (6-transition) toggle for a register only. Extended toggle
coverage can be used for nets, too, but this document will not illustrate it; the data structure will
be identical except for the toggle type.

SystemVerilog Example (“toggle-reg-ext”):

module top;
 logic r = 1'bx;
 initial begin
 #1; r = 1'b0;
 #1; r = 1'b1;
 #1; r = 1'bz;
 #1; r = 1'b0;
 #1; r = 1'b1;
 #1; r = 1'b0;
 end
endmodule

The type of the toggle scope shows that this is a register extended toggle. The 6 bins are named
according to the possible transitions among 0, 1, and z. If this were a 2-transition toggle, it
would be covered based on “toggle_h_l” and “toggle_l_h” bins. However, since it has some z
transitions with non-zero count, it would have to have all bins with non-zero count in order for
the “/top/r” register toggle to be covered.

 Seedtop

scope
UCDB_INSTANCE

 Seedt

scope coveritem
UCDB_TOGGLEBINUCDB_TOGGLE

Count: 0Type: ENUM
Dir: INTERNAL

a

coveritem
UCDB_TOGGLEBIN
Count: 1

b

coveritem
UCDB_TOGGLEBIN
Count: 1

c

UCDB Basics
UCDB Data Models

UCDB API Reference, v10.1 33

Figure 2-12. Data Model for an Extended Register Toggle

Net Toggle with Connected Net
Note that this example – because of its contrived and trivial nature – requires turning off the
optimizer in Questa to allow the “bottom” module to survive elaboration.

SystemVerilog Example (“toggle-net”):

module top;
 bit t = 0;
 wire tnet;
 assign tnet = t;
 initial begin
 #1; t = 1;
 #1; t = 0;
 end
 bottom i(tnet);
endmodule
module bottom(input wire tnet);
 always @(tnet)
 $display(tnet);
endmodule

 Seedtop

scope
UCDB_INSTANCE

 Seedr

scope coveritem
UCDB_TOGGLEBINUCDB_TOGGLE

Count: 0Type: REG_SCALAR_EXT
Dir: INTERNAL

toggle_h_l

coveritem
UCDB_TOGGLEBIN
Count: 1

toggle_l_z

coveritem
UCDB_TOGGLEBIN
Count: 1

toggle_h_z

coveritem
UCDB_TOGGLEBIN
Count: 0

toggle_l_h

coveritem
UCDB_TOGGLEBIN
Count: 1

toggle_z_l

coveritem
UCDB_TOGGLEBIN
Count: 1

toggle_z_h

UCDB API Reference, v10.134

UCDB Basics
UCDB Data Models

Since the UCDB does not represent connectivity, it must indicate the connectedness of two nets
(“tnet” in this example) in a different way. These two data attributes are used:

• The top node has a flag – UCDB_IS_TOP_NODE – set for the toggle scope. This is
useful when traversing the entire database to restrict the report or other analysis to top-
level (canonical) nodes only. However, it does not suffice for analyzing a subset of the
database. Note that hierarchical references as well as port connections can create
connected nets.

• The canonical name is stored for all net toggles. This is accessed with the
ucdb_GetToggleInfo() function, which also returns toggle type and toggle direction.
Note in this example how /top/tnet and /top/i/tnet both have the same canonical name:
“/top/tnet”.

Figure 2-13. Data Model for a Connected Net Toggle

 Seedtop

scope
UCDB_INSTANCE

 Seedt

scope coveritem
UCDB_TOGGLEBINUCDB_TOGGLE

Type: REG_SCALAR
Dir: INTERNAL

toggle_low

coveritem
UCDB_TOGGLEBIN

toggle_high

 Seedtnet

scope coveritem
UCDB_TOGGLEBINUCDB_TOGGLE

Type: SCALAR
Dir: INTERNAL

toggle_low

coveritem
UCDB_TOGGLEBIN

toggle_high
/top/tnet
Flag: IS_TOP_NODE

 Seedi

scope
UCDB_INSTANCE

coveritem
UCDB_TOGGLEBIN

toggle_low

coveritem
UCDB_TOGGLEBIN

toggle_high Seedtnet

scope
UCDB_TOGGLE
Type: SCALAR
Dir: INTERNAL
/top/tnet

UCDB Basics
UCDB Data Models

UCDB API Reference, v10.1 35

Groups
SystemVerilog Example (“top/outer_struct.nested_struct.multiD_array[1][5][3]”):

module top;

typedef struct {
reg[0:4] multiD_array [1:0] [2:5];
bit simple_struct_elem_b;
bit simple_struct_elem_c;

} ST1;

typedef struct {
bit outer_struct_elem;
ST1 nested_struct;

} ST2;

ST2 outer_struct;

initial begin
 outer_struct.nested_struct.multiD_array[1][5][3]= 1’b0;

end

endmodule

UCDB API Reference, v10.136

UCDB Basics
UCDB Data Models

Figure 2-14. Data Model for a Group

 Seedouter_struct

scope
UCDB_GROUP_

 Seednested_struct

scope

 Seedtop

scope
UCDB_INSTANCE

 SeedmultiD_array

Left: 1
Right: 0

UNPACKED_STRUCT
UCDB_GROUP_

UNPACKED_STRUCT

scope
UCDB_TOGGLE

scope
UCDB_GROUP_

UNPACKED_ARRAY

 Seedouter_struct_elem

scope
UCDB_TOGGLE

 Seedsimple_struct_
elem_b

scope
UCDB_TOGGLE

 Seedsimple_struct_
elem_b

 Seed0

Left: 2
Right: 5

scope
UCDB_GROUP_

UNPACKED_ARRAY

 Seed1

Left: 2
Right: 5

scope
UCDB_GROUP_

UNPACKED_ARRAY

 Seed5

Left: 0
Right: 4

scope
UCDB_GROUP_
PACKED_ARRAY

 Seed4

Left: 0
Right: 4

scope
UCDB_GROUP_
PACKED_ARRAY

 Seed3

Left: 0
Right: 4

scope
UCDB_GROUP_
PACKED_ARRAY

 Seed2

Left: 0
Right: 4

scope
UCDB_GROUP_
PACKED_ARRAY

 Seed4

scope
UCDB_TOGGLE

 Seed3

scope
UCDB_TOGGLE

 Seed2

scope
UCDB_TOGGLE

 Seed1

scope
UCDB_TOGGLE

 Seed0

scope
UCDB_TOGGLE

coveritem
UCDB_TOGGLEBIN

3

UCDB Basics
UCDB Data Models

UCDB API Reference, v10.1 37

SVA and PSL Covers
Cover directives in PSL or cover statements in SystemVerilog Assertions language are exactly
the same in Questa. (Both are referred to as “cover directives” in Questa.)

SystemVerilog Example (“cover”):

module top;
 bit a = 0, b = 0, clk = 0;
 always #10 clk = ~clk;
 initial begin
 @(negedge clk); b = 1;
 @(negedge clk); a = 1; b = 0;
 @(negedge clk); a = 0;
 @(negedge clk); $stop;
 end
 // psl default clock = rose(clk);
 // psl pslcover: cover {b;a};
 sequence a_after_b;
 @(posedge clk) b ##1 a;
 endsequence
 svacover: cover property(a_after_b);
endmodule

Except for name, the two cover directives are identical. The differences are:

• Line number — accessed with source information.

• Scope source type (accessed with ucdb_GetScopeSourceType()) — PSL_VLOG for the
Verilog PSL, VLOG for the native SVA cover. The value PSL_VHDL is used for
VHDL PSL.

There are additional data – accessed with ucdb_GetCoverData() – available for cover directives:

• Goal — A tool feature in Questa, the “at_least” value for a cover directive, set with the
fcover configure command.

• Weight — An individual weight for this cover directive, another tool feature. The
weight is set at the coveritem level as well as the UCDB_COVER scope level.

• Limit — Questa has a tool feature for disabling a cover after reaching a certain count. If
-1, this is unlimited.

• Enabled — Questa has a tool feature for disabling a cover directive. This feature is
disabled when the enabled bit is set to FALSE.

• Count — The pass count for the cover directive. In the future multiple counts may be
maintained. Failure counts are implied in the SystemVerilog LRM for sequences;
vacuous passes and attempts for properties. These have not yet been implemented in
Questa.

UCDB API Reference, v10.138

UCDB Basics
UCDB Data Models

Figure 2-15. Data Model for SVA and PSL Cover Directives

Assertion Data
Assertions have different counts maintained in different circumstances. There are three cases:

• The immediate or concurrent assertion with a fail count only.

• The concurrent assertion with a full complement of 7 counts (assert debug mode).

• The immediate assertion with both fail count and pass count (assert debug mode).

Assertions with Fail Counts Only
Example, compiled by default with optimizations (“assert”):

module top;
 bit a = 0, b = 0, clk = 0;
 always #10 clk = ~clk;
 initial begin
 @(negedge clk); b = 1;
 @(negedge clk); a = 1; b = 0;
 @(negedge clk); a = 0; b = 1;
 @(negedge clk); b = 0;
 @(negedge clk); $stop;
 end
 // psl default clock = rose(clk);
 // psl pslassert: assert always {b} |=> {a};
 property a_after_b;
 @(posedge clk) b |=> a;
 endproperty
 svaassert: assert property(a_after_b);
endmodule

 Seedtop

scope
UCDB_INSTANCE

 Seedpslcover

scope coveritem
UCDB_COVERBINUCDB_COVER

Goal: 1SourceT: PSL_VLOG
Line: 21

pslcover

Weight: 1
Count: 1
Limit: -1
Enabled: 1

 Seedsvacover

scope coveritem
UCDB_COVERBINUCDB_COVER

Goal: 1SourceT: VLOG
Line: 25

svacover

Weight: 1
Count: 1
Limit: -1
Enabled: 1

UCDB Basics
UCDB Data Models

UCDB API Reference, v10.1 39

The UCDB_ASSERTBIN is the fail count for the assertion. Other aspects of the data model
include:

• The “ACTION” attribute on the UCDB_ASSERT scope. This is an integer attribute
whose values indicate how the simulator should react to an assertion failure:

o 0 — continue after failure.

o 1 — break after failure.

o 2 — exit after failure

• Log (the flag UCDB_LOG_ON) — this is a bit to indicate that the assertion failure
messages appear in the simulator transcript.

Other aspects of the data model are in common with the cover directives.

Figure 2-16. Data Model for Assertions (with Fail Count Only)

Assertion with All Counts Using -assertdebug
This requires both the -assertdebug option and full visibility for all assertions. The example is
compiled with -assertdebug -novopt to turn off the optimizer completely, but the
-voptargs=”+acc=a” flag could be used instead or could be used selectively to enable visibility
for some regions and not others.

SystemVerilog Example (“assert-debug”):

module top;
 bit a = 0, b = 0, clk = 0;
 always #10 clk = ~clk;
 initial begin
 @(negedge clk); b = 1;
 @(negedge clk); a = 1; b = 0;
 @(negedge clk); a = 0; b = 1;

 Seedtop

scope
UCDB_INSTANCE

 Seedpslassert

scope coveritem
UCDB_ASSERTBINUCDB_ASSERT

Count: 1SourceT: PSL_VLOG
Line: 22

pslassert

Limit: -1
Log: 1
Enabled: 1

 Seedsvaassert

scope coveritem
UCDB_ASSERTBINUCDB_ASSERT

Count: 1SourceT: SV
Line: 26

svaassert

Limit: -1
Log: 1
Enabled: 1

Action: 0

Action: 0

UCDB API Reference, v10.140

UCDB Basics
UCDB Data Models

 @(negedge clk); b = 0;
 @(negedge clk); $stop;
 end
 property a_after_b;
 @(posedge clk) b |=> a;
 endproperty
 A: assert property(a_after_b);
endmodule

Figure 2-17. Data Model for an Assertion (with All Counts)

This currently represents 7 bins with the following meanings:

• ASSERTBIN — The assertion failure count. Has data values for limit, log, etc., as
previously discussed.

• PASSBIN — The assertion non-vacuous pass (success) count. Similar to the
ASSERTBIN in which flags and data fields it offers. This is useful to determine if an
assertion has been fully exercised during simulation. Coverage metrics derived from an
assertion use this metric if available.

 Seedtop

scope
UCDB_INSTANCE

 SeedA

scope
UCDB_ASSERT
SourceT: SV
Line: 24
Action: 0

coveritem
UCDB_ASSERTBIN
Count: 1

A

Limit: -1
Log: 1
Enabled: 1

coveritem
UCDB_ATTEMPTBIN
Count: 3

A

coveritem
UCDB_VACUOUSBIN
Count: 3

A

coveritem
UCDB_ACTIVEBIN
Count: 3

A

coveritem
UCDB_DISABLEDBIN
Count: 3

A

coveritem
UCDB_PEAKACTIVEBIN
Count: 3

A

coveritem
UCDB_PASSBIN
Count: 1

A

Limit: -1
Log: 1
Enabled: 1

UCDB Basics
UCDB Data Models

UCDB API Reference, v10.1 41

• VACUOUSBIN — The vacuous pass (success) count. This is for implications whose
left-hand-side is false.

• DISABLEDBIN — Counts the number of cycles for which the assertion was explicitly
disabled through the SystemVerilog “disable iff” construct. This is essentially the
number of attempts missed because the assertion was disabled.

• ATTEMPTBIN — The number of times the assertion was attempted: the number of
times its clocking expression triggered.

• ACTIVEBIN — The number of threads left active (in-progress) at the end of simulation
for this assertion.

• PEAKACTIVEBIN — The maximum number of threads ever created for this assertion
at any given point in time.

Immediate Assert with Pass/Fail
Example, compiled with -assertdebug and without the optimizer (“immed-assert”):

module top;
 bit a = 0, b = 0, clk = 0;
 always #10 clk = ~clk;
 initial begin
 @(negedge clk); b = 1;
 @(negedge clk); a = 1; b = 0;
 @(negedge clk); a = 1; b = 1;
 @(negedge clk); b = 0;
 @(negedge clk); $stop;
 end
 always @(posedge clk)

not_a_and_b: assert (!(a && b)) else $error("a and b both true!");
endmodule

Figure 2-18. Data Model for an Immediate Assertion with Pass/Fail Counts

 Seedtop

scope
UCDB_INSTANCE

 Seednot_a_and_b

scope
UCDB_BLOCK coveritem

UCDB_ASSERTBIN

not_a_and_b Seednot_a_and_b

SourceT: VLOG
Line: 23

scope
UCDB_BLOCK
SourceT: VLOG
Line: 23
Action: 0

Count: 1
Limit: 0
HasAction: 1

coveritem
UCDB_PASSBIN

not_a_and_b

Count: 1
Limit: 0
HasAction: 1

UCDB API Reference, v10.142

UCDB Basics
UCDB Data Models

SystemVerilog Covergroup Coverage

Covergroup with a Cross
SystemVerilog example (“covergroup”):

module top;
 int a = 0, b = 0;
 covergroup cg;
 type_option.comment = "Example";
 option.at_least = 2;
 cvpa: coverpoint a { bins a = { 0 }; }
 cvpb: coverpoint b { bins b = { 1 }; }
 axb: cross cvpa, cvpb { type_option.weight = 2; }
 endgroup
 cg cv = new;
 initial begin
 #1; a = 0; b = 1; cv.sample();
 #1; a = 1; b = 1; cv.sample();
 #1; $display($get_coverage());
 end
endmodule

The covergroup type roll-up is part of the subtree rooted at the “cg” (UCDB_COVERGROUP)
node – specifically, the subtree containing the UCDB_COVERPOINT and UCDB_CROSS
children. The covergroup instance is the subtree rooted at the UCDB_COVERINSTANCE
node. It is a mirror of the type subtree.

Note
When there are multiple instances, the number of coverpoint and cross children must be
the same among all instances, but the numbers of bins can be different.

In this case, it is true, the instance data is largely redundant, but since option.per_instance is
effectively ignored by Questa, the instance data serves the purpose of storing instance-specific
options and is also used when the data is reloaded with $load_coverage_db().

Some interesting things to note here are:

• Weight is a primary data component of a UCDB scope – accessed with
ucdb_GetScopeWeight(). Note how the cross weight is reflected in the weight for the
axb cross scope. It is also reflected in the weight associated with the coveritem itself,
(but this is less useful).

• The goal for the scope – ucdb_GetScopeGoal() – is the goal established by the
covergroup type_option.goal or option.goal. In this example, all scopes – covergroup,
coverinstance, coverpoint, and cross – have a default of 100. This is a percentage. The
attribute name is “#GOAL#” to adhere to a convention whereby attributes with “#” in
the name do not appear in the command-line and graphical user interface.

UCDB Basics
UCDB Data Models

UCDB API Reference, v10.1 43

Figure 2-19. Data Model for a Cross

 Seedtop

scope
UCDB_INSTANCE

 Seedtop/cv

scope
UCDB_COVERINSTANCE coveritem

UCDB_CVGBIN

<a,b> Seedaxb

Weight: 1
Goal: 100

scope
UCDB_CROSS
Weight: 1

Comment: ””

PrintMissing: 0
PerInstance: 0

Goal: 100
AtLeast: 2
Comment: ””

Weight: 1
Goal: 2
Count: 1
BinRHS: ””
CrossSBIndex: 0
CrossUBIndex: 0

coveritem
UCDB_CVGBIN

a

 Seedcvpa

scope
UCDB_COVERPOINT
Weight: 1
Goal: 100
AtLeast: 2
Comment: ””

Weight: 1
Goal: 2
Count: 1
BinRHS: ”0”

coveritem
UCDB_CVGBIN

b

 Seedcvpb

scope
UCDB_COVERPOINT
Weight: 1
Goal: 100
AtLeast: 2
Comment: ””

Weight: 1
Goal: 2
Count: 2
BinRHS: ”1”

 Seedcg

scope
UCDB_COVERGROUP coveritem

UCDB_CVGBIN

<a,b> Seedaxb

Weight: 1
Goal: 100

scope
UCDB_CROSS
Weight: 2

Comment: ”Example”
Strobe: 0
MergeInstance: 1

Goal: 100
AtLeast: 2
Comment: ””

Weight: 2
Goal: 2
Count: 1
BinRHS: ””
CrossSBIndex: 0
CrossUBIndex: 0

coveritem
UCDB_CVGBIN

a Seedcvpa

scope
UCDB_COVERPOINT
Weight: 1
Goal: 100
AtLeast: 2
Comment: ””

Weight: 1
Goal: 2
Count: 1
BinRHS: ”0”

coveritem
UCDB_CVGBIN

b

 Seedcvpb

scope
UCDB_COVERPOINT
Weight: 1
Goal: 100
AtLeast: 2
Comment: ”” Weight: 1

Goal: 2
Count: 2
BinRHS: ”1”

AtLeast: 2

AutoBinMax: 64
DetectCOverlap: 0

GETINSTCOV=1

PrintMissing: 0

AutoBinMax: 64
DetectCOverlap: 0

AutoBinMax: 64
DetectCOverlap: 0

UCDB API Reference, v10.144

UCDB Basics
UCDB Data Models

• Goal associated with the coveritem is really the “at_least” value for the covergroup. This
allows a simple algorithm for determining if a coveritem is covered: if its count is
greater than or equal to its goal.

• Other attributes reflect the type_option or option values associated with the covergroup,
coverpoint or cross:

o COMMENT — for the type_option.comment in all scopes in the type subtree, or the
option.comment in all scopes in the instance subtree.

o STROBE — for the type_option.strobe for the covergroup scope.

o AUTOBINMAX — for the option.auto_bin_max in covergroup and coverpoint
scopes.

o DETECTOVERLAP — for the option.detect_overlap in covergroup and coverpoint
scopes.

o PRINTMISSING — for the option.cross_num_print_missing in covergroup and
cross scopes.

o GETINSTCOV — for the option.get_inst_cov.

• There are some additional attributes used for internal purposes:

o BINRHS — the set of sampled values that could potentially cause the bin to
increment. These are referred to as the “bin right-hand-side values” because they are
derived from the right-hand-side of the “=” declaration for the bin. Note that
BINRHS is not set for the cross bin because the bin depends only on the coverpoint
bins, which are referenced as part of the bin name (“<a,b>”) in this case. If the cross
bin were explicitly declared (with the cross select expression syntax), then there
would be a meaningful BINRHS attribute for the cross bin.

o CROSSSBINIDX and CROSSUBINIDX — these are used to implement the
SystemVerilog call $load_coverage_db(). In this example the values are not very
interesting. The section Sparse Cross Bin Representation explains them in more
detail.

• There is an association between the cross and its component coverpoints, indicated by
the red dashed lines in Figure 2-12. These associations are accessed with the following
functions:

o ucdb_GetNumCrossedCvps()

o ucdb_GetIthCrossedCvp()

o ucdb_GetIthCrossedCvpName()

UCDB Basics
UCDB Data Models

UCDB API Reference, v10.1 45

Sparse Cross Bin Representation
If you create a UCDB with Questa, you will see that only cross bins with non-zero coverage
counts are in the database. This was an optimization introduced to make saving crosses more
efficient.

Unfortunately, much of this infrastructure relies on a private API. (If you are a customer and
you'd like to use it, please request it.) The software will still accept UCDBs with fully
enumerated crosses, i.e., all cross bins stored explicitly in the database, and there is a trick for
allowing the API to traverse all bins whether they are stored or not. So to some degree the
sparse implementation is optional.

The trick to allow the API to traverse all bins, whether stored or not, is to use this function:

void
ucdb_SetIterateAllCrossAutoBins(
 ucdbT db,
 int yesno);

If this is called as ucdb_SetIterateAllCrossAutoBins(db,1), then the API will create a bin object
during traversal whether it was really stored or not.

Other relevant bits of information for sparse crosses:

• The 0x10000000 bit is set in the cross scope flags value if it is sparsely implemented.

• The attribute “#CROSSNUMBINS#” shows the total number of coverage bins in the
cross, useful for computing total coverage.

The mechanism for storing crosses sparsely closely follows the cross select expression syntax
and semantic in SystemVerilog. There is an expression API that can be used with the cross,
essentially to store and retrieve the cross select expression with which the cross was specified in
SystemVerilog source.

CROSSSBINIDX and CROSSUBINIDX
These user-defined attributes are associated with cross bins to implement the SystemVerilog
predefined system task $load_coverage_db(). For Questa, the $load_coverage_db() predefined
system task cannot work unless these attributes are correctly set.

Consider this more complex covergroup with a cross.

SystemVerilog example (“covergroup-cross3x3”):

covergroup cg;
cvpa: coverpoint a { bins azero = { 0 }; bins anonzero[] = { [1:2] }; }
cvpb: coverpoint b { bins bzero = { 0 }; bins bnonzero[] = { [1:2] }; }
axb: cross cvpa, cvpb;

endgroup

UCDB API Reference, v10.146

UCDB Basics
UCDB Data Models

The “cross bin index” attributes are best illustrated as such:

• CROSSUBINIDX is mnemonically “cross user bin index” -- using an internal
terminology by which a “bin declaration” is a “user bin”. This is the syntactic bin
declaration with a bin name and terminated by a semicolon.

• CROSSSBINIDX is mnemonically “cross sub-bin index” -- using an internal
terminology by which a “bin” is a “sub-bin”. This is the actual bin or coveritem object
with an individual count, which may map 1-to-1 with the declaration or many-to-1.

The secret here is to look at the coverpoint bin declarations in isolation. Although there are 3
bins in each coverpoint and thus 9 in the cross, there are 2 bin declarations in each coverpoint.
The cross is thus organized into 4 groups of crosses of bin declarations:

• <azero,bzero>

• <anonzero[*],bzero>

• <azero,bnonzero[*]>

• <anonzero[*],bnonzero[*]>

The CROSSUBINIDX is an index value corresponding to these groups. Note the bin
declarations in the left-most crossed coverpoint (“a” in this case) are “less significant” in the
sense that they change more rapidly as the cross bins are enumerated. This is implementation
specific and is reflected in the order of bins in the report.

The CROSSSBINIDX is a given bin's index within one of these groups.

Note: if you or your customer does not care about using $load_coverage_db(), then these user-
defined attribute values could be ignored. They are created automatically by Questa but might
take some work to reproduce independently. Note that $load_coverage_db() requires a
corresponding SystemVerilog covergroup to have been created in simulation, otherwise the

Bin Name CROSSUBINIDX CROSSSBINIDX

<azero,bzero> 0 0

<anonzero[1],bzero> 1 0

<anonzero[2],bzero> 1 1

<azero,bnonzero[1]> 2 0

<azero,bnonzero[2]> 2 1

<anonzero[1],bnonzero[1]> 3 0

<anonzero[2],bnonzero[1]> 3 1

<anonzero[1],bnonzero[2]> 3 2

<anonzero[2],bnonzero[2]> 3 3

UCDB Basics
UCDB Data Models

UCDB API Reference, v10.1 47

load will fail anyway. This implies that if the covergroup is being ported from third-party data,
there is still the requirement to create a corresponding SystemVerilog covergroup into which
the data could be reloaded in simulation with $load_coverage_db().

Covergroup in Package with Multiple Instances
SystemVerilog example (“covergroup-perinstance”):

package p;
 covergroup cg (ref int v);
 option.per_instance = 1;
 coverpoint v { bins val[] = { [0:1] }; }
 endgroup
endpackage
module top;
 int a, b;
 p::cg cva = new(a);
 p::cg cvb = new(b);
 initial begin
 #1; a = 0; cva.sample();
 #1; b = 1; cvb.sample();
 #1; $display("cva=%.2f cvb=%.2f cva+cvb=%.2f",
 cva.get_inst_coverage(),
 cvb.get_inst_coverage(),
 p::cg::get_coverage());
 end
endmodule

This illustrates two interesting cases together: the covergroup with per-instance coverage
(option.per_instance assigned to 1), and the covergroup in a package. Figure 2-20 shows the
design unit scopes. This is to show the different scope types for a package: the package has an
instance type UCDB_PACKAGE, and a design unit type UCDB_DU_PACKAGE.

Note how the module instance “top” has nothing in it. The covergroup variables are in the
module top, but covergroup variables are nothing more than references to a previously created
covergroup object. The object might exist with no reference (because coverage must persist,
covergroup objects are not garbage collected); there could be more than one reference to a given
object; or the same reference might refer to different objects at different points in time. So the
covergroup variable is not very relevant to the covergroup objects themselves. Consequently,
the covergroup instances in the UCDB are stored underneath the covergroup type
(UCDB_COVERGROUP scope) as a different UCDB scope type:
UCDB_COVERINSTANCE.

Covergroup instances are identified by name. The name could be assigned explicitly by you –
by assigning option.name or using the set_inst_name() built-in method. If not assigned
explicitly, Questa automatically assigns the covergroup instance name using the path to the
variable used to construct the covergroup object. This path is quoted as an extended identifier so
that references to paths within the UCDB work easily. The middle coverpoint scope in
Figure 2-20 would be referenced as “/p/cg/\/top/cva /v”. Note the space after “cva” to terminate
the extended identifier.

UCDB API Reference, v10.148

UCDB Basics
UCDB Data Models

Figure 2-20. Data Model for a Covergroup (with Per-Instance Coverage)

 Seedcg

scope
UCDB_COVERGROUP

 SeedVtop/cva

scope
UCDB_COVERINSTANCE

Goal: 100

Comment: null

Weight: 1

AtLeast: 1

 Seedp

scope
UCDB_PACKAGE

 Seedp

scope
UCDB_DU_PACKAGE

 Seedtop

scope
UCDB_INSTANCE

 Seedtop

scope
UCDB_DU_MODULE

Goal: 100
Comment: null
Strobe: 0

Weight: 1

 Seedv

scope

coveritem
UCDB_CVGBIN

val[0]

Count: 1

Weight: 1
Goal: 100
AtLeast: 1
Comment: null

Weight: 1
Goal: 1

BinRHS: ”0”

coveritem
UCDB_CVGBIN

val[1]

Count: 1

Weight: 1
Goal: 1

BinRHS: ”1”

UCDB_COVERPOINT

 Seedv

scope

coveritem
UCDB_CVGBIN

val[0]

Count: 1

Weight: 1
Goal: 100
AtLeast: 1
Comment: null

Weight: 1
Goal: 1

BinRHS: ”0”

coveritem
UCDB_CVGBIN

val[1]

Count: 0

Weight: 1
Goal: 1

BinRHS: ”1”

UCDB_COVERPOINT

AutoBinMax: 64
DetectOverlap: 0
PrintMissing: 0

AutoBinMax: 64
DetectOverlap: 0

 SeedVtop/cvb

scope
UCDB_COVERINSTANCE

Goal: 100

Comment: null

Weight: 1

AtLeast: 1

 Seedv

scope

Weight: 1
Goal: 100
AtLeast: 1
Comment: null

UCDB_COVERPOINT

AutoBinMax: 64
DetectOverlap: 0
PrintMissing: 0

AutoBinMax: 64
DetectOverlap: 0

coveritem
UCDB_CVGBIN

val[0]

Count: 0

Weight: 1
Goal: 1

BinRHS: ”0”

coveritem
UCDB_CVGBIN

val[1]

Count: 1

Weight: 1
Goal: 1

BinRHS: ”1”

UCDB Basics
UCDB Data Models

UCDB API Reference, v10.1 49

The UCDB_COVERINSTANCE scopes and their child scopes have some attributes to convey
the option values for those scopes:

• ATLEAST — the option.at_least value.

• COMMENT — the option.comment for the corresponding scopes.

• AUTOBINMAX — the option.auto_bin_max setting.

• DETECTOVERLAP — this is option.detect_overlap.

• PRINTMISSING: the option.cross_num_print_missing.

Note how option.per_instance itself is implied by the presence of the
UCDB_COVERINSTANCE in the data model.

Finally, this example illustrates another interesting point. The get_inst_coverage() for /top/cva
or /top/cvb could be calculated from the UCDB_COVERINSTANCE scopes. The
get_coverage() for covergroup “cg” could be calculated from the UCDB_COVERPOINT scope
“/p/cg/v”, i.e., the coverpoint that is an immediate child of the UCDB_COVERGROUP scope.
This represents, as in the previous example, the type coverage for the covergroup. Note how the
covergroup coverage is the merging together of the coverage from the two instances. The IEEE
Std 1800-2005 says “It is important to understand that the cumulative coverage considers the
union of all significant bins; thus, it includes the contribution of all bins (including overlapping
bins) of all instances.”

In other words, the /top/cva instance covers bin val[0], while the /top/cvb instance covers bin
val[1]. Therefore each instance has 50% coverage, but the type is covered 100% because each
bin is covered in the union contributed from all instances. This is reflected in the simulation
output of the $display in the example:

cva=50.00 cvb=50.00 cva+cvb=100.00

Covergroup in a Class (Embedded Covergroup)
SystemVerilog example (“covergroup-embedded”):

package p;
 class c;
 int i;
 covergroup cg;
 coverpoint i { bins ival[] = { [0:1] }; }
 endgroup
 function new();
 cg = new;
 endfunction
 function void sample(int val);
 i = val;
 cg.sample();
 endfunction
 endclass

UCDB API Reference, v10.150

UCDB Basics
UCDB Data Models

endpackage
module top;
 p::c cv = new;
 initial begin
 cv.sample(0);
 $display($get_coverage());
 end
endmodule

Figure 2-21. Data Model for an Embedded Covergroup

This is very similar to the previous data models, with two interesting points.

First, the covergroup type name is stored as the declaration name “cg”. Technically this is
incorrect: IEEE Std 1800-2008 specifies that the embedded covergroup declaration creates a
covergroup of anonymous type. In Questa this is really “#cg#” and invisible to the user.
However, because UCDB scope names must be visible during coverage analysis, Questa
transforms the anonymous name to the visible covergroup variable name. This is allowable

 Seedcg

scope
UCDB_COVERGROUP

 Seedi

scope

coveritem
UCDB_CVGBIN

UCDB_COVERPOINT

 Seedc

scope
UCDB_CLASS

ival[0]

Goal: 100

Count: 1

Comment: null
Strobe: 0

Weight: 1
Goal: 100
AtLeast: 1
Comment: null

Weight: 1
Goal: 1

BinRHS: ”0”

coveritem
UCDB_CVGBIN

ival[1]

Count: 0

Weight: 1
Goal: 1

BinRHS: ”1”

 SeedVp::C::cg

scope
UCDB_COVERINSTANCE

 Seedi

scope coveritem
UCDB_CVGBINUCDB_COVERPOINT

ival[0]

Goal: 100

Count: 1
Comment: null

Weight: 1
Goal: 100
AtLeast: 1
Comment: null

Weight: 1
Goal: 1

coveritem
UCDB_CVGBIN

ival[1]

Count: 0

Weight: 1
Goal: 1

Weight: 1

AtLeast: 1

 Seedp

scope
UCDB_PACKAGE

 Seedp

scope
UCDB_DU_PACKAGE

 Seedtop

scope
UCDB_INSTANCE

 Seedtop

scope
UCDB_DU_MODULE

 Seednew

scope
UCDB_FUNCTION

Weight: 1

UCDB Basics
UCDB Data Models

UCDB API Reference, v10.1 51

because the embedded covergroup has other restrictions that result in a 1-to-1 mapping between
the covergroup type and the covergroup variable.

The example dump output shows clearly how other unexpected scopes – such as, “new”,
“post_randomize” – are created in the UCDB. This is because scopes are saved in the UCDB
prior to determining whether or not they contain coverage.

The presence of these scopes does illustrate how the UCDB captures the complete “context
tree” of the elaborated design.

Design Units
The output of ucdbdump shows some of the interesting data associated with a design unit. This
is taken from the “fsm” example:

------------- DESIGN UNIT ------------------
Name : work.top
Type : UCDB_DU_MODULE
Source type : VERILOG
File info : name = test.sv line = 0
Flags : 0x00000121
Attribute: name = DUSIGNATURE string = ogR[Jb^m9kQbO9nX]eoj;1

The important points are:

• Name — the name is composed as library.name for Verilog and
library.entity(architecture) for VHDL. In Verilog, the architecture notation may be used
for variants created by parameterization or optimization; however, these are merged
together to create a single design unit. The reason is that these variants may be created
arbitrarily by the optimizer; they could be artifacts not intended by the user. This does
have the consequence that the context tree in the UCDB will differ from the context tree
visible in Questa in simulation. The same is true for VHDL design units which are
sometimes denoted library.entity(architecture)#index. The different index versions are
merged together to reflect the “canonical” design unit.

• Flags

o UCDB_ENABLED_STMT (0x00000002) through
UCDB_ENABLED_TOGGLEEXT (0x00000080) are required for code coverage to
appear in Questa's reports. There is an open enhancement to invert the sense of these
flags and by default to have code coverage appear if present; this would be less
surprising to third parties creating UCDB design units from scratch. But in the
current release of the UCDB, these flags are required in order for code coverage to
appear in the reports; these flags are created correctly by Questa itself.

o UCDB_SCOPE_UNDER_DU is an internal flag to mark the scopes under the
design unit, if any, as well as the design unit itself.

UCDB API Reference, v10.152

UCDB Basics
UCDB Data Models

o UCDB_INST_ONCE flag indicates that there was only one instance of the design
unit so there is no code coverage roll-up stored under the design unit. This
optimization is less apparent when the UCDB is loaded into memory.

• DUSIGNATURE attribute — this is a crucial attribute used to determine that the code
content of the design unit has not changed, so that line number mappings used in all
code coverage (except FSM and toggle) is still valid.

Test Data Records and History Nodes
In earlier versions of the database and API, there were only “test data records” which were
designed to record information about the test run which produced the UCDB. It is not possible
to create a UCDB without a test data record.

Later, test data records were extended, so that they became a special case of the “history node”.
The history node records information about any process that creates a UCDB. In Questa, there
are three ways to create a UCDB:

• By running the simulator — The simulator will create a “test data record” with various
information about the simulation run.

• By XML test plan import — This creates a “testplan history node”.

• By merging — This creates a “merge history node”.

Because of the merging process, whereby UCDBs may be combined in various ways to create
other UCDBs, history nodes are arranged in a tree. The test data records and testplan history
nodes must be leaves of the tree. But a merge must have child nodes, which are the inputs to the
merge. The topology of the tree, in other words, allows each merge to be reproduced with its
original inputs.

The motivation of the history nodes, besides recording interesting information about each test,
merge, or test plan, is to allow each of these operations to be reproduced automatically by the
tool.

Any of these nodes may have user-defined attributes. Presently user-defined attributes are
heavily used with test data records, but they could be used in the other cases, too.

Test Plan Hierarchy and Tags
The UCDB has the facility for representing a test plan hierarchy. Ordinarily a test plan is
created as a spreadsheet, Word document, or other file – and there is some symbolic convention
in the tool to link between sections of the test plan and coverage objects in the design. This
could be through fields in the document, through the covergroup comment, through Verilog-
2001 attributes, or any other mechanism.

UCDB Basics
UCDB Data Models

UCDB API Reference, v10.1 53

The association in the UCDB is made through a specialized data attribute called a “tag”. This is
nothing other than a string that is associated with a scope; there may be multiple tags per scope.
Any scope or test data record can be “tagged”. A test plan section is represented by a UCDB
scope of type UCDB_TESTPLAN. If it shares a tag with any other scope not of type
UCDB_TESTPLAN, the coverage associated with that non-testplan scope is considered linked
to the section represented by the testplan scope. After that it is a tool feature to calculate
coverage in some way that is meaningful based on the test plan and the coverage linked to it.

Note that any UCDB scope could be linked with the test plan, not just coverage scopes.
However, coveritems may not be linked with the test plan because the tag API does not apply to
coveritems.

The “testplan” example shows a trivial test plan with two sections linked to two trivial
coverpoints. Creating a test plan is ordinarily a tool feature, but this example shows how to
create one with the API, since this is the API User Guide; this is the first example to introduce
the API itself rather than the data model. In this case it is not possible to create the data model in
the simplest possible way without using the API as well as HDL source. Hopefully the
following example is intelligible without knowing the API – which is introduced in the next
Chapter.

C Example (“testplan”):

ucdbT db = ucdb_Open(ucdbfile);
ucdbScopeT testplan, section1, section2, cvpi, cvpj;
if (db==0) return;

/* Create test plan scopes: */
testplan = ucdb_CreateScope(db,NULL,"testplan",NULL,1,UCDB_NONE,
 UCDB_TESTPLAN,0);
section1 = ucdb_CreateScope(db,testplan,"section1",NULL,1,UCDB_NONE,
 UCDB_TESTPLAN,0);
section2 = ucdb_CreateScope(db,testplan,"section2",NULL,1,UCDB_NONE,
 UCDB_TESTPLAN,0);

/* Look up coverpoint scopes: */
cvpi = ucdb_MatchScopeByPath(db,"/top/cg/i");
cvpj = ucdb_MatchScopeByPath(db,"/top/cg/j");

/* Tag to link test plan scopes to coverpoint scopes */
ucdb_AddObjTag(db,section1,"1");
ucdb_AddObjTag(db,cvpi,"1");
ucdb_AddObjTag(db,section2,"2");
ucdb_AddObjTag(db,cvpj,"2");

/* Write everything back to the same file */
ucdb_Write(db,ucdbfile,NULL,1,-1);
ucdb_Close(db);

This example executes the following sections of code:

• Open the UCDB file, loading its contents into memory.

UCDB API Reference, v10.154

UCDB Basics
UCDB Data Models

• Create the three test plan scopes. Note that the first one, “testplan”, is used subsequently
as the parent of “section1” and “section2” (the second argument to ucdb_CreateScope()
is the parent node). This creates the parent-child relationship and thus the hierarchical
structure of the test plan.

• Look up the coverpoint scopes by path. Paths in the UCDB use the path separator “/” by
default and otherwise concatenate the names of the scope on a downward traversal
through hierarchy. In this case “top” is the module instance, “cg” the covergroup
underneath the instance, and “i” and “j” the coverpoints underneath the covergroup.

• Give section1 the same tag as /top/cg/i, and section2 the same tag as /top/cg/j. This is all
that is necessary to make the test plan association with coverage.

• Write the UCDB data in memory back to the same file from which it was read, and close
the UCDB handle in order to de-allocate its memory.

This results in the following data model:

Figure 2-22. Data Model for a Test Plan with Linked Coverage

In this case, the shared tag names imply the red dashed-line links from UCDB_TESTPLAN
scopes to the UCDB_COVERPOINT scopes. Refer to the section Using Tags to Traverse from
Test Plan to Coverage Data for more information.

This is nearly the simplest possible data model for a test plan. Note that in Questa there is a
“SECTION” attribute used in the report, tags are composed in a more sophisticated way, tags
are automatically applied by vcover merge according to yet other attributes attached to test
plans, and test plan scopes may have user-defined attributes added from the test plan document

 SeedVtop/cv

scope
UCDB_COVERINSTANCE

 Seedi

scope coveritem
UCDB_COVERPOINTUCDB_COVERPOINT

Count: 0Tag: “1”

i1

 Seedj

scope coveritem
UCDB_COVERPOINTUCDB_COVERPOINT

Count: 1Tag: “2”

j1

 Seedcg

scope
UCDB_COVERGROUP

 Seedtop

scope
UCDB_INSTANCE

 Seedtestplan

scope
UCDB_TESTPLAN

 Seedsection1

scope
UCDB_TESTPLAN
Tag: “1”

 Seedsection2

scope
UCDB_TESTPLAN
Tag: “2”

UCDB Basics
UCDB Data Models

UCDB API Reference, v10.1 55

– so that a test plan data structure created by Questa is more complex than the one shown here.
But the basic tree relationships will be of the same nature.

Memory Statistics
There is a facility in the UCDB API for memory statistics. These are available in constant time
when a UCDB is loaded, so are designed for fast access.

The API calls are ucdb_GetMemoryStats() and ucdb_SetMemoryStats(). These use the
ucdbAttrValueT attribute value structure, but otherwise rely on two enumerators to create, in
effect, a 2-dimensional array of attributes. The enumerators are ucdbMemStatsEnumT and
ucdbMemStatsTypeEnumT, which are essentially a category and type, respectively.

The memory statistics API is used internally by Questa.

UCDB API Reference, v10.156

UCDB Basics
UCDB Use Cases

UCDB Use Cases
Understanding the UCDB Data Models is a prerequisite to using the API. The API is more
general than the specific data models used to represent specific kinds of coverage. This section
discusses how to use the API. It makes some assumptions about the data model. It also
describes specific use scenarios.

UCDB Access Modes
You can open a UCDB file in the following ways:

• In-memory — open the UCDB file so that the entire UCDB data model lies in memory.
This is the most general of the use models: all functions related to data access and
modification should work in this mode.

• Read-streaming — given a file name, the file is opened and closed within an API
function, but the user specifies a callback that is called for each data record in the
database. Effectively this maintains a narrow “window” of data visibility as the database
is traversed, so its data access is limited. Some types of data are maintained globally, but
the goal of this mode is to minimize the memory profile of the reading application.

• Write-streaming — open a database handle that must be used to write data in a narrowly
prescribed manner. This is the most difficult mode to perfect, because to successfully
write the file, data must be created in requisite order with a precise sequence of API calls
– but it has the advantage that the data is streamed to disk without maintaining
substantial UCDB data structures, and so minimizes the memory profile of the writing
application.

• Summary read — this is a constant-time read of a coverage summary stored within the
file. This allows overall statistics from the database to be read without traversing the
entire database. The disadvantage is that the summary coverage calculations are fixed
and cannot be customized in any way by the user.

Of these modes, the first one to discuss is the easiest: in-memory mode. Others will be
discussed in separate sections.

The database handle type of the UCDB is ucdbT which is a void* pointing to a hidden structure
type of implementation-specific data associated with the database. This handle must be used
with nearly all API calls Opening a database in-memory is trivially easy:

ucdbT db = ucdb_Open(filename);

If the database handle is non-NULL, the open succeeded and the database handle can be used to
access all data in the database. Note the database is not tied in any way to the file on the file
system. The database exists entirely in memory, and may be re-written to the same file or a
different file after it is changed.

UCDB Basics
UCDB Use Cases

UCDB API Reference, v10.1 57

Writing the database to a file is simple if the database has been previously opened in-memory.
The write call can write subsets of the database – characterized by instance sub-sets or instance
tree sub-sets or by coverage type sub-sets. Without worrying about sub-sets of the database, the
basic write call is this one:

ucdb_Write(db,filename,NULL,1,-1);

The “NULL” means write the entire database, “1” is a recursive indicator that is irrelevant if
“NULL” is given, and “-1” indicates that all coverage types should be written (it is a coverage
scope type mask.)

Finally, the database in memory is de-allocated with this call:

ucdb_Close(db);

Error Handling
Most API calls return status or invalid values in case of error. However, these error return cases
give no extra information about error circumstances. It is recommended that all standalone
applications install their own UCDB error handler. If the API application is linked with Questa,
installation of an error handler will not be allowed because Questa already is linked with one.

The basic error handler looks something like this. All examples for this manual will have one.

void
error_handler(void *data,
 ucdbErrorT *errorInfo)
{
 fprintf(stderr, "%s\n", errorInfo->msgstr);
 if (errorInfo->severity == UCDB_MSG_ERROR)
 exit(1);
}

The error-handler is installed as follows:

ucdb_RegisterErrorHandler(error_handler, NULL);

If there is any user-specific data to be passed to the error-handler, a pointer to it would be
provided instead of NULL and that value would be passed as the void* first argument to the
callback.

Traverse a UCDB in Memory
This illustrates a callback-based traversal, showing all UCDB scope types. The
ucdb_CallBack() function is a versatile function that is only available in-memory: given a scope
pointer (NULL in this case, meaning traverse the entire database) it traverses everything
recursively. The callback function, called “callback” in this case, is called for every scope,
every test record, and every coveritem in the part of the database being traversed. Design units

UCDB API Reference, v10.158

UCDB Basics
UCDB Use Cases

and test data records are only traversed when the entire database is being traversed, as in this
case.

C Example (“traverse-scopes”):

ucdbCBReturnT
callback(
 void* userdata,
 ucdbCBDataT* cbdata)
{
 ucdbScopeT scope;
 switch (cbdata->reason) {
 case UCDB_REASON_DU:
 case UCDB_REASON_SCOPE:
 scope = (ucdbScopeT)(cbdata->obj);
 printf("%s\n",ucdb_GetScopeHierName(cbdata->db,scope));
 break;
 default: break;
 }
 return UCDB_SCAN_CONTINUE;
}

void
example_code(const char* ucdbfile)
{
 ucdbT db = ucdb_Open(ucdbfile);
 if (db==NULL)
 return;
 ucdb_CallBack(db,NULL,callback,NULL);
 ucdb_Close(db);
}

The ucdbCBDataT* argument to the callback function gives information about the database
object for which the callback is executed. The “reason” element tells what kind of object it is.
There are also reasons for end-of-scope (useful for maintaining stacks, so that the callback can
know how many levels deep in the design or coverage tree is the current object), the test data
records, and coveritems themselves.

For the scope callbacks, REASON_DU and REASON_SCOPE, the “obj” element of
ucdbCBDataT is identical to a ucdbScopeT, which is a handle to the current scope. In this
example, for stylistic reasons, the “obj” is type-cast explicitly into the “scope” variable.

The function ucdb_GetScopeHierName() returns a hierarchically composed name for the given
scope handle.

Read Coverage Data
This example illustrates how to read coverage counts for all coveritems in all instances of a
database. This is also based upon the ucdb_CallBack() function for traversing the entire
database in memory.

UCDB Basics
UCDB Use Cases

UCDB API Reference, v10.1 59

C example (“read-coverage”):

/* Callback to report coveritem count */
ucdbCBReturnT
callback(
 void* userdata,
 ucdbCBDataT* cbdata)
{
 ucdbScopeT scope = (ucdbScopeT)(cbdata->obj);
 ucdbT db = cbdata->db;
 char* name;
 ucdbCoverDataT coverdata;
 ucdbSourceInfoT sourceinfo;

 switch (cbdata->reason) {
 case UCDB_REASON_DU:
 /* Don't traverse data under a DU: see read-coverage2 */
 return UCDB_SCAN_PRUNE;
 case UCDB_REASON_CVBIN:
 scope = (ucdbScopeT)(cbdata->obj);
 /* Get coveritem data from scope and coverindex passed in: */
 ucdb_GetCoverData(db,scope,cbdata->coverindex,
 &name,&coverdata,&sourceinfo);
 if (name!=NULL && name[0]!='\0') {
 /* Coveritem has a name, use it: */
 printf("%s%c%s: ",ucdb_GetScopeHierName(db,scope),
 ucdb_GetPathSeparator(db),name);
 } else {
 /* Coveritem has no name, use [file:line] instead: */
 printf("%s [%s:%d]: ",ucdb_GetScopeHierName(db,scope),
 ucdb_GetFileName(db,&sourceinfo.filehandle),
 sourceinfo.line);
 }
 print_coverage_count(&coverdata);
 printf("\n");
 break;
 default: break;
 }
 return UCDB_SCAN_CONTINUE;
}

This example skips the code coverage stored under a design unit – see the “read-coverage2”
example for that, discussed below. If a design unit scope is encountered in the callback, the
UCDB_SCAN_PRUNE return value instructs the callback generator to skip further callbacks
for data structures underneath the design unit.

The callback prints something for the UCDB_REASON_CVBIN callback. This is for
coveritems in the data model. The cbdata->obj value is set to the parent scope of the coveritem,
and cbdata->coverindex is the index that can be used to access the cover item. Data for the
coveritem is accessed with ucdb_GetCoverData(). This retrieves the name, coverage data, and
source information for the coveritem. The source information is essential sometimes because
some coverage objects – specifically, statement coveritems – do not have names: they can only
be identified by the source file, line, and token with which they are associated. More
information is available below on how source files are stored in the UCDB.

UCDB API Reference, v10.160

UCDB Basics
UCDB Use Cases

The coverage data itself is printed in this function:

void
print_coverage_count(ucdbCoverDataT* coverdata)
{
 if (coverdata->flags & UCDB_IS_32BIT) {
 /* 32-bit count: */
 printf("%d", coverdata->data.int32);
 } else if (coverdata->flags & UCDB_IS_64BIT) {
 /* 64-bit count: */
 printf("%lld", coverdata->data.int64);
 } else if (coverdata->flags & UCDB_IS_VECTOR) {
 /* bit vector coveritem: */
 int bytelen = coverdata->bitlen/8 + (coverdata->bitlen%8)?1:0;
 int i;
 for (i=0; i<bytelen; i++) {
 if (i) printf(" ");
 printf("%02x",coverdata->data.bytevector[i]);
 }
 }
}

This comprehensively shows how the coverage count must be printed. There are not currently
any source inputs or tools that create the UCDB_IS_VECTOR type of coverage data, but 32-bit
and 64-bit platforms each create counts of their respective integer sizes, and those must be
handled gracefully.

read-coverage2 Example
What happens if you try to traverse the code coverage data underneath a design unit? The “read-
coverage2” example shows a way of handling it.

The problem is the UCDB_INST_ONCE optimization where coverage data for a single-
instance design unit is stored only in the instance. For a per-design-unit coverage roll-up, it is
convenient to access data through the UCDB design unit scope – and indeed the UCDB API
allows that. However, the problem comes when printing the path to those scopes that were
accessed underneath the design unit. Because the data is actually stored underneath the instance,
the path prints the same whether it was accessed through the design unit or not. Extra code must
be written to determine how the data was accessed: via the design unit or through the instance
tree.

UCDB Basics
UCDB Use Cases

UCDB API Reference, v10.1 61

Partial C Callback Example (from “read-coverage2”):

 struct dustate* du = (struct dustate*)userdata;

 switch (cbdata->reason) {
 /*
 * The DU/SCOPE/ENDSCOPE logic distinguishes those objects which
occur

* underneath a design unit. Because of the INST_ONCE optimization,
it is
 * otherwise impossible to distinguish those objects by name.
 */
 case UCDB_REASON_DU:
 du->underneath = 1; du->subscope_counter = 0; break;
 case UCDB_REASON_SCOPE:
 if (du->underneath) {
 du->subscope_counter++;
 }
 break;
 case UCDB_REASON_ENDSCOPE:
 if (du->underneath) {
 if (du->subscope_counter)
 du->subscope_counter--;
 else
 du->underneath = 0;
 }
 break;

This requires some user data established for the callback function. The “du” user data pointer
has “underneath” which is a flag that is 1 while underneath a design unit, and a
“subscope_counter” for subscopes underneath the design unit. (FSM coverage, for example,
will create subscopes underneath a design unit.) Then if du->underneath is true, the application
can print something distinctive to indicate when a coveritem was really found through the
design unit rather than the instance:

read_coverage ../../data-models/toggle-enum/test.ucdb
/top/t/a: 0 (FROM DU)
/top/t/b: 1 (FROM DU)
/top/t/c: 1 (FROM DU)
/top/t/a: 0
/top/t/b: 1
/top/t/c: 1

UCDB API Reference, v10.162

UCDB Basics
UCDB Use Cases

Find Objects in a UCDB
C Example (“find-object”):

ucdbCBReturnT
callback(
 void* userdata,
 ucdbCBDataT* cbdata)
{
 switch (cbdata->reason) {
 case UCDB_REASON_SCOPE:
 print_scope(cbdata->db,(ucdbScopeT)(cbdata->obj));
 break;
 case UCDB_REASON_CVBIN:
 print_coveritem(cbdata->db,(ucdbScopeT)(cbdata->obj),
 cbdata->coverindex);
 break;
 default: break;
 }
 return UCDB_SCAN_CONTINUE;
}

void
example_code(const char* ucdbfile, const char* path)
{
 ucdbT db = ucdb_Open(ucdbfile);
 if (db==NULL)
 return;
 ucdb_PathCallBack(db,
 0, /* don't recurse from found object */
 path,
 NULL, /* design unit name does not apply */
 UCDB_NONTESTPLAN_SCOPE, /* tree root type */
 -1, /* match any scope type */
 -1, /* match any coveritem type */
 callback, NULL);
 ucdb_Close(db);
}

The easiest way in the UCDB API to find particular objects by name in the database is this
ucdb_PathCallBack() function. It has the added advantage of handling wildcards '*' (for
multiple characters) and '?' (for a single character) in individual path component names.

The arguments to ucdb_PathCallBack(), in order, are:

• A database handle which must be opened with ucdb_Open().

• A recursion flag. In this case, since we are interested in finding scopes and not
everything underneath them, therefore the recursion is false.

• The path passed in from the command line of the example.

• The design unit name is NULL because it doesn't apply to the intent here. Paths could be
design-unit-relative. In that case, the design unit name must be given.

UCDB Basics
UCDB Use Cases

UCDB API Reference, v10.1 63

• The tree root type must be given to distinguish between the two basic types of trees
available in the UCDB: the test plan tree or the design instance tree.

• The scope mask restricts the search to particular scope types; -1 in this case means all
scope types.

• The cover mask restricts the search to particular coveritem types; -1 in this case means
all coveritem types. An alternative is to set this value to 0, in which case only scopes
would be matched and not coveritems at all.

• The callback function.

• The private data for the callback function.

The print_scope() and print_coveritem() functions use scope or coveritem names, types, and
line numbers to display data about the object found in the database. Note that statement
coveritems will never be found by this API because they have no names at all. Only a linear
search by filename, line number, and token number could find a particular statement coveritem.

The “sink” design supplied with examples/ucdb/ucdbcrawl has many different types of
coverage in it. This illustrates using the find_object example with a pattern that is known to
have multiple matches:

./find_object ../../../ucdbcrawl/sink.ucdb '/top/mach/state/*'
Found scope '/top/mach/state/states': type=20000000 line=33
Found scope '/top/mach/state/trans': type=40000000 line=33
Found cover '/top/mach/state/st0': types=00000001/00000200 line=0
Found cover '/top/mach/state/st1': types=00000001/00000200 line=0
Found cover '/top/mach/state/st2': types=00000001/00000200 line=0
Found cover '/top/mach/state/st3': types=00000001/00000200 line=0

In this case, “/top/mach/state” is both an FSM scope and a toggle scope. When matching all
children with “*”, this matches the transition and state child scopes of the FSM scope, and the
enum toggle bins. Source information for toggles is stored at the scope level (not at the bin
level). Therefore, the output for the toggle bins shows line=0.

Increment Coverage
C Example (“increment-cover”):

ucdbCBReturnT
callback(
 void* userdata,
 ucdbCBDataT* cbdata)
{
 switch (cbdata->reason) {
 case UCDB_REASON_CVBIN:

ucdb_IncrementCover(cbdata->db,(ucdbScopeT)(cbdata->obj),
 cbdata->coverindex,1);
 return UCDB_SCAN_STOP;
 break;
 default: break;

UCDB API Reference, v10.164

UCDB Basics
UCDB Use Cases

 }
 return UCDB_SCAN_CONTINUE;
}

void
example_code(const char* ucdbfile, const char* path)
{
 ucdbT db = ucdb_Open(ucdbfile);
 if (db==NULL)
 return;
 ucdb_PathCallBack(db,
 0, /* don't recurse from found object */
 path,
 NULL, /* design unit name does not apply */
 UCDB_NONTESTPLAN_SCOPE, /* tree root type */
 -1, /* match any scope type */
 -1, /* match any coveritem type */
 callback, NULL);
 ucdb_Write(db,ucdbfile,
 NULL, /* save entire database */
 1, /* recurse: not necessary with NULL */
 -1); /* save all scope types */
 ucdb_Close(db);
}

Incrementing a coveritem is simple: there is a function to do it. Again, the ucdb_PathCallBack()
approach has the disadvantage that it only recognizes named items, which excludes statement
coveritems. But ucdb_IncrementCover could be applied to statement coveritems if their parent
scopes are identified. To increment a coveritem multiple times, it is recommended that a scope
pointer and coverindex be saved for later use.

The callback in this case uses the UCDB_SCAN_STOP return code to avoid iterating over the
entire database: the iteration is halted after recognizing the coveritem to increment.

The example_code() function illustrates saving the UCDB back to its original file. The original
file is closed by the operating system after ucdb_Open() completes, so there is really no link
between the open UCDB handle “db” and the original file. The UCDB can be changed and
written back to the same file or any other file.

The ucdb_Save() arguments “db” and “ucdbfile” are obvious, the others less so:

• Third argument (NULL) — a scope from which to execute the save; if NULL, save the
entire database.

• Fourth argument (1) — a recursion flag, really only needed if the scope handle in the
previous argument is non-NULL.

• Fifth argument (-1) — a scope mask, to indicate which scopes to save to the database.
This can be used, for example, to create a database with functional coverage only, or
code coverage only.

UCDB Basics
UCDB Use Cases

UCDB API Reference, v10.1 65

Remove Data from a UCDB
C example (“remove-data”):

ucdbCBReturnT
callback(
 void* userdata,
 ucdbCBDataT* cbdata)
{
 int rc;
 ucdbScopeT scope = (ucdbScopeT)(cbdata->obj);
 ucdbT db = cbdata->db;
 char* name;
 switch (cbdata->reason) {
 case UCDB_REASON_SCOPE:
 printf("Removing scope %s\n",ucdb_GetScopeHierName(db,scope));
 ucdb_RemoveScope(db,scope);
 return UCDB_SCAN_PRUNE;
 case UCDB_REASON_CVBIN:
 ucdb_GetCoverData(db,scope,cbdata->coverindex,&name,NULL,NULL);

printf(
Removing cover %s/%s\n",ucdb_GetScopeHierName(db,scope),name);

 rc = ucdb_RemoveCover(db,scope,cbdata->coverindex);
 if (rc!=0) {
 printf("Unable to remove cover %s/%s\n",
 ucdb_GetScopeHierName(db,scope), name);
 }
 break;
 default: break;
 }
 return UCDB_SCAN_CONTINUE;
}
void
example_code(const char* ucdbfile, const char* path)
{
 ucdbT db = ucdb_Open(ucdbfile);
 int matches;
 if (db==NULL)
 return;
 matches = ucdb_PathCallBack(

db,
0, /* don't recurse from found object */
path,
NULL, /* design unit name does not apply */
UCDB_NONTESTPLAN_SCOPE, /* tree root type */
-1, /* match any scope type */
-1, /* match any coveritem type */
callback, NULL);

 if (matches==0)
 printf("No matches for path\n");
 else
 ucdb_Write(db,ucdbfile,
 NULL, /* save entire database */
 1, /* recurse: not necessary with NULL */
 -1); /* save all scope types */
 ucdb_Close(db);
}

UCDB API Reference, v10.166

UCDB Basics
UCDB Use Cases

Note
This example does not work with wildcards.

The ucdb_RemoveScope() and ucdb_RemoveCover() functions are used to delete objects from
the database. There is a limitation on ucdb_RemoveCover() in that it cannot delete toggle bins
for the most common types: the 2-state and 3-state wires and registers – this is because toggle
bins are optimized and don't really exist in isolation. The toggle scope can be deleted, but not
individual bins in that case. Because of this, the error handler in this example does not call exit()
but allows the code to continue; otherwise there is an internal API error generated for trying to
remove a toggle scope of these kinds. Also, the return code from ucdb_RemoveCover() is
checked to be able to give an error message with a specific path to the object whose removal
failed.

When a scope is removed, all its children are removed, too.

This example also checks the return code from ucdb_PathCallBack() to indicate when no
objects were matched by the given path. Otherwise, the application would remain silent.

This is one of those API applications whose use may be a little dangerous: for example, it would
be possible to delete an FSM transition scope, leaving a set of transitions which could be
inconsistent with the state values for the same FSM.

User-Defined Attributes and Tags in the UCDB
Tags are names that are associated with scopes and/or test data records in the database. These
names could be used for general purpose grouping in the database. There may be an
enhancement in the future that allows a tag to reference another tag: that would pave ground for
hierarchical groups of otherwise unrelated objects.

Tags in the UCDB
In Questa, tags are used for making test traceability associations. This is explained in more
detail below.

C Example to print tags (“print-attrtags”):

void
print_tags(ucdbT db, ucdbScopeT scope)
{
 int i, ntags = ucdb_GetObjNumTags(db,(ucdbObjT)scope);
 const char* tagname;
 printf("Tags for %s:\n",ucdb_GetScopeHierName(db,scope));
 if (ntags > 0) {
 for (i=0; i<ntags; i++) {
 ucdb_GetObjIthTag(db,(ucdbObjT)scope,i,&tagname);
 printf("%s ",tagname);

UCDB Basics
UCDB Use Cases

UCDB API Reference, v10.1 67

 }
 printf("\n");
 }
}

This uses an integer-based iterator. First the number of tags are acquired with
ucdb_GetObjNumTags, then the function ucdb_GetObjIthTag() is used to acquire the tag name
for the i-th tag. Because these functions operate on both scopes (ucdbScopeT) and test data
records (ucdbTestT), there is a so-called polymorphic type ucdbObjT that can stand for both.
Some functions – queries as to object type or kind, queries about tags, and queries about
attributes – take these object handles rather than scope or test data record handles. However,
because this is C and not C++, all these types are really void*, so they are interchangeable and
type unsafe. In this example the cast with “(ucdbObjT)” is used for readability; it is not strictly
necessary.

User-Defined Attributes in the UCDB
User-defined attributes are also names that can be associated with a UCDB object, but are more
powerful than tags in what they can represent:

• They can appear with any type of object in the database: test data records, scopes, and
coveritems.

• There is a class of attributes – where NULL is given as the ucdbObjT handle to the API
calls – that are called “global” or “UCDB” attributes. These are not associated with any
particular object in the database but instead are associated with the database itself. There
are a few of these used by Questa.

• User-defined attributes have values as well as names. The names are the so-called “key”
for the values. In other words, you can look up a value by name.

• Attribute values can be of five different types:

o 32-bit integer

o 32-bit floating point (float).

o 64-bit floating point (double).

o Null-terminated string.

o A byte stream of any number of bytes with any values. This is useful for storing
unprintable characters or binary values that might contain 0 (and thus cannot be
stored as a null-terminated string.)

C example to print attributes (“read-attrtags”):

void
print_attrs(ucdbT db, ucdbScopeT scope, int coverindex)
{
 const char* attrname;

UCDB API Reference, v10.168

UCDB Basics
UCDB Use Cases

 ucdbAttrValueT* attrvalue;
 char* covername;
 printf("Attributes for %s",ucdb_GetScopeHierName(db,scope));
 if (coverindex>=0) {
 ucdb_GetCoverData(db,scope,coverindex,&covername,NULL,NULL);
 printf("%c%s:\n",ucdb_GetPathSeparator(db),covername);
 } else {
 printf(":\n");
 }
 attrname = NULL;
 while ((attrname = ucdb_AttrNext(db,(ucdbObjT)scope,coverindex,
 attrname,&attrvalue))) {
 printf("\t%s: ", attrname);
 switch (attrvalue->type)
 {
 case UCDB_ATTR_INT:
 printf("int = %d\n", attrvalue->u.ivalue);
 break;
 case UCDB_ATTR_FLOAT:
 printf("float = %f\n", attrvalue->u.fvalue);
 break;
 case UCDB_ATTR_DOUBLE:
 printf("double = %lf\n", attrvalue->u.dvalue);
 break;
 case UCDB_ATTR_STRING:
 printf("string = '%s'\n",
 attrvalue->u.svalue ? attrvalue->u.svalue : "(null)");
 break;
 case UCDB_ATTR_MEMBLK:
 printf("binary, size = %d ", attrvalue->u.mvalue.size);
 if (attrvalue->u.mvalue.size > 0) {
 int i;
 printf("value = ");
 for (i=0; i<attrvalue->u.mvalue.size; i++)
 printf("%02x ", attrvalue->u.mvalue.data[i]);
 }
 printf("\n");
 break;
 default:
 printf("ERROR! UNKNOWN ATTRIBUTE TYPE (%d)\n",

attrvalue->type);
 } /* end switch (attrvalue->type) */
 } /* end while (ucdb_AttrNext(...)) */
}

The first thing you might notice is that the iterator convention is different. Why is that? The
simple answer is that there might not be a good reason. Because backward compatibility is a
design goal, other design decisions – good and bad – are enshrined for posterity because we
make the commitment not to abandon an API in the future. Once having an API in a certain
form, it seems better to leave it as-is than change it for purely cosmetic reasons.

UCDB Basics
UCDB Use Cases

UCDB API Reference, v10.1 69

This iterator requires a loop like this:

 attrname = NULL;
 while ((attrname = ucdb_AttrNext(db,(ucdbObjT)scope,coverindex,
 attrname,&attrvalue))) {

The assignment of attrname to NULL is crucial; it starts the iteration. (A common bug in this
case is to leave the attrname variable uninitialized. If it happens to be 0, the loop may execute,
otherwise it will behave unpredictably, either crashing or doing nothing.)

If the attribute is for a scope, coveritem==(-1). If the attribute is for a test data record, the
second (ucdbObjT) argument must be a ucdbTestT handle. If the attribute is for the UCDB as a
whole, the second argument must be NULL.

The same attribute name as was returned by ucdb_AttrNext() must be passed to the function for
the next iteration. The ucdbAttrValueT* variable must be declared by the user and is set by
ucdb_AttrNext(). This variable is changed to point to memory owned by the API.

The code, as illustrated above, must switch on attrvalue->type to print something appropriate
for the attribute value of the given type.

Some of the examples for adding data to a UCDB below show how to write user-defined
attributes. There is no special trick to writing them, just that you must create your own memory
for the attribute value(s); this memory is copied for the API's purposes to store with the UCDB.

Predefined Attribute Names in the UCDB
One thing you will notice in the ucdb.h header is #defines of this form:

#define UCDBKEY_SIMTIME "SIMTIME"

Any of these macros starting with “UCDBKEY” are predefined attribute names. You may re-
use these attribute names in different scopes, but it is inadvisable to re-use these attribute names
in the same scopes in which Questa itself creates them. More precisely, if you do, please know
what you are doing.

These attribute names and values are declared in ucdb.h so that you can be aware of them.

For the most part, the built-in attributes created by Questa must be read or written with the same
API has for any user-defined attribute. For test data records only, built-in attributes may also be
read or written with the API functions ucdb_GetTestData() and ucdb_AddTest().

Create a Test Plan in a UCDB
The data model example discussed in the section “Test Plan Hierarchy and Tags” shows how to
create a trivially simple test plan from scratch. Some things to remark for the test plans created
by Questa:

UCDB API Reference, v10.170

UCDB Basics
UCDB Use Cases

• Tag names for test plan sections in Questa are a concatenation of the test plan root name
and the section number. This guarantees that test plans can be merged together from
different files.

• The Questa tag CLI (viewcov mode command-line interface) is actually embedded as a
user-defined attribute in the test plan scope, with UCDBKEY_TAGCMD as the name.
The value is a string of semicolon-separated list of arguments to the coverage tag
commands; these commands are automatically executed by vcover merge.

• Test plan sections have the UCDBKEY_SECTION attribute set to the literal section
number that must appear in the report.

• The XML import for test plans can create any arbitrary user-defined attributes from the
test plan source. For example, if you want an attribute named “Responsible” whose
value is the name of the person responsible for the section of the test plan, that can be set
up. These attributes then appear in the GUI and can be used as search criteria with the
CLI or GUI.

Using Tags to Traverse from Test Plan to Coverage Data
This illustrates a hand-coded recursive traversal of test plan scopes only, and for each test plan
scope, pursuing the linked objects that share the same tag. The fact is, ucdb_PathCallBack()
does this automatically; it considers the linked object to be a “virtual child” of the test plan
scope.

C Example (“traverse-testplan”):

void
recurse_testplan(int level, ucdbT db, ucdbScopeT scope)
{
 int t, numtags;
 const char* tagname;
 ucdbScopeT subscope;

 /* Print test plan scope name and recurse child test plan sections */
 indent(level);
 printf("%s\n",ucdb_GetScopeName(db,scope));
 subscope=NULL;

while ((subscope=ucdb_NextSubScope(db,scope,subscope,UCDB_TESTPLAN)))
{
 recurse_testplan(level+1,db,subscope);
 }

/* from ucdb.h: traverse non-testplan objects with the same tag name */
 numtags = ucdb_GetObjNumTags(db,(ucdbObjT)scope);
 for (t=0; t<numtags; t++) {
 int found;
 ucdbObjT taggedobj;
 ucdb_GetObjIthTag(db,(ucdbObjT)scope,t,&tagname);
 for (found=ucdb_BeginTaggedObj(db,tagname,&taggedobj);
 found; found=ucdb_NextTaggedObj(db,&taggedobj)) {
 if (ucdb_ObjKind(db,taggedobj)==UCDB_OBJ_SCOPE

UCDB Basics
UCDB Use Cases

UCDB API Reference, v10.1 71

 &&
ucdb_GetScopeType(db,(ucdbScopeT)taggedobj)==UCDB_TESTPLAN)

 continue;
 /* tagged object is not a test plan scope: */
 indent(level+1);
 if (ucdb_ObjKind(db,taggedobj)==UCDB_OBJ_SCOPE)

printf("%s\n",ucdb_GetScopeHierName(db,(ucdbScopeT)taggedobj));
 else if (ucdb_ObjKind(db,taggedobj)==UCDB_OBJ_TESTDATA)
 printf("%s\n",ucdb_GetTestName(db,(ucdbTestT)taggedobj));
 }
 }
}

void
example_code(const char* ucdbfile)
{
 ucdbScopeT subscope;
 ucdbT db = ucdb_Open(ucdbfile);
 if (db==NULL)
 return;
 subscope=NULL;

while ((subscope=ucdb_NextSubScope(db,NULL,subscope,UCDB_TESTPLAN))) {
 recurse_testplan(0,db,subscope);
 }
 ucdb_Close(db);
}

The ucdb_NextSubScope function is an iterator that must start with a NULL pointer. One
common mistake with this iterator is to confuse the “scope” and “subscope”. The traversal in
example_code() is a traversal of roots, because NULL is given as the scope. The sub-scopes are
returned, but these are root scopes with no parent. Note that the last argument to
ucdb_NextSubScope – the UCDB_TESTPLAN value – is a scope mask. This is one of those
cases where the scope type is used as a mask, justifying the implementation where each scope
type occupies one and only one bit. In this case, the iterator will return only test plan scopes.

The recurse_testplan() scope prints the test plan scope name with indentation and recurses into
test plan sub-scopes.

The complex second loop in recurse_testplan() is taken from an example in the ucdb.h header.
This acquires each tag from the test plan. (Even though Questa creates test plan sections with
one and only one tag, the UCDB has no such restriction in its data model.) The
ucdb_BeginTaggedObj() and ucdb_NextTaggedObj() use the tag name to return the list of
objects that share the tag. Note that tagged objects may be either scopes – test plan scopes,
module instance scopes, coverage scopes, design unit scopes, etc. – or test data records. The
ucdb_GetScopeType() function may only be used with scopes, so ucdb_ObjKind() is used first
to guarantee that the object is a scope.

If the loop drops through the continue statement, we are guaranteed that the current object
(taggedobj) shares a tag with the current test plan scope and is not itself a test plan scope. The
names are printed in two different fashions: one for other scopes and one for test data records.

UCDB API Reference, v10.172

UCDB Basics
UCDB Use Cases

The end result is a simpler version of the “coverage analyze -plan / -r” command that can be
used in viewcov mode in Questa. This is essentially the logic followed by the coverage analyze
command. Note, however, that “coverage analyze” really relies on ucdb_PathCallBack() which
has the traversal logic built-in.

File Representation in the UCDB
File representation in the UCDB is designed to be efficient and capable. For efficiency, inside
most objects in the database source file information is stored as a triple: file number, line
number, and token number. File numbers need to relate to a file table. The UCDB has various
ways to create a file table, implicitly or explicitly. With Questa itself, file tables are stored with
design units. The file number is then the index into the file table of the design unit to which the
object belongs. However, in general, file handles may be mixed and matched among different
file tables. The example for this section (“filehandles”) uses both the design-unit file table
created by Questa and a global one created implicitly through the API.

For capability, a file is specified as two parts: the directory to which the file belongs and the
relative path to the file itself. This allows a heuristic algorithm to try to find the file even if the
UCDB has been moved. A “heuristic” is not guaranteed to work. The heuristic includes possible
use of a Questa-specific environment variable (“MGC_WD”) that can be used explicitly to
point to source if the original directory no longer exists. Additionally, there is the
MGC_LOCATION_MAP feature which allows mapping of directory prefixes between
different networks so that Questa files can be portable between different file systems. The
UCDB implementation will make use of MGC_LOCATION_MAP features if present.

The example for this document is a simple one that does not illustrate all of the subtleties of the
UCDB file representation, but shows some simple scenarios.

Creating a File Handle From a File Name
In this case, Questa itself manages the file table. This has the disadvantage that each time a file
handle is created by name, there is a string-based look-up to ensure that the file table contains
only unique names.

C Example (“filehandles/create_filehandles.c”):

void
create_statement_with_filehandle(ucdbT db,
 ucdbScopeT parent,
 ucdbFileHandleT filehandle,
 int line,
 int count)
{
 ucdbCoverDataT coverdata;
 ucdbSourceInfoT srcinfo;
 ucdbAttrValueT attrvalue;
 int coverindex;
 coverdata.type = UCDB_STMTBIN;

UCDB Basics
UCDB Use Cases

UCDB API Reference, v10.1 73

 coverdata.flags = UCDB_IS_32BIT; /* data type flag */
 coverdata.data.int32 = count; /* must be set for 32 bit flag */
 srcinfo.filehandle = filehandle;
 srcinfo.line = line;
 srcinfo.token = 0; /* fake token # */
 coverindex = ucdb_CreateNextCover(db,parent,

NULL, /* name: statements have none */
 &coverdata,
 &srcinfo);
...
}
example_code(const char* ucdbfile)
{
...

/* Let UCDB API create a global file table for each unique filename: */
 ucdb_CreateSrcFileHandleByName(db,&filehandle,

NULL, /* let API create file table */
 "test.sv",
 pwd);

create_statement_with_filehandle(db,instance,filehandle,3,1);
...

This shows two excerpts from the example. The ucdb_CreateSrcFileHandleByName() takes
these arguments:

• Database

• File handle to be filled in.

• Path to scope in which file table is to reside. If NULL, that means a global file table.
Note, a global file is most efficient, but Questa does not use this since it does per-design-
unit compilation and much of its source information is oriented around the design unit.

• Name of file.

• Directory in which the file is found. This example relies on a “PWD” environment.

The file handle is assigned to the ucdbSourceInfoT structure. The structure contains other
information for line number and token number. This structure is passed to API functions like
ucdb_CreateNextCover() and ucdb_CreateScope() and ucdb_CreateInstance() which create
new objects in the database. The section Add New Data to a UCDB discusses creation of new
objects in more detail.

The token number is difficult to use unless you have access to a tokenizer (lexical analyzer) for
each source language of interest.

Creating a File Handle From an Existing File Table
In this “filehandles” example, Questa is invoked on these source files:

Example (“filehandles/test.sv”):

module top;

UCDB API Reference, v10.174

UCDB Basics
UCDB Use Cases

 initial begin
 // $display("hello");
 // $display("there");
 `include "test2.sv"
 end
endmodule

Example (“filehandles/test2.sv”):

// $display "world";

Even though these source files have commented-out statements, the compiler did parse the
code, and Questa did create a file table inside the “work.top” design unit that has two entries.
The first entry is “test.sv” and the second entry is “test2.sv”. Consequently, this code can be
used to create statements that use file handles from the existing design unit file table:

C Example (“filehandles/create_filehandles.c”):

void
create_statement_with_filenumber(ucdbT db,
 ucdbScopeT parent,
 ucdbScopeT filetable_scope,
 int filenumber,
 int line,
 int count)
{
 ucdbCoverDataT coverdata;
 ucdbSourceInfoT srcinfo;
 ucdbFileHandleT filehandle;
 ucdbAttrValueT attrvalue;
 int coverindex;

ucdb_CreateFileHandleByNum(db,&filehandle,filetable_scope,filenumber);
 coverdata.type = UCDB_STMTBIN;
 coverdata.flags = UCDB_IS_32BIT; /* data type flag */
 coverdata.data.int32 = count; /* must be set for 32 bit flag */
 srcinfo.filehandle = filehandle;
 srcinfo.line = line;
 srcinfo.token = 0; /* fake token # */
 coverindex = ucdb_CreateNextCover(db,parent,

NULL, /* name: statements have none */
 &coverdata,
 &srcinfo);
...
 /* Re-use file table from DU: */
 create_statement_with_filenumber(db,instance,du,0,4,1);
 create_statement_with_filenumber(db,instance,du,1,1,1);
...

This is the more efficient approach to creating a file handle. It requires a handle to the scope
containing the file table (or NULL if using a global file table). The function
ucdb_CreateFileHandleByNum() is used to create a file handle from the given file table.

This creates two statements:

UCDB Basics
UCDB Use Cases

UCDB API Reference, v10.1 75

• First statement from file 0 (“test.sv”) from du's file table, at line 4, with count 1.

• Second statement from file 1 (“test2.sv”) from du's file table, at line 1, with count 1.

There are other ways to create file handles, as well. For example, the ucdb_CloneFileHandle()
function can be used if you don't have access to the scope containing the file table, but only
have access to a valid file handle. You can clone the file handle, which means to use the same
file table, but with a different file number, such as a different offset into the table.

This example also did not illustrate how to create the file table in the first place (since that was
already done by Questa for the design unit.) That is very easy: use ucdb_SrcFileTableAppend()
for each successive file.

Dumping File Tables
Accessing a file name from a file table is trivially easy: use ucdb_GetFileName(). That has
already been used in the “read-coverage” example as a way to identify a statement bin, since
statement bins have no names.

This example shows how to dump file tables throughout a database:

C Example (“filehandles/dump_filehandles.c”):

void
dump_filetable(ucdbT db, ucdbScopeT scope)
{

int file;
for (file=0; file<ucdb_FileTableSize(db,scope); file++) {

if (file==0) {
if (scope)

printf("File Table for '%s':\n",
 ucdb_GetScopeHierName(db,scope));

else
printf("Global File Table:\n");

}
printf("\t%s\n", ucdb_FileTableName(db,scope,file));

}
}

ucdbCBReturnT
callback(
 void* userdata,
 ucdbCBDataT* cbdata)
{
 switch (cbdata->reason) {
 case UCDB_REASON_DU:
 case UCDB_REASON_SCOPE:

dump_filetable(cbdata->db,(ucdbScopeT)(cbdata->obj));
 break;
 default: break;
 }
 return UCDB_SCAN_CONTINUE;
}

UCDB API Reference, v10.176

UCDB Basics
UCDB Use Cases

void
example_code(const char* ucdbfile)
{
 ucdbT db = ucdb_Open(ucdbfile);

printf("Dumping file tables for '%s' ...\n", ucdbfile);
dump_filetable(db,NULL);
ucdb_CallBack(db,NULL,callback,NULL);

 ucdb_Close(db);
}

First, the global file table is dumped, with scope==NULL. Technically any scope can have a file
table – except for toggle scopes, which have limited capability for space efficiency (because
there are potentially many toggles.) There are some limitations on where a file handle may be
used for a given file table. Basically, the scope with the file table must be an ancestor in the
UCDB hierarchy relative to the object that refers to it with a file handle.

There is a function for dumping the file name directly from the table, ucdb_FileTableName().
The same name could be acquired indirectly by using ucdb_CreateFileHandleByNum() to get a
file handle from the table and then ucdb_GetFileName() to get a name from the file handle. The
ucdb_FileTableName() does the same thing in a single step.

In the example, there are only two file tables: the one created by Questa in the design unit, and
the global one created by “create_filehandles” that partially overlaps the design unit table:

Dumping file tables for 'test.ucdb' ...
Global File Table:
 test.sv
File Table for 'work.top':
 test.sv
 test2.sv

Add New Data to a UCDB
The single complex example “create-ucdb/create_ucdb.c” creates a hardcoded UCDB from
scratch. The code that it uses could be adapted – with variations – to add objects to an existing
UCDB. After all, even in the “create_ucdb.c” example, the database exists: it just starts out
empty and is added to with each call. The subsections below discuss each type of object in turn.

The example is not exhaustive. Statements, an enum toggle, and a covergroup are created as an
illustration. To create other types of objects, the user should refer to the chapter “UCDB Data
Models”. It also may help to reverse-engineer UCDB data created by Questa using the
ucdbdump example from examples/ucdb/ucdbdump.

Remember that the UCDB is more general than Questa. It is one thing to put data into a UCDB,
another thing to get that data to display in Questa.

UCDB Basics
UCDB Use Cases

UCDB API Reference, v10.1 77

Add Design Unit to a UCDB
C Example (“create-ucdb”):

ucdbScopeT
create_design_unit(ucdbT db,
 const char* duname,
 ucdbFileHandleT file,
 int line)
{
 ucdbScopeT duscope;
 ucdbSourceInfoT srcinfo;
 ucdbAttrValueT attrvalue;
 srcinfo.filehandle = file;
 srcinfo.line = line;
 srcinfo.token = 0; /* fake token # */
 duscope = ucdb_CreateScope(db,

NULL, /* DUs never have a parent */
 duname,
 &srcinfo,
 1, /* weight */
 UCDB_VLOG, /* source language */
 UCDB_DU_MODULE, /* scope type */
 /* flags: */
 UCDB_ENABLED_STMT | UCDB_ENABLED_BRANCH |
 UCDB_ENABLED_COND | UCDB_ENABLED_EXPR |
 UCDB_ENABLED_FSM | UCDB_ENABLED_TOGGLE |
 UCDB_INST_ONCE | UCDB_SCOPE_UNDER_DU);
 attrvalue.type = UCDB_ATTR_STRING;
 attrvalue.u.svalue = "FAKE DU SIGNATURE";
 ucdb_AttrAdd(db,duscope,-1,UCDBKEY_DUSIGNATURE,&attrvalue);
 return duscope;
}

One cardinal rule is that design units must be created before their corresponding instances.
Design units come in five types:

• UCDB_DU_MODULE: a Verilog or SystemVerilog module.

• UCDB_DU_ARCH: a VHDL architecture.

• UCDB_DU_PACKAGE: a Verilog, SystemVerilog or VHDL package.

• UCDB_DU_PROGRAM: a SystemVerilog program block.

• UCDB_DU_INTERFACE: a SystemVerilog interface.

One crucial fact about all these, except packages, is that differently parameterized versions of
the same design unit are merged together by Questa when saving a UCDB. This is because
different parameterizations may be created arbitrarily and capriciously by the optimizer. The
Structure window in Questa shows these parameterizations, but when a UCDB is loaded into
the coverage view mode GUI, the Structure window shows only the canonical module,
architecture, and so forth.

UCDB API Reference, v10.178

UCDB Basics
UCDB Use Cases

One peculiarity of Questa is that it does not use the UCDB_SV language type except for types
of objects peculiar to SystemVerilog (such as interfaces.) A module will always have the
UCDB_VLOG language type.

The flags for the design unit have the requirement – in order for Questa's report to work
correctly – that flags be turned on to correspond to the different types of code coverage having
been compiled for the design unit. If these flags are not present, the report will not recognize the
corresponding code coverage type.

The UCDB_INST_ONCE flag is hardcoded in this case, but the user is responsible for
maintaining it. If you add an instance to a design unit that already has a single instance, the flag
must be cleared. In this example, it is known a priori that the design unit will only ever have a
single instance.

The flag UCDB_SCOPE_UNDER_DU is required for certain coverage CLI commands and
summary data to work correctly: it supplies the implementation for ucdb_ScopeIsUnderDU()
and has implications for ucdb_CalcCoverageSummary(). If the flag is not set, some design-unit-
oriented coverage may be mistaken as being per-instance.

The UCDBKEY_DUSIGNATURE attribute is required to detect source code changes for the
files associated with the design unit.

Note that the Questa implementation of the signature is not available as a public API. If a valid
signature is not computed by the API user, it has implications for the merge. If UCDBs from the
same design source are merged together, there will be no problem – but the potential problem of
merging files from different source would not be detected. (Merging from different source is a
problem for the UCDB because most code coverage objects, with the exception of FSMs and
toggles, are identified by source code only, i.e., by some combination of file, line, and token
number.)

The weight of a design unit has relevance to Questa's “coverage analyze” command and the
“Test Tracking GUI”.

Add Module Instance to a UCDB
There is little more to this than to use an API call. C Example (“create-ucdb”):

ucdb_CreateInstance(db,parent,instname,
NULL, /* source info: not used in Questa */
1, /* weight */
UCDB_VLOG, /* source language */
UCDB_INSTANCE, /* instance of module/architecture */
duscope, /* reference to design unit */
UCDB_INST_ONCE);/* flags */

Because the UCDB is a hierarchical data structure, the parent must be given. (If NULL, that
creates the instance at the top-level, i.e., creates it as root.) This implicitly adds the new instance
underneath the parent.

UCDB Basics
UCDB Use Cases

UCDB API Reference, v10.1 79

The instance name (instname) will become part of the path to identify the instance in the UCDB
hierarchy. If the name contains odd characters, it is good practice to turn it into an escaped (or
extended) identifier to allow path searching in Questa to work properly. The escaped identifier
syntax will be VHDL style for instances under a VHDL parent, Verilog style for instances
under a Verilog parent.

Source information may be given.

The weight may be relevant to the coverage analyze command and the Test Tracking GUI.

The scope type (UCDB_INSTANCE in this case) must map correctly to the given design unit
type:

• UCDB_INSTANCE for design unit type of UCDB_DU_MODULE or
UCDB_DU_ARCH.

• UCDB_PACKAGE for design unit type of UCDB_DU_PACKAGE.

• UCDB_INTERFACE for design unit type of UCDB_DU_INTERFACE.

• UCDB_PROGRAM for design unit type of UCDB_DU_PROGRAM.

The UCDB_INST_ONCE flag is set only for the case of the single instance of a given design
unit. If adding an additional instance, the flag must be cleared explicitly by the user. Here is an
example:

ucdb_SetScopeFlag(db,scope,UCDB_INST_ONCE,0);

Add Statement to a UCDB
This has already been illustrated in the “filehandles” example. Here is a full discussion.

C Example (“create-ucdb”):

void
create_statement(ucdbT db,
 ucdbScopeT parent,
 ucdbFileHandleT filehandle,
 int line,
 int count)
{
 ucdbCoverDataT coverdata;
 ucdbSourceInfoT srcinfo;
 ucdbAttrValueT attrvalue;
 int coverindex;
 coverdata.type = UCDB_STMTBIN;
 coverdata.flags = UCDB_IS_32BIT; /* data type flag */
 coverdata.data.int32 = count; /* must be set for 32 bit flag */
 srcinfo.filehandle = filehandle;
 srcinfo.line = line;
 srcinfo.token = 0; /* fake token # */
 coverindex = ucdb_CreateNextCover(db,parent,

UCDB API Reference, v10.180

UCDB Basics
UCDB Use Cases

NULL, /* name: statements have none */
 &coverdata,
 &srcinfo);
 /* SINDEX attribute is used internally by Questa: */
 attrvalue.type = UCDB_ATTR_INT;
 attrvalue.u.ivalue = 1;

ucdb_AttrAdd(db,parent,coverindex,UCDBKEY_STATEMENT_INDEX,&attrvalue);
}

Like any object to be created in the design or test bench or test plan hierarchy, this requires a
parent. The third argument to ucdb_CreateNextCover() is the name of the object. Note that
statements do not have a name as created by Questa. (You can provide one, naturally, but
Questa does not and will ignore it.)

The &coverdata argument is a pointer to the ucdbCoverDataT structure. This structure contains
all the data associated with the bin except for the name and source information. The “data” field
is a union containing the coverage count: int32 for 32-bit platforms or int64 for 64-bit
platforms. In this example, it is hard-coded to 32-bits, which requires setting both the
appropriate field of the union and the corresponding flag. Other data fields are optionally
enabled based on the flags field of ucdbCoverDataT. Statements require only the data field (the
coverage count).

The “SINDEX” user-defined attribute is used to determine the ordering of the statement on a
line. If the statement is the only one to appear on the line, “SINDEX” is always 1. The second
statement on a line would have value 2, etc. Yes, this is redundant with the token number.
Perhaps it is an acknowledgement that the token number is unreliable, as previously discussed.
If this “SINDEX” attribute is not given, the “ItemNo” column of Questa's statement coverage
details report (vcover report -code s -byfile -details ucdb) will not be correct.

Add Toggle to a UCDB
Toggles have special data characteristics which require they be created with a special API call.

C Example (“create-ucdb”):

void
create_enum_toggle(ucdbT db,ucdbScopeT parent)
{

ucdbCoverDataT coverdata;
ucdbScopeT toggle;
toggle = ucdb_CreateToggle(db,parent,

"t", /* toggle name */
NULL, /* canonical name */
0, /* exclusions flags */
UCDB_TOGGLE_ENUM, /* toggle type */
UCDB_TOGGLE_INTERNAL); /* toggle "direction" */

coverdata.type = UCDB_TOGGLEBIN;
coverdata.flags = UCDB_IS_32BIT; /* data type flag */
coverdata.data.int32 = 0; /* must be set for 32 bit flag */
ucdb_CreateNextCover(db,toggle,

UCDB Basics
UCDB Use Cases

UCDB API Reference, v10.1 81

"a", /* enum name */
&coverdata,
NULL); /* source data */

coverdata.data.int32 = 1; /* must be set for 32 bit flag */
ucdb_CreateNextCover(db,toggle,

"b", /* enum name */
&coverdata,
NULL); /* source data */

}

This corresponds to a source toggle declared like so in SystemVerilog:

enum { a, b } t;

Note that the toggle has only name and no source information (so NULL values are passed to
ucdb_CreateNextCover()). Source info could be added later using ucdb_SetScopeSourceInfo()
on toggle scopes.

The canonical name is used for wire (net) toggles, as described in the section Net Toggle with
Connected Net. The exclusions flags may apply to the toggle, so those can be given, too.

Finally, the toggle type and directionality (input, output, inout, or internal) are given.
Directionality really only applies to net toggles, but is set to internal for others.

Recall that an enum toggle has bins whose names correspond to the enum values in the source
language. If creating bins for other types of toggles, use the appropriate UCDBBIN_TOGGLE_
#define value as declared in ucdb.h.

Add Covergroup to a UCDB
The covergroup is created in various stages. The covergroup for the “create-ucdb” example
looks like this:

enum { a, b } t;
covergroup cg;

coverpoint t;
endgroup

This requires creating a hierarchy like this:

1. cg

a. t

i. a

ii. b

The top level code is this:

C Example (“create-ucdb”):

UCDB API Reference, v10.182

UCDB Basics
UCDB Use Cases

 cvg = create_covergroup(db,instance,"cg",filehandle,3);
 cvp = create_coverpoint(db,cvg,"t",filehandle,4);
 create_coverpoint_bin(db,cvp,"auto[a]",filehandle,4,1,0,"a");
 create_coverpoint_bin(db,cvp,"auto[b]",filehandle,4,1,1,"b");

The hierarchy is implied by the use of the parent pointers, second argument to each of these
functions. The parent of “cg” is the instance whose scope handle is “instance”; this is loaded
into the “cvg” handle. The “cvg” handle is used as the parent to create the “cvp” handle for the
coverpoint named “t”. The “cvp” handle is then used as the parent of the bins.

The creation of the covergroup is this example:

C Example (“create-ucdb”):

ucdbScopeT
create_covergroup(ucdbT db,
 ucdbScopeT parent,
 const char* name,
 ucdbFileHandleT filehandle,
 int line)
{
 ucdbScopeT cvg;
 ucdbSourceInfoT srcinfo;
 ucdbAttrValueT attrvalue;
 srcinfo.filehandle = filehandle;
 srcinfo.line = line;
 srcinfo.token = 0; /* fake token # */
 cvg = ucdb_CreateScope(db,parent,name,
 &srcinfo,
 1, /* from type_option.weight */
 UCDB_VLOG, /* source language type */
 UCDB_COVERGROUP,
 0); /* flags */
 /* Hardcoding attribute values to defaults for type_options: */
 attrvalue.type = UCDB_ATTR_INT;
 attrvalue.u.ivalue = 100;
 ucdb_AttrAdd(db,cvg,-1,UCDBKEY_GOAL,&attrvalue);
 attrvalue.u.ivalue = 0;
 ucdb_AttrAdd(db,cvg,-1,UCDBKEY_STROBE,&attrvalue);
 attrvalue.type = UCDB_ATTR_STRING;
 attrvalue.u.svalue = "";
 ucdb_AttrAdd(db,cvg,-1,UCDBKEY_COMMENT,&attrvalue);
 return cvg;
}

Much of the ucdb_CreateScope() usage has been discussed before. The only interesting thing to
note is the scope type (UCDB_COVERGROUP) and the fact that the source type is
UCDB_VLOG. The source type could reasonably be UCDB_SV as well, but Questa does not
create it that way. In fact, Questa does not really draw a fine distinction between SystemVerilog
and Verilog.

The attributes are required to have full report capability for the covergroup. Because this
covergroup has option.per_instance the default of 0, the example creates type_option values

UCDB Basics
UCDB Use Cases

UCDB API Reference, v10.1 83

only. Note that type_option.weight is provided directly as an argument to ucdb_CreateScope().
The option.per_instance influences the topology of the covergroup tree itself; if there are no
covergroup objects with option.per_instance==1, then there will be no
UCDB_COVERINSTANCE scopes in the covergroup subtree.

Following is the creation of the coverpoint.

C Example (“create-ucdb”):

ucdbScopeT
create_coverpoint(ucdbT db,
 ucdbScopeT parent,
 const char* name,
 ucdbFileHandleT filehandle,
 int line)
{
 ucdbScopeT cvp;
 ucdbSourceInfoT srcinfo;
 ucdbAttrValueT attrvalue;
 srcinfo.filehandle = filehandle;
 srcinfo.line = line;
 srcinfo.token = 0; /* fake token # */
 cvp = ucdb_CreateScope(db,parent,name,
 &srcinfo,
 1, /* from type_option.weight */
 UCDB_VLOG, /* source language type */
 UCDB_COVERPOINT,
 0); /* flags */
 /* Hardcoding attribute values to defaults for type_options: */
 attrvalue.type = UCDB_ATTR_INT;
 attrvalue.u.ivalue = 100;
 ucdb_AttrAdd(db,cvp,-1,UCDBKEY_GOAL,&attrvalue);
 attrvalue.u.ivalue = 1;
 ucdb_AttrAdd(db,cvp,-1,UCDBKEY_ATLEAST,&attrvalue);
 attrvalue.type = UCDB_ATTR_STRING;
 attrvalue.u.svalue = "";
 ucdb_AttrAdd(db,cvp,-1,UCDBKEY_COMMENT,&attrvalue);
 return cvp;
}

This is very similar to the covergroup creation, except for the scope type, the parent (which is
the previously created covergroup), and the options – including the weight given to
ucdbCreateScope() -- which derive from the default values for the type_option structure in
coverpoint scope.

Finally, the bins are created as children of the coverpoint.

C Example (“create-ucdb”):

void
create_coverpoint_bin(ucdbT db,
 ucdbScopeT parent,
 const char* name,
 ucdbFileHandleT filehandle,

UCDB API Reference, v10.184

UCDB Basics
UCDB Use Cases

 int line,
 int at_least,
 int count,
 const char* binrhs) /* right-hand-side value */
{
 ucdbSourceInfoT srcinfo;
 ucdbCoverDataT coverdata;
 ucdbAttrValueT attrvalue;
 int coverindex;
 coverdata.type = UCDB_CVGBIN;
 coverdata.flags = UCDB_IS_32BIT | UCDB_HAS_GOAL | UCDB_HAS_WEIGHT;
 coverdata.goal = at_least;
 coverdata.weight = 1;
 coverdata.data.int32 = count;
 srcinfo.filehandle = filehandle;
 srcinfo.line = line;
 srcinfo.token = 0; /* fake token # */
 coverindex = ucdb_CreateNextCover(db,parent,name,
 &coverdata,&srcinfo);
 attrvalue.type = UCDB_ATTR_STRING;
 attrvalue.u.svalue = binrhs;
 ucdb_AttrAdd(db,parent,coverindex,UCDBKEY_BINRHSVALUE,&attrvalue);
}

This is similar to previous examples, except for these data:

• UCDB_HAS_GOAL indicates that the “goal” field of ucdbCoverDataT should be used.
This corresponds to the “at_least” value for the coverpoint: the threshold at which the
bin is considered to be 100% covered.

• UCDB_HAS_WEIGHT indicates that the “weight” field of the ucdbCoverDataT is
valid. This weight is identical to the weight for the parent coverpoint, but is also set here
in case coverage is computed on a bin basis rather than for the coverpoint as a whole.
The field is useful for coveritems with no explicit parent (e.g., statement bins.)

• The BINRHSVALUE attribute is one added by Questa that depends on knowledge of
how the coverpoint is declared. This should be reverse-engineered from covergroup bin
declarations and using ucdbdump. The “bin rhs value” is the sampled value(s), on the
right-hand-side of the “=” in the bin declaration, that potentially cause(s) a bin to
increment. In the LRM these are described as “associated” values or transitions. These
values vary depending on whether the bin has a single value or multiple, whether it is a
transition bin or not. It can be an enum value (as in the case illustrated above, if you look
back at the top-level C code) or it can be another type of integral value, or transitions
among those values.

Currently in Questa, the BINRHSVALUE is accessible only through the UCDB API.

Test Data Records
C Example (“create-ucdb”):

void

UCDB Basics
UCDB Use Cases

UCDB API Reference, v10.1 85

create_testdata(ucdbT db,
 const char* ucdbfile)
{
 ucdb_AddTest(db,
 ucdbfile,
 "test", /* test name */
 UCDB_TESTSTATUS_OK, /* test status */
 0.0, /* simulation time */
 "ns", /* simulation time units */
 0.0, /* CPU time */
 "0", /* random seed */
 NULL, /* test script: not used by Questa */
 /* simulator arguments: */

"-coverage -do 'run -all; coverage save test.ucdb; quit' -c top ",
 NULL, /* comment */
 0, /* compulsory */
 "20070824143300", /* fake date */
 "userid" /* fake userid */
);
}

This is an example of creating test data that is “faked” to be nearly identical to that created
automatically by Questa for the “create-ucdb” example. The differences are in the date and
userid, which cannot be reproduced since those will vary according to who runs the example
when.

All of the test data attributes (arguments to the function above) correspond to attributes names
that can be accessed using the UCDB attribute API. One of the chief uses of the attribute data is
to add user-defined attributes that can be added for any reason. In Questa, these will appear in
the UCDB Browser or the Test Tracking GUI if the test data record is linked as a directed test in
a test plan.

Any of these test data attributes can be created or accessed in Quest with the coverage attribute
command. They can be accessed with vcover attribute as well.

The format of the date is strict, the UCDB API Reference Manual describes how it can be
created (from a POSIX-compliant C library call, strftime().) The virtue of this format is that it
can be sorted alphabetically.

The “test script” argument to ucdb_AddTest() is not used, though it could be. The simulator
arguments are created automatically and can be used to re-run the test. The simulator arguments
should be quoted such that the arguments could be passed to a shell for running with the
simulator (vsim in this case.)

The comment is typically not used, but of course can be set within the tool. This is a general-
purpose comment that can be used for anything.

Create a UCDB from Scratch in Memory
C Example (“create-ucdb”):

UCDB API Reference, v10.186

UCDB Basics
UCDB Use Cases

void
example_code(const char* ucdbfile)
{
 ucdbFileHandleT filehandle;
 ucdbScopeT instance, du, cvg, cvp;
 ucdbT db = ucdb_Open(NULL);
 create_testdata(db,ucdbfile);
 filehandle = create_filehandle(db,"test.sv");
 du = create_design_unit(db,"work.top",filehandle,0);
 instance = create_instance(db,"top",NULL,du);
 create_statement(db,instance,filehandle,6,1);
 create_statement(db,instance,filehandle,8,1);
 create_statement(db,instance,filehandle,9,1);
 create_enum_toggle(db,instance);
 cvg = create_covergroup(db,instance,"cg",filehandle,3);
 cvp = create_coverpoint(db,cvg,"t",filehandle,4);
 create_coverpoint_bin(db,cvp,"auto[a]",filehandle,4,1,0,"a");
 create_coverpoint_bin(db,cvp,"auto[b]",filehandle,4,1,1,"b");
 printf("Writing UCDB file '%s'\n", ucdbfile);
 ucdb_Write(db,ucdbfile,NULL,1,-1);
 ucdb_Close(db);
}

This is the top-level code that calls all the functions previously described in the section “Add
New Data to a UCDB”. This reproduces – with a few exceptions described in the header
comment of create_ucdb.c – the UCDB created by Questa from this source:

SystemVerilog Example (“create-ucdb”):

module top;
enum { a, b } t;
covergroup cg;

coverpoint t;
endgroup
cg cv = new;
initial begin

t = b;
cv.sample();

end
endmodule

Many of the details have been discussed elsewhere. The only notable thing is the call to
ucdb_Open() with a NULL argument: this creates a completely empty UCDB in memory, to
which any data can be added. Note that because of tool requirements, it is not permissible to
create a UCDB without a test data record; the ucdb_Write() will not succeed if there is no test
data record.

The final ucdb_Close(db) is not strictly necessary because the memory used by the database
handle will be freed when the process finishes, but it is good practice to explicitly free the
memory associated with the database handle.

UCDB Basics
UCDB Use Cases

UCDB API Reference, v10.1 87

Read Streaming Mode
Read-streaming mode is a call-back based traversal of a UCDB as laid out on disk. It has the
advantage of reducing memory overhead, as the UCDB is never fully loaded into memory.

The layout on disk is broadly thus:

• Header with database version and other header information.

• Global UCDB attributes can appear at any time at the top-level, but are ordinarily
written as early as possible.

• Test data records.

• Design units are written before instances of them.

• Scopes (design units, instances, or any coverage scope) are written in a nested fashion:
meaning that the start of the scope is distinct from the end of the scope. Scopes that start
and end within another's start and end are children scopes. This is how the parent-child
relationships are recorded: the start of the parent is always written before the children.
The termination of the parent scope “pops” the current scope back to its parent.

• Coveritems are written immediately after the parent scope.

• Attributes and tags are written after the initial header for the scope or coveritem.

• Tail with summary data.

The presence of the tail is in some sense an implementation detail: the tail is loaded at the same
time as the header. This allows ucdb_GetCoverageSummary() to work.

The rules for read streaming mode are relatively simple. In general, available data follows the
order in which data is laid out on disk. The attributes, flags, etc., are complete with the read
object. There is no access to child scopes or coveritems at the time a scope is read. The
implementation maintains the following data at all times:

• All ancestors of a given scope or coveritem.

• All design units.

• All global UCDB attributes and other data global to the UCDB.

• All test data records.

• The summary data used by ucdb_GetCoverage(), ucdb_GetStatistics() and various other
functions described in the API Reference as pertaining to global coverage statistics.

However, the inaccessibility of children means that any descendant nodes, or any descendants
of ancestors (what you might informally call “cousin nodes” or “uncle nodes”) are not available.

UCDB API Reference, v10.188

UCDB Basics
UCDB Use Cases

The intuitive way to think of this is as read streaming mode maintaining a relatively small
“window” into the data, that progresses through the file, with some global data available
generally.

There are some other limitations, all of which relate to the fact that children are not available
except exactly when they are encountered within the streaming “window”:

• Since the test plan tree is implemented with tags, there is no way to know when reading
a test plan node what are the other nodes sharing the same tag. Test plan trees are
essentially unusable in read-streaming mode, though if you wished to build the
associations yourself, you could.

• The functions like ucdb_PathCallBack() which require searching the database cannot
work.

• The functions like ucdb_CalcCoverageSummary() which require traversing some subset
of the database cannot work.

The following shows a simple example adapted from one of the previously discussed in-
memory examples:

C Example (“read-streaming”):

ucdbCBReturnT
callback(
 void* userdata,
 ucdbCBDataT* cbdata)
{
 ucdbScopeT scope;
 switch (cbdata->reason) {
 case UCDB_REASON_DU:
 case UCDB_REASON_SCOPE:
 scope = (ucdbScopeT)(cbdata->obj);
 printf("%s\n",ucdb_GetScopeHierName(cbdata->db,scope));
 break;
 default: break;
 }
 return UCDB_SCAN_CONTINUE;
}

void
example_code(const char* ucdbfile)
{

ucdb_OpenReadStream(ucdbfile,callback,NULL);
}

The read streaming mode is based on the same callback type functions as ucdb_CallBack().
This example should look familiar: it is the “traverse-scopes” example. The “example_code”
function is different. The database handle is only available through the callback. The path to the
UCDB file is given to the open call, and this calls the callback for each object in the database.

UCDB Basics
UCDB Use Cases

UCDB API Reference, v10.1 89

The big example examples/ucdb/ucdbdump is a read streaming mode application. It is a
thorough example of how to use the mode.

Write Streaming Mode
Write streaming mode is a way of writing a UCDB with optimally low memory overhead. This
is the hardest of all use cases of the UCDB API. In general, it should be avoided unless you fall
into one of the following circumstances:

• You are a professional tool developer for whom memory overhead is a crucial concern.

• You are linked with the Questa kernel – as through PLI, VPI, or FLI – and want to
contribute your own data “on the fly” to a UCDB being saved with Questa's coverage
save command executed from vsim. This is discussed in the section “Using the
mti_AddUCDBSaveCB FLI Callback”.

It is much easier to create a UCDB from scratch in memory, as described earlier in the section
“Create a UCDB from Scratch in Memory”.

The “write-streaming” example among the “userguide” examples shows the “create-ucdb”
example adapted to write streaming mode. There is also the examples/ucdb/writestream
example which was released earlier with Questa. This contains extensive comments on using
the mode. This document will restrict itself to relatively simple observations and the key
differences between the “write-streaming” example and the “create-ucdb” example.

C Example (“create-ucdb”) top-level code:

void
example_code(const char* ucdbfile)
{
 ucdbFileHandleT filehandle;
 ucdbT db = ucdb_OpenWriteStream(ucdbfile);
 create_testdata(db,ucdbfile);
 filehandle = create_filehandle(db,"test.sv");
 create_design_unit(db,"work.top",filehandle,0);
 create_instance(db,"top","work.top");
 create_statement(db,filehandle,6,1);
 create_statement(db,filehandle,8,1);
 create_statement(db,filehandle,9,1);
 create_enum_toggle(db);
 create_covergroup(db,"cg",filehandle,3);
 create_coverpoint(db,"t",filehandle,4);
 create_coverpoint_bin(db,"auto[a]",filehandle,4,1,0,"a");
 create_coverpoint_bin(db,"auto[b]",filehandle,4,1,1,"b");
 ucdb_WriteStreamScope(db); /* terminate coverpoint */
 ucdb_WriteStreamScope(db); /* terminate covergroup */
 ucdb_WriteStreamScope(db); /* terminate instance */
 printf("Writing UCDB file '%s'\n", ucdbfile);
 ucdb_Close(db);
}

UCDB API Reference, v10.190

UCDB Basics
UCDB Use Cases

The differences required to convert the in-memory creation of data to a write-streaming creation
of data are as follows:

• The open call is ucdb_OpenWriteStream(), which gives the name of the output file. The
concept of write streaming is that it writes to the file “as it goes along”. So you have to
create objects in the same order as was previously explained for read-streaming mode.
This imposes order-of-creation rules that must be clearly understood. The API is
designed to emit errors in case functions are used in the wrong order, but this has not yet
been exposed to third-party developers for beta testing.

• The parent pointers for all creation API calls must be NULL. This emphasizes that the
level of hierarchy for creating the current object relies on the current context. This will
be explained more deeply below. Because no parent pointers are used, the functions in
the example are all of type void – except for the create_filehandle() routine, because file
handles must be used when needed. (In this case, because the file handle is global, it can
be used with any object.

• The ucdb_WriteStream(db) call is used to terminate the creation of the current object.
For scopes, this terminates the creation of the beginning of the scope. Literally, this
creates the scope as a context, writes the name of the scope and other information to the
file, so that subsequent objects are known to be created as children of that scope. Note
that the API is actually relatively forgiving about use of ucdb_WriteStream(db). It is
really like a “flush” to disk. You can do the experiment of removing
ucdb_WriteStream(db) from this example entirely, by placing this line after the include
of ucdb.h:

#define ucdb_WriteStream(db) ;

This will still work exactly the same. The reason is that the API will flush the current
object before writing the next one if you call any ucdb_Create... API function; it calls
ucbd_WriteStream() implicitly. The utility of having the explicit “flush” capability of
ucdb_WriteStream() is for cases where you are re-using string storage (as in creating
objects from a loop). If you need to set up string storage in advance of calling
ucdb_CreateNextCover(), for example, then you must flush the current object before
calling ucdb_CreateNextCover(). Because the API is designed for efficiency, it does not
always copy string storage; it makes use of the string value when you call
ucdb_Writestream(), and after that you may change the value.

• The ucdb_CreateInstanceByName() function must be used to create the instance. This is
name-based for the design unit rather than using a ucdbScopeT handle.

• The ucdb_WriteStreamScope(db) call must be used to terminate the scope. More on this
in a moment.

• The ucdb_Close(db) function terminates the write to the file as well as freeing the
database handle. This writes the summary information which has been calculated as you
were writing the contents of the file.

UCDB Basics
UCDB Use Cases

UCDB API Reference, v10.1 91

The crucial fact of write streaming mode, besides various fairly arbitrary order-of-creation
rules, is that the nesting of calls creates the design and test bench hierarchy. This means that
ucdb_WriteStreamScope(db) is not optional. It terminates a scope. Think of write streaming
mode as maintaining a “current scope”. (In fact it does.) When you create a new scope, it is
added under the current scope, then it itself becomes the current scope in turn. When a
coveritem is added, it is added to the current scope. When the current scope is terminated, the
current scope becomes the parent of that scope (or none if that scope was itself at the top-level.)
The three calls to ucdb_WriteStreamScope(db) in the example are thus commented with the
type of the scope they terminate. If you wanted to write another coverpoint to the covergroup in
the write streaming example, you would have to create it after the line commented with “//
terminate coverpoint” but before the line commented with “// terminate covergroup”.

Because write streaming mode has crucial and sometimes peculiar dependencies on order of
creation, it is a difficult mode to use. But it is necessary to use when you want the most seamless
mode of integration with Questa, when you have code linked into Questa through an interface
like VPI.

UCDB API Reference, v10.192

UCDB Basics
UCDB in Questa and ModelSim

UCDB in Questa and ModelSim
This section is aimed at the (most likely professional) third-party developer who wants the most
transparent integration of coverage data with Questa. This is for cases where you have a model
linked with the simulation kernel through PLI, VPI, or FLI, and you want to take advantage of
the coverage save command of Questa. There is a facility for installing a callback through FLI,
which is the Questa/ModelSim-proprietary simulator interface. Whenever Questa executes
“coverage save”, it calls your callback, whereupon you may use write-streaming mode to
contribute your own data to the UCDB being saved. This requires some elementary
understanding of the role the UCDB plays in the Questa architecture.

UCDB in the Tool Architecture
One common misconception about the UCDB is whether it exists as a memory image in
simulation. It does not. Coverage data in simulation is intricately linked into the simulation
context tree (hierarchical name-based data structure), and is only extracted on demand and
written – using a wrapper around the UCDB API's write streaming mode – to disk. The UCDB
only exists in memory in so-called “viewcov” mode, where there is no current facility for
linking in third-party C or C++ code. So if you want to participate in the UCDB in simulation,
your only choice is to install the FLI callback described in the next section and write your data
in write streaming mode.

Figure 2-23 illustrates the tool architecture and the callback to be discussed. In the upper left is
vsim in simulation mode, i.e., invoked on a design. When coverage save is invoked, the data
from the context tree is written to the UCDB using the UCDB write streaming API.

If a shared object is attached to the simulator, the UCDB save FLI callback operates in this
order:

1. The callback (mysavecallback in this case) is installed.

2. Vsim code underlying coverage save initiates the save of the UCDB.

3. In contexts for which the callback is installed, vsim calls the callback function specified
by the user.

4. The user's callback makes write streaming API calls to write data into the same UCDB.

5. The vsim code underlying coverage save continues to save to the UCDB file.

Steps 3 through 5 may repeat arbitrarily many times.

UCDB Basics
UCDB in Questa and ModelSim

UCDB API Reference, v10.1 93

Figure 2-23. Questa and the UCDB Save FLI Callback

The diagram further illustrates some important facts:

• In general, the only Questa tool where a UCDB image exists in memory (illustrated here
at the dashed box around “ucdbT” or a UCDB handle) is vsim in “viewcov mode” where
it is invoked on a UCDB file. The file is opened in memory, and the CLI and GUI have
full in-memory facilities upon which to operate on the data.

• In general, the vcover utility processes all its inputs using the read-streaming API.
(There are some exceptions to this, but the most commonly used applications, report and
merge, are exclusively read-streaming. Note that merge maintains its output in memory,
but its inputs are always read-streaming.)

• A third-party application may be either read-streaming or in-memory, as the developer
of the application chooses.

UCDB

context tree

coverage save

vsim design

1

3

5

FLI / PLI / VPI

Call mti_addUCDBSaveCB

mysavecallback

4

write-streaming API

2

vsim –viewcov ucdb

CLI / GUI

ucdb_Open(ucdb)

ucdbT

in-memory API

vcover read-streaming API

3rd-party
application

read-streaming API

or ucdb_Open(ucdb)

shared object

UCDB API Reference, v10.194

UCDB Basics
UCDB in Questa and ModelSim

Using the mti_AddUCDBSaveCB FLI Callback
The example save-callback demonstrates use of the callback to create the 2-bin covergroup
from the write-streaming example. The write-streaming code is not the interesting part of this
example; that is just copied from the previous example. The interesting part is use of the
callback and the interoperation of VPI and FLI (the Mentor Graphics proprietary Foreign
Language Interface.)

Note that the callback is designed to work on one and only one “region” (or scope: a module
instance in the example.) This means that if you have data in multiple scopes, you must install
the callback multiple times. However, this means that you only need install the callback for as
many scopes as you have coverage data to contribute.

The callback, as described above, is executed when the UCDB save is, either automatically at
end of simulation or when the CLI is used. The example uses the CLI. (Note that if the Verilog
code uses $finish, which returns control to the operating system, the save must be set up in
advance in one of various ways.)

C Example (“save-callback”):

/*
 * Register mymodel with simulator
 */
void register_mymodel()
{
 s_vpi_systf_data systf_data;
 systf_data.type = vpiSysFunc;
 systf_data.sysfunctype = vpiSysFuncSized;
 systf_data.tfname = "$mymodel";
 systf_data.calltf = mymodel;
 systf_data.compiletf = mymodel_setup;
 systf_data.sizetf = NULL;
 vpi_register_systf(&systf_data);
}
...
/*
 * UCDB Save Callback
 */
void
mymodel_ucdb_save(ucdbT db,
 mtiRegionIdT region,
 void* unused)
{
 vpi_printf("Saving UCDB data from VPI model ...\n");
 write_ucdb_data(db);
}

/*
 * Register UCDB Save Callback
 */
int mymodel_setup(char* unused)
{
 vpiHandle systf_handle, scope_handle;

UCDB Basics
UCDB in Questa and ModelSim

UCDB API Reference, v10.1 95

 char* scope_name;
 mtiRegionIdT FLI_scope_handle;

 /* Get name of enclosing scope through VPI */
 systf_handle = vpi_handle(vpiSysTfCall,NULL);
 scope_handle = vpi_handle(vpiScope,systf_handle);
 scope_name = vpi_get_str(vpiFullName,scope_handle);

 /* Convert to FLI region id type */
 FLI_scope_handle = mti_FindRegion(scope_name);
 scope_name = mti_GetRegionFullName(FLI_scope_handle);

 /* Install UCDB save callback */
 vpi_printf("Installing UCDB Save Callback for %s ...\n",scope_name);
 mti_AddUCDBSaveCB(FLI_scope_handle,mymodel_ucdb_save,NULL);
 return 0;
}

Note that the callback uses FLI, while the model uses VPI. Somehow an FLI scope handle
(region ID) must be derived from a VPI handle. The only way to do this is by name –
specifically, “full name” which is a full path to the scope. In the example, “scope_name” is
“top.inst” as returned from VPI but “/top/inst” as returned from FLI. Fortunately, the two
different conventions for regarding the full name are interchangeable, and the FLI scope handle
is directly acquired.

The FLI scope handle (region ID) is passed to the callback “mymodel_ucdb_save” but unused
in this example. There is also private data that could be used as well, though unused here. The
implementation of “write_ucdb_data” should look familiar:

C Example (“save-callback”):

void
write_ucdb_data(ucdbT db)
{
 ucdbFileHandleT filehandle;
 filehandle = create_filehandle(db,"test.sv");
 create_covergroup(db,"cg",filehandle,3);
 create_coverpoint(db,"t",filehandle,4);
 create_coverpoint_bin(db,"auto[a]",filehandle,4,1,0,"a");
 create_coverpoint_bin(db,"auto[b]",filehandle,4,1,1,"b");
 ucdb_WriteStreamScope(db); /* terminate coverpoint */
 ucdb_WriteStreamScope(db); /* terminate covergroup */
}

This is part of the top-level code from the “write-streaming” example. The code is exactly the
same, and the functions called are exactly the same. The most important thing to realize is that
the enclosing scope – for the module instance “/top/inst” in this case – has already been started
or initialized by the UCDB save code from Questa, and will be terminated by Questa, too. The
context, in other words, is already assured. Any write-streaming mode UCDB API code may be
used in the callback. Questa should emit errors for mis-use of the API, and those should appear
in the transcript. It is not allowed to install your own UCDB API error handler with VPI, FLI, or
DPI code, because the Questa kernel has already installed its own.

UCDB API Reference, v10.196

UCDB Basics
UCDB in Questa and ModelSim

Questa Compatibility
These compatibility commitments are made by Questa and its implementation of the UCDB
API:

• Questa release 6.2b is the base release for the UCDB and API.

• The UCDB API will load any UCDB created from the base release onward.

• The header maintains strict backward compatibility from the base release onward. This
means that applications compiled against the base release will continue to compile and
continue to link.

• From Questa 6.3 onward, the UCDB API is forward link compatible. This means that an
application can be compiled with an earlier version of the ucdb.h and still link with a
later version of the library archive or shared object (or DLL on Windows.) This allows
some flexibility in dynamically linking to the UCDB API by a third-party tool whose
releases may not be predictably synchronized with Questa's.

• Questa does not commit to backward compatibility with respect to data models. This
means that some applications may require changes when significant portions of the data
model change. Examples include the change to the covergroup data model with 6.4, or
the addition of an additional level of expression and condition hierarchy to capture UDP
vs. FEC coverage in 6.4.

This last is an important point. Complete backward compatibility of the API is not the same as
complete backward compatibility of the data model. API compatibility means that an earlier
application will continue to compile and link. However, if it makes critical assumptions about
the data model that are no longer met, the application will not continue to work as expected.

This allows some flexibility to change data models in the tool. It also reflects the reality that it is
difficult to know what assumptions an application might make. Some applications may be
sufficiently general that they always continue to work; others may not. Until data models are
standardized and can be verified to conform to the standard, the UCDB API developer should
be prepared to make occasional changes to an application when data models change. This is
expected to be a relatively uncommon case, but it has already happened in the transition from
Questa 6.3 to 6.4.

UCDB API Reference, v10.1 97

Chapter 3
UCDB API Functions

The UCDB API functions are defined in the following function groups:

• Source Files

• Error Handler

• Tests

• Databases and Database Files

• User-specified Attributes

• Scopes

• Coverage and Statistics Summaries

• Coveritems

• Toggles

• Groups

• Tags

• Formal Data

• Test Traceability

UCDB API Reference, v10.198

UCDB API Functions
Source Files

Source Files
Every UCDB object can potentially have a source file name stored with it. Different
applications have different requirements for how these are stored. Consequently, the UCDB
contains an object called a "file handle", which provides a way of storing indirect references to
file names.

Simple Use Models

If you don’t care about file names and line numbers at all, you can create objects with NULL for
the ucdbSourceInfoT argument, e.g.:

mycover = ucdb_CreateNextCover(db,parent,name,&coverdata,NULL);

Alternatively, you can create a file and store it with the object.

ucdbSourceInfoT sourceinfo;
status = ucdb_CreateSrcFileHandleByName(

db,
&source_info.filehandle,
NULL,
filename,
fileworkdir);

source_info.line = myline;
source_info.token = mytoken;
(void) ucdb_CreateNextCover(db,parent,name,&coverdata,&sourceinfo);

This method creates a single global look-up table for file names within the UCDB. File names
are stored efficiently for each object within the UCDB, and each unique file name string is
stored only once. Whichever means are used to store file names, you can always access the file
name, for example:

ucdbSourceInfoT sourceinfo;
ucdb_GetCoverData(db,parent,i,&name,&coverdata,&sourceinfo);
if (sourceinfo.filehandle != NULL) {

printf("File name is %s\n",
ucdb_GetFileName(db,&sourceinfo.filehandle));

Scope Handle

typedef void* ucdbScopeT;

Scope handle.

Object Handle

typedef void* ucdbObjT;

Either ucdbScopeT or ucdbTestT.

UCDB API Functions
Source Files

UCDB API Reference, v10.1 99

File Handle

typedef void* ucdbFileHandleT;

File handle.

Source Information Type

typedef struct {
ucdbFileHandleT filehandle;

 int line;
 int token;
} ucdbSourceInfoT;

Source information for database objects

ucdb_CreateSrcFileHandleByName
int ucdb_CreateSrcFileHandleByName(
 ucdbT db,

ucdbFileHandleT* filehandle,
ucdbScopeT scope,

 const char* filename,
 const char* fileworkdir);

Creates a file handle for the specified file, from the file table associated with the given scope. If
filename is not found, it is added to the file table for the given scope. Returns 0 if successful, or
-1 if error and ucdb_IsValidFileHandle(returnvalue) == 0 if error.

ucdb_CreateFileHandleByNum
int ucdb_CreateFileHandleByNum(
 ucdbT db,

ucdbFileHandleT* filehandle,
ucdbScopeT scope,

 int filenum);

db Database.

filehandle Filehandle returned.

scope File table scope, or NULL for the global table.

filename Absolute or relative file name to look up in table.

fileworkdir Work directory for the file when filename is a path relative to
fileworkdir. Ignored if filename is an absolute path.

db Database.

filehandle Filehandle returned.

scope File table scope, or NULL for the global table.

UCDB API Reference, v10.1100

UCDB API Functions
Source Files

Creates a file handle for the specified offset into the file table of the specified scope. Returns 0 if
successful, or -1 if error (for example, if filenum is out of bounds or no file table exists for the
scope) and ucdb_IsValidFileHandle(returnvalue) == 0 if error.

ucdb_CloneFileHandle
int ucdb_CloneFileHandle(
 ucdbT db,

ucdbFileHandleT* filehandle,
ucdbFileHandleT* origfilehandle,
int filenum);

Creates a file handle cloned from the specified file handle, at the specified offset, in the same
table as the cloned file. The file number (offset) must be in bounds for the file table. Returns 0 if
successful, or -1 if error.

ucdb_CreateNullFileHandle
int ucdb_CreateNullFileHandle(

ucdbFileHandleT* filehandle);

Creates a new file handle. Returns 0 if successful, or -1 if error and
ucdb_IsValidFileHandle(filehandle) == 0.

ucdb_IsValidFileHandle
int ucdb_IsValidFileHandle(
 ucdbT db,

ucdbFileHandleT* filehandle);

Checks whether or not the specified filehandle returned by a UCDB function is valid. Use this
function for non-callback-based error-checking. Returns 1 if file handle is valid, or 0 if invalid.

filenum Offset of the file in the file table.

db Database.

filehandle Filehandle returned.

origfilehandle Filehandle to clone.

filenum Offset to the new file in the file table.

filehandle Null filehandle returned.

db Database.

filehandle Filehandle to test.

UCDB API Functions
Source Files

UCDB API Reference, v10.1 101

ucdb_GetFileName
const char* ucdb_GetFileName(
 ucdbT db,
 ucdbFileHandleT* filehandle);

Returns the file name of the file specified by filehandle, or NULL if error. This function tries to
reconstruct a valid file path from the file handle and the directory stored with it and the UCDB.
In the following algorithm, filename and fileworkdir refer to the corresponding arguments of
ucdb_CreateSrcFileHandleByName() or ucdb_SrcFileTableAppend():

if (filename is an absolute path) return the path name
else (filename is a relative path)

if (filename exists at the relative path)
return filename

else if (filename exists relative to fileworkdir)
return workdir/fileworkdir

else if (filename exists relative to the the value of the environment
variable MGC_WD)

return $MGC_WD/filename
else if (filename exists relative to the directory from which the

UCDB file was opened –– i.e., the directory extracted from the
file given to ucdb_Open() or equivalent)

return that dir/filename
else if (filename exists relative to the directory extracted from the

ORIGFILENAME attribute of the first test record –– i.e.,
representing the file into which the UCDB was originally saved)

return that dir/filename
else return filename.

If the filename was created as an absolute path, it must be correct. Otherwise only the last case
indicates that the file was not found, and the original filename is returned for lack of anything
better.

ucdb_GetFileNum
int ucdb_GetFileNum(
 ucdbT db,
 ucdbFileHandleT* filehandle);

Returns the file number of the file specified by filehandle, or -1 if error.

db Database.

filehandle File handle.

db Database.

filehandle File handle.

UCDB API Reference, v10.1102

UCDB API Functions
Source Files

ucdb_GetFileTableScope
ucdbScopeT ucdb_GetFileTableScope(
 ucdbT db,
 ucdbFileHandleT* filehandle);

Returns the scope of the table of the file specified by filehandle. Returns NULL if the specified
file handle is not valid or if the table os the global file table. Also calls an error handler (if
installed) when the file handle is not valid.

ucdb_SrcFileTableAppend
int ucdb_SrcFileTableAppend(
 ucdbT db,

ucdbFileHandleT* filehandle,
ucdbScopeT scope,

 const char* filename,
 const char* fileworkdir);

Creates a file handle for the specified file, from the file table associated with the given scope.
The filename is added to the file table for the given scope, so the filename is assumed to be
unique. To check for duplicate file names, use ucdb_CreateSrcFileHandleByName. Returns 0 if
successful, or -1 if error and ucdb_IsValidFileHandle(returnvalue) == 0 if error.

ucdb_FileTableSize
int ucdb_FileTableSize(
 ucdbT db,

ucdbScopeT scope);

Returns the number of files in the file table associated with the specified scope, or -1 if error.

db Database.

filehandle File handle.

db Database.

filehandle Filehandle returned.

scope File table scope, or NULL for the global table.

filename Absolute or relative file name to look up in table.

fileworkdir Work directory for the file when filename is a path relative to
fileworkdir. Ignored if filename is an absolute path.

db Database.

scope File table scope, or NULL for the global table.

UCDB API Functions
Source Files

UCDB API Reference, v10.1 103

ucdb_FileTableName
const char* ucdb_FileTableName(
 ucdbT db,

ucdbScopeT scope
int index);

Returns the name of the file with the specified index in the file table for the specified scope, or
NULL if error.

ucdb_FileTableRemove
int ucdb_FileTableRemove(
 ucdbT db,

ucdbScopeT scope,
 const char* filename);

No effect in streaming modes. Removes the specified file from the file table for the specified
scope (or the entire table if filename is NULL). Returns 0 if successful, or -1 if error.

ucdb_FileInfoToString
const char* ucdb_FileInfoToString(
 ucdbT db,
 ucdbSourceInfoT* source_info);

Returns a string representation of the file handle in the specified ucdbSourceInfoT item, or
NULL if error. This is equivalent to calling:

ucdb_GetFileName(db, &source_info->filehandle)

The returned string only remains valid until the next call of this routine. To be used, the user
must copy the returned string before the next call to this function.

db Database.

scope File table scope, or NULL for the global table.

index File table index of the file.

db Database.

scope File table scope, or NULL for the global table.

filename File to remove from the table, or NULL for the whole table.

db Database.

file_info Source file information handle.

UCDB API Reference, v10.1104

UCDB API Functions
Error Handler

Error Handler
The most convenient error-handling mode is to use ucdb_RegisterErrorHandler() before any
UCDB calls. The user’s error callback, a function pointer of type ucdb_ErrorHandler, is called
for any error produced by the system.

Alternatively, function return values can be checked. In general, functions that return a handle
return NULL (or invalid handle) on error (they return the handle otherwise). Functions that
return an int return non-zero on error (0 otherwise).

Message Severity Type

typedef enum {
 UCDB_MSG_INFO,
 UCDB_MSG_WARNING,
 UCDB_MSG_ERROR
} ucdbMsgSeverityT;

Error Type

typedef struct ucdbErr_s {
 int msgno; /* Message identifier */
 ucdbMsgSeverityT severity; /* Message severity */
 const char* msgstr; /* Raw message string */
} ucdbErrorT;

Error Handler

typedef void (*ucdb_ErrorHandler) (void* userdata, ucdbErrorT* errdata);

ucdb_RegisterErrorHandler
void ucdb_RegisterErrorHandler(
 ucdb_ErrorHandler errHandle,
 void* userdata);

Registers the specified error handler that is called whenever an API error occurs.

ucdb_IsModified
int ucdb_IsModified(
 ucdbT db);

Returns 1 if the database was modified after it was loaded into memory, or 0 if error.

errHandle Error handler handle.

userdata User-specified data for the error handler.

db Database.

UCDB API Functions
Error Handler

UCDB API Reference, v10.1 105

ucdb_ModifiedSinceSim
int ucdb_ModifiedSinceSim(
 ucdbT db);

Returns 1 if the database was modified after it was it was saved from the simulation, or 0 if
error. For merged databases, if all the input databases are unmodified, the merged output is
unmodified. Otherwise if any file is modified, the output database is modified.

ucdb_SuppressModified
int ucdb_SuppressModified(
 ucdbT db

 int yes);

If yes is 1, additional changes to the specified database do not “modify” the database. If yes is
0, changes to the specified database do “modify” the database. This function suppresses both
the in-memory-modified flag and the modified-since-simulation flag, so both the functions
ucdb_IsModified() and ucdb_ModifiedSinceSim() return 0 if a change is made while the
modify flags are suppressed.

db Database.

db Database.

UCDB API Reference, v10.1106

UCDB API Functions
Tests

Tests
If a UC database was created as a result of a single test run, the database has a single test data
record associated with it. If it was created as a result of a test merge operation, the UC database
should have multiple sets of test data. The functions defined in this section can be used to create
sets of test data. Each test data record should be associated with the name of the UC database
file in which the database was first stored.

For efficiency, history nodes (ucdbHistoryNodeT) and associated functions use different test
records for different situations (like merging) (rather than creating the same or similar test
record for each database operation). Test data record nodes (ucdbTestStatusT) are a subset of
history nodes.

Test Type

typedef ucdbHistoryNodeT ucdbTestT;

Test Status Type

typedef enum {
 UCDB_TESTSTATUS_OK,
 UCDB_TESTSTATUS_WARNING, /* test warning ($warning called) */
 UCDB_TESTSTATUS_ERROR, /* test error ($error called) */
 UCDB_TESTSTATUS_FATAL, /* fatal test error ($fatal called)*/

 UCDB_TESTSTATUS_MISSING, /* test not run yet */
 UCDB_TESTSTATUS_MERGE_ERROR /* testdata record was merged with

 inconsistent data values */
} ucdbTestStatusT;

History Node Types

typedef void* ucdbHistoryNodeT;

History Node Kind Types

typedef enum {
 UCDB_HISTORYNODE_NONE, /* no node or error */
 UCDB_HISTORYNODE_MERGE, /* interior merge node */
 UCDB_HISTORYNODE_TEST, /* test leaf node */
 UCDB_HISTORYNODE_TESTPLAN, /* test plan leaf node */
} ucdbHistoryNodeKindEnumT;

UCDB API Functions
Tests

UCDB API Reference, v10.1 107

ucdb_AddTest
ucdbTestT ucdb_AddTest(
 ucdbT db,
 const char* filename, /* ORIGFILENAME */
 const char* testname, /* TESTNAME */
 ucdbTestStatusT test_status, /* TESTSTATUS */
 double simtime, /* SIMTIME */
 const char* simtime_units, /* TIMEUNIT */
 double realtime, /* CPUTIME */
 const char* seed, /* SEED */
 const char* command, /* TESTCMD */
 const char* simargs, /* VSIMARGS */
 const char* comment, /* TESTCOMMENT */
 int compulsory, /* COMPULSORY */
 const char* date, /* DATE */
 const char* userid); /* USERNAME */

Adds the specified test data to the database. Used to capture a single set of data from a test’s
coverage results saved to a UCDB from simulation. The filename must be the name of the file
that later will be saved. The filename is given explicitly to aid in copying test data records.
Returns a new test handle, or NULL if error.

db Database to hold the test.

filename Name of UCDB file to which the database was saved.

testname Test name. Must be unique for each test run.

test_status Test status.

simtime Simulation run time of test (in simtime_units).

simtime_units Simulation time units.

realtime CPU run time of test.

seed Randomization seed used for the test.

command Test script arguments.

simargs Simulator arguments.

comment User-specified comment.

compulsory 1 if a required test, or 0 if not.

date Time of start of simulation, specified as a string. Output of
strftime with format "%Y%m%d%H%M%S", for example,
4:00:30 PM January 5, 2008 is coded as “20080105160030”.

userid ID of the user who created the file.

UCDB API Reference, v10.1108

UCDB API Functions
Tests

ucdb_AddPotentialTest
ucdbTestT ucdb_AddPotentialTest(
 ucdbT db,
 const char* testname);

Adds a test data record with the specified test name and test_status of
UCDB_TESTSTATUS_MISSING. All other fields have invalid values. Used to tag a test data
record for tests not yet run. Returns a new test handle, or NULL if error.

ucdb_GetTestData
int ucdb_GetTestData(
 ucdbT db,
 ucdbTestT test,
 const char** filename, /* ORIGFILENAME */
 const char** testname, /* TESTNAME */
 ucdbTestStatusT* test_status, /* TESTSTATUS */
 double* simtime, /* SIMTIME */
 const char** simtime_units, /* TIMEUNIT */
 double* cputime, /* CPUTIME */
 const char** seed, /* SEED */
 const char** command, /* TESTCMD */
 const char** simargs, /* VSIMARGS */
 const char** comment, /* TESTCOMMENT */
 int* compulsory, /* COMPULSORY */
 const char** date, /* DATE */
 const char** userid); /* USERNAME */

db Database to hold the test.

testname Test name. Must be unique for each test run.

db Database.

test Test.

filename Name of UCDB file first associated with the test.

testname Test name.

test_status Test status.

simtime Simulation run time of test (in simtime_units).

simtime_units Simulation time units.

realtime CPU run time of test.

seed Randomization seed used for the test.

command Test script arguments.

simargs Simulator arguments.

comment User-specified comment.

UCDB API Functions
Tests

UCDB API Reference, v10.1 109

Gets the data for the specified test in the specified database. Allocated values (strings, date and
attributes) must be copied if the user wants them to persist.Returns 0 if successful, or non-zero
if error.

ucdb_GetTestName
const char* ucdb_GetTestName(
 ucdbT db,
 ucdbTestT test);

Returns the test name for the specified test handle from the specified opened database, or NULL
if error.

ucdb_NextTest
ucdbTestT ucdb_NextTest(
 ucdbT db,
 ucdbTestT test);

Returns the next (or first) test handle from the specified opened database, or NULL if error.

ucdb_CloneTest
ucdbTestT ucdb_CloneTest(
 ucdbT targetdb,
 ucdbTestT test,
 ucdbSelectFlagsT cloneflags);

No effect if targetdb is in streaming mode. Creates an exact copy of the specified test record.
Returns handle to the cloned test, or NULL if error.

compulsory 1 if a required test, or 0 if not.

date Time of start of simulation, specified as a string. Output of
strftime with format "%Y%m%d%H%M%S", for example,
4:00:30 PM January 5, 2008 is coded as “20080105160030”.

userid ID of the user who created the file.

db Database.

test Test.

db Database.

test Test or NULL for first test handle.

targetdb Target database for the cloned test.

test Source test.

cloneflags UCDB_CLONE_ATTRS (to clone attributes) or 0 (to omit
attributes).

UCDB API Reference, v10.1110

UCDB API Functions
Tests

ucdb_RemoveTest
int ucdb_RemoveTest(
 ucdbT db,
 ucdbTestT test);

No effect if db is in streaming mode. Removes the specified test from the database. Returns 0 if
successful, or -1 if error.

ucdb_NumTests
int ucdb_NumTests(
 ucdbT db);

Reliable with in-memory mode but only works in streaming mode after all test records are read
or written. Returns the number of tests associated with the specified database, or -1 if error (for
example, if the value cannot be calculated yet in streaming mode).

ucdb_CreateHistoryNode
ucdbHistoryNodeT ucdb_CreateHistoryNode(
 ucdbT db,
 char* path,
 ucdbHistoryNodeKindEnumT kind);

Creates a history node of the specified kind in the specified database. History node has default
values of path for FILENAME and the current execution directory for RUNCWD. Returns
handle to the created history node, or NULL if error or if node already exists. Returned node is
owned by the routine and should not be freed by the caller.

db Database.

test Test.

db Database.

db Database.

path Testplan path. Must be a valid pathname (cannot be NULL). Set
to merge file pathname if kind is UCDB_HISTORYNODE_-
MERGE, otherwise, set to file pathname.

kind History node kind.

UCDB API Functions
Tests

UCDB API Reference, v10.1 111

ucdb_AddHistoryNodeChild
int ucdb_AddHistoryNodeChild(
 ucdbT db,
 ucdbHistoryNodeT parent,
 ucdbHistoryNodeT child);

Sets the specified node to be a child node of the specified parent node. Each history node
appears exactly once in the history trees. In particular, every child can have at most one parent;
once ucdb_AddHistoryNodeChild assigns a parent to a child, the child cannot be reassigned to a
different parent; and a child node cannot be (directly or indirectly) its own parent. Returns non-
zero if successful, or 0 if error.

ucdb_NextHistoryNode
ucdbHistoryNodeT ucdb_NextHistoryNode(
 ucdbT db,
 ucdbHistoryNodeT historynode,
 ucdbHistoryNodeKindEnumT kind);

Returns the next history node of the same kind as the specified history node, or if historynode is
NULL, returns the first history node of the specified kind. Returns NULL if error or if node
does not exist. History node “order” is vendor specific. Returned node is owned by the routine
and should not be freed by the caller.

ucdb_HistoryRoot
ucdbHistoryNodeT ucdb_HistoryRoot(
 ucdbT db);

Returns the unique history node that has no parent, or NULL if error or if multiple roots exist.
Returned node is owned by the routine and should not be freed by the caller. This routine
assumes that only one history node is defined.

db Database.

parent Parent history node.

child Child history node.

db Database.

historynode History node or NULL.

kind History node kind.

db Database.

UCDB API Reference, v10.1112

UCDB API Functions
Tests

ucdb_NextHistoryRoot
ucdbHistoryNodeT ucdb_NextHistoryRoot(
 ucdbT db,
 ucdbHistoryNodeT historynode,
 ucdbHistoryNodeKindEnumT kind);

Returns the next orphan (parentless) history node of the same kind as the specified history node,
or if historynode is NULL, returns the first orphan history node of the specified kind. Returns
NULL if node does not exist. History node “order” is vendor specific. Returned node is owned
by the routine and should not be freed by the caller. This routine assumes multiple history roots
are possible (i.e., a collection subtree orphans).

ucdb_NextHistoryLookup
ucdbHistoryNodeT ucdb_NextHistoryLookup(
 ucdbT db,
 ucdbHistoryNodeT historynode,
 const char* attributekey,
 const char* attributevalue,
 ucdbHistoryNodeKindEnumT kind);

Returns the next history node of the same kind as the specified history node that has an attribute
matching the specified key/value pair, or if historynode is NULL, returns the first history node
of the specified kind that has an attribute matching the specified key/value pair. Returns NULL
if error or if node does not exist. History node “order” is vendor specific. Returned node is
owned by the routine and should not be freed by the caller.

db Database.

historynode History node or NULL.

kind History node kind.

db Database.

historynode History node or NULL.

attributekey UCDB_ATTR_STRING attribute key.

attributevalue Attribute value.

kind History node kind.

UCDB API Functions
Tests

UCDB API Reference, v10.1 113

ucdb_GetHistoryNodeParent
ucdbHistoryNodeT ucdb_GetHistoryNodeParent(
 ucdbT db,
 ucdbHistoryNodeT child);

Returns the parent of the specified history node, or NULL if error or if specified node is a root
node. Returned node is owned by the routine and should not be freed by the caller.

ucdb_GetNextHistoryNodeChild
ucdbHistoryNodeT ucdb_GetNextHistoryNodeChild(
 ucdbT db,
 ucdbHistoryNodeT parent,
 ucdbHistoryNodeT child);

Returns the next history node after the specified child history node, or if child is NULL, returns
the first history node of the specified parent history node. Returns NULL if error or if next node
does not exist. History node “order” is vendor specific. Returned node is owned by the routine
and should not be freed by the caller.

ucdb_CloneHistoryNode
ucdbHistoryNodeT ucdb_CloneHistoryNode(
 ucdbT targetdb,
 ucdbT sourcedb,
 ucdbHistoryNodeT historynode);

Creates an exact copy (including attributes) of the specified history node. Returns the history
node for the copy, or NULL if error or if the target history node exists.

db Database.

child History node.

db Database.

parent Parent history node.

child Child history node or NULL.

targetdb Target database for the copied node.

sourcedb Source database containing the node to copy.

historynode History node to copy.

UCDB API Reference, v10.1114

UCDB API Functions
Tests

ucdb_GetHistoryKind
ucdbScopeTypeT ucdb_GetHistoryKind(
 ucdbT db,
 ucdbScopeT object);

Polymorphic function (aliased to ucdb_GetObjType) for acquiring an object type. Returns
UCDB_HISTORYNODE_TEST (object is a test data record),
UCDB_HISTORYNODE_TESTPLAN (object is a test plan record),
UCDB_HISTORYNODE_MERGE (object is a merge record), scope type ucdbScopeTypeT
(object is not of these), or UCDB_SCOPE_ERROR if error. This function can return a value
with multiple bits set (for history data objects). Return value must not be used as a mask.

ucdb_CalculateHistorySignature
char* ucdb_CalculateHistorySignature(
 ucdbT db,
 char* file);

Returns a history signature of the specified file, or NULL if error. The returned string is owned
by the routine and must not be freed by the caller. If a file’s contents remain unmodified,
recalculating the file’s history signature produces the same results. Conversely, when the file is
modified, the resulting signature will also be changed. Use this mechanism to check whether or
not a file has become "dirty".

db Database.

object Object.

db Database.

file File.

UCDB API Functions
Databases and Database Files

UCDB API Reference, v10.1 115

Databases and Database Files
A UCDB database exists in two forms: an in-memory image accessible with a database handle,
and a persistent form on the file system. There are read streaming and write streaming modes
that minimize the memory usage in the current process. These streaming modes keep only a
small “window” of data in memory; and once you have moved onward in reading or writing,
you cannot revisit earlier parts of the database. Random access is not possible.

You use the functions defined in this section to run the following operations:

• Opening a file and creating an in-memory image.

Reading from a persistent database and creating an in-memory image are combined in
the same function: ucdb_Open(), which always creates a valid database handle. If a
filename is given to ucdb_Open(), the in-memory image is populated from the persistent
database in the named file.

Some parts of the data model can be accessed without fully populating the in-memory
data image, if and only if no other calls have been made since ucdb_Open() that require
accessing the in-memory image. In particular, the following data can be accessed in
constant time regardless of the size of the UCDB:

• ucdb_CalcCoverageSummary (scope==NULL and test_mask==NULL)

• ucdb_GetCoverage

• ucdb_GetStatistics

• ucdb_GetMemoryStats

• Writing to a file from an in-memory image.

This operation can be performed at any time with the ucdb_Write() function. This
function transfers all of (or a subset of) the in-memory image to the named persistent
database file, overwriting the file if it previously existed.

• Deleting the in-memory image.

This operation is done with the ucdb_Close() function. After this call, the database
handle is no longer valid.

• Using write streaming mode.

To create a UCDB with minimal memory overhead, use ucdb_OpenWriteStream() to
create a UCDB handle whose use is restricted. In particular, objects must be created in
the following prescribed order:

a. Create UCDB attributes first. Creating UCDB attributes at the beginning of the file
is not enforced to allow the case of UCDB attributes created at the end of the output
(which might be necessary for attributes whose values must be computed as a result
of traversing the data during write).

UCDB API Reference, v10.1116

UCDB API Functions
Databases and Database Files

b. Create TestData.

c. Create scopes. Creating DU scopes before corresponding instance scopes. If a scope
contains coverage items, create those first. If a scope contains child scopes, create
those after coveritems.

There are other restrictions as well; see comments for individual functions. For
example, accessing immediate ancestors is OK, but accessing siblings is not (nor is
it OK to access an ancestor’s siblings).

The function ucdb_WriteStream() must be used in write streaming mode to finish
writing a particular object. The function ucdb_WriteStreamScope() must be used to
finish writing a scope and to resume writing the parent scope. In write streaming
mode, the ucdb_Close() function must be used to finish the file being written to and
to free any temporary memory used for the database handle.

• Using read streaming mode

The read streaming mode operates with callbacks. The persistent database is opened
with a ucdb_OpenReadStream() call that passes control to the UCDB system which then
initiates callbacks to the given callback function. Each callback function returns a
"reason" that identifies the data valid for the callback and enough information to access
the data. Note the following information on read streaming mode callback order:

a. INITDB is always the first callback.

b. UCDB attributes created first in write streaming mode are available, as are UCDB
attributes created with in-memory mode.

c. All TEST callbacks follow; after the next non-TEST callback there will be no more
TEST callbacks.

d. DU callbacks must precede their first associated instance SCOPE callbacks, but
need not immediately precede them.

e. SCOPE, DU and CVBIN callbacks can occur in any order, except for the DU before
first instance rule—although nesting level is implied by the order of callbacks.

f. ENDSCOPE callbacks correspond to SCOPE and DU callbacks and imply a "pop"
in the nesting of scopes and design units.

g. ENDDB callbacks can be used to access UCDB attributes written at the end of the
file, if created in write streaming modes.

• Opening UCDB in streaming mode to read data through callbacks without creating an
in-memory database.

Use the ucdb_OpenReadStream() read API to open a UCDB in stream mode with a
callback function of type ucdb_CBFuncT along with user data (which can be NULL).
The callback function is called for all UCDB objects present in the database, with an
object of type ucdbCBDataT with the user data.

UCDB API Functions
Databases and Database Files

UCDB API Reference, v10.1 117

Callback Reason Type

typedef enum {
 UCDB_REASON_INITDB, /* Start of the database,

apply initial settings */
UCDB_REASON_DU, /* Start of a design unit scope */

 UCDB_REASON_TEST, /* Testplan object */
 UCDB_REASON_SCOPE, /* Start of a scope object */
 UCDB_REASON_CVBIN, /* Cover item */
 UCDB_REASON_ENDSCOPE /* End of a scope,

including design units */
UCDB_REASON_ENDDB, /* End of database (database handle

still valid) */
 UCDB_REASON_PLANHISTORY, /* Testplan history object */
 UCDB_REASON_MERGEHISTORY /* Merge history object */
} ucdbCBReasonT;

Callback Return Type

typedef enum {
 UCDB_SCAN_CONTINUE = -1, /* Continue to scan ucdb file */
 UCDB_SCAN_STOP = -2, /* Stop scanning ucdb file */
 UCDB_SCAN_PRUNE = -3 /* Prune the scanning of the ucdb file at

this node.Scanning continues but
ignores processing of this node’s
children.NOTE: This enum value is
currently disallowed in read
streaming mode. */

} ucdbCBReturnT;

Read Callback Data Type

typedef struct ucdbCBDataS {
 ucdbCBReasonT reason; /* Reason for this callback */
 ucdbT db; /* Database handle, to use in APIs */
 ucdbObjT obj; /* ucdbScopeT or ucdbTestT */
 int coverindex; /* If UCDB_REASON_CVBIN, index of

coveritem */
} ucdbCBDataT;

Function Type for Use with ucdb_OpenReadStream()

typedef ucdbCBReturnT (*ucdb_CBFuncT) \
(void* userdata, ucdbCBDataT* cbdata);

ucdb_Open
ucdbT ucdb_Open(
 const char* name);

Creates an in-memory database, optionally populating it from the specified file. Returns a
database handle if successful, or NULL if error.

name File system path.

UCDB API Reference, v10.1118

UCDB API Functions
Databases and Database Files

ucdb_OpenReadStream
int ucdb_OpenReadStream(
 const char* name,
 ucdb_CBFuncT cbfunc,
 void* userdata);

Opens a database for streaming read mode from the specified file. Returns 0 if successful, or -1
if error.

ucdb_OpenWriteStream
ucdbT ucdb_OpenWriteStream(
 const char* name);

Opens data in write streaming mode, overwriting the specified file. Returns a restricted database
handle if successful, or NULL if error.

ucdb_WriteStream
int ucdb_WriteStream(
 ucdbT db);

Finishes a write of current object to the persistent database file in write streaming mode. This
operation is like a flush, which completes the write of whatever was most recently created in
write streaming mode. Multiple ucdb_WriteStream() calls cause no harm because if the current
object has already been written, it is not be written again. The specified database handle must
have been previously opened with ucdb_OpenWriteStream(). Returns 0 if successful, or -1 if
error.

ucdb_WriteStreamScope
int ucdb_WriteStreamScope(
 ucdbT db);

Finishes a write of the current scope (similar to the flush operation of ucdb_WriteStream) and
pops the stream to the parent scope. (i.e., terminates the current scope and reverts to its parent).
Objects created after this belong to the parent scope of the scope just ended. Unlike
ucdb_WriteStream, this function cannot be called benignly multiple times as it always causes a

name File system path.

cbfunc User-supplied callback function.

userdata User-supplied function data.

name File system path (write permission must exist for the file).

db Database.

db Database.

UCDB API Functions
Databases and Database Files

UCDB API Reference, v10.1 119

reversion to the parent scope. This process is the write streaming analogue of the
UCDB_REASON_ENDSCOPE callback in read streaming mode. The specified database
handle must have been previously opened with ucdb_OpenWriteStream(). Returns 0 if
successful, or -1 if error.

ucdb_Write
int ucdb_Write(
 ucdbT db,
 const char* file,
 ucdbScopeT scope,
 int recurse,
 int covertype);

Copies the entire in-memory database or the specified subset of the in-memory database to a
persistent form stored in the specified file, overwriting the specified file. Returns 0 if successful,
or -1 if error.

ucdb_Close
int ucdb_Close(
 ucdbT db);

Invalidates the specified database handle and frees all memory associated with the handle,
including the in-memory image of the database, if not in one of the streaming modes. If db was
opened with ucdb_OpenWriteStream(), this functional call has the side-effect of closing the
output file. Returns 0 if successful, or non-zero if error.

ucdb_DBVersion
int ucdb_DBVersion(
 ucdbT db);

db Database. The database handle "db" cannot have been opened for
one of the streaming modes.

file File name (write permission must exist for the file).

scope Scope or NULL if all objects.

recurse Non-recursive if 0. If non-zero, recurse from specified scope or
ignored if scope==NULL.

covertype Cover types (see “Cover Types” on page 158) to save or -1 for
everything.

db Database.

db Database.

UCDB API Reference, v10.1120

UCDB API Functions
Databases and Database Files

Returns integer version of the API library, or a negative value if error. If the database handle
was created from a file (i.e., ucdb_Open with non-NULL file name or ucdb_OpenReadStream)
this call returns the version of the database file itself. That is, the version of the API that
originally created the file. Otherwise, (i.e., ucdb_Open with NULL filename or
ucdb_OpenWriteStream), this function is the same as ucdb_APIVersion().

ucdb_APIVersion
int ucdb_APIVersion();

Returns the current integer version of the API library. For a file to be readable:

ucdb_APIVersion() ©>= ucdb_DBVersion(db)

ucdb_SetPathSeparator
int ucdb_SetPathSeparator(
 ucdbT db,
 char separator);

Sets the path separator for the specified database. See “ucdb_GetScopeHierName” on page 140,
“ucdb_MatchCallBack” on page 148, “ucdb_MatchCallBack” on page 148 and
“ucdb_MatchCallBack” on page 148. The path separator is stored with the persistent form of
the database. Returns 0 if successful, or -1 if error.

ucdb_GetPathSeparator
char ucdb_GetPathSeparator(
 ucdbT db);

Returns the path separator for the specified database, or “0” if error.

ucdb_Filename
const char* ucdb_Filename(
 ucdbT db);

Returns the file name from which the specified database was read or the most recent file name
written, or NULL if none.

db Database.

separator Path separator.

db Database.

db Database.

UCDB API Functions
User-specified Attributes

UCDB API Reference, v10.1 121

User-specified Attributes
User-defined attributes are associated with objects in the database—scopes, coveritems, or
tests—or with the database itself (global attributes). They are key-value pairs that can be
traversed or looked up by key. Key/value string storage is maintained by the API. With set
routines (which add key/value pairs), passed-in strings are copied to storage maintained by the
API. You must not de-allocate individual strings returned by the API. On reading from or
writing to memory, values returned are always owned by the API. They are good until the next
call. The memory for keys is always good.

For attributes of coveritems, the coveritems are identified by a combination of the parent scope
handle (pointer) and an integer index for the coveritem. To use the attribute functions for a
scope only, the integer index must be set to -1. For history node objects, the index must always
be -1. If a function is given an attribute handle, if that handle is of type
UCDB_ATTR_ARRAY, then the index must be a value from 0 to array size – 1. The array size
may be queried using the ucdb_AttrArraySize() function. If the attribute handle is of type
UCDB_ATTR_HANDLE, then the index must be –1.

Attribute Type

typedef enum {
 UCDB_ATTR_INT,
 UCDB_ATTR_FLOAT,
 UCDB_ATTR_DOUBLE,
 UCDB_ATTR_STRING,
 UCDB_ATTR_MEMBLK,
 UCDB_ATTR_INT64,

UCDB_ATTR_HANDLE, /* Refers to other attributes: for nesting */
 UCDB_ATTR_ARRAY /* Handle used to refer to an attribute array */
} ucdbAttrTypeT;

Attribute Value Type

typedef struct {
 ucdbAttrTypeT type; /* Value type */
 union {
 int64_t i64value /* 64-bit integer value */
 int ivalue; /* Integer value */
 float fvalue; /* Float value */
 double dvalue; /* Double value */
 const char* svalue; /* String value */
 struct {

int size; /* Size of memory block, number of bytes */
 unsigned char* data; /* Starting address of memory block */
 } mvalue;

ucdbAttrHandleT attrhandle; /* for HANDLE and ARRAY */
 } u;
} ucdbAttrValueT;

UCDB API Reference, v10.1122

UCDB API Functions
User-specified Attributes

ucdb_AttrGetNext
const char* ucdb_AttrGetNext(
 ucdbT db,
 ucdbObjT obj,
 int coverindex,
 const char* key,
 ucdbAttrValueT** value);

Returns the next attribute key and gets the corresponding attribute value from the specified
database object, or returns NULL when done traversing attributes. Do not use free or strdup on
keys. Memory for the returned key is owned by the API. To preserve the old key, just use
another char* variable for it. For example, to traverse the list of attributes for a scope:

const char* key = NULL;
ucdbAttrValueT* value;
while (key = ucdb_AttrGetNext(db,obj,-1,key,&value)) {

printf("Attribute ’%s’ is ", key);
print_attrvalue(value);

}

ucdb_AttrAdd
int ucdb_AttrAdd(
 ucdbT db,
 ucdbObjT obj,
 int coverindex,
 const char* key,
 ucdbAttrValueT* value);

Adds the specified attribute (key/value) to the specified database object or global attribute list.
The attribute value is copied to the system. Returns 0 if successful, or -1 if error.

db Database.

obj Object type: ucdbScopeT, ucdbHistoryNodeT, or NULL (for
global attribute).

coverindex Index of coveritem. If obj is ucdbScopeT, specify -1 for scope.

key Previous key or NULL to get the first attribute.

value Attribute value returned.

db Database.

obj Object type: ucdbScopeT, ucdbTestT, or NULL (for global
attribute).

coverindex Index of coveritem. If obj is ucdbScopeT, specify -1 for scope.

key Attribute key.

value Attribute value.

UCDB API Functions
User-specified Attributes

UCDB API Reference, v10.1 123

ucdb_AttrRemove
int ucdb_AttrRemove(
 ucdbT db,
 ucdbObjT obj,
 int coverindex,
 const char* key);

Removes the attribute that has the specified key from the specified database object or global
attribute list. Returns 0 if successful, or -1 if error.

ucdb_AttrGet
int ucdb_AttrGet(
 ucdbT db,
 ucdbObjT obj,
 int coverindex,
 const char* key,
 ucdbAttrValueT* value);

Gets the attribute value for the specified object/key or global attribute value if obj is NULL.
Returns 1 if a match is found, or 0 if error.

db Database.

obj Object type: ucdbScopeT, ucdbTestT, or NULL (for global
attribute).

coverindex Index of coveritem. If obj is ucdbScopeT, specify -1 for scope.

key Key or NULL to remove the first attribute.

db Database.

obj Object type: ucdbScopeT, ucdbHistoryNodeT, or NULL (for
global attribute).

coverindex Index. If obj is ucdbScopeT, specify -1 for scope. Valid index for
coveritem is ucdbAttrHandleT:
• array index (if type is UCDB_ATTR_ARRAY)
• -1 (if type is UCDB_ATTR_HANDLE)

key Not necessary if obj is ucdbAttrHandleT and its type is
UCDB_ATTR_ARRAY.

value Attribute value returned.

UCDB API Reference, v10.1124

UCDB API Functions
User-specified Attributes

ucdb_AttrArraySize
int ucdb_AttrArraySize(
 ucdbT db,

ucdbAttrHandleT arrayhandle);

Returns the size (max index + 1) of the attribute array, or -1 if error (i.e., type is not
UCDB_ATTR_ARRAY).

db Database.

arrayhandle Attribute array handle.

UCDB API Functions
Scopes

UCDB API Reference, v10.1 125

Scopes
Scopes functions manage the design hierarchy and coverage scopes. The UCDB database is
organized hierarchically in parallel with the the design database, which consists of a tree of
module instances, each of a given module type.

Note the following about scopes functions:

• hierarchical identifiers

• If a scope type is Verilog or SystemVerilog, Verilog escaped identifiers syntax is
assumed for a path within that scope.

• If a scope type is VHDL, VHDL extended identifiers are assumed. The escaped
identifier syntax is sensitive to the scope type so that escaped identifiers can appear
in the user’s accustomed syntax. If a scope type is VHDL, the entity, architecture
and library can be encoded in the name.

• attributes

• char* attributes can be omitted with a NULL value.

• int attributes can be omitted with a negative value.

Scope Type

typedef unsigned int ucdbScopeTypeT;

#define UCDB_TOGGLE INT64_LITERAL(0x0000000000000001)
 /* cover scope: toggle coverage scope */

#define UCDB_BRANCH INT64_LITERAL(0x0000000000000002)
 /* cover scope: branch coverage scope */

#define UCDB_EXPR INT64_LITERAL(0x0000000000000004)
 /* cover scope: expression coverage scope */

#define UCDB_COND INT64_LITERAL(0x0000000000000008)
 /* cover scope: condition coverage scope */

#define UCDB_INSTANCE INT64_LITERAL(0x0000000000000010)
 /* HDL scope: Design hierarchy instance */

#define UCDB_PROCESS INT64_LITERAL(0x0000000000000020)
 /* HDL scope: process */

#define UCDB_BLOCK INT64_LITERAL(0x0000000000000040)
 /* HDL scope: vhdl block, vlog begin-end */

#define UCDB_FUNCTION INT64_LITERAL(0x0000000000000080)
 /* HDL scope: function */

#define UCDB_FORKJOIN INT64_LITERAL(0x0000000000000100)
 /* HDL scope: Verilog fork-join block */

#define UCDB_GENERATE INT64_LITERAL(0x0000000000000200)
 /* HDL scope: generate block */

#define UCDB_GENERIC INT64_LITERAL(0x0000000000000400)
 /* cover scope: generic scope type */

#define UCDB_CLASS INT64_LITERAL(0x0000000000000800)
 /* HDL scope: class type scope */

#define UCDB_COVERGROUP INT64_LITERAL(0x0000000000001000)
 /* cover scope: covergroup type scope */

UCDB API Reference, v10.1126

UCDB API Functions
Scopes

#define UCDB_COVERINSTANCE INT64_LITERAL(0x0000000000002000)
 /* cover scope: covergroup instance scope */

#define UCDB_COVERPOINT INT64_LITERAL(0x0000000000004000)
 /* cover scope: coverpoint scope */

#define UCDB_CROSS INT64_LITERAL(0x0000000000008000)
 /* cover scope: cross scope */

#define UCDB_COVER INT64_LITERAL(0x0000000000010000)
 /* cover scope: directive (SVA/PSL) cover */

#define UCDB_ASSERT INT64_LITERAL(0x0000000000020000)
 /* cover scope: directive (SVA/PSL) assert */

#define UCDB_PROGRAM INT64_LITERAL(0x0000000000040000)
 /* HDL scope: SV program instance */

#define UCDB_PACKAGE INT64_LITERAL(0x0000000000080000)
 /* HDL scope: package instance */

#define UCDB_TASK INT64_LITERAL(0x0000000000100000)
 /* HDL scope: task */

#define UCDB_INTERFACE INT64_LITERAL(0x0000000000200000)
 /* HDL scope: SV interface instance */

#define UCDB_FSM INT64_LITERAL(0x0000000000400000)
 /* cover scope: FSM coverage scope */

#define UCDB_TESTPLAN INT64_LITERAL(0x0000000000800000)
 /* test scope: for test plan item */

#define UCDB_DU_MODULE INT64_LITERAL(0x0000000001000000)
 /* design unit: for instance type */

#define UCDB_DU_ARCH INT64_LITERAL(0x0000000002000000)
 /* design unit: for instance type */

#define UCDB_DU_PACKAGE INT64_LITERAL(0x0000000004000000)
 /* design unit: for instance type */

#define UCDB_DU_PROGRAM INT64_LITERAL(0x0000000008000000)
 /* design unit: for instance type */

#define UCDB_DU_INTERFACE INT64_LITERAL(0x0000000010000000)
 /* design unit: for instance type */

#define UCDB_FSM_STATES INT64_LITERAL(0x0000000020000000)
 /* cover scope: FSM states coverage scope */

#define UCDB_FSM_TRANS INT64_LITERAL(0x0000000040000000)
 /* cover scope: FSM transitions

 coverage scope*/
#define UCDB_GROUP INT64_LITERAL(0x0000000080000000)

 /* group scope */
#define UCDB_TRANSITION INT64_LITERAL(0x0000000100000000)

/* cover scope: covergroup transition scope */
#define UCDB_RESERVED_SCOPE INT64_LITERAL(0xFF00000000000000)

 /* RESERVED scope type */
#define UCDB_SCOPE_ERRORUCDB_SCOPE_ERROR

INT64_LITERAL(0x0000000000000000) /* error return code */
#define UCDB_FSM_SCOPE ((ucdbScopeMaskTypeT) \

(UCDB_FSM | UCDB_FSM_STATES | UCDB_FSM_TRANS))
#define UCDB_CODE_COV_SCOPE ((ucdbScopeMaskTypeT) \

(UCDB_BRANCH | UCDB_EXPR | UCDB_COND | UCDB_TOGGLE | UCDB_FSM_SCOPE | \
UCDB_BLOCK))

#define UCDB_DU_ANY ((ucdbScopeMaskTypeT) \
(UCDB_DU_MODULE | UCDB_DU_ARCH | UCDB_DU_PACKAGE | \
UCDB_DU_PROGRAM | UCDB_DU_INTERFACE))

#define UCDB_CVG_SCOPE ((ucdbScopeMaskTypeT) \
(UCDB_COVERGROUP | UCDB_COVERINSTANCE | UCDB_COVERPOINT | UCDB_CROSS))

#define UCDB_FUNC_COV_SCOPE ((ucdbScopeMaskTypeT) \
(UCDB_CVG_SCOPE | UCDB_COVER))

#define UCDB_COV_SCOPE ((ucdbScopeMaskTypeT) \

UCDB API Functions
Scopes

UCDB API Reference, v10.1 127

(UCDB_CODE_COV_SCOPE | UCDB_FUNC_COV_SCOPE)\
#define UCDB_VERIF_SCOPE ((ucdbScopeMaskTypeT) \

(UCDB_COV_SCOPE | UCDB_ASSERT | UCDB_GENERIC))
#define UCDB_HDL_SUBSCOPE ((ucdbScopeMaskTypeT) \

(UCDB_PROCESS | UCDB_BLOCK | UCDB_FUNCTION | UCDB_FORKJOIN | \
UCDB_GENERATE | UCDB_CLASS | UCDB_TASK))

#define UCDB_HDL_INST_SCOPE ((ucdbScopeMaskTypeT) \
(UCDB_INSTANCE | UCDB_PROGRAM | UCDB_PACKAGE | UCDB_INTERFACE))

#define UCDB_HDL_DU_SCOPE ((ucdbScopeMaskTypeT) (UCDB_DU_ANY))
#define UCDB_HDL_SCOPE ((ucdbScopeMaskTypeT) \

(UCDB_HDL_SUBSCOPE | UCDB_HDL_INST_SCOPE | UCDB_HDL_DU_SCOPE))
#define UCDB_NONTESTPLAN_SCOPE ((ucdbScopeMaskTypeT) (~UCDB_TESTPLAN))
#define UCDB_NO_SCOPES ((ucdbScopeMaskTypeT)INT64_ZERO)
#define UCDB_ALL_SCOPES ((ucdbScopeMaskTypeT)INT64_NEG1)

Source Type

Enumerated type to encode the source type of a scope, if needed. Note that scope type can have
an effect on how the system regards escaped identifiers within the design hierarchy.

typedef enum {
UCDB_VHDL,
UCDB_VLOG, /* Verilog */
UCDB_SV, /* SystemVerilog */
UCDB_SYSTEMC,
UCDB_PSL_VHDL, /* assert/cover in PSL VHDL */
UCDB_PSL_VLOG, /* assert/cover in PSL Verilog */
UCDB_PSL_SV, /* assert/cover in PSL SystemVerilog */
UCDB_PSL_SYSTEMC, /* assert/cover in PSL SystemC */
UCDB_E,
UCDB_VERA,
UCDB_NONE, /* not important */
UCDB_OTHER, /* user-defined attribute */
UCDB_VLOG_AMS, /* Verilog Analog Mixed Signal */
UCDB_VHDL_AMS, /* VHDL Analog Mixed Signal */
UCDB_SPICE,
UCDB_MATLAB,
UCDB_C,
UCDB_CPP,
UCDB_SOURCE_ERROR = -1 /* for error cases */

} ucdbSourceT;

Flags Type

typedef unsigned int ucdbFlagsT;

/* Flags for scope data */
#define UCDB_INST_ONCE 0x00000001 /* Instance is instantiated only

once; code coverage is stored only
in the instance. */

/* Flags that indicate whether the scope was compiled with the */
/* corresponding type of code coverage enabled. */
#define UCDB_ENABLED_STMT 0x00000002 /* statement coverage */
#define UCDB_ENABLED_BRANCH 0x00000004 /* branch coverage */
#define UCDB_ENABLED_COND 0x00000008 /* condition coverage */

UCDB API Reference, v10.1128

UCDB API Functions
Scopes

#define UCDB_ENABLED_EXPR 0x00000010 /* expression coverage */
#define UCDB_ENABLED_FSM 0x00000020 /* FSM coverage */
#define UCDB_ENABLED_TOGGLE 0x00000040 /* toggle coverage */
#define UCDB_ENABLED_TOGGLEEXT 0x00000080 /* extended (3-state)
 toggle */
#define UCDB_SCOPE_UNDER_DU 0x00000100 /* whether or not scope is
 /* under a design unit */
#define UCDB_SCOPE_EXCLUDED 0x00000200
#define UCDB_SCOPE_PRAGMA_EXCLUDED 0x00000400
#define UCDB_SCOPE_PRAGMA_CLEARED 0x00000800
#define UCDB_SCOPE_GOAL_SPECIFIED 0x00001000
#define UCDB_SCOPE_AUTO_EXCLUDED 0x00002000
#define UCDB_IS_TOP_NODE 0x00008000 /*for top-level toggle node*/
#define UCDB_IS_IMMEDIATE_ASSERT 0x00010000 /*for SV immediate asserts*/
/* Reuse these two flag values for covergroup scopes */
#define UCDB_IS_E_PER_INST 0x00008000 /* for covergroup */
#define UCDB_IS_E_PER_TYPE 0x00010000 /* instance scopes */

/* For Zero Information in "flags" */
#define UCDB_SCOPE_IFF_EXISTS 0x00100000
#define UCDB_SCOPE_SAMPLE_TRUE 0x00200000 /* No bin under the scope

is sampled */
/* Two-bit Expression/Condition short circuit information flags applicable

to UCDB_EXPR and UCDB_COND scopes only. Two bits are overloaded by
re-using UCDB_SCOPE_IFF_EXISTS and UCDB_SCOPE_SAMPLE_TRUE flags which
are applicable to the covergroup scopes only.The two bits carry
meaningful information only when used together:

00: Short circuit enabled
01: Short circuit partially enabled
10: Short circuit disallowed
11: Short circuit disabled (Same as flag UCDB_SCOPE_SAMPLE_TRUE)

/* Flags that specify whether the short circuit is enabled or disabled at
the Design Unit level. */

#define UCDB_SCOPE_SCKT_PART_ENABLED 0x00100000
#define UCDB_SCOPE_SCKT_DISALLOWED 0x00200000
#define UCDB_SCOPE_SCKT_DISABLED 0x00300000

/* Flag for checking if DU had short circuiting disabled for coverage */
#define UCDB_DISABLED_SHORTCKT 0x00400000

/* Flag for checking if a DU had UDP coverage enabled for expr/cond
 coverage */
#define UCDB_EXPRCOND_UDP 0x00800000

/*Flag for checking if it is a PA coverage scope */
#define UCDB_PACOVERAGE 0x02000000

/* Flag used only on bimodal expressions to trigger Extended FEC
Analysis */

#define UCDB_EXPRCOND_EXT_FEC 0x01000000

/* Flag set on last row of Extended FEC table */
#define UCDB_EXPRCOND_LAST_FEC_ROW 0x00080000
#define UCDB_SCOPEFLAG_MARK 0x08000000 /* flag for temporary mark */
#define UCDB_SCOPE_INTERNAL 0xF0000000 /* flags for internal use */
#define UCDB_SCOPEFLAG_MARK 0x08000000 /* flag for temporary mark */
#define UCDB_SCOPE_INTERNAL 0xF0000000 /* flags for internal use */

UCDB API Functions
Scopes

UCDB API Reference, v10.1 129

ucdb_CreateScope
ucdbScopeT ucdb_CreateScope(
 ucdbT db,
 ucdbScopeT parent,
 const char* name,
 ucdbSourceInfoT* srcinfo,
 int weight,
 ucdbSourceT source,
 ucdbScopeTypeT type,
 ucdbFlagsT flags);

Creates the specified scope beneath the parent scope. Returns the scope handle if successful, or
NULL if error. In write streaming mode, "name" is not copied, so it should be kept unchanged
until the next ucdb_WriteStream* call or the next ucdb_Create* call.

Use ucdb_CreateInstance for UCDB_INSTANCE or UCDB_COVERINSTANCE scopes.

ucdb_ComposeDUName
const char*
ucdb_ComposeDUName(
 const char* library_name,
 const char* primary_name,
 const char* secondary_name);

Composes as design unit scope name for specified design unit. Returns handle to the parsed
design unit scope name for the specified component names, or -1 if error. The
ucdb_ComposeDUName and ucdb_ParseDUName utilities use a static dynamic string (one for
the "Compose" function, one for the "Parse" function), so values are only valid until the next
call to the respective function. To hold a name across separate calls, the user must copy it.

db Database.

parent Parent scope. If NULL, creates the root scope.

name Name to assign to scope.

srcinfo

weight Weight to assign to the scope. Negative indicates no weight.

source Source of scope.

type Type of scope to create.

flags Flags for the scope.

library_name Library name.

primary_name Primary name.

secondary_name Secondary name.

UCDB API Reference, v10.1130

UCDB API Functions
Scopes

ucdb_ParseDUName
void ucdb_ParseDUName(
 const char* du_name,
 const char** library_name,
 const char** primary_name,
 const char** secondary_name);

Gets the library name, primary name, and secondary name for the design unit specified by
du_name. Design unit scope name has the form:

library_name.primary_name(secondary_name)

The ucdb_ComposeDUName and ucdb_ParseDUName utilities use a static dynamic string (one
for the "Compose" function, one for the "Parse" function), so values are only valid until the next
call to the respective function. To hold a name across separate calls, the user must copy it.

ucdb_CreateInstance
ucdbScopeT ucdb_CreateInstance(
 ucdbT db,
 ucdbScopeT parent,
 const char* name,
 ucdbSourceInfoT* fileinfo,
 int weight,
 ucdbSourceT source,
 ucdbScopeTypeT type,
 ucdbScopeT du_scope,
 int flags);

du_name Design unit name to parse.

library_name Library name returned by the call.

primary_name Primary name returned by the call.

secondary_name Secondary name returned by the call.

db Database.

parent Parent of instance scope. If NULL, creates a new root scope.

name Name to assign to scope.

fileinfo

weight Weight to assign to the scope. Negative indicates no weight.

source Source of instance.

type Type of scope to create: UCDB_INSTANCE or
UCDB_COVERINSTANCE.

UCDB API Functions
Scopes

UCDB API Reference, v10.1 131

Creates an instance scope of the specified design unit type under the specified parent. Not
supported in streaming modes; use ucdb_CreateInstanceByName() in write streaming mode.
Returns a scope handle, or NULL if error.

ucdb_CreateInstanceByName
ucdbScopeT ucdb_CreateInstanceByName(
 ucdbT db,
 ucdbScopeT parent,
 const char* name,
 ucdbSourceInfoT* fileinfo,
 int weight,
 ucdbSourceT source,
 ucdbScopeTypeT type,
 char* du_name,
 int flags);

Creates an instance of the specified named design unit under the specified parent scope. Returns
a scope handle, or NULL if error.

du_scope Previously-created scope that is usually the design unit. If type is
UCDB_INSTANCE, then du_scope has type UCDB_DU_*. If
type is UCDB_COVERINSTANCE, then du_scope has type
UCDB_COVERGROUP to capture the instance -> type of the
instance relationship for the covergroup instance.

flags Flags for the scope.

db Database.

parent Parent of instance scope. In write streaming mode, should be
NULL. For other modes, NULL creates a root scope.

name Name to assign to scope.

fileinfo

weight Weight to assign to the scope. Negative indicates no weight.

source Source of instance.

type Type of scope to create: UCDB_INSTANCE or
UCDB_COVERINSTANCE.

du_name Name of previously-created scope of the instance’s design unit or
the coverinstance’s covergroup type.

flags Flags for the scope.

UCDB API Reference, v10.1132

UCDB API Functions
Scopes

ucdb_CreateCross
ucdbScopeT ucdb_CreateCross(
 ucdbT db,
 ucdbScopeT parent,
 const char* name,
 ucdbSourceInfoT* fileinfo,
 int weight,
 ucdbSourceT source,
 int num_points,
 ucdbScopeT* points);

Creates the specified cross scope under the specified parent (covergroup or cover instance)
scope. Returns a scope handle for the cross, or NULL if error.

ucdb_CreateCrossByName
ucdbScopeT ucdb_CreateCrossByName(
 ucdbT db,
 ucdbScopeT parent,
 const char* name,
 ucdbSourceInfoT* fileinfo,
 int weight,
 ucdbSourceT source,
 int num_points,
 char** point_names);

db Database.

parent Parent scope: UCDB_COVERGROUP or
UCDB_COVERINSTANCE.

name Name to assign to cross scope.

fileinfo

weight Weight to assign to the scope. Negative indicates no weight.

source Source of cross.

num_points Number of crossed coverpoints.

points Array of scopes of the coverpoints that comprise the cross scope.
These coverpoints must already exist in the parent.

db Database.

parent Parent scope: UCDB_COVERGROUP or
UCDB_COVERINSTANCE.

name Name to assign to cross scope.

fileinfo Associated source information. Can be NULL.

weight Weight to assign to the scope. Negative indicates no weight.

source Source of cross.

UCDB API Functions
Scopes

UCDB API Reference, v10.1 133

Creates the specified cross scope under the specified parent (covergroup or cover instance)
scope. Returns a scope handle for the cross, or NULL if error.

ucdb_CreateTransition
ucdbScopeT ucdb_CreateTransition(
 ucdbT db,
 ucdbScopeT parent,
 const char* name,
 ucdbSourceInfoT* fileinfo,
 int weight,
 ucdbSourceT source,
 ucdbScopeT item);

Creates a transition scope under the given parent. In write-streaming mode, name is not copied;
it should be preserved unchanged until the next ucdb_WriteStream* call or the next
ucdb_Create* call. Returns the scope pointer, or NULL if error.

ucdb_CreateTransitionByName
ucdbScopeT ucdb_CreateTransitionbyName(
 ucdbT db,
 ucdbScopeT parent,
 const char* name,
 ucdbSourceInfoT* fileinfo,
 int weight,
 ucdbSourceT source,
 char* item_name);

num_points Number of crossed coverpoints.

point_names Array of names of the coverpoints that comprise the cross scope.
These coverpoints must already exist in the parent.

db Database.

parent Parent scope: UCDB_COVERGROUP or
UCDB_COVERINSTANCE.

name Name of coveritem. Can be NULL.

fileinfo Associated source information. Can be NULL.

weight Weight to assign to the scope. Negative indicates no weight.

source Source of the transition.

item Array of coverpoint scopes: must exist in the parent.

db Database.

parent Parent scope: UCDB_COVERGROUP or
UCDB_COVERINSTANCE.

UCDB API Reference, v10.1134

UCDB API Functions
Scopes

Creates a transition scope under the given parent. In write-streaming mode, name is not copied;
it should be preserved unchanged until the next ucdb_WriteStream* call or the next
ucdb_Create* call. Returns the scope pointer, or NULL if error.

ucdb_InstanceSetDU
int ucdb_InstanceSetDU(
 ucdbT db,
 ucdbScopeT instance,
 ucdbScopeT du_scope);

Sets the specified design unit scope handle in the specified instance. Returns 0 if successful, or -
1 if error.

ucdb_CloneScope
ucdbScopeT ucdb_CloneScope(
 ucdbT targetdb,
 ucdbScopeT targetparent,
 ucdbT sourcedb,
 ucdbScopeT scope,
 ucdbSelectFlagsT cloneflags,
 int is_recursive);

name Name of coveritem. Can be NULL.

fileinfo Associated source information. Can be NULL.

weight Weight to assign to the scope. Negative indicates no weight. Not
applicable to toggles.

source Source of the transition.

item_name Transition item: must exist in the parent.

db Database (must contain instance and du_scope).

instance Scope of the instance.

du_scope Previously-created scope that is usually the design unit. If type is
UCDB_INSTANCE, then du_scope has type UCDB_DU_*. If
type is UCDB_COVERINSTANCE, then du_scope has type
UCDB_COVERGROUP to capture the instance -> type of the
instance relationship for the covergroup instance.

targetdb Database context for clone.

targetparent Parent scope of clone.

sourcedb Source database.

scope Source scope to clone.

cloneflags Flags specifying what to copy.

UCDB API Functions
Scopes

UCDB API Reference, v10.1 135

Has no effect when targetdb is in streaming mode. Creates a copy of the specified scope under
the specified destination scope (targetparent). Predefined attributes are created by default.
Returns the scope handle of the cloned scope, or -1 if error.

ucdb_RemoveScope
int ucdb_RemoveScope(
 ucdbT db,
 ucdbScopeT scope);

Has no effect when db is in streaming mode. Removes the specified scope from its parent scope,
along with all its subscopes and coveritems. When a scope is removed, that scope handle
immediately becomes invalid along with all of its subscope handles. Those handles cannot be
used in any API routines. Returns 0 if successful, or -1 if error.

ucdb_ScopeParent
ucdbScopeT ucdb_ScopeParent(
 ucdbT db,
 ucdbScopeT scope);

Returns the parent scope handle of the specified scope, or NULL if none or error.

ucdb_ScopeGetTop
ucdbScopeT ucdb_ScopeGetTop(
 ucdbT db,
 ucdbScopeT scope);

Returns the top-level scope (i.e., the scope with no parent) above the specified scope, or NULL
if error.

is_recursive If non-zero, recursively clones subscopes. If 0, only clones the
specified scope.

db Database.

scope Scope to remove.

db Database.

scope Scope.

db Database.

scope Scope.

UCDB API Reference, v10.1136

UCDB API Functions
Scopes

ucdb_GetScopeName
const char* ucdb_GetScopeName(
 ucdbT db,
 ucdbScopeT scope);

Returns the non-hierarchical string name of the specified scope, or NULL if error.

ucdb_SetScopeName
int ucdb_SetScopeName(
 ucdbT db,
 ucdbScopeT scope,
 const char* name);

Sets the name of the specified scope. Returns -1 if error.

ucdb_GetScopeType
ucdbScopeTypeT ucdb_GetScopeType(
 ucdbT db,
 ucdbScopeT scope);

Returns the scope type of the specified scope, or UCDB_SCOPE_ERROR if error.

ucdb_GetScopeSourceType
ucdbSourceT ucdb_GetScopeSourceType(
 ucdbT db,
 ucdbScopeT scope);

Returns the source of the specified scope, or UCDB_SOURCE_ERROR if error.

db Database.

scope Scope.

db Database.

scope Scope.

name Name to assign to scope.

db Database.

scope Scope.

db Database.

scope Scope.

UCDB API Functions
Scopes

UCDB API Reference, v10.1 137

ucdb_GetScopeFlags
ucdbFlagsT ucdb_GetScopeFlags(
 ucdbT db,
 ucdbScopeT scope);

Returns the scope flags of the specified scope, or -1 if error.

ucdb_SetScopeFlags
void ucdb_SetScopeFlags(
 ucdbT db,
 ucdbScopeT scope,
 ucdbFlagsT flags);

Sets the flags of the specified scope.

ucdb_GetScopeFlag
int ucdb_GetScopeFlag(
 ucdbT db,
 ucdbScopeT scope,
 ucdbFlagsT mask);

Returns 1 if the scope’s flag bit matches the specified mask, otherwise, no match.

ucdb_SetScopeFlag
void ucdb_SetScopeFlag(
 ucdbT db,
 ucdbScopeT scope,
 ucdbFlagsT mask,
 int bitvalue);

db Database.

scope Scope.

db Database.

scope Scope.

flags Flags to assign to scope.

db Database.

scope Scope.

mask Flag bit to match with scope flags.

db Database.

scope Scope.

UCDB API Reference, v10.1138

UCDB API Functions
Scopes

Sets bits in the scope’s flags fields corresponding to the mask to the specified bit value (0 or 1).

ucdb_GetScopeSourceInfo
int ucdb_GetScopeSourceInfo(
 ucdbT db,
 ucdbScopeT scope,
 ucdbSourceInfoT* sourceinfo);

Gets the source information for the specified scope. Returns 0 if successful, or non-zero if error.

ucdb_SetScopeSourceInfo
int ucdb_SetScopeSourceInfo(
 ucdbT db,
 ucdbScopeT scope,
 ucdbSourceInfoT* sourceinfo);

Sets the source information for the specified scope. Returns 0 if successful, or non-zero if error.

ucdb_SetScopeFileHandle
int ucdb_SetScopeFileHandle(
 ucdbT db,
 ucdbScopeT scope,
 ucdbFileHandleT* filehandle);

Sets the file handle for the specified scope. Does not apply to toggle nodes. API maintains the
file handle string storage—do not free. Returns 0 if successful, or non-zero if error.

mask Flag bits to set.

bitvalue Value (0 or 1) to set mask bits.

db Database.

scope Scope.

sourceinfo Returned source information (file/line/token). Memory for
source information string is allocated by the system and must not
be de-allocated by the user.

db Database.

scope Scope.

sourceinfo Source information (file/line/token) to store for the specified
scope.

db Database.

scope Scope.

filehandle File handle to set for the scope.

UCDB API Functions
Scopes

UCDB API Reference, v10.1 139

ucdb_GetScopeWeight
int ucdb_GetScopeWeight(
 ucdbT db,
 ucdbScopeT scope);

Returns the weight for the specified scope, or -1 if error. Note that toggle nodes have no weight
and always return 1.

ucdb_SetScopeWeight
int ucdb_SetScopeWeight(
 ucdbT db,
 ucdbScopeT scope,
 int weight);

Sets the weight for the specified scope. Returns 0 if successful, or -1 if error. Not applicable to
toggle nodes.

ucdb_GetScopeGoal
int ucdb_GetScopeGoal(
 ucdbT db,
 ucdbScopeT scope,
 float* goal);

Gets the goal for the specified scope. For UCDB_CVG_SCOPE type, converts from the integer
value (see ucdb_SetScopeGoal). Returns 1 if found, or 0 if not found. Not applicable to toggle
nodes.

db Database.

scope Scope.

db Database.

scope Scope.

weight Weight to assign to scope.

db Database.

scope Scope.

goal Goal returned.

UCDB API Reference, v10.1140

UCDB API Functions
Scopes

ucdb_SetScopeGoal
int ucdb_SetScopeGoal(
 ucdbT db,
 ucdbScopeT scope,
 float goal);

Sets the goal for the specified scope. For UCDB_CVG_SCOPE types, converts to the integer
value (in the SystemVerilog LRM, option.goal and type_option.goal are defined as integers).
Returns 0 if successful, or -1 if error. Not applicable to toggle nodes.

ucdb_GetScopeHierName
const char* ucdb_GetScopeHierName(
 ucdbT db,
 ucdbScopeT scope);

Returns pointer to hierarchical name of scope, or NULL if error. Hierarchical path separator is
as set for the current database (see “hierarchical identifiers” on page 125).

ucdb_GetInstanceDU
ucdbScopeT ucdb_GetInstanceDU(
 ucdbT db,
 ucdbScopeT scope);

Returns the handle of the design unit scope of the specified instance scope, or NULL if error.
Note: this call can return the UCDB_COVERGROUP scope for a UCDB_COVERINSTANCE
as well.

ucdb_GetInstanceDUName
char* ucdb_GetInstanceDUName(
 ucdbT db,
 ucdbScopeT scope);

db Database.

scope Scope.

goal Goal value.

db Database.

scope Scope.

db Database.

scope Instance scope (i.e., scope type is UCDB_INSTANCE).

db Database.

scope Instance scope (i.e., scope type is UCDB_INSTANCE).

UCDB API Functions
Scopes

UCDB API Reference, v10.1 141

Returns the handle of the design unit scope name of the specified instance scope, or NULL if
error. Note: this call can return the UCDB_COVERGROUP scope name for a
UCDB_COVERINSTANCE as well. Handle must not to be de-allocated or saved in streaming
modes. If not in in-memory mode, handle must be copied.

ucdb_GetNumCrossedCvps
int ucdb_GetNumCrossedCvps(
 ucdbT db,
 ucdbScopeT scope,
 int* num_points);

Gets the number of crossed coverpoints of the specified cross scope. Returns 0 if successful, or
non-zero if error.

ucdb_GetIthCrossedCvp
int ucdb_GetIthCrossedCvp(
 ucdbT db,
 ucdbScopeT scope,
 int index,
 ucdbScopeT* point_scope);

Gets the crossed coverpoint of the scope specified by the coverpoint index in the specified cross
scope. Returns 0 if successful, or non-zero if error.

ucdb_GetIthCrossedCvpName
char* ucdb_GetIthCrossedCvpName(
 ucdbT db,
 ucdbScopeT scope,
 int index);

db Database.

scope Cross scope.

num_points Number of coverpoints returned.

db Database.

scope Cross scope.

index Coverpoint index in the cross scope.

point_scope Crossed coverpoint scope returned.

db Database.

scope Cross scope.

index Coverpoint index in the cross scope.

UCDB API Reference, v10.1142

UCDB API Functions
Scopes

Returns the handle of the name of the crossed coverpoint of the scope specified by the
coverpoint index in the specified cross scope, or NULL if error.

ucdb_GetTransitionItem
ucdbScopeT ucdb_GetTransitionItem(
 ucdbT db,
 ucdbScopeT scope);

Returns the transition item scope, or NULL if error (for example, scope is not a transition
scope).

ucdb_GetTransitionItemName
char* ucdb_GetTransitionItemName(
 ucdbT db,
 ucdbScopeT scope);

Returns the transition item scope name, or NULL if error (for example, scope is not a transition
scope).

ucdb_NextPackage
ucdbScopeT ucdb_NextPackage(
 ucdbT db,
 ucdbScopeT package);

Returns the next package following the specified package in the database, NULL if package is
the last package, or UCDB_SCOPE_ERROR if error.

db Database.

scope Transition scope.

db Database.

scope Transition scope.

db Database.

package Package or NULL to return the first package.

UCDB API Functions
Scopes

UCDB API Reference, v10.1 143

ucdb_NextDU
ucdbScopeT ucdb_NextDU(
 ucdbT db,
 ucdbScopeT du);

Returns the next design unit following the specified design unit in the database, NULL if
package is the last package, or UCDB_SCOPE_ERROR if error.

ucdb_MatchDU
ucdbScopeT ucdb_MatchDU(
 ucdbT db,
 const char* name);

Returns the design unit scope with the specified name, or NULL if no match is found.

ucdb_NextSubScope
ucdbScopeT ucdb_NextSubScope(
 ucdbT db,
 ucdbScopeT parent,
 ucdbScopeT scope,
 ucdbScopeMaskTypeT scopemask);

Returns the next child scope in the iteration that has a scope type that matches the specified
scope mask, or NULL if last element or error. Setting scope == NULL starts the traversal;
replacing scope with the previous returned scope runs the next iteration; a return value of NULL
indicates the call is the last iteration. If parent scope is NULL, the iteration is through the top-
level modules in the design.

db Database.

du Design unit or NULL to return the first design unit.

db Database.

name Design unit name to match.

db Database.

parent Parent scope or NULL for top-level modules.

scope Previous child scope or NULL to start traversal.

scopemask Scope type mask.

UCDB API Reference, v10.1144

UCDB API Functions
Scopes

ucdb_NextScopeInDB
ucdbScopeT ucdb_NextScopeInDB(
 ucdbT db,
 ucdbScopeT scope,
 ucdbScopeMaskTypeT scopemask);

Returns the next child scope in the iteration that has a scope type that matches the specified
scope mask, or NULL if last element or error. Setting scope == NULL starts the traversal;
replacing scope with the previous returned scope runs the next iteration; a return value of NULL
indicates the call is the last iteration. Traversal starts with the first top level scope in the
database and iterates through all matching scopes.

ucdb_NextInstOfDU
ucdbScopeT ucdb_NextInstOfDU(
 ucdbT db,
 ucdbScopeT instance,
 ucdbScopeT du);

Returns the next instance in the iteration, or NULL if last element or error. Setting instance ==
NULL starts the traversal; replacing instance with the previous returned instance runs the next
iteration; a return value of NULL indicates the call is the last iteration.

ucdb_ScopeIsUnderDU
int ucdb_ScopeIsUnderDU(
 ucdbT db,
 ucdbScopeT scope);

Returns 1 if scope is under a design unit (scope type is in UCDB_HDL_DU_SCOPE), 0 if not,
or -1 if error. Does not work currently for scopes beneath single-instance design units, because
of UCDB_INST_ONCE optimization (where the node is under the instance).

db Database.

scope Previous child scope or NULL to start traversal.

scopemask Scope type mask.

db Database.

instance Previous instance or NULL to start traversal.

du Design unit scope (i.e., UCDB_DU_*).

db Database.

scope Scope.

UCDB API Functions
Scopes

UCDB API Reference, v10.1 145

ucdb_ScopeIsUnderCoverInstance
int ucdb_ScopeIsUnderCoverInstance(
 ucdbT db,
 ucdbScopeT scope);

Returns 1 if scope is under a UCDB_COVERINSTANCE scope (scope type must be
UCDB_COVERPOINT or UCDB_CROSS), 0 if not, or -1 if error.

ucdb_CallBack
int ucdb_CallBack(
 ucdbT db,
 ucdbScopeT start,
 ucdb_CBFuncT cbfunc,
 void* userdata);

In-memory mode only. Traverses the part of the database rooted at and below the specified
starting scope, issuing calls to cbfunc along the way. Returns 0 if successful, or -1 with error.

ucdb_PathCallBack
int ucdb_PathCallBack(
 ucdbT db,
 int recurse,
 const char* path,
 const char* du_name,
 ucdbScopeMaskTypeT root_mask,
 ucdbScopeMaskTypeT scope_mask,
 ucdbScopeMaskTypeT cover_mask,
 ucdb_CBFuncT cbfunc,
 void* userdata);

db Database.

scope Scope.

db Database.

start Starting scope or NULL to traverse entire database.

cbfunc User-supplied callback function.

userdata User-supplied function data.

db Database.
recurse Non-recursive if 0. If non-zero, recurse from matched du_name

or scopes specified by path. Note that scope_mask and
cover_mask are applied AFTER recursion. Recursion proceeds
from all scopes matching the (possibly wildcarded) path, after
which callbacks are generated only for scopes and covers
(including those specified by the path itself) that share a bit with
the scope or cover mask.

UCDB API Reference, v10.1146

UCDB API Functions
Scopes

In-memory mode only. This callback mechanism is more flexible than ucdb_CallBack (it
implements wildcarded paths, filtering according to type, and so on). Traverses the database as
specified, issuing calls to cbfunc as specified along the way. Returns number (0 or more) of
matches, or -1 if error. When recursing through a test plan scope, the scope has as “virtual
children” the design or coverage scopes with which it is linked through common tags, which
reflects the fact that these scopes contribute to the test plan scope’s coverage. The same notion
applies to matching "*" children of a test plan scope, which matches both real test plan children
as well as scopes linked to the test plan scope with tags.

path Path interpreted as follows:
• if du_name==NULL: absolute path.
• if du_name!=NULL: path is relative to design units matching

du_name.
If path is "/" it is treated as "*", which matches all roots or all
paths under a design unit. Wildcards can be given to match
multiple results. Uses UCDB path separator (“hierarchical
identifiers” on page 125) and escaped identifier rules in a
context-sensitive fashion. Current wildcard symbols:

* — matches any substring within a level of hierarchy
? — preceding character is optional
[int:int] — matches any integer index in range
{int | *} to {int | *} — matches any integer index in range
{int | *} downto {int | *} — matches any integer index in

range
To match wildcard characters literally, use the appropriate
escaped identifier syntax.

du_name Design unit name. Name is specified in the form:

library.primary(secondary)

where secondary matches for VHDL only. Multiple matches are
possible if library or secondary is absent (even for Verilog
design units, if the simulator created an artificial secondary). If
path is also specified, then path is relative to all matching design
units.

root_mask If set, matches start from a root that satisfies 1 bit of this mask.
Ignored if du_name specified as this field applies to the top level
only. Typically set to UCDB_TESTPLAN or UCDB_NON-
TESTPLAN_SCOPE to choose a testplan tree or non-testplan
tree.

scope_mask Only match scopes that satisfy 1 bit of this mask.
cover_mask Only match coveritems that satisfy 1 bit of this mask.
cbfunc User-supplied callback function. Only these callback reasons

(ucdbCBReasonT) are generated: UCDB_REASON_DU,
UCDB_REASON_SCOPE, UCDB_REASON_CVBIN, and
UCDB_REASON_ENDSCOPE.

userdata User-supplied function data.

UCDB API Functions
Scopes

UCDB API Reference, v10.1 147

Examples:

ucdb_PathCallBack(db,0,"/top/a*",NULL,UCDB_NONTESTPLAN_SCOPE,\
UCDB_HDL_INST_SCOPE,0,f,d);

 Call back for all HDL instance scopes that start with "/top/a".

ucdb_PathCallBack(db,0,NULL,"duname",-1,-1,0,f,d);

Call back for all design units with the name "duname". This may match multiple
architectures or library implementations of the design unit.

ucdb_PathCallBack(db,0,"myvec*","work.duname(myarch)", \
-1,UCDB_TOGGLE,0,f,d);

Within the VHDL architecture "work.duname(myarch)", call back for all toggle scopes
whose names start with "myvec".

ucdb_PathCallBack(db,1,"/top/a",NULL,UCDB_NONTESTPLAN_SCOPE, \
UCDB_COVERGROUP|UCDB_COVERPOINT|UCDB_CROSS,0,f,d);

Call back for all covergroup, cross, and coverpoint scopes that lie under "/top/a". Only if
"/top/a" is a covergroup scope will "/top/a" itself be a callback.

ucdb_PathCallBack(db,1,"/top/a",NULL,UCDB_NONTESTPLAN_SCOPE,
UCDB_COVERGROUP|UCDB_COVERPOINT|UCDB_CROSS,UCDB_CVGBIN,f,d);

Same callback as above, but includes bin callbacks as well.

ucdb_MatchTests
int ucdb_MatchTests(
 ucdbT db,
 const char* testname,
 ucdb_CBFuncT cbfunc,
 void* userdata);

In-memory mode only. Generates callbacks for tests whose testname attribute matches the
specified testname pattern. Returns number (0 or more) of matches, or -1 if error.

db Database.

testname Test name pattern. Current wildcard symbols:
* — matches any substring within a level of hierarchy
? — preceding character is optional

To match wildcard characters literally, the appropriate escaped
identifier syntax must be used.

cbfunc User-supplied callback function. Only UCDB_REASON_TEST
callback reasons (ucdbCBReasonT) are generated.

userdata User-supplied function data.

UCDB API Reference, v10.1148

UCDB API Functions
Scopes

ucdb_MatchCallBack
int ucdb_MatchCallBack(
 ucdbT db,
 const char* pattern,
 const char* du_name,
 ucdbScopeMaskTypeT root_mask,
 ucdbScopeMaskTypeT scope_mask,
 ucdbScopeMaskTypeT cover_mask,
 ucdb_CBFuncT cbfunc,
 void* userdata);

In-memory mode only. Matches the specified name pattern for any name in the entire instance
tree or within specified design units. Recursively searches the subtree and generates callbacks
for all named objects matching the pattern. Returns number (0 or more) of matches, or -1 if
error.

db Database.

pattern Name pattern. Current wildcard symbols:
* — matches any substring within a level of hierarchy
? — preceding character is optional
[int:int] — matches any integer index in range
{int | *} to {int | *} — matches any integer index in range
{int | *} downto {int | *} — matches any integer index in

range
To match wildcard characters literally, use the appropriate
escaped identifier syntax.

du_name Design unit name. Name is specified in the form:

library.primary(secondary)

where secondary matches for VHDL only. Multiple matches are
possible if library or secondary is absent (even for Verilog
design units, if the simulator created an artificial secondary).

root_mask If set, matches start from a root that satisfies 1 bit of this mask.

scope_mask Only match scopes that satisfy 1 bit of this mask.

cover_mask Only match coveritems that satisfy 1 bit of this mask.

cbfunc User-supplied callback function.

userdata User-supplied function data.

UCDB API Functions
Coverage and Statistics Summaries

UCDB API Reference, v10.1 149

Coverage and Statistics Summaries
Summary coverage statistics interface allows quick access to aggregated coverage and statistics
for different kinds of coverage, and some overall statistics for the database.

Summary Coverage Data Type

Summary data type (ucdbSummaryEnumT) has the following nomenclature conventions:

• *_DU

Coverage numbers that accumulate per-design-unit aggregations. Coverage from all
instances of a design unit are merged into, and stored with the design unit itself. The
summaries are then computed by traversing design units (not design instances). In our
UCDB, this occurs for code coverage only.

• *_INST

Values that accumulate all results from the entire instance tree. Design instances (not
design units) are traversed. Note that UCDB_CVG_INST coverage refers to covergroup
instances, not design instances, which is coverage for exactly those covergroup objects
that have option.per_instance set to 1 in the SystemVerilog source (weighted by
option.weight). If no such covergroup objects exist, UCDB_CVG_INST coverage is 0.

/* For backward compatibility in enum literal names. */
#define UCDB_EXPR_INST UCDB_UDP_EXPR_INST
#define UCDB_EXPR_DU UCDB_UDP_EXPR_DU
#define UCDB_COND_INST UCDB_UDP_COND_INST
#define UCDB_COND_DU UCDB_UDP_COND_DU

typedef enum {
UCDB_CVG_TYPE, /* 0 Covergroup type coverage == $get_coverage()

value */
UCDB_CVG_INST, /* 1 Covergroup instances (option.per_instance==1) ,

if any, weighted average */
UCDB_COVER_INST, /* 2 Cover directive, weighted average, per design

instance */
UCDB_SC_INST, /* 3 SystemC functional coverage, per design

instance */
UCDB_ZIN_INST, /* 4 0-In checkerware coverage, per design

instance */
UCDB_STMT_INST, /* 5 statement coverage, per design instance */
UCDB_STMT_DU, /* 6 statement coverage, per design unit */
UCDB_BRANCH_INST, /* 7 branch coverage, per design instance */
UCDB_BRANCH_DU, /* 8 branch coverage, per design unit */
UCDB_UDP_EXPR_INST,/* 9 UDP expression coverage, per design instance */
UCDB_UDP_EXPR_DU, /* 10 UDP expression coverage, per design unit */
UCDB_UDP COND_INST,/* 11 UDP condition coverage, per design instance */
UCDB_UDP_COND_DU, /* 12 UDP condition coverage,per design unit */
UCDB_TOGGLE_INST, /* 13 toggle coverage, per design instance */
UCDB_TOGGLE_DU, /* 14 toggle coverage, per design unit */
UCDB_FSM_ST_INST, /* 15 FSM state coverage, per design instance */
UCDB_FSM_ST_DU, /* 16 FSM state coverage, per design unit */
UCDB_FSM_TR_INST, /* 17 FSM transition coverage, per design inst */

UCDB API Reference, v10.1150

UCDB API Functions
Coverage and Statistics Summaries

UCDB_FSM_TR_DU, /* 18 FSM transition coverage, per design unit */
UCDB_USER_INST, /* 19 user-defined coverage, per design instance */
UCDB_ASSERT_PASS_INST, /* 20 Assertion directive passes, per design

instance */
UCDB_ASSERT_FAIL_INST, /* 21 Assertion directive failures, per

design instance */
UCDB_ASSERT_VPASS_INST, /* 22 Assertion directive vacuous passes,

per design instance */
UCDB_ASSERT_DISABLED_INST, /* 23 Assertion directive disabled, per

design instance */
UCDB_ASSERT_ATTEMPTED_INST,/* 24 Assertion directive attempted, per

design instance */
UCDB_ASSERT_ACTIVE_INST, /* 25 Assertion directive active, per

design instance */
UCDB_CVP_INST, /* 26 Coverpoint/cross weighted average, all

coverpoint and cross declarations */
UCDB_DIRECTED_TESTS, /* 27 Reserved */
UCDB_FEC_EXPR_INST, /* 28 Focused expression coverage, per

design instance */
 UCDB_FEC_EXPR_DU, /* 29 Focused expression coverage, per

design unit */
 UCDB_FEC_COND_INST, /* 30 Focused condition coverage, per

design instance */
 UCDB_FEC_COND_DU, /* 31 Focused condition coverage, per

design unit */
 UCDB_ASSERT_SUCCESS_INST, /* 32 Assertion directives that succeeded:

never failed, passed at least once (if
 pass counts available.) */
 UCDB_EXPRESSION_INST, /* 33 Expression coverage, per design

instance */
 UCDB_EXPRESSION_DU, /* 34 Expression coverage, per design unit */
 UCDB_CONDITION_INST, /* 35 Condition coverage, per design inst */
 UCDB_CONDITION_DU, /* 36 Condition coverage,per design unit */
 UCDB_FSM_INST, /* 37 FSM state coverage, per design instance */
 UCDB_FSM_DU, /* 38 FSM state coverage, per design unit */

 UCDB_TP_COVERAGE /* 39 Testplan coverage for merged files
with testplans */

 UCDB_N_SUMMARY_ENUM_T /* 40 Can be used for array bounds */
} ucdbSummaryEnumT;

Coverage Structure

Stores values for a particular enumerator.

typedef struct {
float coverage_pct; /* floating point coverage value, percentage */
float goal_pct; /* floating point goal, percentage */
int num_coveritems; /* total number of coveritems (bins) */
int num_covered; /* number of coveritems (bins) covered */

} ucdbCoverageT;

Values for num_coveritems depend on the type of coverage:

Enumerator Type Number of:

CVG* SV covergroup bins

UCDB API Functions
Coverage and Statistics Summaries

UCDB API Reference, v10.1 151

Coverage Summary Structure

Stores all statistics returned by ucdb_GetCoverageSummary().

typedef enum {
/* Bit 0 set implies "merge -totals" file */
/* Bit 1 set implies "merge -testassociated" file */
UCDB_SUMMARY_FLAG_none = 0,
UCDB_SUMMARY_FLAG_is_merge_totals = 1,
UCDB_SUMMARY_FLAG_is_merge_testassociated = 2,
UCDB_SUMMARY_FLAG_is_merge = 3

} ucdbSummaryFlagsEnumT;

typedef struct {
int num_instances; /* number of design instances */
int num_coverpoints; /* number of SV coverpoint and*/

/* cross types */
int num_covergroups; /* number of SV covergroup types*/
int num_dus; /* number of design units */
ucdbSummaryFlagsEnumT flags;
ucdbCoverageT coverage[UCDB_N_SUMMARY_ENUM_T];

} ucdbCoverageSummaryT;

Memory Statistics Types

Memory statistics are summary statistics for simulator memory usage. For merged data, the
merged output is the maximum of the merged inputs.

The following type is an enumerator for the category of statistics merged.

typedef enum {

COVER SVA or PSL cover cover directives or statements

STMT* statement statements

BRANCH* branch branches (including implicit elses)

EXPR* expression known-value truth table rows

COND* condition known-value truth table rows

TOGGLE* toggle toggles (scopes in UCDB)

FSM_ST* FSM state FSM states

FSM_TR* FSM transition FSM transitions

ASSERT* SVA or PSL assert assert directives or statements
This value is almost always the number of
coveritems covered, except for ASSERT_PASS*
(number of assertion passes) and ASSERT_FAIL*
(number of assertion failures).

BLOCK* Block blocks

UCDB API Reference, v10.1152

UCDB API Functions
Coverage and Statistics Summaries

UCDB_MEMSTATS_COVERGROUP, /* covergroup */
UCDB_MEMSTATS_ASSERT, /* assertion */
UCDB_MEMSTATS_CONSTRAINT, /* constraint solver */
UCDB_MEMSTATS_CLASS, /* classes */
UCDB_MEMSTATS_DYNAMIC, /* dynamic objects */
UCDB_MEMSTATS_OTHER, /* other categories */
UCDB_MEMSTATS_ENDCATEGORY /* marker past last value */

} ucdbMemStatsEnumT;

The following type is an enumerator for the type of statistic.

typedef enum {
UCDB_MEMSTATS_MAXMEM, /* All categories: maximum memory usage

high water mark) -- bytes */
UCDB_MEMSTATS_PEAKTIME, /* All categories: peak memory time */
UCDB_MEMSTATS_CURRMEM, /* All categories: current memory

usage (in bytes) at time of saving
 the UCDB file */

UCDB_MEMSTATS_NUMOBJECTS, /* All categories: number of objects */
UCDB_MEMSTATS_ENDTYPE /* marker past last value */

} ucdbMemStatsTypeEnumT;

ucdb_SetGoal
int ucdb_SetGoal(
 ucdbT db,
 ucdbSummaryEnumT type,
 float percentage);

Sets the goal percentage for the specified type of aggregated coverage. Returns 0 if successful,
or non-zero if error.

ucdb_GetGoal
float ucdb_GetGoal(
 ucdbT db,
 ucdbSummaryEnumT type);

Returns the goal for the specified type of aggregated coverage. The goal is a percentage, 0.0 to
100.0. Returns non-negative goal value if successful, or -1.0 if error.

db Database.

type Summary coverage type.

percentage Goal to set for the coverage type. Aggregated coverage is
compared to this percentage to determine whether the goal is
satisfied.

db Database.

type Summary coverage type.

UCDB API Functions
Coverage and Statistics Summaries

UCDB API Reference, v10.1 153

ucdb_SetWeightPerType
int ucdb_SetWeightPerType(
 ucdbT db,
 ucdbSummaryEnumT type,
 int weight);

Sets the weight for the specified type of aggregated coverage. Returns 0 if successful, or non-
zero if error.

ucdb_GetWeightPerType
int ucdb_GetWeightPerType(
 ucdbT db,
 ucdbSummaryEnumT type);

Returns the weight for the specified type of aggregated coverage. Returns non-negative goal
value if successful, or -1.0 if error.

ucdb_GetCoverageSummary
int ucdb_GetCoverageSummary(
 const char* name,
 ucdbCoverageSummaryT* data);

Gets coverage summary statistics. The specified file is opened, seeked to the location of
previously computed summary statistics, and immediately closed. See “Opening a file and
creating an in-memory image.” on page 115 for the “efficient” read option. Returns 0 if
successful, or non-zero if error.

db Database.

type Summary coverage type.

weight Weight to set for the coverage type. Weights are non-negative
integers, used to compute total coverage numbers as in
ucdb_GetTotalCoverage.

db Database.

type Summary coverage type.

name File system path.

data Coverage summary returned.

UCDB API Reference, v10.1154

UCDB API Functions
Coverage and Statistics Summaries

ucdb_GetCoverage
float ucdb_GetCoverage(
 ucdbT db,
 ucdbSummaryEnumT type,
 int* num_covered_bins,
 int* num_total_bins);

Returns the aggregated coverage of the specified type. The returned value might not equal:

num_covered_bins / num_total_bins

for cases where coveritems can be weighted differently and for SystemVerilog covergroups (for
which coverage is not only weighted but is calculated hierarchically). A return value of -1.0
indicates the coverage is not applicable (i.e., no coveritems of the implied type are in the
database, so num_total_bins is 0). Other negative return values indicate error.

Note
If any significant data has changed since the last call, this call forces an expensive
recalculation using the entire database. The aggregated coverage is automatically
recalculated with ucdb_Close, if necessary. However, if no significant data changes were
made since the file was opened or the last call to ucdb_GetCoverage, this call remains an
efficient operation—it is maintained as summary data in the database, for fast retrieval.

ucdb_GetStatistics
int ucdb_GetStatistics(
 ucdbT db,
 int* num_covergroups,
 int* num_coverpoints,
 int* num_instances,
 int* num_dus);

Gets overall statistics for the database. Returns 0 if successful, or non-zero if error.

db Database.

type Summary coverage type.

num_covered_bins Number of covered bins for the coverage type, or NULL if not
set.

num_total_bins Total number of bins for the coverage type, or NULL if not set.

db Database.

num_covergroups Number of covergroup types.

num_coverpoints Number of covergroup coverpoints.

num_instances Number of design instances.

num_dus Number of design units.

UCDB API Functions
Coverage and Statistics Summaries

UCDB API Reference, v10.1 155

Note: if any significant data has changed since the last call, this call forces an expensive
recalculation using the entire database. The statistics are automatically recalculated with
ucdb_Close, if necessary. However, if no significant data changes were made since the last call
to ucdb_GetStatistics, this call remains an efficient operation—it is maintained as summary data
in the database, for fast retrieval.

ucdb_CalcCoverageSummary
int ucdb_CalcCoverageSummary(
 ucdbT db,
 ucdbScopeT scope,
 int recurse_instances,
 ucdbCoverageSummaryT* data,
 ucdbBitVectorT* test_mask);

In-memory mode only. Calculates coverage summary statistics, the same data as above, on a
subset of an opened database. When called on an instance, function reports by-DU coverage
only for the case where UCDB_INST_ONCE is set for the instance. Here, by-DU coverage and
instance coverage are identical. When called on the entire database, coverage from all DUs and
all instances are counted.

Note
If called with a NULL scope and NULL test_mask, this call can be made on an open
database handle without fully populating the in-memory data image, see “Opening a file
and creating an in-memory image.” on page 115.

db Database.

scope Scope. Entire database if NULL.

recurse_instances Recursion instances flag.
• For non-testplan scopes, this flag causes a recursion into

subscopes of types matching the mask
UCDB_HDL_INST_SCOPE.

• For testplan scopes, this causes recursion into scopes of type
UCDB_TESTPLAN. One type of recursion always occurs
with testplan scopes: following non-testplan scopes that share
a tag with the "scope" given to this routine.

data Coverage summary data.

test mask Optional test mask. If set, the database must have been created
with all coveritems containing a cover test mask (i.e., as a result
of running a "test-associated merge"). Only coveritems matching
the test mask are considered covered in the calculation, which is
prone to some error and can be improved with additional data in
the future. Setting test_mask to NULL will calculate coverage
based on current bin values only.

UCDB API Reference, v10.1156

UCDB API Functions
Coverage and Statistics Summaries

ucdb_GetTotalCoverage
int ucdb_GetTotalCoverage(
 ucdbT db,

 ucdbObjT obj,
 float* total_coverage,
 ucdbBitVectorT* test_mask);

This calculates a single coverage number (as a percentage, 0.0-100.0) for a scope in the
database. Returns 1 if the scope had any coverage data. Returns 0 if none were found and sets
total_coverage to -1.0. Returns -1 if error.

db Database.

obj Object type (ucdbScopeT or ucdbTestT). All roots if NULL.

total_coverage Total coverage.
• For a coverage scope, this is the total coverage calculated in a

way similar to ucdb_CalcCoverageSummary().
• The mode set with ucdb_SetExprCondMode() selects focused

expressions/conditions or UDP expression/conditions to
contribute to total coverage.

• For a design instance, this is the weighted average of
coverage per type, for all types found in the design subtree
rooted at that instance. This coverage uses weights as set
from ucdb_SetWeightPerType() and retrieved by
ucdb_GetWeightPerType().

• For a leaf testplan scope, coverage is the weighted average of
all design instance or coverage scopes sharing the same tag.

• For a non-leaf testplan scope, coverage is the weighted
average of coverage of all children. If the non-leaf testplan
scope shares a tag with design or coverage scopes, those
collectively are equally weighted as one child testplan
instance, as if a virtual child testplan scope shared a tag with
all the other design and coverage scopes.

• Test data records with status attribute values
UCDB_TESTSTATUS_OK and
UCDB_TESTSTATUS_WARNING count as 100%; other
test data records count as 0%.

Assertion results are included in the form of "% non-vacuously
passed", which is the percentage of assertions that non-vacuously
passed at least once (i.e, non-zero non-vacuous pass count).

test mask Optional test mask. If set, the database must have been created
with all coveritems containing a cover test mask (i.e., as a result
of running a "test-associated merge"). Only coveritems matching
the test mask are considered covered in the calculation, which is
prone to some error and can be improved with additional data in
the future. Setting test_mask to NULL will calculate coverage
based on current bin values only.

UCDB API Functions
Coverage and Statistics Summaries

UCDB API Reference, v10.1 157

ucdb_GetMemoryStats
int ucdb_GetMemoryStats(
 ucdbT db,
 ucdbMemStatsEnumT category,

ucdbMemStatsTypeEnumT type,
ucdbAttrValueT** value);

Gets memory usage statistics for the specified statistics type for the specified statistics category.
Returns 0 if successful, 1 if the statistic does not apply, or -1 if error.

ucdb_SetMemoryStats
int ucdb_SetMemoryStats(
 ucdbT db,
 ucdbMemStatsEnumT category,

ucdbMemStatsTypeEnumT type,
ucdbAttrValueT** value);

Sets memory usage statistics for the specified statistics type for the specified statistics category.
Returns 0 if successful, or non-zero if error.

db Database.

category Memory statistics category.

type Statistics type for the memory statistics category.

value Memory statistics value returned.

db Database.

category Memory statistics category.

type Statistics type for the memory statistics category.

value Memory statistics value to set.

UCDB API Reference, v10.1158

UCDB API Functions
Coveritems

Coveritems

Cover Types

typedef unsigned int ucdbCoverTypeT;

/* Bits for ucdbCoverTypeT: */
#define UCDB_CVGBIN INT64_LITERAL(0x0000000000000001)

/* For SV Covergroups */
#define UCDB_COVERBIN INT64_LITERAL(0x0000000000000002)

/* For cover directives: pass */
#define UCDB_ASSERTBIN INT64_LITERAL(0x0000000000000004)

/* For assert directives: fail */
#define UCDB_SCBIN INT64_LITERAL(0x0000000000000008)

/* For SystemC transactions */
#define UCDB_ZINBIN INT64_LITERAL(0x0000000000000010)

/* For 0-in Checkerware */
#define UCDB_STMTBIN INT64_LITERAL(0x0000000000000020)

/* For Code coverage(Statement) */
#define UCDB_BRANCHBIN INT64_LITERAL(0x0000000000000040)

/* For Code coverage(Branch) */
#define UCDB_EXPRBIN INT64_LITERAL(0x0000000000000080)

/* For Code coverage(Expression) */
#define UCDB_CONDBIN INT64_LITERAL(0x0000000000000100)

/* For Code coverage(Condition) */
#define UCDB_TOGGLEBIN INT64_LITERAL(0x0000000000000200)

/* For Code coverage(Toggle) */
#define UCDB_PASSBIN INT64_LITERAL(0x0000000000000400)

/* For assert directives: pass count */
#define UCDB_FSMBIN INT64_LITERAL(0x0000000000000800)

/* For FSM coverage */
#define UCDB_USERBIN INT64_LITERAL(0x0000000000001000)

/* User-defined coverage */
#define UCDB_GENERICBIN UCDB_USERBIN
#define UCDB_COUNT INT64_LITERAL(0x0000000000002000)

/* user-defined count, not in coverage*/
#define UCDB_FAILBIN INT64_LITERAL(0x0000000000004000)

/* For cover directives: fail count */
#define UCDB_VACUOUSBIN INT64_LITERAL(0x0000000000008000)

/* For assert: vacuous pass count */
#define UCDB_DISABLEDBIN INT64_LITERAL(0x0000000000010000)

/* For assert: disabled count */
#define UCDB_ATTEMPTBIN INT64_LITERAL(0x0000000000020000)

/* For assert: attempt count */
#define UCDB_ACTIVEBIN INT64_LITERAL(0x0000000000040000)

/* For assert: active thread count */
#define UCDB_IGNOREBIN INT64_LITERAL(0x0000000000080000)

/* For SV Covergroups */
#define UCDB_ILLEGALBIN INT64_LITERAL(0x0000000000100000)

/* For SV Covergroups */
#define UCDB_DEFAULTBIN INT64_LITERAL(0x0000000000200000)

/* For SV Covergroups */
#define UCDB_PEAKACTIVEBIN INT64_LITERAL(0x0000000000400000)

/* For assert: max active thread count*/

UCDB API Functions
Coveritems

UCDB API Reference, v10.1 159

#define UCDB_RESERVED INT64_LITERAL(0x0000000000800000)
 /* For other API use */

#define UCDB_CROSSPRODUCTBIN INT64_LITERAL(0x0000000001000000)
 /* For SV cross products */

#define UCDB_BLOCKBIN INT64_LITERAL(0x0000000002000000)
 /* For code (block) coverage */

#define UCDB_USERBITS INT64_LITERAL(0x00000000FC000000)
 /* For user-defined coverage */

#define UCDB_RESERVEDBIN INT64_LITERAL(0xFC00000000000000)
 /* Reserved */

Coveritem Types

#define UCDB_COVERGROUPBINS ((ucdbCoverMaskTypeT)\
(UCDB_CVGBIN | UCDB_IGNOREBIN | UCDB_ILLEGALBIN | UCDB_DEFAULTBIN))

#define UCDB_FUNC_COV ((ucdbCoverMaskTypeT)\
(UCDB_COVERGROUPBINS | UCDB_COVERBIN | UCDB_SCBIN))

#define UCDB_CODE_COV ((ucdbCoverMaskTypeT)\
(UCDB_STMTBIN | UCDB_BRANCHBIN | UCDB_EXPRBIN | UCDB_CONDBIN \
| UCDB_TOGGLEBIN | UCDB_FSMBIN))

#define UCDB_ASSERTIONBINS ((ucdbCoverMaskTypeT)\
(UCDB_ASSERTBIN | UCDB_PASSBIN | UCDB_VACUOUSBIN | UCDB_DISABLEDBIN \
| UCDB_ATTEMPTBIN | UCDB_ACTIVEBIN | UCDB_PEAKACTIVEBIN))

#define UCDB_NO_BINS ((ucdbCoverMaskTypeT)INT64_ZERO)
#define UCDB_ALL_BINS ((ucdbCoverMaskTypeT)INT64_NEG1)

Flags for Coveritem Data

#define UCDB_IS_32BIT 0x00000001 /* data is 32 bits */
#define UCDB_IS_64BIT 0x00000002 /* data is 64 bits */
#define UCDB_IS_VECTOR 0x00000004 /* data is actually a vector */
#define UCDB_HAS_GOAL 0x00000008 /* goal included */
#define UCDB_HAS_WEIGHT 0x00000010 /* weight included */
#define UCDB_EXCLUDE_PRAGMA 0x00000020 /* excluded by pragma */
#define UCDB_EXCLUDE_FILE 0x00000040 /* excluded by file; does not

count in total coverage */
#define UCDB_LOG_ON 0x00000080 /* for cover/assert directives:

controls simulator output */
#define UCDB_ENABLED 0x00000100 /* generic enabled flag; if

disabled, still counts in total
coverage */

#define UCDB_HAS_LIMIT 0x00000200 /* for limiting counts */
#define UCDB_HAS_ACTION 0x00000400 /* for assert directives, refer

to "ACTION" in attributes */
#define UCDB_IS_FSM_RESET 0x00000400 /* For fsm reset states */
#define UCDB_IS_ASSERT_DEBUG 0x00000800 /* for assert directives, if

true, has 4 counts */
#define UCDB_IS_TLW_ENABLED 0x00001000 /* for assert directives */
#define UCDB_IS_FSM_TRAN 0x00002000 /* for FSM coveritems, is a

transition bin */
#define UCDB_IS_BR_ELSE 0x00004000 /* for branch ELSE coveritems */
#define UCDB_CLEAR_PRAGMA 0x00008000
#define UCDB_IS_EOS_NOTE 0x00010000 /* for directives active at end

of simulation */
#define UCDB_EXCLUDE_INST 0x00020000 /* for instance-specific

exclusions */
#define UCDB_EXCLUDE_AUTO 0x00040000 /* for automatic exclusions */

UCDB API Reference, v10.1160

UCDB API Functions
Coveritems

#define UCDB_IS_CROSSAUTO 0x00400000 /* covergroup auto cross bin */

/* For Zero Information in "flags" */
#define UCDB_BIN_IFF_EXISTS 0x00100000 /* covergroup bin has no iff */
#define UCDB_BIN_SAMPLE_TRUE 0x00200000 /* covergroup bin is

not sampled */
#define UCDB_IS_CROSSAUTO 0x00400000 /* covergroup auto cross bin */
#define UCDB_COVERFLAG_MARK 0x00800000 /* flag for temporary mark */
#define UCDB_USERFLAGS 0xFF000000 /* reserved for user flags */
#define UCDB_FLAG_MASK 0xFFFFFFFF
#define UCDB_EXCLUDED (UCDB_EXCLUDE_FILE | UCDB_EXCLUDE_PRAGMA \

| UCDB_EXCLUDE_INST | UCDB_EXCLUDE_AUTO)

Coveritem Data Type

typedef union {
 uint64_t int64; /* if UCDB_IS_32BIT */
 uint32_t int32; /* if UCDB_IS_64BIT */
 unsigned char* bytevector; /* if UCDB_IS_VECTOR */
} ucdbCoverDataValueT;

typedef struct {
ucdbCoverTypeT type; /* type of coveritem */
ucdbFlagsT flags; /* as above, validity of fields below */

 ucdbCoverDataValueT data;
int goal; /* if UCDB_HAS_GOAL; determines whether

 or not a bin is covered; (like
at_least in covergroup) */

int weight; /* if UCDB_HAS_WEIGHT */
int limit; /* if UCDB_HAS_LIMIT */

 int bitlen; /* length of data.bytevector in bits,
 extra bits are lower order bits of
the last byte in the byte vector */

} ucdbCoverDataT;

ucdb_CreateNextCover
int ucdb_CreateNextCover(
 ucdbT db,
 ucdbScopeT parent,
 const char* name,
 ucdbCoverDataT* data,
 ucdbSourceInfoT* sourceinfo);

Creates the next coveritem in the given scope. Returns the index number of the created
coveritem, -1 if error.

db Database.

parent Scope in which to create the coveritem.

name Name to give the coveritem. Can be NULL.

data Associated data for coverage.

sourceinfo Associated source information.

UCDB API Functions
Coveritems

UCDB API Reference, v10.1 161

ucdb_CloneCover
int ucdb_CloneCover(
 ucdbT targetdb,
 ucdbScopeT targetparent,
 ucdbT sourcedb,
 ucdbScopeT sourceparent,
 int coverindex,
 ucdbSelectFlagsT cloneflags);

Has no effect when targetdb is in streaming mode. Creates a copy of the specified coveritem in
the specified scope (targetparent). Predefined attributes are created by default. Returns the
coverindex if successful, or -1 if error.

ucdb_RemoveCover
int ucdb_RemoveCover(
 ucdbT db,
 ucdbScopeT parent,
 int coverindex);

Has no effect when db is in streaming mode. Removes the specified coveritem from its parent.
Returns 0 if successful, or -1 if error. Coveritems cannot be removed from scopes of type
UCDB_ASSERT (instead, remove the whole scope). Similarly, coveritems from scopes of type
UCDB_TOGGLE with toggle kind UCDB_TOGGLE_SCALAR, UCDB_TOGGLE_-
SCALAR_EXT, UCDB_TOGGLE_REG_SCALAR, or UCDB_TOGGLE_REG_-
SCALAR_EXT cannot be removed (instead, remove the whole scope).

targetdb Database context for clone.

targetparent Parent scope of clone.

db Source database.

parent Source scope.

coverindex Source coverindex.

cloneflags UCDB_CLONE_ATTRS or 0.

db Database.

parent Parent scope of coveritem.

coverindex Coverindex of coveritem to remove.

UCDB API Reference, v10.1162

UCDB API Functions
Coveritems

ucdb_MatchCoverInScope
int ucdb_MatchCoverInScope(
 ucdbT db,
 ucdbScopeT parent,
 const char* name);

Gets covereitem from database if it exists in the specified scope. Returns coveritem index, or -1
if error.

ucdb_IncrementCover
int ucdb_IncrementCover(
 ucdbT db,
 ucdbScopeT parent,
 int coverindex,
 int64_t increment);

Increments the data count for the coveritem, if not a vector item. Returns 0 if successful, or -1 if
error.

ucdb_GetCoverFlags
ucdb_FlagsT ucdb_GetCoverFlags(
 ucdbT db,
 ucdbScopeT parent,
 int coverindex;

Returns the flags for the specified coveritem, or NULL if error.

db Database.

parent Parent scope of coveritem.

name Coveritem name to match.

db Database.

parent Parent scope of coveritem.

coverindex Coverindex of coveritem in parent scope.

increment Increment count to add to current count.

db Database.

parent Parent scope of coveritem.

coverindex Coverindex of coveritem in parent scope.

UCDB API Functions
Coveritems

UCDB API Reference, v10.1 163

ucdb_GetCoverFlag
int ucdb_GetCoverFlag(
 ucdbT db,
 ucdbScopeT parent,
 int coverindex,
 ucdbFlagsT mask);

Returns 1 if coveritem’s flag bit matches the specified mask, 0 if the coveritem has flag bits not
matching the specified mask, or -1 if the coveritem does not have any flag bits.

ucdb_SetCoverFlag
void ucdb_SetCoverFlag(
 ucdbT db,
 ucdbScopeT parent,
 int coverindex,
 ucdbFlagsT mask,
 int bitvalue);

Sets bits in the coveritem’s flag field with respect to the given mask.

ucdb_GetCoverType
ucdbCoverTypeT ucdb_GetCoverType(
 ucdbT db,
 ucdbScopeT parent,
 int coverindex);

Returns the cover type of the specified coveritem. or 0 if error.

db Database.

parent Parent scope of coveritem.

coverindex Coverindex of coveritem in parent scope.

mask Flag mask to match.

db Database.

parent Parent scope of coveritem.

coverindex Coverindex of coveritem in parent scope.

mask Flag mask.

bitvalue Value to set: 0 or 1.

db Database.

parent Parent scope of coveritem.

coverindex Coverindex of coveritem in parent scope.

UCDB API Reference, v10.1164

UCDB API Functions
Coveritems

ucdb_GetCoverData
int ucdb_GetCoverData(
 ucdbT db,
 ucdbScopeT parent,
 int coverindex,
 char** name,
 ucdbCoverDataT* data,
 ucdbSourceInfoT* sourceinfo);

Gets name, data and source information for the specified coveritem. Returns 0 if successful, or
non-zero if error. The user must save the returned data as the next call to this function can
invalidate the returned data. Note: any of the data arguments can be NULL (i.e., that data is not
retrieved).

ucdb_SetCoverData
int ucdb_SetCoverData(
 ucdbT db,
 ucdbScopeT parent,
 int coverindex,
 ucdbCoverDataT* data);

Sets data for the specified coveritem. Returns 0 if successful, or non-zero if error. The user must
ensure the data fields are valid.

ucdb_SetCoverCount
int ucdb_SetCoverCount(
 ucdbT db,
 ucdbScopeT parent,
 int coverindex,
 int64_t count);

db Database.
parent Parent scope of coveritem.
coverindex Coverindex of coveritem in parent scope.
name Name returned (failbin, passbin, vacuousbin, disabledbin,

attemptbin, activebin or peakactivebin).
data Data returned.
sourceinfo Source information returned.

db Database.

parent Parent scope of coveritem.

coverindex Coverindex of coveritem in parent scope.

data Data to set.

db Database.

UCDB API Functions
Coveritems

UCDB API Reference, v10.1 165

Sets the count for the specified coveritem. Returns 0 if successful, or non-zero if error.

ucdb_SetCoverGoal
int ucdb_SetCoverGoal(
 ucdbT db,
 ucdbScopeT parent,
 int coverindex,
 int goal);

Sets the goal for the specified coveritem. Returns 0 if successful, or non-zero if error.

ucdb_SetCoverLimit
int ucdb_SetCoverLimit(
 ucdbT db,
 ucdbScopeT parent,
 int coverindex,
 int limit);

Sets the limit for the specified coveritem. Returns 0 if successful, or non-zero if error.

ucdb_SetCoverWeight
int ucdb_SetCoverWeight(
 ucdbT db,
 ucdbScopeT parent,
 int coverindex,
 int weight);

parent Parent scope of coveritem.

coverindex Coverindex of coveritem in parent scope.

count Cover count value to set.

db Database.

parent Parent scope of coveritem.

coverindex Coverindex of coveritem in parent scope.

goal Cover goal value to set.

db Database.

parent Parent scope of coveritem.

coverindex Coverindex of coveritem in parent scope.

limit Cover limit value to set.

db Database.

parent Parent scope of coveritem.

UCDB API Reference, v10.1166

UCDB API Functions
Coveritems

Sets the weight for the specified coveritem. Returns 0 if successful, or non-zero if error.

ucdb_GetScopeNumCovers
int ucdb_GetScopeNumCovers(
 ucdbT db,
 ucdbScopeT scope);

Returns the number of coveritems in the specified scope (which can be 0), or -1 if error.

ucdb_GetECCoverNumHeaders
int ucdb_GetECCoverNumHeaders(
 ucdbT db,
 ucdbScopeT scope);

Returns the number of UDP header columns for Expression and Condition coverage in the
specified scope (which can be 0), or -1 if error. For example, to get all the header columns:

num_columns = ucdb_GetECCoverNumHeaders(db, cvitem);
for (i = 0; i < num_columns; i++) {

char* header;
status = ucdb_GetECCoverHeader(db, cvitem, i, &header);

}

ucdb_GetECCoverHeader
int ucdb_GetECCoverHeader(
 ucdbT db,
 ucdbScopeT scope,
 int index,
 char** header);

coverindex Coverindex of coveritem in parent scope.

weight Cover weight value to set.

db Database.

scope Scope.

db Database.

scope Scope.

db Database.

scope Scope.

index Index.

header Header string returned.

UCDB API Functions
Coveritems

UCDB API Reference, v10.1 167

Gets the indexed UDP header string of Expression and Condition coverage. Returns 0 if
successful, or 1 if error.

ucdb_NextCoverInScope
int ucdb_NextCoverInScope(
 ucdbT db,
 ucdbScopeT parent,
 int* coverindex,
 ucdbCoverMaskTypeT covermask);

Given a coveritem and cover type mask, gets the next coveritem from the scope. Start with a
coverindex == -1 to return the first coveritem in the scope. Returns 0 at end of traversal, -1 if
error.

ucdb_NextCoverInDB
int ucdb_NextCoverInDB(
 ucdbT db,
 ucdbScopeT parent,
 int* coverindex,
 ucdbCoverMaskTypeT covermask);

Given a coveritem and cover type mask, gets the next coveritem from the scope. Start with a
coverindex == -1 and parent == NULL to return the first coveritem in the database. Returns 0 at
end of traversal, -1 if error.

db Database.

parent Parent scope of coveritem.

coverindex Index of coveritem in parent.

covermask Mask for type of coveritem.

db Database.

parent Parent scope of coveritem.

coverindex Index of coveritem in parent.

covermask Mask for type of coveritem.

UCDB API Reference, v10.1168

UCDB API Functions
Toggles

Toggles
Toggles are the most common type of object in a typical code coverage database. Therefore,
they have a specific interface in the API which can be restricted for optimization purposes. Net
toggles can be duplicated throughout the database through port connections. They can be
reported once rather than in as many different local scopes as they appear (this requires a net id).

typedef enum {
 UCDB_TOGGLE_ENUM, /* Enum type object */
 UCDB_TOGGLE_INT, /* Integer type object */
 UCDB_TOGGLE_REG_SCALAR=4, /* Scalar, one bit reg */
 UCDB_TOGGLE_REG_SCALAR_EXT, /* Extended toggle of scalar reg */
 UCDB_TOGGLE_SCALAR, /* Scalar net or std_logic_bit */
 UCDB_TOGGLE_SCALAR_EXT /* Ext toggle of scalar net or

std_logic_bit */
 UCDB_TOGGLE_REAL /* Real type object */

} ucdbToggleTypeT;

typedef enum {
 UCDB_TOGGLE_INTERNAL, /* non-port: internal wire or variable */
 UCDB_TOGGLE_IN, /* input port */
 UCDB_TOGGLE_OUT, /* output port */
 UCDB_TOGGLE_INOUT /* inout port */
} ucdbToggleDirT;

ucdb_CreateToggle
ucdbScopeT ucdb_CreateToggle(
 ucdbT db,
 ucdbScopeT parent,
 const char* name,
 const char* canonical_name,
 ucdbFlagsT flags,
 ucdbToggleTypeT toggle_type,
 ucdbToggleDirT toggle_dir);

Creates the specified toggle scope beneath the given parent scope. Returns a handle to the
created scope (type UCDB_TOGGLE), or NULL if error.

db Database.

parent Scope in which to create the toggle.

name Name to give the toggle object.

canonical_name Canonical name for the toggle object. Identifies unique toggles.
Toggles with the same canonical_name must count once when
traversed for a report or coverage summary.

flags Exclusion flags.

toggle_type Toggle type.

toggle_dir Toggle direction.

UCDB API Functions
Toggles

UCDB API Reference, v10.1 169

ucdb_GetToggleInfo
int ucdb_GetToggleInfo(
 ucdbT db,
 ucdbScopeT toggle,
 const char** canonical_name,
 ucdbToggleTypeT* toggle_type,
 ucdbToggleDirT* toggle_dir);

Returns toggle-specific information associated with the specified toggle scope. Returns 0 if
successful, -1 if error.

ucdb_GetToggleCovered
int ucdb_GetToggleCovered(
 ucdbT db,
 ucdbScopeT toggle);

Returns 1 if toggle is covered, 0 if toggle is uncovered and -1 if an error.

ucdb_GetBCoverInfo
int ucdb_GetBCoverInfo(
 ucdbT db,
 ucdbScopeT coveritem,
 int* has_else,
 int* iscase,
 int* num_elmts);

Returns 1 if branch is a CASE statement; 0 otherwise (IF statement).

db Database.
toggle Toggle scope containing the information..
canonical_name Canonical name for the toggle object. May be NULL for

unconnected nets, enum, int, and reg type toggles. Memory for
canonical_name is allocated by the system and must not be de-
allocated by the user.

toggle_type Toggle type.
toggle_dir Toggle direction.

db Database.

toggle Toggle scope containing the information..

db Database.

coveritem Coveritem.

has_else 1 if branch has else clause; 0 otherwise.

iscase 1 if branch is a CASE statement; 0 otherwise.

num_elmts Number of elements in branch. 1 if a CASE branch.

UCDB API Reference, v10.1170

UCDB API Functions
Groups

Groups
Groups are used to maintain bus structures in the database. They provide additional support for
part-select toggle nodes, particularly with the support for wildcard ranges provided by group
scopes.

Group Kind Type

#define UCDB_GROUP_MASK_PACKED 0x1000
#define UCDB_GROUP_MASK_ORDERED 0x2000
typedef enum {

UCDB_GROUP_BASIC = 0x0001,
UCDB_GROUP_UNPACKED_STRUCT = 0x0002,
UCDB_GROUP_UNPACKED_UNION = 0x0003,
UCDB_GROUP_UNPACKED_ARRAY = (0x0004|UCDB_GROUP_MASK_ORDERED),
UCDB_GROUP_ASSOC_ARRAY = 0x0005,
UCDB_GROUP_PACKED_STRUCT =

(UCDB_GROUP_UNPACKED_STRUCT|UCDB_GROUP_MASK_PACKED),
UCDB_GROUP_PACKED_UNION =

(UCDB_GROUP_UNPACKED_UNION|UCDB_GROUP_MASK_PACKED),
UCDB_GROUP_PACKED_ARRAY =

(UCDB_GROUP_UNPACKED_ARRAY|UCDB_GROUP_MASK_PACKED)
} ucdbGroupKind;

Wildcard Matching

General wildcard matching supports:

The following range pattern searches require group scopes:

• (number)

• [number]

• [number:number]

• (number to number)

• (number downto number)

* Matches one or more characters. Only spans one scope, so * matches [2], but does not
match [2][4].

? Matches a single character.

UCDB API Functions
Groups

UCDB API Reference, v10.1 171

ucdb_CreateGroupScope
ucdbScopeT ucdb_CreateGroupScope(
 ucdbT db,
 ucdbScopeT parent,

ucdbGroupKind kind,
char* name,

 ucdbFlagsT flags,
 int numberOfRangePairs,

int* rangePairs);

Creates the specified group scope beneath the parent scope. Returns the scope handle if
successful, or NULL if error. In write streaming mode, name and rangePairs are not copied, so
they should be kept unchanged until the next ucdb_WriteStream* call or the next ucdb_Create*
call.

ucdb_GetGroupInfo
int ucdb_GetGroupInfo(
 ucdbT db,
 ucdbScopeT group,

ucdbGroupKind* kind,
const char** name,
int* numberOfRangePairs,
int** rangePairs);

Gets the group-specific information (kind, name, numberOfRangePairs and rangePairs) for the
specified group scope. Returns 0 if successful, or -1 if error.

db Database.

parent Parent scope.

kind Group kind.

name Name to assign to the group scope.

flags Flags.

numberOfRangePairs Number of range pairs. Only used for ordered groups.

rangePairs Range pairs. Only used for ordered groups.

db Database.

group Group scope.

kind Group kind.

name Name of the group scope.

numberOfRangePairs Number of range pairs. Only used for ordered groups.

rangePairs Range pairs. Only used for ordered groups.

UCDB API Reference, v10.1172

UCDB API Functions
Groups

ucdb_ExpandOrderedGroupRangeList
int ucdb_ExpandOrderedGroupRangeList(
 ucdbT db,
 ucdbScopeT group,

int numberOfRangePairs,
int* rangePairs);

Expands the range pairs for the specified group with the specified list of range pairs according
to the following rules:

• A range that does not overlap an existing range is added to the range list.

• A range that encloses one or more existing ranges replaces the enclosed ranges.

• A range that (partially) overlaps an existing range expands that range.

• A range completely enclosed in an existing range is ignored.

Returns 0 if successful, -1 if error.

ucdb_GetOrderedGroupElementByIndex
ucdbScopeT ucdb_GetOrderedGroupElementByIndex(
 ucdbT db,
 ucdbScopeT parent,

int index);

Returns the handle of the child element of the specified ordered group scope that has the
specified index, or NULL if error or if no element corresponds to the index. For example, for
the ordered group corresponding to bus[3:0]:

• index = 1 returns the right-most range number (0)

• index = 4 returns the left-most range number (3)

Function is used in memory mode only.

db Database.

group Group scope. Must be UCDB_GROUP_PACKED_ARRAY or
UCDB_GROUP_UNPACKED_ARRAY type.

numberOfRangePairs Number of range pairs.

rangePairs Range pairs.

db Database.

group Parent ordered group scope. Must be
UCDB_GROUP_PACKED_ARRAY or
UCDB_GROUP_UNPACKED_ARRAY type.

index Index of the child.

UCDB API Functions
Tags

UCDB API Reference, v10.1 173

Tags
A tag is a group of strings associated with a scope. Scopes can have associated tags for
grouping: when items share a tag they are associated together. In particular, when
UCDB_TESTPLAN scopes share tags with coverage scopes that contain coveritems, the
association can be used to do traceability analysis tests. The following example traverses all
non-testplan scopes that share a tag with a given testplan scope:

if (ucdb_ObjKind(db,obj)==UCDB_OBJ_SCOPE &&
ucdb_GetScopeType(db,(ucdbScopeT)obj)==UCDB_TESTPLAN) {

int t, numtags = ucdb_GetScopeNumTags(db,scope);
const char* tagname;
for (t=0; t<numtags; t++) {

int found;
ucdbObjT taggedobj;
ucdb_GetScopeIthTag(db,scope,t,&tagname);
 for (found=ucdb_BeginTaggedObj(db,tagname,&taggedobj);

 found; found=ucdb_NextTaggedObj(db,&taggedobj)) {
if (ucdb_ObjKind(db,taggedobj)==UCDB_OBJ_SCOPE &&

ucdb_GetScopeType(db,(ucdbScopeT)taggedobj)==UCDB_TESTPLAN
) continue;
/* Now taggedobj is a non-testplan obj sharing a tag with */
/* obj -- put your code here */

}
}

}

Here is an example of traversing all scopes for all tags in a UCDB file:

ucdbT db = ucdb_Open(filename);
const char* tagname = NULL;
while (tagname = ucdb_NextTag(db,tagname)) {

int found;
ucdbScopeT scope;
for (found=ucdb_BeginTagged(db,tagname,&scope);

found;
found=ucdb_NextTagged(db,&scope)) {
/* Put your code here */

}
}

Important: This traversal cannot nest. Code inside this loop cannot re-use the
BeginTagged/NextTagged functions.

Object Mask Type

typedef enum {
 UCDB_OBJ_ERROR = 0, /* Start of the db, apply initial settings */
 UCDB_OBJ_TESTDATA = 1, /* Testdata object */
 UCDB_OBJ_SCOPE = 2, /* Scope object */
 UCDB_OBJ_COVER = 4, /* Cover object */
 UCDB_OBJ_ANY = -1 /* ucdbScopeT or ucdbHistoryNodeT */
} ucdbObjMaskT;

UCDB API Reference, v10.1174

UCDB API Functions
Tags

Enum type for different object kinds. This is a bit mask for the different kinds of objects that are
tagged. Mask values can be ANDed and ORed together.

ucdb_ObjKind
ucdbObjMaskT ucdb_ObjKind(
 ucdbT db,
 ucdbObjT obj);

Returns object type (ucdbScopeT or ucdbTestT) for the specified object, or
UCDB_OBJ_ERROR if error.

ucdb_GetObjType
ucdbObjTypeT ucdb_GetObjType(
 ucdbT db,
 ucdbScopeT object);

Polymorphic function (aliased to ucdb_GetHistoryKind) for acquiring an object type. Returns
UCDB_HISTORYNODE_TEST (object is a test data record),
UCDB_HISTORYNODE_TESTPLAN (object is a test plan record),
UCDB_HISTORYNODE_MERGE (object is a merge record), scope type ucdbScopeTypeT
(object is not of these), or UCDB_SCOPE_ERROR if error. This function can return a value
with multiple bits set (for history data objects). Return value must not be used as a mask.

ucdb_AddObjTag
int ucdb_AddObjTag(
 ucdbT db,
 ucdbObjT obj,
 const char* tag);

Adds a tag to a given object. Returns 0 if successful, or non-zero if error. Error includes null tag
or tag with ’\n’ character.

db Database.

obj Obj.

db Database.

object Object.

db Database.

obj Object (ucdbScopeT or ucdbTestT).

tag Tag.

UCDB API Functions
Tags

UCDB API Reference, v10.1 175

ucdb_RemoveObjTag
int ucdb_RemoveObjTag(
 ucdbT db,
 ucdbObjT obj,
 const char* tag);

Removes the given tag from the object. Returns 0 if successful, or non-zero if error.

ucdb_GetObjNumTags
int ucdb_GetObjNumTags(
 ucdbT db,
 ucdbObjT obj);

Gets the number of tags from a given object. Returns number of tags, or 0 if error or no tags.

ucdb_GetObjIthTag
int ucdb_GetObjIthTag(
 ucdbT db,
 ucdbObjT obj,
 int index,
 const char** tag);

Gets an indexed tag from a given object. Returns 0 if successful, or non-zero if error.

ucdb_SetObjTags
int ucdb_SetObjTags(
 ucdbT db,
 ucdbObjT obj,
 int numtags,
 const char** tag_array);

db Database.

obj Object (ucdbScopeT or ucdbTestT).

tag Tag.

db Database.

obj Object (ucdbScopeT or ucdbTestT).

db Database.

obj Object (ucdbScopeT or ucdbTestT).

index Tag index.

tag Tag.

db Database.

UCDB API Reference, v10.1176

UCDB API Functions
Tags

Sets all tags for a given a object (replaces previous tags). Returns 0 if successful, or non-zero if
error.

ucdb_BeginTaggedObj
int ucdb_BeginTaggedObj(
 ucdbT db,
 const char* tagname,
 ucdbObjT* p_obj);

In-memory mode only. Gets the first object that exists with the given tag. Returns 1 if the tag
exists in the database, or 0 if not. When the function returns 1, *p_obj is non-NULL.

ucdb_NextTaggedObj
int ucdb_NextTaggedObj(
 ucdbT db,
 ucdbObjT* p_obj);

In-memory mode only and must be called immediately after ucdb_BeginTaggedObj—the
function re-uses tag from the previous call. Gets the next obj that exists with the given tag.
Returns 1 if the next object exists in the database, or 0 if not. When it returns 1, *p_obj is non-
NULL.

ucdb_NextTag
int ucdb_NextTag(
 ucdbT db,
 const char* tagname);

In-memory mode only. Iterator function for returning the set of all tags in the UCDB file.
Returns NULL when traversal is done or -1 with error.

obj Object (ucdbScopeT or ucdbTestT).

numtags Size of tag_array, 0 to clear all flags.

tag_array Array of string handles.

db Database.

tagname Tag to match.

p_obj Object (ucdbScopeT or ucdbTestT).

db Database.

p_obj Object (ucdbScopeT or ucdbTestT).

db Database.

tagname Tag name.

UCDB API Functions
Formal Data

UCDB API Reference, v10.1 177

Formal Data
A UCDB test is the result of functional verification analysis performed by a simulator or a
formal verification tool. A formal test is a ucdbTestT object that is also associated with special
information that describes a particular formal analysis session (ucdb_AssocFormalInfoTest).
This information (see Formal Tool Info Type) describes:

• how, when and where the formal test ran

• scope of the formal analysis

• location of detailed results

• environment assumptions

Formal analysis gives two types of results:

• assertion information

Formal analysis of an assertion results in an indication of the formal status of the
assertion under the test assumptions for the scope of the assertion. For example: the
assertion is proven; a counterexample exists that makes the assertion fail; or the formal
analysis is inconclusive (among other possible statuses, see Formal Status Enum).

• coverage information

Formal analysis of a cover statement or an assertion returns coverage information such
as cover statement coverage, line coverage, stimulus coverage and assertion witnesses
that the assertions can be exercised You model this functionality using the same scopes
and coverage items as for simulation, in conjunction with additional facilities for formal
verification.

A UCDB formal environment attribute (see Formal Coverage Context) indicates the context for
interpreting the coverage data obtained from a formal analysis session. Coverage “contexts”
support various formal coverage use models, for example:

• “Coverage reachability” is the primary objective of the formal analysis session or it is an
ancillary by-product of the formal analysis session.

• “Coverage” describes the controllability of the design based on the formal assumptions
or it indicates the design logic observable by assertions.

Formal coverage context shows how different types of coverage information (see Cover Types)
were obtained and how you should interpret them.

UCDB API Reference, v10.1178

UCDB API Functions
Formal Data

Note
In general, all arguments returned by the formal routines are only valid as long as the db
database remains open. Once the db database is closed, these arguments are invalid and
should not be accessed in any way. If a caller of the formal routines needs access to the
returned values beyond the lifetime of the db database, it must make copies of them.

Formal Status Enum

typedef enum {
UCDB_FORMAL_NONE, /* No formal info (default) */
UCDB_FORMAL_FAILURE, /* Fails */
UCDB_FORMAL_PROOF, /* Proven to never fail */
UCDB_FORMAL_VACUOUS, /* Assertion is vacuous as defined by the

 assertion language */
UCDB_FORMAL_INCONCLUSIVE, /* Proof failed to complete */
UCDB_FORMAL_ASSUMPTION, /* Assertion is an assume */
UCDB_FORMAL_CONFLICT /* Data merge conflict */

} ucdbFormalStatusT;

Formal test result for a particular asserted or assumed property.

Formal Environment Type

typedef void* ucdbFormalEnvT;

Formal Tool Info Type

typedef struct ucdbFormalToolInfoS {
 char* formal_tool; /* tool name */
 char* formal_tool_version; /* tool version */
 char* formal_tool_setup; /* setup file (text) */
 char* formal_tool_db; /* database file (binary) */
 char* formal_tool_rpt; /* report file (text) */
 char* formal_tool_log; /* log file (text)
} ucdbFormalToolInfoT;

Structure identifying the test as a formal test and indicating tool-specific information about the
formal analysis run.

Formal Coverage Context

#define UCDB_FORMAL_COVERAGE_CONTEXT_STIMULUS \
"UCDB_FORMAL_COVERAGE_CONTEXT_STIMULUS"

#define UCDB_FORMAL_COVERAGE_CONTEXT_RESPONSE \
"UCDB_FORMAL_COVERAGE_CONTEXT_REPONSE"

#define UCDB_FORMAL_COVERAGE_CONTEXT_TARGETED \
"UCDB_FORMAL_COVERAGE_CONTEXT_TARGETED"

#define UCDB_FORMAL_COVERAGE_CONTEXT_ANCILLARY \
"UCDB_FORMAL_COVERAGE_CONTEXT_ANCILLARY"

#define UCDB_FORMAL_COVERAGE_CONTEXT_INCONCLUSIVE_ANALYSIS \
"UCDB_FORMAL_COVERAGE_CONTEXT_INCONCLUSIVE_ANALYSIS"

UCDB API Functions
Formal Data

UCDB API Reference, v10.1 179

Formal coverage context is a string that indicates the context for interpreting formal coverage
information. This string can be one of the following predefined UCDB formal context attribute
values, a user-defined string specific to the tool/application, or NULL (i.e., no formal coverage
context specified).

• UCDB_FORMAL_COVERAGE_CONTEXT_STIMULUS

Coverage information associated with the test approximates the set of legal stimuli
permitted within the constraints of the formal verification run. For example, for this
formal coverage context, you can check that the test’s formal assumptions do not over-
or under-constrain the formal analysis.

• UCDB_FORMAL_COVERAGE_CONTEXT_RESPONSE

Coverage information associated with the test identifies the structures under observation
by the assertions. For example, knowing the logic verified by formal analysis helps you
determine the “completeness” of the assertion instrumentation of the design.

• UCDB_FORMAL_COVERAGE_CONTEXT_TARGETED

Coverage information associated with the test is used for comprehensive coverage
analysis. For example, one purpose might be to identify the controllable elements of the
design. Another might be to evaluate the particular assumptions applied.

• UCDB_FORMAL_COVERAGE_CONTEXT_ANCILLARY

Coverage information associated with the test is a by-product of formal analysis and is
not the primary objective for the formal test. Results provide coverage information
helpful in understanding what was exercised, but that information is not necessarily
comprehensive. For example the main objective of the formal verification test might be
to prove assertions and find counterexamples. Here, parts of the design not in the fanin
of the formal properties are typically ignored by the formal tool. So, coverage is a side
effect of the formal analysis.

• UCDB_FORMAL_COVERAGE_CONTEXT_INCONCLUSIVE_ANALYSIS

Coverage information associated with the test helps you analyze assertions with
inconclusive formal analysis results (i.e., assertions with
UCDB_FORMAL_INCONCLUSIVE status).

UCDB API Reference, v10.1180

UCDB API Functions
Formal Data

ucdb_SetFormalStatus
int ucdb_SetFormalStatus(
 ucdbT db,
 ucdbTestT test,
 ucdbScopeT assertscope,
 ucdbFormalStatusT formal_status);

Sets the formal status of the specified assertion with respect to the specified test. Not supported
in read streaming mode. This is a routine that sets a value, so in write streaming mode this
routine can only be called while the scope of the assertion is actively being written. Returns 0 if
successful, or non-zero if error (and formal status is unchanged). Returns an error if any
argument is NULL.

ucdb_GetFormalStatus
int ucdb_GetFormalStatus(
 ucdbT db,
 ucdbTestT test,
 ucdbScopeT assertscope,
 ucdbFormalStatusT* formal_status);

Gets the formal status of the specified assertion with respect to the specified test. Not supported
in write streaming mode. This is a routine that gets a value, so in read streaming mode this
routine can only be called while the scope of the assertion is actively being read. Neither
iteration of assertscopes paired with a given test nor iteration of test with a given assertscope is
supported. Returns 0 if successful, or non-zero if error (and formal status is not returned).
Returns an error if any argument is NULL.

ucdb_SetFormalRadius
int ucdb_SetFormalRadius(
 ucdbT db,
 ucdbTestT test,
 ucdbScopeT assertscope,
 int radius,
 char* clock);

db Database.
test UCDB test object.
assertscope Scope of the assertion.
formal_status Assert formal status.

db Database.
test UCDB test object.
assertscope Scope of the assertion.
formal_status Assert formal status returned.

db Database.

UCDB API Functions
Formal Data

UCDB API Reference, v10.1 181

Sets the formal radius (proof radius or counterexample depth) for the specified assertion with
respect to the specified test. Not supported in read streaming mode. This is a routine that sets a
value, so in write streaming mode this routine can only be called while the scope of the assertion
is actively being written. Returns 0 if successful, or non-zero if error (and formal radius is
unchanged). Returns an error if any argument except clock is NULL.

ucdb_GetFormalRadius
int ucdb_GetFormalRadius(
 ucdbT db,
 ucdbTestT test,
 ucdbScopeT assertscope,
 int* radius,
 char** clock);

Gets the formal radius for the specified assertion with respect to the specified test and gets the
associated clock for the radius. Not supported in write streaming mode. This is a routine that
gets values, so in read streaming mode this routine can only be called while the scope of the
assertion is actively being read. Neither iteration of assertscopes paired with a given test nor
iteration of test with a given assertscope is supported. Returns 0 if successful, or non-zero if
error (and radius/clock are not returned). Returns an error if any argument is NULL.

test UCDB test object.
assertscope Scope of the assertion.
radius Radius expressed in clock cycles. Exact meaning depends on the

assertion’s status:
• UCDB_FORMAL_INCONCLUSIVE

Proof radius (if a bounded proof is reported) or -1 (if no
bounded proof is reported).

• UCDB_FORMAL_FAILURE
Counterexample depth.

clock Assertion clock specified as a hierarchical name string. Can be
NULL.

db Database.
test UCDB test object.
assertscope Scope of the assertion.
radius Radius returned (expressed in clock cycles). Exact meaning

depends on the assertion’s status:
• UCDB_FORMAL_INCONCLUSIVE

Proof radius (if a bounded proof is reported) or -1 (if no
bounded proof is reported).

• UCDB_FORMAL_FAILURE
Counterexample depth.

clock Assertion clock returned (specified as a hierarchical name
string). If NULL, the clock is NULL or the formal radius was not
set.

UCDB API Reference, v10.1182

UCDB API Functions
Formal Data

ucdb_SetFormalWitness
int ucdb_SetFormalWitness(
 ucdbT db,
 ucdbTestT test,
 ucdbScopeT assertscope,
 char* witness_file_or_dir);

Sets witness waveforms for the specified assertion with respect to the specified test. A witness
is a counterexample (for a failed property) or a sanity waveform (for a proven property). Not
supported in read streaming mode. This is a routine that sets a value, so in write streaming mode
this routine can only be called while the scope of the assertion is actively being written. Returns
0 if successful, or non-zero if error (and witness waveform information is unchanged). Returns
an error if any argument is NULL.

ucdb_GetFormalWitness
int ucdb_GetFormalWitness(
 ucdbT db,
 ucdbTestT test,
 ucdbScopeT assertscope,
 char** witness_file_or_dir);

Gets witness waveforms for the specified assertion with respect to the specified test. A witness
is a counterexample (for a failed property) or a sanity waveform (for a proven property). Not
supported in write streaming mode. This is a routine that gets a value, so in read streaming
mode this routine can only be called while the scope of the assertion is actively being read.
Neither iteration of assertscopes paired with a given test nor iteration of test with a given
assertscope is supported. Returns 0 if successful, or non-zero if error (and witness_file_or_dir is
not returned). Returns an error if any argument is NULL.

db Database.

test UCDB test object.

assertscope Scope of the assertion.

witness_file_or_dir Path to a waveform file or directory containing waveform files,
expressed as a string. Waveform files can be in any standard or
widely-used format.

db Database.

test UCDB test object.

assertscope Scope of the assertion.

witness_file_or_dir Witness string returned. String is the path to a witness waveform
file or a directory containing witness waveform files (expressed
in a standard or widely-used format).

UCDB API Functions
Formal Data

UCDB API Reference, v10.1 183

ucdb_SetFormallyUnreachableCoverTest
int ucdb_SetFormallyUnreachableCoverTest(
 ucdbT db,
 ucdbTestT test,
 ucdbScopeT coverscope,
 int coverindex);

Sets the formally-unreachable status flag for the specified cover item with respect to the
specified test. Use this function in conjunction with ucdb_AssocCoverTest, which indicates
whether or not the coverage item is reachable with respect to the test. With these two flags, you
can indicate the status of the cover item with respect to a formal test: covered by formal, proven
unreachable, or unknown coverage status (i.e., if both flags are clear).

Not supported in read streaming mode. This is a routine that sets a value, so in write streaming
mode this routine can only be called while the scope of the cover item is actively being written.
Returns 0 if successful, or non-zero if error (and formally-unreachable status flag is unchanged).
Returns an error if any argument is NULL.

ucdb_ClearFormallyUnreachableCoverTest
int ucdb_ClearFormallyUnreachableCoverTest(
 ucdbT db,
 ucdbTestT test,
 ucdbScopeT coverscope,
 int coverindex);

Clears the formally-unreachable status flag (see ucdb_SetFormallyUnreachableCoverTest) for
the specified cover item with respect to the specified test. Not supported in read streaming
mode. This is a routine that sets a value, so in write streaming mode this routine can only be
called while the scope of the cover item is actively being written. Returns 0 if successful, or
non-zero if error (and formally-unreachable status flag is unchanged). Returns an error if any
argument is NULL.

db Database.

test UCDB test object.

coverscope Scope of the cover item.

coverindex Index of the cover item in the cover scope.

db Database.

test UCDB test object.

coverscope Scope of the cover item.

coverindex Index of the cover item in the cover scope.

UCDB API Reference, v10.1184

UCDB API Functions
Formal Data

ucdb_GetFormallyUnreachableCoverTest
int ucdb_GetFormallyUnreachableCoverTest(
 ucdbT db,
 ucdbTestT test,
 ucdbScopeT coverscope,
 int coverindex,
 int* unreachable_flag);

Gets the formally-unreachable status flag for the specified cover item with respect to the
specified test. Not supported in write streaming mode. This is a routine that gets a value, so in
read streaming mode this routine can only be called while the scope of the cover item is actively
being read. Neither iteration of coverscopes paired with a given test nor iteration of test with a
given coverscope is supported. Returns 0 if successful, or non-zero if error (and formally-
unreachable status flag is not returned). Returns an error if any argument is NULL.

ucdb_AddFormalEnv
ucdbFormalEnvT ucdb_AddFormalEnv(
 ucdbT db,
 const char* name,
 ucdbScopeT scope);

Creates a new formal environment object. A formal environment describes the scope of a
formal test and the environmental assumptions used to perform the formal analysis. Returns the
handle for the new environment (if successful); returns the handle for an existing environment
(if name and scope match those of an existing formal environment); or returns NULL if error.
Names of formal environments must be unique, so it is an error if name matches an existing
formal environment’s name, but the two scopes do not match. Not supported in read streaming
mode. This is a routine that writes information, so in write streaming mode this routine can only
be called while the scope of the environment is actively being written.

Once a formal environment is created, use ucdb_AssocAssumptionFormalEnv repeatedly to
associate assumption scopes with the environment. Then, use ucdb_AssocFormalInfoTest to
associate the formal environment with formal tests run under those environmental constraints.

db Database.
test UCDB test object.
coverscope Scope of the cover item.
coverindex Index of the cover item in the cover scope.
unreachable_flag Flag value returned:

• 0 — coverage item possibly reachable
• 1 — coverage item formally unreachable

db Database.
name Environment name.
scope Scope indicating the part of the design analyzed by formal

verification.

UCDB API Functions
Formal Data

UCDB API Reference, v10.1 185

ucdb_AssocAssumptionFormalEnv
int ucdb_AssocAssumptionFormalEnv(
 ucdbT db,
 ucdbFormalEnvT formal_env,
 ucdbScopeT assumption_scope);

Adds the specified assumption to the specified formal environment (created with
ucdb_AddFormalEnv). Not supported in read streaming mode. This is a routine that writes a
value, so in write streaming mode this routine can only be called while the scope of the
assumption is actively being written. Returns 0 if successful, or non-zero if error (and
assumption is not added to the environment).

ucdb_AssocFormalInfoTest
int ucdb_AssocFormalInfoTest(
 ucdbT db,
 ucdbTestT test,
 ucdbFormalToolInfoT* formal_tool_info,
 ucdbFormalEnvT formal_env,
 char* formal_cov_context);

Adds a formal environment, tool-specific information and a formal coverage context to the
information for a test, which in effect makes test a formal test. Returns 0 if successful, or non-
zero if error (and the formal information is not added to the test).

ucdb_NextFormalEnv
ucdbFormalEnvT ucdb_NextFormalEnv(
 ucdbT db,
 ucdbFormalEnvT formal_env);

db Database.

formal_env UCDB formal environment.

assumption_scope Scope of an assumption.

db Database.

test UCDB test object.

formal_tool_info Formal tool information (see Formal Tool Info Type).

formal_env UCDB formal environment.

formal_cov_context Formal coverage context (see Formal Coverage Context).

db Database.

formal_env UCDB formal environment (or NULL, to return the first formal
environment).

UCDB API Reference, v10.1186

UCDB API Functions
Formal Data

Returns the handle for the first formal environment (if formal_env is NULL), or the next formal
environment after formal_env, or NULL (if formal_env is the last environment added by
ucdb_AddFormalEnv or if error).

ucdb_NextFormalEnvAssumption
ucdbScopeT ucdb_AssocAssumptionFormalEnv(
 ucdbT db,
 ucdbFormalEnvT formal_env,
 ucdbScopeT assumption_scope);

Returns the handle for the first assumption added to formal_env (if assumption_scope is
NULL), or the next formal environment after formal_env, or NULL (if assumption_scope is the
last assumption added to formal_env or if error). Not supported in streaming mode (only
supported in memory mode).

ucdb_FormalEnvGetData
int ucdb_FormalEnvGetData(
 ucdbT db,
 ucdbFormalEnvT formal_env,
 const char** name,
 ucdbScopeT* scope);

Gets the name and scope of the specified formal environment. Not supported in streaming mode
(only supported in memory mode). Returns 0 if successful, or non-zero if error (and the formal
environment information is not updated).

db Database.

formal_env UCDB formal environment.

assumption_scope Scope of an assumption added to formal_env using
ucdb_AssocAssumptionFormalEnv or NULL.

db Database.

formal_env UCDB formal environment.

name Environment name returned.

scope Scope returned indicating the part of the design analyzed by
formal verification.

UCDB API Functions
Formal Data

UCDB API Reference, v10.1 187

ucdb_FormalTestGetInfo
int ucdb_FormalTestGetInfo(
 ucdbT db,
 ucdbTestT test,
 ucdbFormalToolInfoT** formal_tool_info,
 ucdbFormalEnvT* formal_env,
 char** formal_cov_context);

Gets the formal environment, tool information and formal coverage context for the specified
formal test (from data created by ucdb_AssocFormalInfoTest). This function allocates and
owns the memory for the returned values formal_tool_info and formal_cov_context, so the
calling code should not “free” the memory these arguments point to. Returns 0 if successful, or
non-zero if error (and the formal test information is not returned).

db Database.

test UCDB test object.

formal_tool_info Formal tool information returned.

formal_env UCDB formal environment returned.

formal_cov_context Formal coverage context returned.

UCDB API Reference, v10.1188

UCDB API Functions
Test Traceability

Test Traceability
API for associating tests and coverage objects. Coveritems or scopes may be associated with
one of the ucdbTestT records in the database through this API.

NOTE on the tests and coverage object association: For compactness, this is implemented as a
bit vector associated with each coverage object, where each bit corresponds to a test in the list of
test data records in the database. Consequently, this is dependent on the ordering of test data
records being stable. If test data records are removed (with ucdb_RemoveTest()), all test-
coverage associations can be invalidated.

Some test traceability support functions use the ucdbBitVectorT structure, which contains a
vector whose bits correspond to the test data records in the database.

typedef struct {
 unsigned char* bitvector; /* LSBs are filled first */
 int bitlength; /* length in bits */
 int bytelength; /* length in bytes */
} ucdbBitVectorT;

This structure is used for efficient implementation. When using ucdb_SetCoverTestMask() or
other functions reading the bit vector, bitlength takes priority over bytelength, either will be
ignored if set to -1. Both may not be set to -1. Setting length to 0 will erase the attribute.

The following optional defines enforce the conventions for bitlength vs. bytelength in
ucdbBitVectorT structures:

#define ucdb_SetBitVectorLengthBits(bitvector,numbits) \
{ (bitvector).bitlength = (numbits); \
(bitvector).bytelength = ((((bitvector).bitlength)/8) \

+ ((((bitvector).bitlength)%8) ? 1 : 0));}

#define ucdb_SetBitVectorLengthBytes(bitvector,numbytes) \
{ (bitvector).bytelength = (numbytes); \
(bitvector).bitlength = ((bitvector).bytelength) * 8 ;}

#define ucdb_GetBitVectorLengthBytes(bitvector) \
((bitvector).bitlength >= 0 ? \

(((bitvector).bitlength/8) + (((bitvector).bitlength%8) ? 1 : 0)) \
: (bitvector).bytelength)

#define ucdb_GetBitVectorLengthBits(bitvector) \
((bitvector).bitlength >= 0 ? \

(bitvector).bitlength \
: (bitvector).bytelength * 8)

UCDB API Functions
Test Traceability

UCDB API Reference, v10.1 189

ucdb_AssocCoverTest
int ucdb_AssocCoverTest(
 ucdbT db,
 ucdbTestT testdata,
 ucdbScopeT scope,
 int coverindex);

Associates a scope or coveritem with the given test data record. This may be done for any
purpose, but is most logically done to indicate that the given test incremented or covered the
bin; in-memory mode only. Returns 0 if successful, -1 for failure (e.g., coverindex out-of-
bounds.)

ucdb_NextCoverTest
ucdbTestT ucdb_NextCoverTest(
 ucdbT db,
 ucdbScopeT scope,
 int coverindex,
 ucdbTestT test);

In-memory mode only. Gets the next test record associated with the given scope or coveritem.
Returns the first record with NULL as input, or returns NULL when list is exhausted.

ucdb_GetCoverTestMask
int ucdb_GetCoverTestMask(
 ucdbT db,
 ucdbScopeT scope,
 int coverindex,
 ucdbBitVectorT* mask);

db Database.

testdata Test data record.

scope Scope.

coverindex Index of coveritem. If -1, associate scope.

db Database.

scope Scope.

coverindex Index of coveritem. If -1, scope only.

test Test.

db Database.

scope Scope.

coverindex Index of coveritem. If -1, scope only.

mask Database bit vector.

UCDB API Reference, v10.1190

UCDB API Functions
Test Traceability

Gets a bit vector whose bits correspond to the associated test data records in the database. First
bit (mask.bitvector[0]&0x01) corresponds to first test retrieved by ucdb_NextTest(), subsequent
bits correspond in order to subsequent test data records. If tests are saved in an array, this
allows quick retrieval of all associated tests in a single call. Returns 0 if successful, or -1 if
error. mask.bitvector == NULL if none, lengths == 0.

This function always sets both bitlength and bytelength on the bitvector. Note: bitvector storage
is not to be de-allocated by the user.

ucdb_SetCoverTestMask
int ucdb_SetCoverTestMask(
 ucdbT db,
 ucdbScopeT scope,
 int coverindex,
 ucdbBitVectorT* mask);

Writes a bit vector whose bits correspond to the associated test data records in the database.
This is for write-streaming versions of the API and is not as foolproof as
ucdb_AssocCoverTest(). See details for read function above. Returns 0 if successful, or -1 if
error.

When initializing a mask, be careful with the rules for setting bitlength and bytelength, (see
above). Note: bitvector storage is copied by this routine.

ucdb_OrCoverTestMask
int ucdb_OrCoverTestMask(
 ucdbT db,
 ucdbBitVectorT* mask,
 ucdbTestT test);

ORs the required bit for the given test data record. Returns 0 if successful, non-zero if error.

db Database.

scope Scope.

coverindex Index of coveritem. If -1, scope only.

mask Database bit vector.

db Database.

mask Database bit vector.

test Test.

UCDB API Reference, v10.1 191

Appendix A
UCDB Organization

A UCDB file is organized into two sections:

• Test section.

• Coverage section.

Test Section
The test section of a UC database contains information about the test or set of tests that were
used to generate the coverage data. If the file was created by merging multiple databases, the
database contains multiple test records. When creating a database, first define information about
the test from which coverage data is acquired (see “ucdb_AddTest” on page 107). In addition to
a fixed list of fields (Table A-1), any of which may be NULL or unused, there are user-defined
attributes.

Table A-1. Fields of a Test Record

Field Value Description

testname string Name of the coverage test.

simtime double Simulation time of completion of the test.

simtime_units string Units for simulation time: "fs", "ps", "ns", "us", "ms", "sec",
"min", "hr".

realtime double CPU time for completion of the test.

seed string Randomization seed for the test. (Same as the seed value
provided by the "-sv_seed" vsim option.)

command string Test script arguments. Used to capture "knob settings" for
parameterizable tests, as well as the name of the test script.

date string Time file was saved. For example, this might be a string like
"20060105160030", which represents 4:00:30 PM January 5,
2006 (output of strftime with the format
"%Y%m%d%H%M%S").

simargs string Simulator command line arguments.

userid string User ID of user who ran the test.

compulsory boolean Whether (1) or not (0) this test should be considered
compulsory (i.e., a “must-run" test.

UCDB API Reference, v10.1192

UCDB Organization
Test Section

Test records are a subset of history nodes, which have the attributes shown in Table A-2

comment string String (description) saved by the user associated with the test

test_status int Status of test: fatal error ($fatal was called), error ($error was
called), warning ($warning was called) or OK.

filename string Name of the original file, to which the test was first written.

Table A-2. Attributes of a History Node

Attribute Value Description

filename string Pathname of the merged file
(UCDB_HISTORYNODE_MERGE), test file
(UCDB_HISTORYNODE_TEST), or testplan file
(UCDB_HISTORYNODE_TESTPLAN).

cmdline string Command line used to create resulting UCDB file associated
with filename.

runcwd string Working directory where cmdline was executed.

cputime double (Optional) CPU time for the execution of cmdline.

histcomment string (Optional) String used as a general-purpose comment.

path string (UCDB_HISTORYNODE_TESTPLAN only) Testplan path.

xmlsource string (UCDB_HISTORYNODE_TESTPLAN only) XML file
pathname.

signature string (UCDB_HISTORYNODE_TESTPLAN only, optional)
Source-based signature used to determine if the xmlsource
file is stale.

numtests integer (UCDB_HISTORYNODE_MERGE only) Number of tests
merged.

Table A-1. Fields of a Test Record

Field Value Description

UCDB Organization
Coverage Section

UCDB API Reference, v10.1 193

Coverage Section
The coverage section of a UC database contains the coverage data, organized in a hierarchy of
scopes related to the design, testbench, and test plan.

Scope Nodes
Coverage data in the database form a tree of nodes, called scopes, generally corresponding to
the design hierarchy. All nodes except the root node have a pointer to their parent. If the design
hierarchy is not relevant to coverage, it need not be represented in the UCDB.

Nodes can have children: other scope nodes or coverage items. Design units (for example,
Verilog modules or VHDL architectures) also are represented as scopes, because sometimes
coverage for a design unit is often represented as a union of the coverage of all instances of the
design unit. Typically, only code coverage is represented under the design unit. Note that a
design unit with a single instance a higher-level design are not stored (only the instance is
stored).

Scope nodes can represent:

• Design hierarchy: instances of modules, function scope, packages, and so on.

• Hierarchy for coverage counts. For example:

• Scopes to contain different counts for expression rows in expression coverage.

• Scopes to represent SystemVerilog covergroups.

If there is no coverage hierarchy (e.g., with statement coverage) none is used.

• Test plan items.

These are optional, but are required for some use models of test traceability analysis. In
particular, if you want the UCDB to represent associations between test plan items and
coverage items using built-in "tags" (see “Tags” on page 173), then a test plan item
scope should exist in the database.

Coveritems
Coveritems (coverage items) are always children of parent scopes and each coverage item is
only accessible through its parent scope. This property of a UCDB allows optimizations related
to efficiently storing a sets of coverage items that always lie in certain scopes.

A coveritem is a single count or vector of bits, generally used to compute coverage, represented
in the database. In some coverage models (for example, SystemVerilog covergroups)
coveritems these represent "bins"—the UCDB architecture is expanded to represent more types
of coverage data.

UCDB API Reference, v10.1194

UCDB Organization
Coverage Section

A coveritem is only accessed through a handle to its parent scope and an index uniquely
identifying it within the scope. The user can query a scope for how many coveritems it contains.

Nesting Rules
The UCDB does some light enforcement of HDL nesting rules, but strictly enforces nesting
rules for coverage scopes, coveritems and testplan scopes. The "covergroup" scopes are for
generic use. For clarity, different types of coverage (assertion, statement, FSM, and so on) are
given separate scopes, although the UCDB coverage hierarchy could have been built using only
"covergroup" scopes only (COVERGROUP, COVERINSTANCE, COVERPOINT, and
CROSS).

Table A-3 shows the netlisting rules enforced by the UCDB.

Table A-3. Nesting Rules Enforced by UCDB

Hierarchical
Object Rules

HDL SCOPE Can contain any of: HDL SCOPE, COVER SCOPE and
STANDALONE COVERITEM.

Is one of the following scope types: UCDB_INSTANCE,
UCDB_PACKAGE, UCDB_PROGRAM, UCDB_PACKAGE,
UCDB_INTERFACE, UCDB_PROCESS, UCDB_GENERATE,
UCDB_TASK, UCDB_FUNCTION, UCDB_FORKJOIN,
UCDB_BLOCK, UCDB_CLASS, or UCDB_GENERIC

UCDB_INSTANCE Contains a "DU" (design unit) or a "type" pointer to one of:
UCDB_DU_MODULE or UCDB_DU_ARCH.

UCDB_PACKAGE Contains a "DU" (design unit) or a "type" pointer to a
UCDB_DU_PACKAGE.

UCDB_PROGRAM Contains a "DU" (design unit) or a "type" pointer to a
UCDB_DU_PROGRAM.

UCDB_INTERFACE Contains a "DU" (design unit) or a "type" pointer to a
UCDB_DU_INTERFACE.

DU SCOPE (i.e.,
UCDB_DU_*)

Can contain: code coverage coveritems.

COVER SCOPE Is one of the following scope types: UCDB_COVERGROUP,
UCDB_COVERINSTANCE, UCDB_COVERPOINT,
UCDB_CROSS, UCDB_BRANCH, UCDB_EXPR, UCDB_COND,
UCDB_TOGGLE, UCDB_FSM, UCDB_ASSERT, UCDB_COVER,
UCDB_BLOCK, UCDB_CVGBINSCOPE,
UCDB_ILLEGALBINSCOPE, UCDB_IGNOREBINSCOPE,
UCDB_CROSSPRODUCT, UCDB_CROSSPRODUCT_ITEM.

UCDB Organization
Coverage Section

UCDB API Reference, v10.1 195

STANDALONE
COVERITEM

Is one of the following coveritem types: UCDB_STMTBIN,
UCDB_USERBIN, UCDB_COUNT.

UCDB_TESTPLAN Can contain only a UCDB_TESTPLAN scope.

UCDB_COVERGROUP Can contain only the following scope types:
UCDB_COVERINSTANCE, UCDB_COVERPOINT,
UCDB_CROSS.

UCDB_CROSS Must refer to at least two scopes of type UCDB_COVERPOINT,
which must have the same parent as the UCDB_CROSS.
UCDB_CROSS scope can contain only:
• UCDB_CVGBINSCOPE scopes
• UCDB_ILLEGALBINSCOPE scopes
• UCDB_IGNOREBINSCOPE scopes
• UCDB_CVGBIN coveritems
• UCDB_ILLEGALBIN coveritems
• UCDB_IGNOREBIN coveritems
• UCDB_DEFAULT coveritems

UCDB_COVERPOINT UCDB_COVERPOINT scope can contain only:
• UCDB_CVGBINSCOPE scopes
• UCDB_ILLEGALBINSCOPE scopes
• UCDB_IGNOREBINSCOPE scopes
• UCDB_CVGBIN coveritems
• UCDB_ILLEGALBIN coveritems
• UCDB_IGNOREBIN coveritems
• UCDB_DEFAULT coveritems (can be ORed with each of the

other bin types to indicate a default bin of the given type).

UCDB_CVGBINSCOPE UCDB_CVGBINSCOPE scope can contain only:
• UCDB_CVGBIN coveritems
• UCDB_ILLEGALBIN coveritems
• UCDB_IGNOREBIN coveritems
• UCDB_DEFAULT coveritems

UCDB_
ILLEGALBINSCOPE

UCDB_UCDB_ILLEGALBINSCOPE scope can contain only:
• UCDB_CVGBIN coveritems
• UCDB_ILLEGALBIN coveritems
• UCDB_IGNOREBIN coveritems
• UCDB_DEFAULT coveritems

UCDB_
IGNOREBINSCOPE

UCDB_IGNOREBINSCOPE scope can contain only:
• UCDB_CVGBIN coveritems
• UCDB_ILLEGALBIN coveritems
• UCDB_IGNOREBIN coveritems
• UCDB_DEFAULT coveritems

Table A-3. Nesting Rules Enforced by UCDB

Hierarchical
Object Rules

UCDB API Reference, v10.1196

UCDB Organization
Coverage Section

UCDB_COVERINSTANCE Can contain the only the following scope types:
UCDB_COVERPOINT and UCDB_CROSS.

UCDB_ASSERT Must contain UCDB_ASSERTBIN and can contain any of the
following coveritems: UCDB_VACUOUSBIN,
UCDB_DISABLEDBIN, UCDB_ATTEMPTSBIN,
UCDB_ACTIVEBIN, UCDB_PEAKACTIVEBIN or
UCDB_PASSBIN. No coveritem type can be represented more than
once. Note: UCDB_ASSERTBIN indicates assertion failures.
UCDB_PASSBIN contributes toward aggregated coverage.

UCDB_ASSERTBIN Contains assert-fail count or boolean. Can be a direct descendant of
the enclosing instance scope.

UCDB_COVER Must contain exactly one UCDB_COVERBIN (indicating non-
vacuous coverage passes or successes).

UCDB_COVERBIN Contains non-vacuous cover pass count or boolean. Can be a direct
descendant of the enclosing instance scope.

UCDB_STMTBIN Can appear in any HDL scope.

UCDB_BRANCH Must contain only UCDB_BRANCHBIN coveritems.

UCDB_EXPR Used in a 3-level hierarchy:
• UCDB_EXPR top node contains name and source info.
• UCDB_EXPR second-level nodes are named "FEC" and "UDP"

for different representations of expression coverage
UCDB_EXPRBIN coveritems.

The coveritem name is a description of the expression truth table row.
Can appear in any HDL scope or another UCDB_EXPR scope. Must
contain only UCDB_EXPR scopes and UCDB_EXPR coveritems.

UCDB_COND Used in a 3-level hierarchy:
• UCDB_COND top node contains name and source info.
• UCDB_COND second-level nodes are named "FEC" and "UDP"

for different representations of condition coverage
UCDB_CONDBIN coveritems.

The coveritem name is a description of the expression truth table row.
Can appear in any HDL scope or another UCDB_COND scope. Must
contain only UCDB_COND scopes and UCDB_COND coveritems.

UCDB_TOGGLE Must contain only UCDB_TOGGLEBIN coveritems (coveritem
name is the name of toggle transition). For extended toggles:
coveritems 0 and 1 are the low->high and high->low transitions, and
coveritems 2-5 are the Z transitions. Toggle nodes, because of their
abundance, are lighter-weight structures than all other types in the
database, lacking some data that other scopes have.

Table A-3. Nesting Rules Enforced by UCDB

Hierarchical
Object Rules

UCDB Organization
Coverage Section

UCDB API Reference, v10.1 197

Attributes
UCDB attributes provide a faster access mechanism for some frequently accessed attributes,
compared to user-defined attributes. Table A-3 shows the UCDB predefined attributes.

UCDB_FSM Must contain the two subscopes UCDB_FSM_STATES and
UCDB_FSM_TRANS.

UCDB_FSM_STATES Must contain UCDB_FSMBIN coveritems.

UCDB_FSM_TRANS Must contain UCDB_FSMBIN coveritems.

UCDB_BLOCK Can appear in any HDL scope or another UCDB_BLOCK scope.
Must contain only UCDB_BLOCK scopes, UCDB_BLOCKBIN
coveritems and UCDB_STMTBIN.

UCDB_HIERARCHY Light-weight hierarchy node that can have any other scope nodes as
parents or children. Supports the user-defined attribute mechanism but
not other attributes (such as design unit, source references, and so on).
Useful for representing hierarchies that can be merged. The following
functions cannot use the UCDB_HIERARCHY scope: ucdb_*File*,
ucdb_InstanceSetDU, ucdb_*ScopeFlags, ucdb_*ScopeSourceType,
ucdb_*ScopeSourceInfo, ucdb_*ScopeWeight, ucdb_*ScopeGoal,
ucdb_GetInstanceDU*, ucdb_*Tag*.

Table A-4. UCDB Defined Attributes

Attribute Type Macro Definition

Test Attributes

SIMTIME string UCDBKEY_SIMTIME Simulation time.

TIMEUNIT string UCDBKEY_TIMEUNIT Time unit for SIMTIME.

CPUTIME string UCDBKEY_CPUTIME CPU time.

DATE string UCDBKEY_DATE Time at which the UCDB save was
initiated.

VSIMARGS string UCDBKEY_SIMARGS Simulator command line arguments.

USERNAME string UCDBKEY_USERNAME Name of the user who ran the test.

TESTSTATUS ucdbTest-
StatusT

UCDBKEY_
TESTSTATUS

Status of the simulation run.

TESTNAME string UCDBKEY_TESTNAME Name of the test.

ORIGFILE-
NAME

string UCDBKEY_FILENAME Database filename that the test was
originally written to.

Table A-3. Nesting Rules Enforced by UCDB

Hierarchical
Object Rules

UCDB API Reference, v10.1198

UCDB Organization
Coverage Section

SEED string UCDBKEY_SEED 0 or the seed provided by the -sv_seed
vsim option.

TESTCMD string UCDBKEY_TESTCMD String provided by the user intended for
test arguments.

TESTCOMMENT string UCDBKEY_
TESTCOMMENT

General-purpose comment provided with
the test.

COMPULSORY int (0|1) UCDBKEY_
COMPULSORY

Whether (1) or not (0) the test is
compulsory.

RUNCWD string UCDBKEY_RUNCWD When this attribute exists, it holds the
working directory of the simulation from
which the UCDB was saved.

Code Coverage Attributes

#SINDEX# int (>0) UCDBKEY_
STATEMENT_INDEX

Statement number of a statement or
expression in a design unit, starting at 1.

#BCOUNT# int UCDBKEY_BRANCH_
COUNT

Total count of a branch scope (sum of
true counts of individual branch cover
items plus the count of the else branch).

#BTYPE# int (0|1) UCDBKEY_BRANCH_
ISCASE

Branch type: if-else (0) or case (1).

#BHASELSE# int (0|1) UCDBKEY_BRANCH_
HASELSE

Whether (1) or not (0) branch has an else
clause.

#EHEADER# string UCDBKEY_EXPR_
HEADERS

Header strings for each column of the
table separated by ’;’. Used on
expression or condition scopes.

#FSMID# string UCDBKEY_FSM_ID Symbolic name for an FSM state, usually
derived from the state variable. Used
with FSM coverages

#FSTATEVAL# int UCDBKEY_FSM_-
STATEVAL

Value of an FSM state. Used on FSM
coverage state coveritems.

SystemVerilog covergroups Attributes

BINRHS string UCDBKEY_
BINRHSVALUE

RHS value of a bin, a string that
describes the sampled values that
potentially could cause the particular bin
to increment. Used on SV coverpoint
coveritems (bins).

Table A-4. UCDB Defined Attributes

Attribute Type Macro Definition

UCDB Organization
Coverage Section

UCDB API Reference, v10.1 199

#GOAL# int UCDBKEY_GOAL The option.goal or type_option.goal of
the object. Used on SV covergroup,
coverpoint or cross scopes.

#GOAL# float UCDBKEY_GOAL Arbitrary goal that can have an effect (as
for TESTPLAN scopes) in GUIs or
reports. Used on other types of scopes.

ATLEAST int UCDBKEY_ATLEAST The option.at_least or
type_option.at_least of the object. Used
on SV covergroup, coverpoint or cross
scopes.

COMMENT string UCDBKEY_COMMENT The option.comment or
type_option.comment of the object. Used
on SV covergroup, coverpoint or cross
scopes.

AUTOBINMAX int UCDBKEY_
AUTOBINMAX

The option.auto_bin_max of the object.
Used on SV covergroup or coverpoint
scopes.

DETECT-
OVERLAP

int (0|1) UCDBKEY_
DETECTOVERLAP

The option.detect_overlap of the object.
Used on SV covergroup or coverpoint
scopes.

PRINT-
MISSING

int UCDBKEY_NUMPRINT
MISSING

The option.cross_num_print_missing of
the object. Used on SV covergroup or
cross scopes.

STROBE int (0|1) UCDBKEY_STROBE The type_option.strobe of the object.
Used on SV covergroup scopes.

#CROSSERR# int (0|1) UCDBKEY_-
CROSSERROR

When 1, indicates a cross type coverage
calculation not supported by the
simulator (i.e., when crossed coverpoints
are parameterized with different numbers
of bins in different covergroup
instances). Used on SV covergroup
scopes.

NUMSAMPLED int UCDBKEY_
NUMSAMPLED

Optional sample count for covergroups

#SAMPLES# UCDBKEY_SAMPLES Array of sample counts, for level 2
merge

Cover and Assertion Memory Profile Attributes

MEM_ASSERT UCDBKEY_MEM_
ASRTCURR

Current memory.

Table A-4. UCDB Defined Attributes

Attribute Type Macro Definition

UCDB API Reference, v10.1200

UCDB Organization
Coverage Section

MEM_ASSERT UCDBKEY_MEM_
ASRTPEAK

Peak memory.

CMLTTHREADS
_ASR

UCDBKEY_
CMLTTHREADS_ASRT

Cumulative threads.

TIME_
PEAKMEM

UCDBKEY_MEM_
PEAKTIME

Time of peak.

Covergroup Memory Profile Attributes

PERSISTMEM_
CVG

UCDBKEY_MEM_
CVGPERSIST

Persistent memory.

TRANSMEM_
CVG

UCDBKEY_MEM_
CVGTRANS

Transient memory.

TRANSPEAK_
CVG

UCDBKEY_MEM_
CVGTRANS_PEAK

Transient peak.

UCDBKEY_
MEM_
PEAKTIME

UCDBKEY_MEM_
CVGTRANS_
PEAKTIME

Time of peak.

Assertion Directive Attributes

#ACTION# int
(0|1|2)

UCDBKEY_ASSERT_
ACTION

Simulator action performed when the
assertion fails: continue (0), break (1) or
exit (2). Used on assertion objects.

PROOFRADIUS int UCDBKEY_ASSERT_
PROOFRADIUS

Proof radius from formal analysis of the
assertion.

SEVERITY UCDBKEY_ASSERT_
SEVERITY

Severity metric for the assertion.

General Attributes

binary:
bit vector

UCDBKEY_
TESTVECTOR

Indicates which tests caused the object to
be covered. Used on bins and
UCDB_TOGGLE coverage scope.

MERGED UCDBKEY_
TESTDATA_MERGED

TAGCMD string UCDBKEY_TAGCMD Semicolon-separated arguments to
"coverage tag" command. This supports
implicit tagging during merge, so as to
associate test plans with coverage for test
traceability. Used for
UCDB_TESTPLAN scopes.

#SECTION# string UCDBKEY_SECTION Section number within test plan. Used
for UCDB_TESTPLAN scopes.

#DUSIG-
NATURE#

string UCDBKEY_-
DUSIGNATURE

MD5 signature string of a source design
unit.

Table A-4. UCDB Defined Attributes

Attribute Type Macro Definition

UCDB Organization
Coverage Section

UCDB API Reference, v10.1 201

#COV# float UCDBKEY_COV Used by coverage analysis to cache a
computed total coverage number. Used
for any scope.

MERGELEVEL int (1|2) UCDBKEY_
MERGELEVEL

Used with merge files.
1. Default merge, test data is merged,

the union of bins are merged, with
integer counts incremented and
vector counts ORed.

2. Tests are associated with most bins as
a bit vector indicating what test
caused them to be covered. For
vector bins, this means non-zero. For
UCDB_COVER scopes, this means
cover count > at_least; for
UCDB_ASSERT scopes, this means
fail count > 0; for UCDB_TOGGLE
scopes, this means all bins covered
(>0) except for
UCDB_TOGGLE_ENUM types,
where individual bins >0. Also:
NUMSAMPLED attributes for
UCDB_COVERGROUP and
UCDB_COVERINSTANCE scopes
are combined into a binary attribute
called "SAMPLED" that is an array
of as many integers as there are tests.

Table A-5. UCDB Defined Objects

Attribute Macro Definition

Some UCDB bin names are predefined to identify which count value is for a particular
coveritem. These names are the names of coveritems, where applicable.

true_branch UCDBBIN_BRANCH_T Branch true bins.

false_branch UCDBBIN_BRANCH_F Branch true bins.

else_branch UCDBBIN_BRANCH_E else count

all_false_branch UCDBBIN_BRANCH_AF All false count when there is no else
part.

toggle_low UCDBBIN_TOGGLE_L 2-state toggle bins

toggle_high UCDBBIN_TOGGLE_H 2-state toggle bins

toggle_h_l UCDBBIN_TOGGLE_EXT_H_L 3-state (extended) toggles

Table A-4. UCDB Defined Attributes

Attribute Type Macro Definition

UCDB API Reference, v10.1202

UCDB Organization
Coverage Section

Generic UCDB Handle
#ifndef DEFINE_UCDBT
#define DEFINE_UCDBT
typedef void* ucdbT; /* generic handle to a UCDB */
#endif

Size-critical Types
#if defined (_MSC_VER)
typedef unsigned __int64 uint64_t;
typedef signed __int64 int64_t;
typedef unsigned __int32 uint32_t;
#elif defined(__MINGW32__)
#include <stdint.h>
#elif defined(__linux)
#include <inttypes.h>
#else

toggle_l_h UCDBBIN_TOGGLE_EXT_L_H 3-state (extended) toggles

toggle_z_l UCDBBIN_TOGGLE_EXT_Z_L 3-state (extended) toggles

toggle_l_z UCDBBIN_TOGGLE_EXT_L_Z 3-state (extended) toggles

toggle_h_z UCDBBIN_TOGGLE_EXT_H_Z 3-state (extended) toggles

toggle_z_h UCDBBIN_TOGGLE_EXT_Z_H 3-state (extended) toggles

unknown UCDBBIN_EXPRCOND_UNKNOWN Unknown value row.

Some of the UCDB scope names are hard coded to distinguish between different natures
of scopes.

FEC UCDBSCOPE_FEC Name of FEC scope.

UDP UCDBSCOPE_UDP Name of UDP scope.

UCDB select flags used to specify different objects types in various routines, such as
making clones, printing objects, and so on.

0x0001 UCDB_SELECT_TAGS Select scope tags.

0x0002 UCDB_SELECT_ATTRS Select user defined attributes.

0x0004 UCDB_SELECT_COVERS Select covers (does not work with
copy in streaming modes).

0x0008 UCDB_SELECT_FILETABS Select file tables.

0x0010 UCDB_SELECT_SOURCEINFO Select source information (print
only).

0xffffffff UCDB_SELECT_ALL Select all flags above.

Table A-5. UCDB Defined Objects

Attribute Macro Definition

UCDB Organization
Coverage Section

UCDB API Reference, v10.1 203

#include <sys/types.h>
#if defined(__STRICT_ANSI__)
#ifdef _LP64
typedef long int64_t;
typedef unsigned long uint64_t;
#else
typedef long long int64_t;
typedef unsigned long long uint64_t;
#endif
#endif
#endif
#ifdef WIN32
#define INT64_LITERAL(val) ((int64_t)val)
#define INT64_ZERO ((int64_t)0)
#define INT64_ONE ((int64_t)1)
#define INT64_NEG1 ((int64_t)-1)
#else
#define INT64_LITERAL(val) (val##LL)
#define INT64_ZERO (0LL)
#define INT64_ONE (1LL)
#define INT64_NEG1 (-1LL)
#endif

typedef uint64_t ucdbCoverTypeT; // typedef for one of these
typedef uint64_t ucdbCoverMaskTypeT; // typedef for a set of these.

UCDB API Reference, v10.1204

UCDB Organization
Coverage Section

Manual Title, V0.0_0 205

Appendix B: UCDB Diff BNF

any_diff_line :== diff_line | diff_comment | summary_line

diff_comment :== -- comment_text --

summary_line :== SS tbd_format

diff_line :== diff_file_location diff_text

diff_file_location :== <> | << | >>

diff_text :== ucdb_structural_type primary_key diff_aspect [diff_details]

ucdb_structural_type :== Scope | Bin | Historynode | UCDBRoot

primary_key :== scope_key | bin_key | historynode_key

scope_key :== ucdb_scope_type_string "ucdb_hiername"

bin_key :== ucdb_bin_type_string "ucdb_hiername" "coveritemname"

ucdb_scope_type_string :== Branch | Toggle | Covergroup | ...

ucdb_bin_type_string :== BranchBin | ToggleBin | StatementBin | ...

historynode_key :== "historynode_logical_name"

diff_aspect :== Structural | Attribute | Flag | Flagfield | Tag | DU | Source | Count | Goal
| Weight | Limit | Bitlen | Kind | Sourceinfo | Version

diff_value :== attribute_diff_value | integer integer | float float | first_value second_value

attribute_diff_value :==
"attribute_name" attribute_type [attribute_type] "attribute_value" ["attribute_value"]

attribute_type :== Int | Float | Double | String | Memblk | Long | Handle | Array

attribute_value :== numeric_value | string | memblk_representation

memblk_representation :== num_bytesbytes:MEMBLK | num_bytesbytes:hex_byte_list

Manual Title, V0.0_0206

: UCDB Diff BNF

historynode_type_string :== Test | Merge | Testplan

num_bytes :== integer

hex_byte_list :== xx[_xx]

x := hex_digit

207

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

UCDB API Reference, v10.1

Index

— A —
Access modes, 56
Adding a covergroup, 81
Adding a design unit, 77
Adding module instances, 78
Adding new data, 76
Adding statements, 79
Adding toggles, 80
All counts, 39
Assert formal mode type, 170, 178
Assertion data, 38
Assertions

all counts, 39
Attribute names, 69
Attribute type, 121
Attribute value type, 121
Attributes, 197

history nodes, 191
user-defined, 67

— B —
Bins

cross, 45
Branch coverage, 20

Verilog if-else, 21
VHDL if-elsif-else, 22

— C —
Callback reason type, 117
Callback return type, 117
Case statements, 24
Code coverage, 18
condition coverage, 25
Cover types, 158
Coverage

conditions, 25
expressions, 25
FSMs, 28
increment, 63
toggles, 29

Coverage structure, 150
Coverage summary structure, 151
Covergroup coverage

SystemVerilog, 42
Covergroups

adding, 81
cross, 42
in classes, 49
in packages, 47

Coveritem data type, 160
Coveritem types, 159
Coveritems, 14, 193
coveritems, 14
Covers

PSL, 37
SVA, 37

Creating a UCDB, 85
Cross bins, 45
CROSSSBINIDX, 45
CROSSUBINIDX, 45

— D —
Data models, 18
Defined objects, 201
Design unit scopes, 15
Design units, 51

adding, 77
Dumping file tables, 75

— E —
Enum toggles, 31
Error handler, 104
Error handling, 57
Error type, 104
Expression coverage, 25
Extended register toggles, 32

— F —
Fail counts

Assertions, 38
fail counts, 38

Index

208 UCDB API Reference, v10.1

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

FEC-style coverage, 27
File handle, 99
File handles

creating from a file name, 72
creating from a file table, 73

File representation, 72
File tables

dumping, 75
Find objects, 62
Flags for coveritem data, 159
Flags type, 127
FLI, 92
Formal test, 177
FSM coverage, 28
Functions

ucdb_AddHistoryNodeChild, 111
ucdb_AddObjTag, 174
ucdb_AddPotentialTest, 108
ucdb_AddTest, 107
ucdb_APIVersion, 120
ucdb_AssocCoverTest, 189
ucdb_AttrAdd, 122
ucdb_AttrArraySize, 124
ucdb_AttrGet, 123
ucdb_AttrGetNext, 122
ucdb_AttrRemove, 123
ucdb_BeginTaggedObj, 176
ucdb_CalcCoverageSummary, 155
ucdb_CalculateHistorySignature, 114
ucdb_CallBack, 145
ucdb_CloneCover, 161
ucdb_CloneFileHandle, 100
ucdb_CloneHistoryNode, 113
ucdb_CloneScope, 134
ucdb_CloneTest, 109
ucdb_Close, 119
ucdb_ComposeDUName, 129
ucdb_CreateCross, 132
ucdb_CreateCrossByName, 132
ucdb_CreateFileHandleByNum, 99
ucdb_CreateGroupScope, 171
ucdb_CreateHistoryNode, 110
ucdb_CreateInstance, 130
ucdb_CreateInstanceByName, 131
ucdb_CreateNextCover, 160

ucdb_CreateNullFileHandle, 100
ucdb_CreateScope, 129
ucdb_CreateSrcFileHandleByName, 99
ucdb_CreateToggle, 168
ucdb_CreateTransition, 133
ucdb_CreateTransitionByName, 133
ucdb_DBVersion, 119
ucdb_ExpandOrderedGroupRangeList,

172
ucdb_FileInfoToString, 103
ucdb_Filename, 120
ucdb_FileTableName, 103
ucdb_FileTableRemove, 103
ucdb_FileTableSize, 102
ucdb_GetBCoverInfo, 169
ucdb_GetCoverage, 154
ucdb_GetCoverageSummary, 153
ucdb_GetCoverData, 164
ucdb_GetCoverFlag, 162, 163
ucdb_GetCoverTestMask, 189
ucdb_GetCoverType, 163
ucdb_GetECCoverHeader, 166
ucdb_GetECCoverNumHeaders, 166
ucdb_GetFileName, 101
ucdb_GetFileNum, 101
ucdb_GetFileTableScope, 102
ucdb_GetGoal, 152
ucdb_GetGroupInfo, 171
ucdb_GetHistoryKind, 114
ucdb_GetHistoryNodeParent, 113
ucdb_GetInstanceDU, 140
ucdb_GetInstanceDUName, 140
ucdb_GetIthCrossedCvp, 141
ucdb_GetIthCrossedCvpName, 141
ucdb_GetNextHistoryNodeChild, 113
ucdb_GetNumCrossedCvps, 141
ucdb_GetObjIthTag, 175
ucdb_GetObjNumTags, 175
ucdb_GetObjType, 174
ucdb_GetOrderedGroupElementByIndex,

172
ucdb_GetPathSeparator, 120
ucdb_GetScopeFlag, 137
ucdb_GetScopeFlags, 137
ucdb_GetScopeGoal, 139

209UCDB API Reference, v10.1

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

ucdb_GetScopeHierName, 140
ucdb_GetScopeName, 136
ucdb_GetScopeNumCovers, 166
ucdb_GetScopeSourceInfo, 138
ucdb_GetScopeSourceType, 136
ucdb_GetScopeType, 136
ucdb_GetScopeWeight, 139
ucdb_GetStatistics, 154
ucdb_GetTestData, 108
ucdb_GetTestName, 109
ucdb_GetToggleCovered, 169
ucdb_GetToggleInfo, 169
ucdb_GetTotalCoverage, 156
ucdb_GetTransitionItem, 142
ucdb_GetTransitionItemName, 142
ucdb_GetWeightPerType, 153
ucdb_HistoryRoot, 111
ucdb_IncrementCover, 162
ucdb_InstanceSetDU, 134
ucdb_IsModified, 104
ucdb_IsValidFileHandle, 100
ucdb_MatchCallBack, 148
ucdb_MatchCoverInScope, 162
ucdb_MatchDU, 143
ucdb_MatchTests, 147
ucdb_ModifiedSinceSim, 105
ucdb_NextCoverInDB, 167
ucdb_NextCoverInScope, 167
ucdb_NextCoverTest, 189
ucdb_NextDU, 143
ucdb_NextHistoryLookup, 112
ucdb_NextHistoryNode, 111
ucdb_NextHistoryRoot, 112
ucdb_NextInstOfDU, 144
ucdb_NextPackage, 142
ucdb_NextScopeInDB, 144
ucdb_NextSubScope, 143
ucdb_NextTag, 176
ucdb_NextTaggedObj, 176
ucdb_NextTest, 109
ucdb_NumTests, 110
ucdb_ObjKind, 174
ucdb_Open, 117
ucdb_OpenReadStream, 118
ucdb_OpenWriteStream, 118

ucdb_OrCoverTestMask, 190
ucdb_ParseDUName, 130
ucdb_PathCallBack, 145
ucdb_RegisterErrorHandler, 104
ucdb_RemoveCover, 161
ucdb_RemoveObjTag, 175
ucdb_RemoveScope, 135
ucdb_RemoveTest, 110
ucdb_ScopeGetTop, 135
ucdb_ScopeIsUnderCoverInstance, 145
ucdb_ScopeIsUnderDU, 144
ucdb_ScopeParent, 135
ucdb_SetCoverCount, 164
ucdb_SetCoverData, 164
ucdb_SetCoverFlag, 163
ucdb_SetCoverGoal, 165
ucdb_SetCoverLimit, 165
ucdb_SetCoverTestMask, 190
ucdb_SetCoverWeight, 165
ucdb_SetGoal, 152
ucdb_SetObjTags, 175
ucdb_SetPathSeparator, 120
ucdb_SetScopeFileHandle, 138
ucdb_SetScopeFlag, 137
ucdb_SetScopeFlags, 137
ucdb_SetScopeGoal, 140
ucdb_SetScopeName, 136
ucdb_SetScopeSourceInfo, 138
ucdb_SetScopeWeight, 139
ucdb_SetWeightPerType, 153
ucdb_SrcFileTableAppend, 102
ucdb_SuppressModified, 105
ucdb_Write, 119
ucdb_WriteStream, 118
ucdb_WriteStreamScope, 118

— G —
Generic UCDB handle, 202
Group kind type, 170
Group toggles, 35

— H —
Hierarchical nodes, 14
Hierarchy

design/coverage, 14
History node kind types, 106

210 UCDB API Reference, v10.1

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

History node types, 106
History nodes, 52, 191

— I —
Immediate assert, 41
Increment coverage, 63
In-memory, 56

— M —
Memory statistics, 55
Message severity type, 104
ModelSim, 92
Module instances

adding, 78

— N —
Nesting rules, 194
Net toggles, 33

— O —
Object handle, 98
Object mask type, 173

— P —
Pass/Fail, 41
Predefined attribute names, 69
PSL Covers, 37

— Q —
Questa, 92

compatibility, 96

— R —
Read callback data type, 117
Read coverage data, 58
Read-streaming, 56
Read-streaming mode, 18, 87
Remove data, 65

— S —
Save FLI callback, 92
save-callback, 94
Scope handle, 98
Scope nodes, 193
Scope type, 125
Scope types, 15
Scopes, 14, 193
scopes, 14

Size-critical types, 202
Source information type, 99
Source type, 127
Sparse cross bins, 45
Statement coverage

with generates, 19
Statements

adding, 79
Summary coverage data type, 149
Summary read, 56
SVA Covers, 37
SystemVerilog

covergroup coverage, 42

— T —
Tags, 52, 173

user-defined, 66
Test data records, 52, 84
Test plan hierarchy, 52
Test plans

creating, 69
Test records, 191
Test section, 191
Test status type, 106
Test traceability, 188
Test type, 106
Toggle coverage, 29
Toggles, 168

adding, 80
enums, 31
extended registers, 32
group, 35
nets, 33
VHDL integers, 30

Tool architecture, 92
Traversing a test plan, 70
Traversing UCDB In memory, 57

— U —
UCDB

creating in memory, 85
UDP-style coverage, 27
User-defined attributes, 67
User-defined tags, 66

211UCDB API Reference, v10.1

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

— V —
VHDL integer toggles, 30

— W —
Wildcard matching, 170
Write-streaming, 56
Write-streaming mode, 89

212 UCDB API Reference, v10.1

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

End-User License Agreement
The latest version of the End-User License Agreement is available on-line at:

www.mentor.com/eula

END-USER LICENSE AGREEMENT (“Agreement”)

This is a legal agreement concerning the use of Software (as defined in Section 2) and hardware (collectively
“Products”) between the company acquiring the Products (“Customer”), and the Mentor Graphics entity that
issued the corresponding quotation or, if no quotation was issued, the applicable local Mentor Graphics entity
(“Mentor Graphics”). Except for license agreements related to the subject matter of this license agreement which
are physically signed by Customer and an authorized representative of Mentor Graphics, this Agreement and the
applicable quotation contain the parties' entire understanding relating to the subject matter and supersede all
prior or contemporaneous agreements. If Customer does not agree to these terms and conditions, promptly return
or, in the case of Software received electronically, certify destruction of Software and all accompanying items
within five days after receipt of Software and receive a full refund of any license fee paid.

1. ORDERS, FEES AND PAYMENT.

1.1. To the extent Customer (or if agreed by Mentor Graphics, Customer’s appointed third party buying agent) places and
Mentor Graphics accepts purchase orders pursuant to this Agreement (“Order(s)”), each Order will constitute a contract
between Customer and Mentor Graphics, which shall be governed solely and exclusively by the terms and conditions of this
Agreement, any applicable addenda and the applicable quotation, whether or not these documents are referenced on the
Order. Any additional or conflicting terms and conditions appearing on an Order will not be effective unless agreed in
writing by an authorized representative of Customer and Mentor Graphics.

1.2. Amounts invoiced will be paid, in the currency specified on the applicable invoice, within 30 days from the date of such
invoice. Any past due invoices will be subject to the imposition of interest charges in the amount of one and one-half
percent per month or the applicable legal rate currently in effect, whichever is lower. Prices do not include freight,
insurance, customs duties, taxes or other similar charges, which Mentor Graphics will state separately in the applicable
invoice(s). Unless timely provided with a valid certificate of exemption or other evidence that items are not taxable, Mentor
Graphics will invoice Customer for all applicable taxes including, but not limited to, VAT, GST, sales tax and service tax.
Customer will make all payments free and clear of, and without reduction for, any withholding or other taxes; any such
taxes imposed on payments by Customer hereunder will be Customer’s sole responsibility. If Customer appoints a third
party to place purchase orders and/or make payments on Customer’s behalf, Customer shall be liable for payment under
Orders placed by such third party in the event of default.

1.3. All Products are delivered FCA factory (Incoterms 2000), freight prepaid and invoiced to Customer, except Software
delivered electronically, which shall be deemed delivered when made available to Customer for download. Mentor
Graphics retains a security interest in all Products delivered under this Agreement, to secure payment of the purchase price
of such Products, and Customer agrees to sign any documents that Mentor Graphics determines to be necessary or
convenient for use in filing or perfecting such security interest. Mentor Graphics’ delivery of Software by electronic means
is subject to Customer’s provision of both a primary and an alternate e-mail address.

2. GRANT OF LICENSE. The software installed, downloaded, or otherwise acquired by Customer under this Agreement,
including any updates, modifications, revisions, copies, documentation and design data (“Software”) are copyrighted, trade
secret and confidential information of Mentor Graphics or its licensors, who maintain exclusive title to all Software and retain
all rights not expressly granted by this Agreement. Mentor Graphics grants to Customer, subject to payment of applicable
license fees, a nontransferable, nonexclusive license to use Software solely: (a) in machine-readable, object-code form (except
as provided in Subsection 5.2); (b) for Customer’s internal business purposes; (c) for the term of the license; and (d) on the
computer hardware and at the site authorized by Mentor Graphics. A site is restricted to a one-half mile (800 meter) radius.
Customer may have Software temporarily used by an employee for telecommuting purposes from locations other than a
Customer office, such as the employee's residence, an airport or hotel, provided that such employee's primary place of
employment is the site where the Software is authorized for use. Mentor Graphics’ standard policies and programs, which vary
depending on Software, license fees paid or services purchased, apply to the following: (a) relocation of Software; (b) use of
Software, which may be limited, for example, to execution of a single session by a single user on the authorized hardware or for
a restricted period of time (such limitations may be technically implemented through the use of authorization codes or similar
devices); and (c) support services provided, including eligibility to receive telephone support, updates, modifications, and
revisions. For the avoidance of doubt, if Customer requests any change or enhancement to Software, whether in the course of

 IMPORTANT INFORMATION

USE OF ALL SOFTWARE IS SUBJECT TO LICENSE RESTRICTIONS. CAREFULLY READ THIS
LICENSE AGREEMENT BEFORE USING THE PRODUCTS. USE OF SOFTWARE INDICATES

CUSTOMER’S COMPLETE AND UNCONDITIONAL ACCEPTANCE OF THE TERMS AND
CONDITIONS SET FORTH IN THIS AGREEMENT. ANY ADDITIONAL OR DIFFERENT PURCHASE

ORDER TERMS AND CONDITIONS SHALL NOT APPLY.

http://www.mentor.com/eula

receiving support or consulting services, evaluating Software, performing beta testing or otherwise, any inventions, product
improvements, modifications or developments made by Mentor Graphics (at Mentor Graphics’ sole discretion) will be the
exclusive property of Mentor Graphics.

3. ESC SOFTWARE. If Customer purchases a license to use development or prototyping tools of Mentor Graphics’ Embedded
Software Channel (“ESC”), Mentor Graphics grants to Customer a nontransferable, nonexclusive license to reproduce and
distribute executable files created using ESC compilers, including the ESC run-time libraries distributed with ESC C and C++
compiler Software that are linked into a composite program as an integral part of Customer’s compiled computer program,
provided that Customer distributes these files only in conjunction with Customer’s compiled computer program. Mentor
Graphics does NOT grant Customer any right to duplicate, incorporate or embed copies of Mentor Graphics’ real-time operating
systems or other embedded software products into Customer’s products or applications without first signing or otherwise
agreeing to a separate agreement with Mentor Graphics for such purpose.

4. BETA CODE.

4.1. Portions or all of certain Software may contain code for experimental testing and evaluation (“Beta Code”), which may not
be used without Mentor Graphics’ explicit authorization. Upon Mentor Graphics’ authorization, Mentor Graphics grants to
Customer a temporary, nontransferable, nonexclusive license for experimental use to test and evaluate the Beta Code
without charge for a limited period of time specified by Mentor Graphics. This grant and Customer’s use of the Beta Code
shall not be construed as marketing or offering to sell a license to the Beta Code, which Mentor Graphics may choose not to
release commercially in any form.

4.2. If Mentor Graphics authorizes Customer to use the Beta Code, Customer agrees to evaluate and test the Beta Code under
normal conditions as directed by Mentor Graphics. Customer will contact Mentor Graphics periodically during Customer’s
use of the Beta Code to discuss any malfunctions or suggested improvements. Upon completion of Customer’s evaluation
and testing, Customer will send to Mentor Graphics a written evaluation of the Beta Code, including its strengths,
weaknesses and recommended improvements.

4.3. Customer agrees to maintain Beta Code in confidence and shall restrict access to the Beta Code, including the methods and
concepts utilized therein, solely to those employees and Customer location(s) authorized by Mentor Graphics to perform
beta testing. Customer agrees that any written evaluations and all inventions, product improvements, modifications or
developments that Mentor Graphics conceived or made during or subsequent to this Agreement, including those based
partly or wholly on Customer’s feedback, will be the exclusive property of Mentor Graphics. Mentor Graphics will have
exclusive rights, title and interest in all such property. The provisions of this Subsection 4.3 shall survive termination of this
Agreement.

5. RESTRICTIONS ON USE.

5.1. Customer may copy Software only as reasonably necessary to support the authorized use. Each copy must include all
notices and legends embedded in Software and affixed to its medium and container as received from Mentor Graphics. All
copies shall remain the property of Mentor Graphics or its licensors. Customer shall maintain a record of the number and
primary location of all copies of Software, including copies merged with other software, and shall make those records
available to Mentor Graphics upon request. Customer shall not make Products available in any form to any person other
than Customer’s employees and on-site contractors, excluding Mentor Graphics competitors, whose job performance
requires access and who are under obligations of confidentiality. Customer shall take appropriate action to protect the
confidentiality of Products and ensure that any person permitted access does not disclose or use it except as permitted by
this Agreement. Customer shall give Mentor Graphics written notice of any unauthorized disclosure or use of the Products
as soon as Customer learns or becomes aware of such unauthorized disclosure or use. Except as otherwise permitted for
purposes of interoperability as specified by applicable and mandatory local law, Customer shall not reverse-assemble,
reverse-compile, reverse-engineer or in any way derive any source code from Software. Log files, data files, rule files and
script files generated by or for the Software (collectively “Files”), including without limitation files containing Standard
Verification Rule Format (“SVRF”) and Tcl Verification Format (“TVF”) which are Mentor Graphics’ proprietary syntaxes
for expressing process rules, constitute or include confidential information of Mentor Graphics. Customer may share Files
with third parties, excluding Mentor Graphics competitors, provided that the confidentiality of such Files is protected by
written agreement at least as well as Customer protects other information of a similar nature or importance, but in any case
with at least reasonable care. Customer may use Files containing SVRF or TVF only with Mentor Graphics products. Under
no circumstances shall Customer use Software or Files or allow their use for the purpose of developing, enhancing or
marketing any product that is in any way competitive with Software, or disclose to any third party the results of, or
information pertaining to, any benchmark.

5.2. If any Software or portions thereof are provided in source code form, Customer will use the source code only to correct
software errors and enhance or modify the Software for the authorized use. Customer shall not disclose or permit disclosure
of source code, in whole or in part, including any of its methods or concepts, to anyone except Customer’s employees or
contractors, excluding Mentor Graphics competitors, with a need to know. Customer shall not copy or compile source code
in any manner except to support this authorized use.

5.3. Customer may not assign this Agreement or the rights and duties under it, or relocate, sublicense or otherwise transfer the
Products, whether by operation of law or otherwise (“Attempted Transfer”), without Mentor Graphics’ prior written
consent and payment of Mentor Graphics’ then-current applicable relocation and/or transfer fees. Any Attempted Transfer
without Mentor Graphics’ prior written consent shall be a material breach of this Agreement and may, at Mentor Graphics’
option, result in the immediate termination of the Agreement and/or the licenses granted under this Agreement. The terms

of this Agreement, including without limitation the licensing and assignment provisions, shall be binding upon Customer’s
permitted successors in interest and assigns.

5.4. The provisions of this Section 5 shall survive the termination of this Agreement.

6. SUPPORT SERVICES. To the extent Customer purchases support services, Mentor Graphics will provide Customer updates
and technical support for the Products, at the Customer site(s) for which support is purchased, in accordance with Mentor
Graphics’ then current End-User Support Terms located at http://supportnet.mentor.com/about/legal/.

7. AUTOMATIC CHECK FOR UPDATES; PRIVACY. Technological measures in Software may communicate with servers
of Mentor Graphics or its contractors for the purpose of checking for and notifying the user of updates and to ensure that the
Software in use is licensed in compliance with this Agreement. Mentor Graphics will not collect any personally identifiable data
in this process and will not disclose any data collected to any third party without the prior written consent of Customer, except to
Mentor Graphics’ outside attorneys or as may be required by a court of competent jurisdiction.

8. LIMITED WARRANTY.

8.1. Mentor Graphics warrants that during the warranty period its standard, generally supported Products, when properly
installed, will substantially conform to the functional specifications set forth in the applicable user manual. Mentor
Graphics does not warrant that Products will meet Customer’s requirements or that operation of Products will be
uninterrupted or error free. The warranty period is 90 days starting on the 15th day after delivery or upon installation,
whichever first occurs. Customer must notify Mentor Graphics in writing of any nonconformity within the warranty period.
For the avoidance of doubt, this warranty applies only to the initial shipment of Software under an Order and does not
renew or reset, for example, with the delivery of (a) Software updates or (b) authorization codes or alternate Software under
a transaction involving Software re-mix. This warranty shall not be valid if Products have been subject to misuse,
unauthorized modification or improper installation. MENTOR GRAPHICS’ ENTIRE LIABILITY AND CUSTOMER’S
EXCLUSIVE REMEDY SHALL BE, AT MENTOR GRAPHICS’ OPTION, EITHER (A) REFUND OF THE PRICE
PAID UPON RETURN OF THE PRODUCTS TO MENTOR GRAPHICS OR (B) MODIFICATION OR
REPLACEMENT OF THE PRODUCTS THAT DO NOT MEET THIS LIMITED WARRANTY, PROVIDED
CUSTOMER HAS OTHERWISE COMPLIED WITH THIS AGREEMENT. MENTOR GRAPHICS MAKES NO
WARRANTIES WITH RESPECT TO: (A) SERVICES; (B) PRODUCTS PROVIDED AT NO CHARGE; OR (C) BETA
CODE; ALL OF WHICH ARE PROVIDED “AS IS.”

8.2. THE WARRANTIES SET FORTH IN THIS SECTION 8 ARE EXCLUSIVE. NEITHER MENTOR GRAPHICS NOR
ITS LICENSORS MAKE ANY OTHER WARRANTIES EXPRESS, IMPLIED OR STATUTORY, WITH RESPECT TO
PRODUCTS PROVIDED UNDER THIS AGREEMENT. MENTOR GRAPHICS AND ITS LICENSORS
SPECIFICALLY DISCLAIM ALL IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NON-INFRINGEMENT OF INTELLECTUAL PROPERTY.

9. LIMITATION OF LIABILITY. EXCEPT WHERE THIS EXCLUSION OR RESTRICTION OF LIABILITY WOULD BE
VOID OR INEFFECTIVE UNDER APPLICABLE LAW, IN NO EVENT SHALL MENTOR GRAPHICS OR ITS
LICENSORS BE LIABLE FOR INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES (INCLUDING
LOST PROFITS OR SAVINGS) WHETHER BASED ON CONTRACT, TORT OR ANY OTHER LEGAL THEORY, EVEN
IF MENTOR GRAPHICS OR ITS LICENSORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. IN
NO EVENT SHALL MENTOR GRAPHICS’ OR ITS LICENSORS’ LIABILITY UNDER THIS AGREEMENT EXCEED
THE AMOUNT RECEIVED FROM CUSTOMER FOR THE HARDWARE, SOFTWARE LICENSE OR SERVICE GIVING
RISE TO THE CLAIM. IN THE CASE WHERE NO AMOUNT WAS PAID, MENTOR GRAPHICS AND ITS LICENSORS
SHALL HAVE NO LIABILITY FOR ANY DAMAGES WHATSOEVER. THE PROVISIONS OF THIS SECTION 9 SHALL
SURVIVE THE TERMINATION OF THIS AGREEMENT.

10. HAZARDOUS APPLICATIONS. CUSTOMER ACKNOWLEDGES IT IS SOLELY RESPONSIBLE FOR TESTING ITS
PRODUCTS USED IN APPLICATIONS WHERE THE FAILURE OR INACCURACY OF ITS PRODUCTS MIGHT
RESULT IN DEATH OR PERSONAL INJURY (“HAZARDOUS APPLICATIONS”). NEITHER MENTOR GRAPHICS
NOR ITS LICENSORS SHALL BE LIABLE FOR ANY DAMAGES RESULTING FROM OR IN CONNECTION WITH
THE USE OF MENTOR GRAPHICS PRODUCTS IN OR FOR HAZARDOUS APPLICATIONS. THE PROVISIONS OF
THIS SECTION 10 SHALL SURVIVE THE TERMINATION OF THIS AGREEMENT.

11. INDEMNIFICATION. CUSTOMER AGREES TO INDEMNIFY AND HOLD HARMLESS MENTOR GRAPHICS AND
ITS LICENSORS FROM ANY CLAIMS, LOSS, COST, DAMAGE, EXPENSE OR LIABILITY, INCLUDING
ATTORNEYS’ FEES, ARISING OUT OF OR IN CONNECTION WITH THE USE OF PRODUCTS AS DESCRIBED IN
SECTION 10. THE PROVISIONS OF THIS SECTION 11 SHALL SURVIVE THE TERMINATION OF THIS
AGREEMENT.

12. INFRINGEMENT.

12.1. Mentor Graphics will defend or settle, at its option and expense, any action brought against Customer in the United States,
Canada, Japan, or member state of the European Union which alleges that any standard, generally supported Product
acquired by Customer hereunder infringes a patent or copyright or misappropriates a trade secret in such jurisdiction.
Mentor Graphics will pay costs and damages finally awarded against Customer that are attributable to the action. Customer
understands and agrees that as conditions to Mentor Graphics’ obligations under this section Customer must: (a) notify
Mentor Graphics promptly in writing of the action; (b) provide Mentor Graphics all reasonable information and assistance

http://supportnet.mentor.com/about/legal/

to settle or defend the action; and (c) grant Mentor Graphics sole authority and control of the defense or settlement of the
action.

12.2. If a claim is made under Subsection 12.1 Mentor Graphics may, at its option and expense, (a) replace or modify the Product
so that it becomes noninfringing; (b) procure for Customer the right to continue using the Product; or (c) require the return
of the Product and refund to Customer any purchase price or license fee paid, less a reasonable allowance for use.

12.3. Mentor Graphics has no liability to Customer if the action is based upon: (a) the combination of Software or hardware with
any product not furnished by Mentor Graphics; (b) the modification of the Product other than by Mentor Graphics; (c) the
use of other than a current unaltered release of Software; (d) the use of the Product as part of an infringing process; (e) a
product that Customer makes, uses, or sells; (f) any Beta Code or Product provided at no charge; (g) any software provided
by Mentor Graphics’ licensors who do not provide such indemnification to Mentor Graphics’ customers; or
(h) infringement by Customer that is deemed willful. In the case of (h), Customer shall reimburse Mentor Graphics for its
reasonable attorney fees and other costs related to the action.

12.4. THIS SECTION 12 IS SUBJECT TO SECTION 9 ABOVE AND STATES THE ENTIRE LIABILITY OF MENTOR
GRAPHICS AND ITS LICENSORS FOR DEFENSE, SETTLEMENT AND DAMAGES, AND CUSTOMER’S SOLE
AND EXCLUSIVE REMEDY, WITH RESPECT TO ANY ALLEGED PATENT OR COPYRIGHT INFRINGEMENT
OR TRADE SECRET MISAPPROPRIATION BY ANY PRODUCT PROVIDED UNDER THIS AGREEMENT.

13. TERMINATION AND EFFECT OF TERMINATION. If a Software license was provided for limited term use, such license
will automatically terminate at the end of the authorized term.

13.1. Mentor Graphics may terminate this Agreement and/or any license granted under this Agreement immediately upon written
notice if Customer: (a) exceeds the scope of the license or otherwise fails to comply with the licensing or confidentiality
provisions of this Agreement, or (b) becomes insolvent, files a bankruptcy petition, institutes proceedings for liquidation or
winding up or enters into an agreement to assign its assets for the benefit of creditors. For any other material breach of any
provision of this Agreement, Mentor Graphics may terminate this Agreement and/or any license granted under this
Agreement upon 30 days written notice if Customer fails to cure the breach within the 30 day notice period. Termination of
this Agreement or any license granted hereunder will not affect Customer’s obligation to pay for Products shipped or
licenses granted prior to the termination, which amounts shall be payable immediately upon the date of termination.

13.2. Upon termination of this Agreement, the rights and obligations of the parties shall cease except as expressly set forth in this
Agreement. Upon termination, Customer shall ensure that all use of the affected Products ceases, and shall return hardware
and either return to Mentor Graphics or destroy Software in Customer’s possession, including all copies and
documentation, and certify in writing to Mentor Graphics within ten business days of the termination date that Customer no
longer possesses any of the affected Products or copies of Software in any form.

14. EXPORT. The Products provided hereunder are subject to regulation by local laws and United States government agencies,
which prohibit export or diversion of certain products and information about the products to certain countries and certain
persons. Customer agrees that it will not export Products in any manner without first obtaining all necessary approval from
appropriate local and United States government agencies.

15. U.S. GOVERNMENT LICENSE RIGHTS. Software was developed entirely at private expense. All Software is commercial
computer software within the meaning of the applicable acquisition regulations. Accordingly, pursuant to US FAR 48 CFR
12.212 and DFAR 48 CFR 227.7202, use, duplication and disclosure of the Software by or for the U.S. Government or a U.S.
Government subcontractor is subject solely to the terms and conditions set forth in this Agreement, except for provisions which
are contrary to applicable mandatory federal laws.

16. THIRD PARTY BENEFICIARY. Mentor Graphics Corporation, Mentor Graphics (Ireland) Limited, Microsoft Corporation
and other licensors may be third party beneficiaries of this Agreement with the right to enforce the obligations set forth herein.

17. REVIEW OF LICENSE USAGE. Customer will monitor the access to and use of Software. With prior written notice and
during Customer’s normal business hours, Mentor Graphics may engage an internationally recognized accounting firm to
review Customer’s software monitoring system and records deemed relevant by the internationally recognized accounting firm
to confirm Customer’s compliance with the terms of this Agreement or U.S. or other local export laws. Such review may include
FLEXlm or FLEXnet (or successor product) report log files that Customer shall capture and provide at Mentor Graphics’
request. Customer shall make records available in electronic format and shall fully cooperate with data gathering to support the
license review. Mentor Graphics shall bear the expense of any such review unless a material non-compliance is revealed. Mentor
Graphics shall treat as confidential information all information gained as a result of any request or review and shall only use or
disclose such information as required by law or to enforce its rights under this Agreement. The provisions of this Section 17
shall survive the termination of this Agreement.

18. CONTROLLING LAW, JURISDICTION AND DISPUTE RESOLUTION. The owners of certain Mentor Graphics
intellectual property licensed under this Agreement are located in Ireland and the United States. To promote consistency around
the world, disputes shall be resolved as follows: excluding conflict of laws rules, this Agreement shall be governed by and
construed under the laws of the State of Oregon, USA, if Customer is located in North or South America, and the laws of Ireland
if Customer is located outside of North or South America. All disputes arising out of or in relation to this Agreement shall be
submitted to the exclusive jurisdiction of the courts of Portland, Oregon when the laws of Oregon apply, or Dublin, Ireland when
the laws of Ireland apply. Notwithstanding the foregoing, all disputes in Asia arising out of or in relation to this Agreement shall
be resolved by arbitration in Singapore before a single arbitrator to be appointed by the chairman of the Singapore International

Arbitration Centre (“SIAC”) to be conducted in the English language, in accordance with the Arbitration Rules of the SIAC in
effect at the time of the dispute, which rules are deemed to be incorporated by reference in this section. This section shall not
restrict Mentor Graphics’ right to bring an action against Customer in the jurisdiction where Customer’s place of business is
located. The United Nations Convention on Contracts for the International Sale of Goods does not apply to this Agreement.

19. SEVERABILITY. If any provision of this Agreement is held by a court of competent jurisdiction to be void, invalid,
unenforceable or illegal, such provision shall be severed from this Agreement and the remaining provisions will remain in full
force and effect.

20. MISCELLANEOUS. This Agreement contains the parties’ entire understanding relating to its subject matter and supersedes all
prior or contemporaneous agreements, including but not limited to any purchase order terms and conditions. Some Software
may contain code distributed under a third party license agreement that may provide additional rights to Customer. Please see
the applicable Software documentation for details. This Agreement may only be modified in writing by authorized
representatives of the parties. Waiver of terms or excuse of breach must be in writing and shall not constitute subsequent
consent, waiver or excuse.

Rev. 100615, Part No. 246066

	InfoHub
	Table of Contents
	List of Figures
	List of Tables
	Chapter 1 Introduction
	Terminology

	Chapter 2 UCDB Basics
	UCDB Data Hierarchy
	Scopes and Coveritems
	Design Unit Scopes
	UCDB Scope Types

	UCDB Data Models
	Code Coverage Roll-Ups in Design Units and Instances
	Statement Coverage
	Statement Coverage with Generates

	Branch Coverage
	Branch Coverage of Verilog if-else
	Branch Coverage of VHDL if-elsif-else
	Case Statements

	Expression and Condition Coverage
	UDP-Style Expression and Condition Coverage
	FEC-Style Expression Condition Coverage

	Finite State Machine (FSM) Coverage
	Toggle Coverage
	VHDL Integer Toggles
	Enum Toggles
	Extended Register Toggle
	Net Toggle with Connected Net

	Groups
	SVA and PSL Covers
	Assertion Data
	Assertions with Fail Counts Only
	Assertion with All Counts Using -assertdebug
	Immediate Assert with Pass/Fail

	SystemVerilog Covergroup Coverage
	Covergroup with a Cross
	Sparse Cross Bin Representation
	CROSSSBINIDX and CROSSUBINIDX
	Covergroup in Package with Multiple Instances
	Covergroup in a Class (Embedded Covergroup)

	Design Units
	Test Data Records and History Nodes
	Test Plan Hierarchy and Tags
	Memory Statistics

	UCDB Use Cases
	UCDB Access Modes
	Error Handling
	Traverse a UCDB in Memory
	Read Coverage Data
	read-coverage2 Example

	Find Objects in a UCDB
	Increment Coverage
	Remove Data from a UCDB
	User-Defined Attributes and Tags in the UCDB
	Tags in the UCDB
	User-Defined Attributes in the UCDB
	Predefined Attribute Names in the UCDB
	Create a Test Plan in a UCDB

	Using Tags to Traverse from Test Plan to Coverage Data
	File Representation in the UCDB
	Creating a File Handle From a File Name
	Creating a File Handle From an Existing File Table
	Dumping File Tables

	Add New Data to a UCDB
	Add Design Unit to a UCDB
	Add Module Instance to a UCDB
	Add Statement to a UCDB
	Add Toggle to a UCDB
	Add Covergroup to a UCDB

	Test Data Records
	Create a UCDB from Scratch in Memory
	Read Streaming Mode
	Write Streaming Mode

	UCDB in Questa and ModelSim
	UCDB in the Tool Architecture
	Using the mti_AddUCDBSaveCB FLI Callback
	Questa Compatibility

	Chapter 3 UCDB API Functions
	Source Files
	Simple Use Models
	Scope Handle
	Object Handle
	File Handle
	Source Information Type
	ucdb_CreateSrcFileHandleByName
	ucdb_CreateFileHandleByNum
	ucdb_CloneFileHandle
	ucdb_CreateNullFileHandle
	ucdb_IsValidFileHandle
	ucdb_GetFileName
	ucdb_GetFileNum
	ucdb_GetFileTableScope
	ucdb_SrcFileTableAppend
	ucdb_FileTableSize
	ucdb_FileTableName
	ucdb_FileTableRemove
	ucdb_FileInfoToString

	Error Handler
	Message Severity Type
	Error Type
	Error Handler
	ucdb_RegisterErrorHandler
	ucdb_IsModified
	ucdb_ModifiedSinceSim
	ucdb_SuppressModified

	Tests
	Test Type
	Test Status Type
	History Node Types
	History Node Kind Types
	ucdb_AddTest
	ucdb_AddPotentialTest
	ucdb_GetTestData
	ucdb_GetTestName
	ucdb_NextTest
	ucdb_CloneTest
	ucdb_RemoveTest
	ucdb_NumTests
	ucdb_CreateHistoryNode
	ucdb_AddHistoryNodeChild
	ucdb_NextHistoryNode
	ucdb_HistoryRoot
	ucdb_NextHistoryRoot
	ucdb_NextHistoryLookup
	ucdb_GetHistoryNodeParent
	ucdb_GetNextHistoryNodeChild
	ucdb_CloneHistoryNode
	ucdb_GetHistoryKind
	ucdb_CalculateHistorySignature

	Databases and Database Files
	Callback Reason Type
	Callback Return Type
	Read Callback Data Type
	Function Type for Use with ucdb_OpenReadStream()
	ucdb_Open
	ucdb_OpenReadStream
	ucdb_OpenWriteStream
	ucdb_WriteStream
	ucdb_WriteStreamScope
	ucdb_Write
	ucdb_Close
	ucdb_DBVersion
	ucdb_APIVersion
	ucdb_SetPathSeparator
	ucdb_GetPathSeparator
	ucdb_Filename

	User-specified Attributes
	Attribute Type
	Attribute Value Type
	ucdb_AttrGetNext
	ucdb_AttrAdd
	ucdb_AttrRemove
	ucdb_AttrGet
	ucdb_AttrArraySize

	Scopes
	Scope Type
	Source Type
	Flags Type
	ucdb_CreateScope
	ucdb_ComposeDUName
	ucdb_ParseDUName
	ucdb_CreateInstance
	ucdb_CreateInstanceByName
	ucdb_CreateCross
	ucdb_CreateCrossByName
	ucdb_CreateTransition
	ucdb_CreateTransitionByName
	ucdb_InstanceSetDU
	ucdb_CloneScope
	ucdb_RemoveScope
	ucdb_ScopeParent
	ucdb_ScopeGetTop
	ucdb_GetScopeName
	ucdb_SetScopeName
	ucdb_GetScopeType
	ucdb_GetScopeSourceType
	ucdb_GetScopeFlags
	ucdb_SetScopeFlags
	ucdb_GetScopeFlag
	ucdb_SetScopeFlag
	ucdb_GetScopeSourceInfo
	ucdb_SetScopeSourceInfo
	ucdb_SetScopeFileHandle
	ucdb_GetScopeWeight
	ucdb_SetScopeWeight
	ucdb_GetScopeGoal
	ucdb_SetScopeGoal
	ucdb_GetScopeHierName
	ucdb_GetInstanceDU
	ucdb_GetInstanceDUName
	ucdb_GetNumCrossedCvps
	ucdb_GetIthCrossedCvp
	ucdb_GetIthCrossedCvpName
	ucdb_GetTransitionItem
	ucdb_GetTransitionItemName
	ucdb_NextPackage
	ucdb_NextDU
	ucdb_MatchDU
	ucdb_NextSubScope
	ucdb_NextScopeInDB
	ucdb_NextInstOfDU
	ucdb_ScopeIsUnderDU
	ucdb_ScopeIsUnderCoverInstance
	ucdb_CallBack
	ucdb_PathCallBack
	ucdb_MatchTests
	ucdb_MatchCallBack

	Coverage and Statistics Summaries
	Summary Coverage Data Type
	Coverage Structure
	Coverage Summary Structure
	Memory Statistics Types
	ucdb_SetGoal
	ucdb_GetGoal
	ucdb_SetWeightPerType
	ucdb_GetWeightPerType
	ucdb_GetCoverageSummary
	ucdb_GetCoverage
	ucdb_GetStatistics
	ucdb_CalcCoverageSummary
	ucdb_GetTotalCoverage
	ucdb_GetMemoryStats
	ucdb_SetMemoryStats

	Coveritems
	Cover Types
	Coveritem Types
	Flags for Coveritem Data
	Coveritem Data Type
	ucdb_CreateNextCover
	ucdb_CloneCover
	ucdb_RemoveCover
	ucdb_MatchCoverInScope
	ucdb_IncrementCover
	ucdb_GetCoverFlags
	ucdb_GetCoverFlag
	ucdb_SetCoverFlag
	ucdb_GetCoverType
	ucdb_GetCoverData
	ucdb_SetCoverData
	ucdb_SetCoverCount
	ucdb_SetCoverGoal
	ucdb_SetCoverLimit
	ucdb_SetCoverWeight
	ucdb_GetScopeNumCovers
	ucdb_GetECCoverNumHeaders
	ucdb_GetECCoverHeader
	ucdb_NextCoverInScope
	ucdb_NextCoverInDB

	Toggles
	ucdb_CreateToggle
	ucdb_GetToggleInfo
	ucdb_GetToggleCovered
	ucdb_GetBCoverInfo

	Groups
	Group Kind Type
	Wildcard Matching
	ucdb_CreateGroupScope
	ucdb_GetGroupInfo
	ucdb_ExpandOrderedGroupRangeList
	ucdb_GetOrderedGroupElementByIndex

	Tags
	Object Mask Type
	ucdb_ObjKind
	ucdb_GetObjType
	ucdb_AddObjTag
	ucdb_RemoveObjTag
	ucdb_GetObjNumTags
	ucdb_GetObjIthTag
	ucdb_SetObjTags
	ucdb_BeginTaggedObj
	ucdb_NextTaggedObj
	ucdb_NextTag

	Formal Data
	Formal Status Enum
	Formal Environment Type
	Formal Tool Info Type
	Formal Coverage Context
	ucdb_SetFormalStatus
	ucdb_GetFormalStatus
	ucdb_SetFormalRadius
	ucdb_GetFormalRadius
	ucdb_SetFormalWitness
	ucdb_GetFormalWitness
	ucdb_SetFormallyUnreachableCoverTest
	ucdb_ClearFormallyUnreachableCoverTest
	ucdb_GetFormallyUnreachableCoverTest
	ucdb_AddFormalEnv
	ucdb_AssocAssumptionFormalEnv
	ucdb_AssocFormalInfoTest
	ucdb_NextFormalEnv
	ucdb_NextFormalEnvAssumption
	ucdb_FormalEnvGetData
	ucdb_FormalTestGetInfo

	Test Traceability
	ucdb_AssocCoverTest
	ucdb_NextCoverTest
	ucdb_GetCoverTestMask
	ucdb_SetCoverTestMask
	ucdb_OrCoverTestMask

	Appendix A UCDB Organization
	Test Section
	Coverage Section
	Scope Nodes
	Coveritems
	Nesting Rules
	Attributes
	Generic UCDB Handle
	Size-critical Types

	Appendix B : UCDB Diff BNF
	Index
	End-User License Agreement
	Documentation Feedback

