ModelSim® SE Tutorial

Software Version 10.1

© 1991-2011 Mentor Graphics Corporation
All rights reserved.

This document contains information that is proprietary to Mentor Graphics Corporation. The original recipient of this
document may duplicate this document in whole or in part for internal business purposes only, provided that this entire
notice appears in all copies. In duplicating any part of this document, the recipient agrees to make every reasonable
effort to prevent the unauthorized use and distribution of the proprietary information.

This document is for information and instruction purposes. Mentor Graphics reserves the right to make
changes in specifications and other information contained in this publication without prior notice, and the
reader should, in all cases, consult Mentor Graphics to determine whether any changes have been
made.

The terms and conditions governing the sale and licensing of Mentor Graphics products are set forth in
written agreements between Mentor Graphics and its customers. No representation or other affirmation
of fact contained in this publication shall be deemed to be a warranty or give rise to any liability of Mentor
Graphics whatsoever.

MENTOR GRAPHICS MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE.

MENTOR GRAPHICS SHALL NOT BE LIABLE FOR ANY INCIDENTAL, INDIRECT, SPECIAL, OR
CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING BUT NOT LIMITED TO LOST PROFITS)
ARISING OUT OF OR RELATED TO THIS PUBLICATION OR THE INFORMATION CONTAINED IN IT,
EVEN IF MENTOR GRAPHICS CORPORATION HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

RESTRICTED RIGHTS LEGEND 03/97

U.S. Government Restricted Rights. The SOFTWARE and documentation have been developed entirely
at private expense and are commercial computer software provided with restricted rights. Use,
duplication or disclosure by the U.S. Government or a U.S. Government subcontractor is subject to the
restrictions set forth in the license agreement provided with the software pursuant to DFARS 227.7202-
3(a) or as set forth in subparagraph (c)(1) and (2) of the Commercial Computer Software - Restricted
Rights clause at FAR 52.227-19, as applicable.

Contractor/manufacturer is:
Mentor Graphics Corporation
8005 S.W. Boeckman Road, Wilsonville, Oregon 97070-7777.
Telephone: 503.685.7000
Toll-Free Telephone: 800.592.2210
Website: www.mentor.com
SupportNet: supportnet.mentor.com/
Send Feedback on Documentation: supportnet.mentor.com/doc_feedback_form

TRADEMARKS: The trademarks, logos and service marks ("Marks") used herein are the property of
Mentor Graphics Corporation or other third parties. No one is permitted to use these Marks without the
prior written consent of Mentor Graphics or the respective third-party owner. The use herein of a third-
party Mark is not an attempt to indicate Mentor Graphics as a source of a product, but is intended to
indicate a product from, or associated with, a particular third party. A current list of Mentor Graphics’
trademarks may be viewed at: www.mentor.com/trademarks.

http://www.mentor.com
http://supportnet.mentor.com/
http://supportnet.mentor.com/doc_feedback_form
http://www.mentor.com/trademarks

Table of Contents

Chapter 1
LNt OdUCTION. . . .o 13
ASSUMPLIONS. . . . oottt et e e e e e e 13
Whereto Find ModelSim Documentation. 13
Download aFree PDF Reader WithSearch. 14
Mentor GraphiCs SUPPOIT.ot e e e e 14
BeforeyoU Begin. oo 14
EXamMPIE DESIgNS . . . e e 15
Chapter 2
Conceptual OVErVIBW . . .ot e e 17
Design OptimIZations.ottt e e e e 17
Basic SImulation FIOW. o e 18
PrOJECt FlOW . . . o 19
Multiple Library FIOWo 19
DebUggIiNg TOOISot 20
Chapter 3
BasiC SIMUIatioNn o 23
CreatetheWorking Design Library. e e e 23
CompiletheDesign Units o e 25
OptiMiZEthe DESIGNot e e e 26
Load the DESIGN. . . oottt e e 27
Runthe SImulation e 28
Set Breakpointsand Step throughtheSource i 30
Chapter 4
o 0= 35
Create aNew ProjeCt 35
Add Objectstothe Project 36
Changing Compile Order (VHDL) oot e e 38
Compilethe DeSIgN. 39
Optimizefor Design Visibility e 40
Loadthe Design oo 40
Organizing Projectswith Folders. e 41
Add FOlders. . . .o 41
Moving FilesSto Folderso 43
Simulation ConfiguIrations.ottt e 44

ModelSim SE Tutorial, v10.1 3

Table of Contents

Chapter 5
Working With MultipleLibraries. ... e 47
Creatingthe Resource Library. e 47
Creating the ProjeCt o 49
Linkingtothe Resource Library i 50
V00 . 50
VHD L . . 51
LinkingtoaResource Library 52
Permanently Mapping VHDL ResourcelLibraries oo, 53
Chapter 6
Simulating SystemC DeSIgNSot 55
Setting UP the ENVIrONMENt ottt 56
Preparing an OSCl SystemC deSigN . .. oo v et e et e 56
Compiling aSystemC-only DeSIgNottt 59
Mixed SystemC and HDL Example e 60
Viewing SystemC Objectsinthe GUI e 63
Setting Breakpoints and Stepping inthe SourceWindow 65
Examining SystemC Objectsand Variables. 67
Removing aBreakpoint 68
Chapter 7
AnalyzZing Waveforms e 71
Loading @ DeSigN.o 72
Add ObjectstotheWave WIndowt e 72
Zooming theWaveformDisplayo 73
Using Cursorsinthe Wave Windowt e e 74
WorkingwithaSingle Cursor i e 74
Working with MUltiple CUrsors e 76
Saving and ReusingtheWindow Format 77
Chapter 8
Creating StimulusWith Waveform Editor 79
Compileand Load the Designot e 80
Create Graphical StimuluswithaWizard. i 81
Edit WaveformsintheWave Window 83
Save and Reusethe Wave Commands. oo it it 86
Exporting the Created Waveforms. i e e 87
Simulatingwiththe Test BenchFile. 89
Importingan EVCD Fileo e 90
Chapter 9
Debugging With The SchematicWindow. i, 93
Exploring CONNECLIVILYo 95
Viewing Source CodefromtheSchematic 101
Unfolding and Folding INStanCes. oot e e e e 102
TraCing EVeNtS. 104

4 ModelSim SE Tutorial, v10.1

Table of Contents

Chapter 10
Debugging With The Dataflow Window. e 111
EXploring CONNECLIVILYot e e e e e 112
TraCing EVeNtS. 116
Tracingan X (UNKNOWN)ot e et et e et et e e 121
Displaying Hierarchy inthe Dataflow Window 124
Chapter 11
Viewing And Initializing Memories e e 127
View aMemory and itSCONteNtS.ot 128
Navigate Withinthe Memory e 132
Export Memory Datato aFile. 134
INitialiZE aMemMOrY . ..o 136
Interactive Debugging Commandsottt 139
Chapter 12
Analyzing Performance With TheProfiler 143
View Performance Datain ProfileWindows. i 145
View Source Code by Clicking in ProfileWindow 148
View Profile Details.o 149
FilteringtheData.o 150
Creating a Performance ProfileReport e 151
Chapter 13
Simulating With Code Coverage.ot e 155
ViewingCoverage Data.t e 160
Coverage Statisticsinthe SourceWindowt 162
Toggle Statisticsinthe ObjectsWIindow. e 164
Excluding Lines and Filesfrom Coverage Statistics., 165
Creating Code Coverage REPOITS.ottt e 166
Chapter 14
Comparing Waveforms 169
Creatingthe Reference Datasetottt e e e e e e 170
Creatingthe Test Dataset.ot e et 171
Comparingthe Simulation RUNS o e e 172
Viewing Comparison DataL oot 173
Comparison DataintheWave Window e 174
Comparison DataintheListWindow 175
Saving and Reloading Comparison Data.o vttt 176
Chapter 15
Automating SImulation 179
CreatingaSimple DOFile. i e e e e e 179
Runningin Command-LineMode. i 180
Using Tcl withtheSimulator. e e 183

ModelSim SE Tutorial, v10.1 5

Table of Contents

Chapter 16
Getting Started With Power Aware e 187
Create aWorking LOCaLIoNo e 188
Compilethe Source Filesof theDesign e 188
Annotate POwer INtent 189
Specifying Power Aware Options.ottt e 190
Simulatethe Power Aware Designot 190
ANAlYZE RESUITS 191
I ndex

End-User License Agreement

6 ModelSim SE Tutorial, v10.1

List of Figures

Figure 2-1. Basic Simulation Flow - Overview Lab o, 18
Figure 2-2. Project FIOWo o 19
Figure 2-3. Multiple Library FIOW. e 20
Figure 3-1. The CreateaNew Library Dialog. 24
Figure 3-2. work Library Added tothe Library Window 25
Figure 3-3. Compile Source FilesDialogt 26
Figure 3-4. Verilog Modules Compiled intowork Library 26
Figure 3-5. TheDesign Hierarchyo e 27
Figure 3-6. The Object Window and ProcessesWindow 28
Figure 3-7. Using the Popup Menu to Add Signalsto WaveWindow 29
Figure 3-8. Waves Dravn inWave Window.t 29
Figure 3-9. Setting Breakpoint in SourceWindow 30
Figure 3-10. Setting Restart FUNCLIONS e 31
Figure 3-11. Blue Arrow Indicates Where Simulation Stopped.. 31
Figure 3-12. Values Shown in ObjectsWindow, 32
Figure 3-13. Parameter Name and Value in Source ExamineWindow 32
Figure 4-1. Create Project Dialog- ProjectLab 36
Figure 4-2. Adding New ItemstoaProject. 37
Figure4-3. Addfileto Project Dialog.o 37
Figure 4-4. Newly Added Project FilesDisplay a’? for Status. 38
Figure 4-5. Compile Order Dialog.ot e 39
Figure 4-6. Library Window with Expanded Library 40
Figure 4-7. Structure(sim) window for aLoaded Design, 41
Figure 4-8. Adding New FoldertoProject i, 42
Figure4-9. A Folder WithinaProject. s 42
Figure 4-10. Creating Subfolder i e 42
Figure4-11. A folder withaSub-folder 43
Figure 4-12. Changing File Location via the Project Compiler Settings Dialog. 43
Figure 4-13. Simulation ConfigurationDialogt 45
Figure 4-14. A Simulation Configurationinthe Projectwindow 46
Figure 4-15. Transcript Shows Options for Simulation Configurations 46
Figure 5-1. Creating New ResourceLibrary, 48
Figure 5-2. Compiling intothe Resource Library, 49
Figure 5-3. VHDL Simulation Warning Reported in MainWindow 51
Figure 5-4. Specifying a Search Library inthe Smulate Dialog. 53
Figure 6-1. The SystemC File After Modifications., 58
Figure 6-2. Editing the SystemC Header File.. i 59
Figure6-3. Theringbuf h File. e 61
Figure 6-4. Thetest_ringbuf.cppFile i 62
Figure 6-5. Thetest_ringbuf DeSigN 63

ModelSim SE Tutorial, v10.1 7

List of Figures

Figure 6-6. SystemC Objectsinthework Library. i, 64
Figure 6-7. SystemC Objects in Structure (sim) and ObjectsWindows. 64
Figure 6-8. Active BreakpointinaSystemCFile i .. 66
Figure 6-9. Simulation Stopped at Breakpoint i, 66
Figure 6-10. SteppingintoaSeparate File. i, 67
Figure 6-11. Output of show Commandttt 68
Figure 6-12. SystemC Primitive Channelsinthe WaveWindow 69
Figure 7-1. Panesof theWaveWindow 71
Figure 7-2. Zooming inwiththeMouse Pointer 74
Figure 7-3. Working with a Single Cursor inthe Wave Window 75
Figure 7-4. Renaming @ CUrSOrot ittt e e e e ettt 76
Figure 7-5. Interval Measurement Between TWO CUrSOrS.o oo e i 76
Figure 7-6. A Locked Cursor intheWaveWindowo, 77
Figure 8-1. Initiating the Create Pattern Wizard from the Objects Window. 81
Figure 8-2. Create Pattern Wizard. oo e 82
Figure 8-3. Specifying Clock Pattern Attributes., 82
Figure8-4. Theclk Waveform. e 83
Figure8-5. Thereset Waveform e 83
Figure 8-6. Edit Insert PulseDialogo e 84
Figure 8-7. Signal reset withanInsertedPulse. 84
Figure 8-8. Edit Stretch Edge Dialog.o 85
Figure 8-9. Stretching an Edgeontheclk Signal. o i, 85
Figure 8-10. Deleting an EdgeontheclkSignal 86
Figure 8-11. The Export WaveformDialog. e 88
Figure 8-12. The counter Waveform Reactsto StimulusPatterns. 89
Figure 8-13. The export Test Bench Compiled into thework Library 89
Figure 8-14. Wavesfrom Newly Created TestBench. 90
Figure 8-15. EVCD FileLoaded inWaveWindowccoiiiniinann.. 91
Figure 8-16. Simulation resultswithEVCD File 91
Figure 9-1. Schematic View INdiCator. it e 93
Figure 9-2. A Signal intheschematicWindow. 96
Figure 9-3. Right Pointing Arrow IndicatesReaders. 97
Figure 9-4. Expanding the View to Display Readersof strb Signal 97
Figure 9-5. Signal ValuesOverlapped. 97
Figure 9-6. Signal Values After Regenerate, 98
Figure 9-7. Selecttest Signalot 99
Figure 9-8. Thetest Net Expanded to Show All Drivers., 100
Figure 9-9. Signal oen ExpandedtoReaders. i 100
Figure 9-10. Code Preview WIindowot 101
Figure 9-11. Folded INStanCe.o 102
Figure9-12. Unfolded InStance.t e 103
Figure 9-13. Contentsof Unfolded Instances2. 103
Figure 9-14. Instance s2 Refolded.o 104
Figure 9-15. Event Traceback Menu Optionsot 104
Figure 9-16. Selecting Active Time Label Display Option. 105

ModelSim SE Tutorial, v10.1

List of Figures

Figure 9-17. Active Time Label inthe Incremental View. 105
Figure 9-18. The Embedded Wave Viewer 106
Figure 9-19. Immediate Driving Process in the Source Window 107
Figure 9-20. Active Driver Path DetaillsWindow i, 107
Figure 9-21. Schematic Window Button. i, 108
Figure 9-22. Schematic Path DetailsWindow. 108
Figure 10-1. A Signal inthe Dataflow Window, 113
Figure 10-2. Expanding the View to Display Connected Processes. 114
Figure 10-3. Select test Signalo 115
Figure 10-4. The test Net Expanded to Show All Drivers., 115
Figure 10-5. Wave Window PreferencesDialog., 117
Figure 10-6. The Embedded Wave Viewer 118
Figure 10-7. Source Codefor theNAND Gate.ttt s 118
Figure 10-8. Signals Added to the Wave Viewer Automatically 119
Figure 10-9. Source Codewitht_out Highlighted. 119
Figure 10-10. Cursor in Wave Viewer MarksLastEvent. 120
Figure 10-11. Tracingthe Event Set i e 121
Figure 10-12. A Signal withUnknownValues. 122
Figure 10-13. Dataflow Window withWaveViewer, 123
Figure 10-14. ChaseX ldentifies Cause of Unknownont out 124
Figure 10-15. Dataflow OptionsDialogt e 125
Figure 10-16. Displaying Hierarchy in the Dataflow Window 126
Figure 11-1. The Memory Listinthe Memory window 129
Figure 11-2. Verilog Memory DataWindow, 129
Figure 11-3. VHDL Memory DataWindowot n 130
Figure 11-4. Verilog Data After Running Simulation. 130
Figure 11-5. VHDL Data After Running Simulation 131
Figure 11-6. Changingthe AddressRadixX. s 131
Figure 11-7. New Address Radix and LineLength (Verilog. 132
Figure 11-8. New Address Radix and LineLength (VHDL) 132
Figure 11-9. GOt DialOg. o oo et 133
Figure 11-10. Editing the Address Directly. e, 133
Figure 11-11. Searching for a Specific DataVaue. 134
Figure 11-12. Export Memory Dialog.o v 135
Figure 11-13. Import Memory Dialog. 137
Figure 11-14. Initialized Memory from Fileand Fill Pattern 138
Figure 11-15. Data Increments Starting at Address251, 139
Figure 11-16. Original Memory Content.ttt 139
Figure 11-17. Changing Memory Content for a Range of Addresses**OK 140
Figure 11-18. Random Content Generated for aRange of Addresses. 140
Figure 11-19. Changing Memory Contents by Highlighting. 141
Figure 11-20. Entering Datato Change**OK i e 141
Figure 11-21. Changed Memory Contents for the Specified Addresses. 142
Figure 12-1. Sampling Reported inthe Transcript 145
Figure 12-2. The Ranked Window.o i e 146

ModelSim SE Tutorial, v10.1 9

List of Figures

Figure 12-3. Expand the Hierarchical FunctionCall Tree. 147
Figure 12-4. Structural ProfileWindow i, 147
Figure 12-5. Design Unit Performance Profile 148
Figure 12-6. Source Window Shows Linefrom ProfileData. 149
Figure 12-7. Profile Details of the Function Tcl Close 149
Figure 12-8. Profile Detailsof Functionsm O 150
Figure 12-9. The Profile Toolbar. e 150
Figure 12-10. The Filtered ProfileData. e 151
Figure 12-11. The Profile Report Dialog. oo v i e 152
Figure 12-12. Thecalltreerpt REpOrto e 153
Figure 13-1. Code Coverage Windowsottt 157
Figure 13-2. AnalysisToolbar. 158
Figure 13-3. Title Bar Displays Current AnalysiS.t 158
Figure 13-4. Code Coverage Columnsin the Structure (sim) Window. 159
Figure 13-5. Coverage MenU. oottt 159
Figure 13-6. Right-click a Column Heading to Show ColumnList 160
Figure 13-7. Select Statement ANalySiS.ttt 161
Figure 13-8. Coverage DetailsWindow Undocked., 161
Figure 13-9. Instance Coverage Windowttt 162
Figure 13-10. Coverage Statisticsinthe SourceWindow. 163
Figure 13-11. Coverage Numbers Shown by Hovering the Mouse Pointer 164
Figure 13-12. Toggle Coverage inthe ObjectsWindow 165
Figure 13-13. Excluding aFileUsingGUIMenus, 166
Figure 13-14. Coverage Text Report Dialog oo e 167
Figure 13-15. Coverage HTML Report Dialog.o oo v e 168
Figure 13-16. Coverage ExclusionsReport Dialog., 168
Figure 14-1. First dialog of the Waveform Comparison Wizard. 172
Figure 14-2. Second dialog of the Waveform Comparison Wizard 173
Figure 14-3. Comparison information in the compare and Objectswindows. 174
Figure 14-4. Comparison objectsinthe Wavewindow. 174
Figure 14-5. The COMPaIr€iCONSottt et et et e 175
Figure 14-6. Compare differencesintheListwindow 176
Figure 14-7. Coverage datasaved to atextfile.......... L. 177
Figure 14-8. Displaying Log FilesintheOpendiaog oo, 178
Figure 14-9. Reloading saved comparisondata., 178
Figure 15-1. Wave Window After Runningthe DOFile............ 180
Figure 15-2. The counter_opt.wIf Dataset in the Main Window Workspace 182
Figure 15-3. Buttons Added to the Main Window Toolbar. 184
Figure 16-1. Results of the Power Aware RTL Simulation. 192
Figure 16-2. Retention of addr During Normal Power DownCycle. 192
Figure 16-3. The AssertionsWindowt e 194
Figure 16-4. User-Defined Assertion Failure (redtriangle) 194
Figure 16-5. Assartion Debug Window.o 195
Figure 16-6. Clock-Gating Assertion Failure 196
Figure 16-7. Message Viewer Window e 196

10 ModelSim SE Tutorial, v10.1

List of Figures

Figure 16-8. SRAM Power-Down

ModelSim SE Tutorial, v10.1

11

List of Tables

Table 1-1. Documentation List e 13
Table 6-1. Supported Platformsfor SystemC i 56
Table13-1. Code Coverage lConsottt et et 157
Table 13-2. Coverage Iconsinthe Source Window i, 163

12 ModelSim SE Tutorial, v10.1

Chapter 1
Introduction

Assumptions

Using this tutorial for ModelSim™ is based on the following assumptions:

® You arefamiliar with how to use your operating system, along with its window
management system and graphical interface: OpenWindows, OSF/Motif, CDE, KDE,
GNOME, or Microsoft Windows XP.

® You have aworking knowledge of the language in which your design and/or test bench
iswritten (such as VHDL, Verilog, or SystemC). Although ModelSim is an excellent
application to use while learning HDL concepts and practices, this tutorial is not
intended to support that goal.

Where to Find ModelSim Documentation

Table 1-1. Documentation List

Document Format How to get it
Installation & Licensing PDF Help > PDF Bookcase
Guide HTML and PDF | Help > InfoHub
Quick Guide PDF Help > PDF Bookcase
(command and feature and
guick-reference) Help > InfoHub
Tutorial PDF Help > PDF Bookcase
HTML and PDF | Help > InfoHub
User’s Manual PDF Help > PDF Bookcase
HTML and PDF | Help > InfoHub
Reference Manual PDF Help > PDF Bookcase
HTML and PDF | Help > InfoHub
Foreign Language PDF Help > PDF Bookcase
Interface Manual HTML Help > InfoHub

ModelSim SE Tutorial, v10.1 13

Introduction
Mentor Graphics Support

Table 1-1. Documentation List

Document Format How to get it

Command Help ASCII type help [command name] at the prompt in
the Transcript pane

Error message help ASCII type verror <msgNum> at the Transcript or
shell prompt

Tcl Man Pages (Tcl HTML select Help > Tcl Man Pages, or find

manual) contents.htm in \modeltech\docs\tcl_help_html

Technotes HTML available from the support site

Download a Free PDF Reader With Search

Model Sim PDF documentation requires an Adobe Acrobat Reader for viewing. The Reader is
available without cost from Adobe at

www . adobe.com.

Mentor Graphics Support

Mentor Graphics product support includes software enhancements, technical support, access to
comprehensive online services with SupportNet, and the optional On-Site Mentoring service.
For details, refer to the following location on the Worldwide Web:

http://supportnet.mentor.com/about/

If you have questions about this software release, please log in to the SupportNet web site. You
can search thousands of technical solutions, view documentation, or open a Service Request
online at:

http://supportnet.mentor.com/

If your siteisunder current support and you do not have a SupportNet login, you can register for
SupportNet by filling out the short form at:

http://supportnet.mentor.com/user/register.cfm

For any customer support contact information, refer to the following web site location:

http://supportnet.mentor.com/contacts/supportcenters/

Before you Begin

Preparation for some of the lessons leaves certain details up to you. You will decide the best
way to create directories, copy files, and execute programs within your operating system.

14 ModelSim SE Tutorial, v10.1

http://www.adobe.com
http://supportnet.mentor.com/about/
http://supportnet.mentor.com/
http://supportnet.mentor.com/user/register.cfm
http://supportnet.mentor.com/contacts/supportcenters/

Introduction
Before you Begin

(When you are operating the simulator within ModelSim’s GUI, the interface is consistent for
all platforms.)

Examples show Windows path separators - use separators appropriate for your operating system
when trying the examples.

Example Designs

Model Sim comes with Verilog and VHDL versions of the designs used in these lessons. This
allowsyou to do the tutorial regardless of which license type you have. Though we havetried to
minimize the differences between the Verilog and VHDL versions, we could not do soin all
cases. In cases where the designs differ (e.g., line numbers or syntax), you will find language-
specific instructions. Follow the instructions that are appropriate for the language you use.

ModelSim SE Tutorial, v10.1

15

Introduction
Before you Begin

16 ModelSim SE Tutorial, v10.1

Chapter 2
Conceptual Overview

Introduction

ModelSim is a verification and simulation tool for VHDL, Verilog, SystemVerilog, SystemC,
and mixed-language designs.

Thislesson provides abrief conceptual overview of the Model Sim simulation environment. Itis
divided into five topics, which you will learn more about in subsequent |essons.

® Design Optimizations — Refer to the Optimizing Designs with vopt chapter in the
User’'sManual.

® Basic simulation flow — Refer to Chapter 3, Basic Smulation.
® Project flow — Refer to Chapter 4, Projects.
* Multiplelibrary flow — Refer to Chapter 5, Working With Multiple Libraries.

® Debugging tools— Refer to remaining lessons.

Design Optimizations

Before discussing the basic ssmulation flow, it is important to understand design optimization.
By default, Model Sim optimizations are automatically performed on all designs. These
optimizations are designed to maximize simulator performance, yielding improvements up to
10X, in some Verilog designs, over non-optimized runs.

Global optimizations, however, may have an impact on the visibility of the design simulation
results you can view — certain signals and processes may not be visible. If these signals and
processes are important for debugging the design, it may be necessary to customize the
simulation by removing optimizations from specific modules.

It isimportant, therefore, to make an informed decision asto how best to apply optimizationsto
your design. The tool that performs global optimizationsin ModelSim is called vopt. Please
refer to the Optimizing Designs with vopt chapter in the Model Sim User’s Manual for a
complete discussion of optimization trade-offs and customizations. For details on command
syntax and usage, please refer to vopt in the Reference Manual.

ModelSim SE Tutorial, v10.1 17

Conceptual Overview
Basic Simulation Flow

Basic Simulation Flow

The following diagram shows the basic steps for smulating adesign in Model Sim.

Figure 2-1. Basic Simulation Flow - Overview Lab

Create a working library

'

Compile design files

'

Load and Run simulation

'

Debug results

Creating the Working Library

In ModelSim, all designs are compiled into alibrary. You typically start a new
simulation in Model Sim by creating aworking library called "work," which isthe
default library name used by the compiler as the default destination for compiled design
units.

Compiling Y our Design

After creating the working library, you compile your design unitsinto it. The ModelSim
library format is compatible across all supported platforms. Y ou can simulate your
design on any platform without having to recompile your design.

L oading the Simulator with Y our Design and Running the Simulation

With the design compiled, you load the simulator with your design by invoking the
simulator on atop-level module (Verilog) or a configuration or entity/architecture pair
(VHDL).

Assuming the design loads successfully, the simulation timeis set to zero, and you enter
arun command to begin simulation.

Debugging Y our Results

If you don't get the results you expect, you can use Model Sim'’ s robust debugging
environment to track down the cause of the problem.

18

ModelSim SE Tutorial, v10.1

Conceptual Overview
Project Flow

Project Flow

A project is acollection mechanism for an HDL design under specification or test. Even though
you don’t have to use projects in Model Sim, they may ease interaction with the tool and are
useful for organizing files and specifying simulation settings.

The following diagram shows the basic steps for ssmulating a design within aModelSim
project.

Figure 2-2. Project Flow

Create a project

'

Add files to the project

'

Compile design files

'

Run simulation

v

Debug results

Asyou can see, the flow is similar to the basic simulation flow. However, there are two
important differences:

® You do not haveto create aworking library in the project flow; it is done for you
automatically.

®* Projects are persistent. In other words, they will open every time you invoke ModelSim
unless you specifically close them.

Multiple Library Flow

Model Sim uses libraries in two ways: 1) as alocal working library that contains the compiled
version of your design; 2) asaresource library. The contents of your working library will
change as you update your design and recompile. A resource library istypicaly static and
serves as a parts source for your design. Y ou can create your own resource libraries, or they
may be supplied by another design team or athird party (e.g., asilicon vendor).

ModelSim SE Tutorial, v10.1 19

Conceptual Overview
Debugging Tools

Y ou specify which resource libraries will be used when the design is compiled, and there are
rules to specify in which order they are searched. A common example of using both aworking
library and aresource library is one where your gate-level design and test bench are compiled
into the working library, and the design references gate-level models in a separate resource
library.

The diagram below shows the basic steps for simulating with multiple libraries.

Figure 2-3. Multiple Library Flow

Create a working library

'

Compile design files

'

Link to resource libraries

'

Run simulation

v

Debug results

Y ou can aso link to resource libraries from within a project. If you are using a project, you
would replace the first step above with these two steps: create the project and add the test bench
to the project.

Debugging Tools

Model Sim offers numerous tools for debugging and analyzing your design. Several of these
tools are covered in subsequent lessons, including:

® Using projects

® Working with multiple libraries

® Simulating with SystemC

® Setting breakpoints and stepping through the source code

® Viewing waveforms and measuring time

20 ModelSim SE Tutorial, v10.1

Conceptual Overview
Debugging Tools

® Exploring the "physical" connectivity of your design
® Viewing and initializing memories

® Creating stimulus with the Waveform Editor

® Anayzing smulation performance

® Testing code coverage

® Comparing waveforms

® Debugging with PSL assertions

® Using SystemVerilog assertions and cover directives
® Using the SystemVerilog DPI

® Automating simulation

ModelSim SE Tutorial, v10.1

21

Conceptual Overview
Debugging Tools

22 ModelSim SE Tutorial, v10.1

Chapter 3
Basic Simulation

Introduction

In this lesson you will go step-by-step through the basic simulation flow:

Create the Working Design Library
Compile the Design Units
Optimize the Design

Load the Design

o W D E

Run the Simulation

Design Files for this Lesson

The sample design for this lesson is asimple 8-bit, binary up-counter with an associated test
bench. The pathnames are as follows:

Verilog — <install_dir>/examples/tutorial s/'verilog/basicS mulation/counter.v and tcounter.v
VHDL —<install_dir>/examples/tutorials/vhdl/basicS mulation/counter.vhd and tcounter.vhd
This lesson uses the Verilog files counter.v and tcounter.v. If you have aVHDL license, use

counter.vhd and tcounter.vhd instead. Or, if you have amixed license, feel freeto use the
Verilog test bench with the VHDL counter or vice versa.

Related Reading

User’'s Manual Chapters. Design Libraries, Verilog and SystemVerilog Simulation, and VHDL
Simulation.

Reference Manual commands: vlib, vmap, vlog, vcom, vopt, view, and run.

Create the Working Design Library

Before you can simulate a design, you must first create alibrary and compile the source code
into that library.

1. Create anew directory and copy the design files for thislesson into it.

ModelSim SE Tutorial, v10.1 23

Basic Simulation
Create the Working Design Library

Start by creating a new directory for this exercise (in case other users will be working
with these lessons).

Verilog: Copy counter.v and tcounter.v files from
/<install_dir>/examples/tutorial s/verilog/basicS mulation to the new directory.

VHDL: Copy counter.vhd and tcounter.vhd files from
[<ingtall_dir>/examples/tutorial ’'vhdl/basicSmulation to the new directory.

. Start ModelSim if necessary.

a Typevsim at aUNIX shell prompt or use the Model Sim icon in Windows.

Upon opening Model Sim for the first time, you will see the Welcome to ModelSim
diaog. Click Close.

b. Select File> Change Directory and change to the directory you created in step 1.

. Create the working library.

a Select File> New > Library.

This opens a dialog where you specify physical and logical names for the library
(Figure 3-1). You can create anew library or map to an existing library. We'll be
doing the former.

Figure 3-1. The Create a New Library Dialog

Create a New Library x|

—Creake

" anew library
i~ amap to an existing library

{* anew library and a logical mapping ko it

—Library Mame;

|tm:| rk

—Librarw Physical Mame:

|tm:| rk

Ok | Cancel|

b. Typework inthe Library Namefield (if it isn’'t already entered automatically).

c. Click OK.

Model Sim creates a directory called work and writes a specially-formatted file
named _info into that directory. The _info file must remain in the directory to
distinguish it asaModelSim library. Do not edit the folder contents from your
operating system; all changes should be made from within Model Sim.

24

ModelSim SE Tutorial, v10.1

Basic Simulation
Compile the Design Units

Model Sim also adds the library to the Library window (Figure 3-2) and records the
library mapping for future reference in the Model Sim initialization file
(modelsim.ini).

Figure 3-2. work Library Added to the Library Window

e

Mame Type Path ’
+Hl work Library work “.
i} floatfidip Library $MODEL_TECH/.dd
+{l mtiavm Library SMODEL_TECH/. .=
+{lp mtiovm Library SMODEL_TECH/. .
+-) mtiupF Library EMODEL_TECH/. . /i
-l sv_std Library $MODEL_TECH/../s
+l vitslzo00 Library $MODEL _TECH/ .Y,
+-4l iees Library SMODEL_TECH/..[i#
4} modelsim_iib Library SMODEL_TEcy

I ;@ ibj’_.q_ Library $MODE
- RA— -

When you pressed OK in step 3c above, the following was printed to the Transcript window:

vlib work
vmap work work

These two lines are the command-line equivalents of the menu selections you made. Many
command-line equivalents will echo their menu-driven functions in this fashion.

Compile the Design Units

With the working library created, you are ready to compile your source files.

Y ou can compile by using the menus and dialogs of the graphic interface, asin the Verilog
example below, or by entering acommand at the Model Sim> prompt.

1. Compile counter.v and tcounter.v.

a. Select Compile > Compile. This opens the Compile Source Files dialog
(Figure 3-3).

If the Compile menu option is not available, you probably have a project open. If so,
close the project by making the Library window active and selecting File > Close
from the menus.

b. Select both counter.v and tcounter.v modules from the Compile Source Files dialog
and click Compile. The files are compiled into the work library.

c. When compileisfinished, click Done.

ModelSim SE Tutorial, v10.1 25

Basic Simulation
Optimize the Design

Figure 3-3. Compile Source Files Dialog

Compile Source Files N 21X
Library: Iwu:urk j

Loak ir: I) bazicSimulation j = ﬁ ,

counker,w

Ccounter.y

File namme:; |"tu:u:uunter.v" “counter " Compile I

Filez af type: IHDL Files [”.v;”.vl;“.vhd;“.vhdl;“.vhn;”.hdl;”.vj Done |

[T Compile selected files tagether Diefaulk Options... | Edit Source |

2. View the compiled design units.

a. IntheLibrary window, click the’+" icon next to the work library and you will see
two design units (Figure 3-4). Y ou can aso see their types (Modules, Entities, etc.)
and the path to the underlying sourcefiles.

Figure 3-4. Verilog Modules Compiled into work Library

Marme Type Fath
- otk Library otk
AH?_] counter Maodule C: fmodeltech_&.6xfexamples tukarials. .

/] test_counter Madule C:fmodeltech_6.6x/examples/tukarials, .

ﬂ—ml FloakFixlib Library $MODEL_TECH]. . fFloatfixlib
ﬂ—ﬂl mcZ_lib Library $MODEL_TECH) .. fmcZ_lib
+ mkifsem Library $MODEL_TECH), . Javm
+ mrkiCr Library FMODEL_TECH/., Jovm-2.0,3
+ kP, Library FMODEL_TECH/. . /pa_lib
AT b SIODELTECH e

Optimize the Design

1. Usethe vopt command to optimize the design with full visibility into all design units.
a. Enter the following command at the Model Sim> prompt in the Transcript window:
vopt +acc test_counter -0 testcounter_opt

The +acc switch provides visibility into the design for debugging purposes.

26 ModelSim SE Tutorial, v10.1

Basic Simulation
Load the Design

The -0 switch alows you designate the name of the optimized design file
(testcounter_opt).

Note
Y ou must provide a name for the optimized design file when you use the vopt command.

Load the Design

1. Loadthetest counter module into the simulator.

a. Usethe optimized design name to load the design with the vsim command:
vsim testcounter_opt

When the design is loaded, a Structure window opens (labeled sim). This window
displays the hierarchical structure of the design as shown in Figure 3-5. You can
navigate within the design hierarchy in the Structure (ssim) window by clicking on
any linewitha’+ (expand) or -’ (contract) icon.

Figure 3-5. The Design Hierarchy

test_counte

— duk counter(Fast) Madule +arcc=...
%‘ increment counter(fast) Function +acc=...

o #ALWAYS#3S counter(fast) Process

o #IMITIAL#17 kest_counter(fast) Process

o HIMITIAL#Z23 kest_rcounter(fast] Process

o #INITIAL#30 kest_rcounter(fast] Process
E #wsim_capacitby# Fareign +acc=,..

mwry-l&mvd*'iwwwﬁiﬂhm%" :

In addition, an Objects window and a Processes window opens (Figure 3-6). The
Objects window shows the names and current values of data objectsin the current
region selected in the Structure (ssim) window. Data objects include signals, nets,
registers, constants and variables not declared in aprocess, generics, parameters, and
member data variables of a SystemC module.

The Processes window displays alist of HDL and SystemC processes in one of four
viewing modes: Active, In Region, Design, and Hierarchical. The Design view mode
isintended for primary navigation of ESL (Electronic System Level) designs where
processes are a foremost consideration. By default, this window displays the active
processes in your simulation (Active view mode).

ModelSim SE Tutorial, v10.1 27

Basic Simulation
Run the Simulation

Figure 3-6. The Object Window and Processes Window

4k b3 teqister Inkernal
4 reset ster Internal
A count Metk Inkernal

* Processes (Ackive)

* FINITIAL#18 Initial
* FINITIAL#24 Initial
* FINITIAL#31 Initial

Run the Simulation

We'reready to run the simulation. But before we do, we' Il open the Wave window and add
signalstoit.

1. Open the Wave window.
a. Enter view wave at the command line.

The Wave window opens in the right side of the Main window. Resizeit soitis
visible.

Y ou can aso use the View > Wave menu selection to open a Wave window. The
Wave window isjust one of several debugging windows available on the View
menu.

2. Add signalsto the Wave window.

a. Inthe Structure (sim) window, right-click test_counter to open a popup context
menu.

b. Select AddTo>Wave > All itemsin region (Figure 3-7).
All signalsin the design are added to the Wave window.

28 ModelSim SE Tutorial, v10.1

Basic Simulation
Run the Simulation

Figure 3-7. Using the Popup Menu to Add Signals to Wave Window

& =im - Default

B F test_counter
gl dut View Dedaration »
@ =INITIAL=1 View Instantation 5

& FINITIAL#2 add Wave cri+w |

o #INITIAL#3 AddDataflow Cirl+D o
[#vsim_capacity
List g All items in region and below
C.upy BT Log L All items in design
Find... Ctrl+F Schematic »

Dataflow #

Expand Selected
Collapse Selected

3. Runthe simulation.

a. Click the Runicon.

The simulation runs for 100 ns (the default simulation length) and waves are

drawn in the Wave window.
b. Enter run 500 at the VSIM> prompt in the Transcript window.
The simulation advances another 500 ns for atotal of 600 ns (Figure 3-8).

Figure 3-8. Waves Drawn in Wave Window

m Wave

Cursar 1 862 ns G2 NS

4 I K |l [»

c. Click the Run -All icon on the Main or Wave window toolbar.

The simulation continues running until you execute a break command or it

hits a statement in your code (e.g., a Verilog $stop statement) that halts the
simulation.

d. Click the Break icon | |54 | to stop the simulation.

ModelSim SE Tutorial, v10.1

29

Basic Simulation
Set Breakpoints and Step through the Source

Set Breakpoints and Step through the Source

Next you will take a brief look at one interactive debugging feature of the ModelSim
environment. Y ou will set abreakpoint in the Source window, run the simulation, and then step
through the design under test. Breakpoints can be set only on executable lines, which are
indicated with red line numbers.

1. Open counter.v in the Source window.
a. Select View > Files to open the Files window.
b. Click the + sign next to the sim filename to see the contents of vsim.wif dataset.

c. Double-click counter.v (or counter.vhd if you are ssmulating the VHDL files) to
open the file in the Source window.

2. Set abreakpoint on line 36 of counter.v (or, line 39 of counter.vhd for VHDL).
a. Scroll to line 36 and click in the Ln# (line number) column next to the line number.

A red ball appears in the line number column at line number 36 (Figure 3-9),
indicating that a breakpoint has been set.

Figure 3-9. Setting Breakpoint in Source Window

. Z: [Tutarialfexamplestutorialsverilog/basicSimulationfcounter v - Default

Lrgt Tl i £ ||

35

6@ alwayzs [(posedge clk or posedge reset)

57 | if (reset)

38 count = #tpd_reset_tn_cnunt 5'h00;

39 else

40 count <= #tpd_clk_tn_cnunt increment (count) ;

41 -
o | i

3. Disable, enable, and delete the breakpoint.
a. Click thered ball to disable the breakpoint. It will become a black ball.
b. Click the black ball again to re-enable the breakpoint. It will become ared ball.
c. Click thered ball with your right mouse button and select Remove Breakpoint 36.

d. Click intheline number column next to line number 36 again to re-create the
breakpoint.

4. Restart the simulation.

a. Click the Restart icon to reload the design elements and reset the simulation

timeto zero.

30 ModelSim SE Tutorial, v10.1

Basic Simulation
Set Breakpoints and Step through the Source

The Restart dialog that appears gives you options on what to retain during the restart

(Figure 3-10).

Figure 3-10. Setting Restart Functions

restart R

Keep:

IV List Format

v wave Format

I¥ Ereakpoirts

¥ Logged Signals
I¥ wirtual Definitions
[V assertions

¥ Cover Directives
v aTv Format

{.Pestart Cancel |

..............................

b. Click the Restart button in the Restart dialog.

c. Click the Run -All icon.
The simulation runs until the breakpoint is hit. When the simulation hits the

breakpoint, it stops running, highlights the line with a blue arrow in the
Source view (Figure 3-11), and issues a Break message in the Transcript window.

Figure 3-11. Blue Arrow Indicates Where Simulation Stopped.

. i/ Tutoriallexamplesftutorials/verilog/basicSimulation)counter .+ - Default

Lna | o + ||

35

3 ol Ialwagrs [(posedge clk or posedge reset)

37 if [reset)

38 count = #tpd_reset_tc_cuunt g'h0O0;

39 else

40 count <= #tpd_cl}{_tn_cuunt increment [count) ;

41 -
J | 1

When a breakpoint is reached, typically you want to know one or more signal
values. Y ou have severa options for checking values:

® ook at the values shown in the Objects window (Figure 3-12)

ModelSim SE Tutorial, v10.1

31

Basic Simulation
Set Breakpoints and Step through the Source

Figure 3-12. Values Shown in Objects Window
- [||:|'||-||' :} E .

Thame lvaue Jkind |Mode ||

4 tpd _ko_counkt 3 Pararneter Inkernal

4 tpd_clk_to_count '3 er Internal
4. count Packed Array Out

4 dk kD Mt In
4 reset St = In

B .

® set your mouse pointer over avariable in the Source window and a yellow box
will appear with the variable name and the value of that variable at the time of
the selected cursor in the Wave window

* highlight asignal, parameter, or variable in the Source window, right-click it,
and select Examine from the pop-up menu to display the variable and its current
value in a Source Examine window (Figure 3-13)

Figure 3-13. Parameter Name and Value in Source Examine Window

x

fteat_counter,/dut/#ALWAYS5#35/tpd reset to count
3

oK

® usethe examine command at the VSIM> prompt to output a variable value to
the Transcript window (i.e., examine count)

5. Try out the step commands.
a. Click the Step Into icon on the Step toolbar. *
This single-steps the debugger. »
Experiment on your own. Set and clear breakpoints and use the Step, Step Over, and
Continue Run commands until you feel comfortable with their operation.
Lesson Wrap-Up

This concludes this lesson. Before continuing we need to end the current simulation.

1. Select Smulate> End Simulation.

2. Click Yeswhen prompted to confirm that you wish to quit simulating.

32 ModelSim SE Tutorial, v10.1

Basic Simulation
Set Breakpoints and Step through the Source

ModelSim SE Tutorial, v10.1 33

Basic Simulation
Set Breakpoints and Step through the Source

34 ModelSim SE Tutorial, v10.1

Chapter 4
Projects

Introduction

In this lesson you will practice creating a project.

At aminimum, projects contain awork library and a session state that is stored in an .mpf file. A
project may also consist of:

®* HDL sourcefilesor referencesto sourcefiles
® other files such as READMESs or other project documentation
® |ocd libraries

* referencesto global libraries

Design Files for this Lesson

The sample design for this lesson is asimple 8-bit, binary up-counter with an associated test
bench. The pathnames are as follows:

Verilog —<install_dir>/examples/tutorial s/verilog/projects/counter.v and tcounter.v
VHDL —<install_dir>/examples/tutorials/'vhdl/projects/counter.vhd and tcounter.vhd

This lesson uses the Verilog files tcounter.v and counter.v. If you have aVHDL license, use
tcounter.vhd and counter.vhd instead.

Related Reading
User's Manual Chapter: Projects.

Create a New Project

1. Create anew directory and copy the design files for this lesson into it.

Start by creating a new directory for this exercise (in case other users will be working
with these lessons).

Verilog: Copy counter.v and tcounter.v files from
/<install_dir>/examples/tutorial s/verilog/projects to the new directory.

VHDL: Copy counter.vhd and tcounter.vhd files from
/<install_dir>/examples/tutorial s/'vhdl/projects to the new directory.

ModelSim SE Tutorial, v10.1 35

Projects
Create a New Project

2. If you just finished the previous lesson, Model Sim should already be running. If not,
start ModelSim.

a. Typevsim at a UNIX shell prompt or use the Model Sim icon in Windows.

b. Select File> Change Directory and change to the directory you created in step 1.
3. Create anew project.

a. Select File> New > Project (Main window) from the menu bar.

This opens the Create Project dialog where you can enter a Project Name, Project
Location (i.e., directory), and Default Library Name (Figure 4-1). Y ou can also
reference library settings from a selected .ini file or copy them directly into the
project. The default library is where compiled design units will reside.

b. Typetest inthe Project Namefield.

c. Click the Browse button for the Project Location field to select a directory wherethe
project file will be stored.

d. Leavethe Default Library Name set to work.
e. Click OK.

Figure 4-1. Create Project Dialog - Project Lab

Create Projeck El

— Project Mame
|test

— Project Location
|E: /Tutonial/examples/projects Browse. ..

— Default Libram Mame
|wu:|rk

— Copy Settings From

|a’mndelsim.ini Browse...

% Copy Library Mappings © Reference Libran Mappings

Ok | I:ance||

Add Objects to the Project

Once you click OK to accept the new project settings, a blank Project window and the “Add
items to the Project” dialog will appear (Figure 4-2). From the dialog you can create a new
design file, add an existing file, add afolder for organization purposes, or create a ssmulation
configuration (discussed below).

36 ModelSim SE Tutorial, v10.1

Projects
Create a New Project

Figure 4-2. Adding New Items to a Project
£

— Click an the icon to add itemsz of that lpe:——

]]

Create Mew File Add Ezizting File
Create Simulation Create Mew Folder

Cloze |

1. Addtwo existing files.
a. Click Add Existing File.

This opensthe Add fileto Project dialog (Figure 4-3). Thisdialog lets you browse to
find files, specify thefile type, specify afolder to which the file will be added, and
identify whether to leave the filein its current location or to copy it to the project

directory.
Figure 4-3. Add file to Project Dialog
Add file to Project x|
— File Mame
I-:u:uunter.v tcounter.y Browse... |
— Addfie aztope——— Falder
| default R ’;riilng files b
¥ Feference from curent location © Copy to project directary
Ok, I Cancel I

b. Click the Browse button for the File Name field. This opens the “ Select filesto add
to project” dialog and displays the contents of the current directory.

c. Verilog: Select counter.v and tcounter.v and click Open.
VHDL: Select counter.vhd and tcounter.vhd and click Open.

This closes the “ Select files to add to project” dialog and displays the selected files
inthe “Add fileto Project” dialog (Figure 4-3).

d. Click OK to add the files to the project.

ModelSim SE Tutorial, v10.1 37

Projects

Create a New Project

e. Click Close to dismissthe Add itemsto the Project dialog.

Y ou should now see two files listed in the Project window (Figure 4-4). Question-
mark iconsin the Status column indicate that the file has not been compiled or that
the source file has changed since the last successful compile. The other columns
identify file type (e.g., Verilog or VHDL), compilation order, and modified date.

Figure 4-4. Newly Added Project Files Display a’?’ for Status

Mame Status Type Order |Modified
trounter. v > Verilog 1 10//15/08 09:53:50 PM
counter.y > Verlog 0 10//15/08 0%:53:50 PM

JIL Library

Changing Compile Order (VHDL)

By default Model Sim performs default binding of VHDL designs when you load the design
with vsim. However, you can elect to perform default binding at compile time. (For details,
refer to the section Default Binding in the User’s Manual.) If you elect to do default binding at
compile, then the compile order isimportant. Follow these steps to change compilation order
within a project.

1. Change the compile order.

a. Select Compile > Compile Order.

This opens the Compile Order dialog box.

. Click the Auto Gener ate button.

Model Sim determines the compile order by making multiple passes over thefiles. It
starts compiling from the top; if afilefails to compile due to dependencies, it moves
that file to the bottom and then recompilesit after compiling the rest of thefiles. It
continues in this manner until all files compile successfully or until afile(s) can’'t be
compiled for reasons other than dependency.

Alternatively, you can select afile and use the Move Up and Move Down buttons to
put the filesin the correct order (Figure 4-5).

38

ModelSim SE Tutorial, v10.1

Projects
Create a New Project

Figure 4-5. Compile Order Dialog

Compile Drder x|

——iCurrent Order

tcounter,y il

=
counker v

Move up/down buttons ——

[T [

Auko Generate| Ok | Can-:e||

c. Click OK to close the Compile Order dialog.

Compile the Design
1. Compilethefiles.

a. Right-click either counter.v or tcounter.v in the Project window and select Compile
> Compile All from the pop-up menu.

Model Sim compiles both files and changes the symbol in the Status column to a
green check mark. A check mark means the compile succeeded. If compilefails, the
symbol will beared’X’, and you will see an error message in the Transcript
window.

2. View the design units.
a. Click theLibrary tab (Figure 4-6).
b. Click the’+ icon next to the work library.

Y ou should see two compiled design units, their types (modulesin this case), and the
path to the underlying source files.

ModelSim SE Tutorial, v10.1 39

Projects
Create a New Project

Figure 4-6. Library Window with Expanded Library

Type Path

Library C:ftutorials fverilog/projects fwork

{/]] counter Module C: ftutorials frerilog fprojects foounter v '
st_counter odule - rials fverilogfprojects ftcounter. v .

test_counte Modul C: ftutorials/verilog/projectstcounte -
ﬂm floatfixlib Library SMODEL_TECH/../floatfixib
+ mtiAwvm Library SMODEL_TECH/. . favm ,
¥ mtCvm Library SMODEL_TECH/.. fovm-2.0 ’
+ mtLIPF Library SMODEL_TECH/. . fupf_lib
l’ﬂ sv_std Library EMODEL_TECH/.. fsv_std
++) vitsl2000 Library $MODEL_TECH/.. vital2000
1,4]1 iees Library SMODEL_TECH/..fiese r

EMODEL_TECH/. . fmodelsim_lib

M-

ﬂm modelsim_lib Library

Optimize for Design Visibility
1. Usethevopt command to optimize the design with full visibility into all design units.
a. Enter the following command at the QuestaSim> prompt in the Transcript window:

vopt +acc test_counter -0 testcounter_opt

The +acc switch provides visibility into the design for debugging purposes.

The -0 switch alows you designate the name of the optimized design file
(testcounter_opt).

Note
Y ou must provide a name for the optimized design file when you use the vopt command.

Load the Design
1. Loadthetest_counter design unit.
a. Usethe optimized design name to load the design with the vsim command:

vsim testcounter_opt

The Structure (sim) window appears as part of the tab group with the Library and
Project windows (Figure 4-7).

40 ModelSim SE Tutorial, v10.1

Projects
Organizing Projects with Folders

Figure 4-7. Structure(sim) window for a Loaded Design

& cim - Default
Design unit (Design unit type
B test_counter test_counte... Module -
- dut counter(fast) Module +acc=<..,
%‘ increment counter(fast) Function +acc=<..,
of FALWAYS#,.. counter(fast) Process +acc=<,..
o FINITIAL#17 test_counte...Process +acc=<,..
o FINITIAL#23 test_counte...Process +acc=<...
o FINITIAL#31 test_counte...Process +acc=<.,.
|g Fvsim_capacty# Capadity +acc=-<...

At this point you would typically run the ssmulation and analyze or debug your
design like you did in the previous lesson. For now, you'll continue working with
the project. However, first you need to end the simulation that started when you
loaded test_counter.

2. Endthe simulation.
a Select Smulate > End Simulation.
b. Click Yes.

Organizing Projects with Folders

If you have alot of filesto add to a project, you may want to organize them in folders. Y ou can
create folders either before or after adding your files. If you create afolder before adding files,
you can specify in which folder you want afile placed at the time you add the file (see Folder
field in Figure 4-3). If you create afolder after adding files, you edit the file properties to move
it to that folder.

Add Folders

Asshown previously in Figure 4-2, the Add itemsto the Project dialog has an option for adding
folders. If you have already closed that dialog, you can use a menu command to add a folder.

1. Addanew folder.
a. Right-click in the Projects window and select Add to Project > Folder.
b. TypeDesign Filesin the Folder Namefield (Figure 4-8).

ModelSim SE Tutorial, v10.1 41

Projects
Organizing Projects with Folders

Figure 4-8. Adding New Folder to Project

Add Folder x|

— Folder Mame

IDesign Filez

—Falder Lacatian

|T|:||:u Level II

ak. I Eanu:ell

c. Click OK.
The new Design Files folder is displayed in the Project window (Figure 4-9).

Figure 4-9. A Folder Within a Project

Project - C: ftutorials fverilogfprojectsftest

Mame Modified

counter.y \f Verilog 0 10/15/03 09:58: 50 PM
toounter. v + Verilog 1 10/15/08 09:58:50 PM
[C] Diesign Files Folder

¢
3
\

2. Add asub-folder.
a. Right-click anywherein the Project window and select Add to Project > Folder.
b. TypeHDL inthe Folder Namefield (Figure 4-10).

Figure 4-10. Creating Subfolder

Add Folder x|

— Folder Mame

[HOL

— Folder Locatian

Dezign Files

|Top Lewvel

=

c. Click the Folder Location drop-down arrow and select Design Files.
d. Click OK.

42 ModelSim SE Tutorial, v10.1

Projects
Organizing Projects with Folders

A '+ icon appears next to the Design Files folder in the Project window
(Figure 4-11).

Figure 4-11. A folder with a Sub-folder

Project - C: ftutorialsfverilogfprojects ftest

Mame Modified

counter. v " Verilog 0 101508 09:58:50 PM
toounter, v " verilog 1 10/15/08 09:58:50 PM

=B Design Files Folder

] HOL Folder

e. Click the’+' icon to seethe HDL sub-folder.

Moving Files to Folders

If you don’t place filesinto afolder when you first add the files to the project, you can move
them into afolder using the properties dialog.

1. Movetcounter.v and counter.v to the HDL folder.
a. Select both counter.v and tcounter.v in the Project window.
b. Right-click either file and select Properties.

This opens the Project Compiler Settings dialog (Figure 4-12), which allows you to
set avariety of options on your design files.

Figure 4-12. Changing File Location via the Project Compiler Settings Dialog

Project Compiler Settings El

General I Verilog & System Verilog] Coverage] ﬂﬂ
—General Settings
[T Do Mot Compile Compile to library: |w|: rk ﬂ
Place in Folder: |[-DL ﬂ
—File Properties
Multiple files selected
OK | Cancel |

c. Click the Place In Folder drop-down arrow and select HDL.

ModelSim SE Tutorial, v10.1 43

Projects
Simulation Configurations

d. Click OK.

The selected files are moved into the HDL folder. Click the’+’ icon next to the HDL
folder to see thefiles.

Thefiles are now marked with a’? in the Status column because you moved the
files. The project no longer knows if the previous compilation is till valid.

Simulation Configurations

A Simulation Configuration associates a design unit(s) and its ssmulation options. For example,
let’s say that every time you load tcounter.v you want to set the ssmulator resolution to
picoseconds (ps) and enable event order hazard checking. Ordinarily, you would have to specify
those options each time you load the design. With a Simulation Configuration, you specify
options for a design and then save a* configuration” that associates the design and its options.
The configuration is then listed in the Project window and you can double-click it to load
tcounter.v along with its options.

1. Create anew Simulation Configuration.

a. Right-click in the Project window and select Add to Project > Simulation
Configuration from the popup menu.

This opens the Add Simulation Configuration dialog (Figure 4-13). The tabsin this
dialog present several ssmulation options. Y ou may want to explore the tabs to see
what isavailable. Y ou can consult the Model Sim User’s Manual to get a description
of each option.

44 ModelSim SE Tutorial, v10.1

Projects

Simulation Configurations

Figure 4-13. Simulation Configuration Dialog

Add Simulation Configuration x|
Simulation Configuration Mame Flace in Folder
’7||:|:|unter ’7 |HDL ﬂ Add Folder ...
Dresign I WHOIL] Werilog] Libraries] SDF] Others] e
*|Name | Type |Path (=
— il waork: Library C:fqueskasim_5,5d/examples/tukarials, .
{1] counter Module C:fqueskasim_5,5d/examples/tukarials, .
kest_counter Module C:fguestasim_&,5dfexamples/tutorials. ..
ﬁ kestcounter_opk, .. Optimized. .
+|—jI[FloatFixlib Library $MODEL_TECH). . [floatFixlib
+|—JI[rnkifm Library $MODEL_TECHY. . Javm]
+|—jll ki Library $MODEL_TECHY. . fovm-2.0.3
+|—jI[kP& Library $MODEL_TECH/. ./pa_lib
+|—j|[rnkilPF Library $MODEL_TECH), . fupf_lib
+ sv_skd Library $MODEL_TECHY, . fsv_skd
~Design Unikls) Resolution
|tm:| rk.test_counter ’7|ps ﬂ
—iopkimization
[~ Enable optimization Cipkimization Opkions. .. |

Save

Cancel |

o

e o

Select HDL from the Place in Folder drop-down.

e. Click the Resolution drop-down and select ps.

f. Uncheck the Enable optimization selection box.

Type counter in the Simulation Configuration Name field.

Click the '+ icon next to the work library and select test_counter.

For Verilog, click the Verilog tab and check Enable hazard checking (-hazar ds).

Click Save.

The files tcounter.v and counter.v show question mark iconsin the status column
because they have changed location since they were last compiled and need to be

recompiled.

i. Select one of the files, tcounter.v or counter.v.

j. Select Compile> CompileAll.

ModelSim SE Tutorial, v10.1

45

Projects
Simulation Configurations

The Project window now shows a Simulation Configuration named counter in the
HDL folder (Figure 4-14).

Figure 4-14. A Simulation Configuration in the Project window

Project - C:/ftutorials fverilog/projectsftes

Type
;,-[;| Design Files Folder
—H_] HOL Folder
toounter.v + Verilog | 10/15/08 09:53:50 PM
counter.v + Verilog] 10/15/08 09:53:50 PM
M counter Simulation

w\" E \'_ :

2. Load the Simulation Configuration.
a. Double-click the counter Simulation Configuration in the Project window.

In the Transcript window of the Main window, the vsim (the Model Sim simulator)
invocation shows the -hazards and -t ps switches (Figure 4-15). These are the
command-line equivalents of the options you specified in the Simulate dialog.

Figure 4-15. Transcript Shows Options for Simulation Configurations

i —————————————

v3im -hazards -t ps -novopt work.test_counter
v3im -hazards -t ps -novopt work.test counter
Loading work. Cest_counter

Loading work.counter

WSIM 143 |

| Praojeck : test |Mow: O p

Lesson Wrap-Up

This concludes this lesson. Before continuing you need to end the current simulation and close
the current project.

1. Select Simulate > End Simulation. Click Yes.
2. Inthe Project window, right-click and select Close Project.

If you do not close the project, it will open automatically the next time you start
ModelSim.

46 ModelSim SE Tutorial, v10.1

Chapter 5
Working With Multiple Libraries

Introduction

In this lesson you will practice working with multiple libraries. Y ou might have multiple
libraries to organize your design, to access | P from athird-party source, or to share common
parts between simulations.

Y ou will start the lesson by creating aresource library that contains the counter design unit.
Next, you will create a project and compile the test bench into it. Finally, you will link to the
library containing the counter and then run the simulation.

Design Files for this Lesson

The sample design for this lesson is asimple 8-hit, binary up-counter with an associated test
bench. The pathnames are as follows:

Verilog —<install_dir>/examples/tutorial s/verilog/libraries/counter.v and tcounter.v
VHDL —<install_dir>/examples/tutorials/vhdl/libraries/counter.vhd and tcounter.vhd

Thislesson usesthe Verilog files tcounter.v and counter.v in the examples. If you haveaVHDL
license, use tcounter.vhd and counter.vhd instead.

Related Reading
User's Manual Chapter: Design Libraries.

Creating the Resource Library

Before creating the resource library, make sure the modelsim.ini in your install directory is
“Read Only.” Thiswill prevent permanent mapping of resource libraries to the master
modelsim.ini file. See Permanently Mapping VHDL Resource Libraries.

1. Create adirectory for the resource library.

Create anew directory called resource_library. Copy counter.v from
<install_dir>/examples/tutorials/verilog/libraries to the new directory.

2. Create adirectory for the test bench.

ModelSim SE Tutorial, v10.1 47

Working With Multiple Libraries
Creating the Resource Library

Create anew directory called testbench that will hold the test bench and project files.
Copy tcounter.v from <install_dir>/examples/tutorials/verilog/librariesto the new
directory.

Y ou are creating two directories in this lesson to mimic the situation where you receive
aresource library from athird-party. As noted earlier, we will link to the resource
library in the first directory later in the lesson.

3. Start Model Sim and change to the resource_library directory.

If you just finished the previous lesson, Model Sim should already be running. If not,
start ModelSim.

a. Typevsim at aUNIX shell prompt or use the Model Sim icon in Windows.
If the Welcome to Model Sim dialog appears, click Close.

b. Select File> Change Directory and change to the resource_library directory you
created in step 1.

4. Createtheresourcelibrary.
a Select File> New > Library.

b. Typeparts lib inthe Library Name field (Figure 5-1).

Figure 5-1. Creating New Resource Library

Create a New Library x|

—_reate

' anew library
" amap ko an existing library

¥ & new library and a logical mapping to it

—Library Mame:

|p arts_lih

—Library Physical Mame:

|p arts_lib

Ok | Caru:e||

The Library Physical Name field isfilled out automatically.

Once you click OK, ModelSim creates a directory for the library, listsit in the
Library window, and modifies the modelsim.ini file to record this new library for the
future.

5. Compile the counter into the resource library.

48

ModelSim SE Tutorial, v10.1

Working With Multiple Libraries
Creating the Project

a. Click the Compile icon on the Main window toolbar. @

b. Select the parts_lib library from the Library list (Figure 5-2).

Figure 5-2. Compiling into the Resource Library
Librane: Iparts_lil:u j

Look ir: I =) resource_library j = £ Ef-

I% parts_lib

File name: Icnunter.v Compile I
Filez of type: IHDL Files [".v;".'-.fl,'“.vhd;".vhdl;“.vhn;“.hdl;“.vj Daone |

[T Compile selected files together Default Options... | Edit Source |

c. Double-click counter.v to compileit.
d. Click Done.

Y ou now have aresource library containing a compiled version of the counter
design unit.

6. Change to the testbench directory.

a. Select File > Change Directory and change to the testbench directory you created
instep 2.

Creating the Project

Now you will create a project that contains tcounter.v, the counter’ s test bench.

1. Createthe project.
a. Select File> New > Project.
b. Typecounter inthe Project Namefield.

c. Do not change the Project Location field or the Default Library Name field. (The
default library name iswork.)

ModelSim SE Tutorial, v10.1 49

Working With Multiple Libraries
Linking to the Resource Library

d. Make sure“Copy Library Mappings’ is selected. The default modelsim.ini file will
be used.

e. Click OK.
2. Add the test bench to the project.
a. Click Add Existing Filein the Add items to the Project dial og.

b. Click the Browse button and select tcounter.v in the “ Select files to add to project”
dialog.

c. Click Open.
d. Click OK.
e. Click Close to dismissthe “Add itemsto the Project” dialog.
The tcounter.v fileislisted in the Project window.
3. Compile the test bench.
a. Right-click tcounter.v and select Compile > Compile Selected.

Linking to the Resource Library

To wrap up this part of the lesson, you will link to the parts lib library you created earlier. But
first, try optimizing the test bench without the link and see what happens.

Model Sim responds differently for Verilog and VHDL in this situation.

Verilog

Optimize the Verilog Design for Debug Visibility
1. Usethe vopt command to optimize with full debug visibility into all design units.
a. Enter the following command at the QuestaSim> prompt in the Transcript window:
vopt +acc test_counter -0 testcounter_opt
The +acc switch provides visibility into the design for debugging purposes.

The -0 switch allows you designate the name of the optimized design file
(testcounter_opt).

Note
Y ou must provide a name for the optimized design file when you use the vopt command.

50 ModelSim SE Tutorial, v10.1

Working With Multiple Libraries
Linking to the Resource Library

The Main window Transcript reports an error loading the design because the counter
moduleis not defined.

b. Type quit -sim to quit the ssmulation.

The process for linking to aresource library differs between Verilog and VHDL. If you are
using Verilog, follow the stepsin Linking to aResource Library. If you are using VHDL, follow
the steps in Permanently Mapping VHDL Resource Libraries one page later.

VHDL

Optimize the VHDL Design for Debug Visibility
1. Usethe vopt command to optimize with full debug visibility into all design units.

a. Enter the following command at the QuestaSim> prompt in the Transcript window:
vopt +acc test_counter -o testcounter_opt
The +acc switch provides visibility into the design for debugging purposes.

The -0 switch allows you designate the name of the optimized design file
(testcounter_opt).

Note
Y ou must provide a name for the optimized design file when you use the vopt command.

The Main window Transcript reports awarning (Figure 5-3). When you see a
message that contains text like "Warning: (vsim-3473)", you can view more detail
by using the verror command.

Figure 5-3. VHDL Simulation Warning Reported in Main Window
——

CuestaSim = wvsim -voptargs="+acc” test_counter

vsim ~voptargs=\"+acc\” test_counter

** Note: (vsim-3312) Design is being optimized. .. 4
** Warning: [1] C:ftutorials/testbenchftcounter . wvhd(31): (vopt-3473) Component instance "dut : counter” is not bound.

Loading std.standard

Loading work. test_counter (only)#1

== \Warning: (vsim-3473) Compaonent instance "dut : counter” is not bound.

Time: O ns Iteration: O Region: /test_counter File: C:ftutarials/testhenchftcounter. vhd '

V5IM 7=

Project : counter |Nuw: Ons Delta: 0 |sjm:,|’test_::ounter

b. Typeverror 3473 at the VSIM> prompt.

ModelSim SE Tutorial, v10.1 51

Working With Multiple Libraries
Linking to the Resource Library

The expanded error message tells you that a component ('dut’ in this case) has not
been explicitly bound and no default binding can be found.

c. Typequit -sim to quit the simulation.

Linking to a Resource Library

Linking to aresource library requires that you specify a"search library" when you invoke the
simulator.

1. Specify asearch library during simulation.

a. Click the Simulate icon on the Main window toolbar. %

b. Click the’+ icon next to the work library and select test_counter.
c. Uncheck the Enable optimization selection box.
d. Click theLibrariestab.

e. Click the Add button next to the Search Librariesfield and browseto parts libinthe
resource_library directory you created earlier in the lesson.

f. Click OK.
The dialog should have parts _lib listed in the Search Libraries field (Figure 5-4).
g. Click OK.

The design loads without errors.

52 ModelSim SE Tutorial, v10.1

Working With Multiple Libraries
Permanently Mapping VHDL Resource Libraries

Start simulation

Design | VHDL | Verlog Lihraries] SDF | Others | e

— Search Librariez [L]

. /modeltech/eramplesdresource_library/partz_lib Add
kodify..

Delete

— Search Libraries First [-Lf]

Add
hdodify. .

PEE | EEE

Delete

Ok, I Cancel I

Permanently Mapping VHDL Resource Libraries

If you reference particular VHDL resource librariesin every VHDL project or simulation, you
may want to permanently map the libraries. Doing this requires that you edit the master
modelsim.ini filein the installation directory. Though you won’t actually practiceit in this
tutorial, here are the steps for editing thefile:

1

Locate the modelsim.ini file in the Model Sim installation directory
(<install_dir>/modeltech/modelsim.ini).

IMPORTANT - Make a backup copy of thefile.

Change the file attributes of modelsim.ini so it is no longer "read-only."

Open the file and enter your library mappings in the [Library] section. For example:
parts_lib = C:/libraries/parts_lib

Save thefile.

Change the file attributes so the file is "read-only" again.

ModelSim SE Tutorial, v10.1 53

Working With Multiple Libraries
Permanently Mapping VHDL Resource Libraries

Lesson Wrap-Up

This concludes this lesson. Before continuing we need to end the current ssmulation and close
the project.

1. Select Smulate > End Simulation. Click Yes.
2. Select the Project window to make it active.
3. Sdect File> Close. Click OK.

54 ModelSim SE Tutorial, v10.1

Chapter 6
Simulating SystemC Designs

Introduction

Model Sim treats SystemC as just another design language. With only afew exceptionsin the
current release, you can simulate and debug your SystemC designs the same way you do HDL
designs.

Note
D The functionality described in this lesson requires a systemc license feature in your

ModelSim license file. Please contact your Mentor Graphics sales representative if you
currently do not have such afeature.

Design Files for this Lesson

There are two sample designs for thislesson. The first isavery basic design, called "basic”,
containing only SystemC code. The second design is aring buffer where the test bench and top-
level chip are implemented in SystemC and the lower-level modules are written in HDL.

The pathnames to the files are as follows:

SystemC —<install_dir>/examples/systemc/sc_basic
SystemC/Verilog —<install_dir>/examples/systemc/sc_viog
SystemC/VHDL —<install_dir>/examples/systemc/sc_vhdl

Thislesson uses the SystemC/V erilog version of the ringbuf design in the examples. If you have
aVHDL license, usethe VHDL version instead. Thereisaso amixed version of the design, but
the instructions here do not account for the slight differencesin that version.

Related Reading
User’'s Manual Chapters: SystemC Simulation, Mixed-Language Simulation, and C Debug.

Reference Manual command: sccom.

ModelSim SE Tutorial, v10.1 55

Simulating SystemC Designs
Setting up the Environment

Setting up the Environment

SystemC is alicensed feature. Y ou need the systemc license feature in your Model Sim license
file to simulate SystemC designs. Please contact your Mentor Graphics sales representatives if
you currently do not have such afeature.

The table below shows the supported operating systems for SystemC and the corresponding
required versions of a C compiler

Table 6-1. Supported Platforms for SystemC

Platform/OS Supported compiler versions 32-bit 64-bit
support | support

Intel and AMD x86-based gcc 4.0.2,gcc4.1.2,gcc 4.3.3 yes yes

architectures (32- and 64-bit) VCO islinux (32-bit binary)

SUSE Linux Enterprise Server 9.0, VCOislinux_x86 64 (64-bit

91,10, 11 binary)

Red Hat Enterprise Linux 3, 4, 5

Solaris 8, 9, and 10 gcc4.1.2 yes no

Solaris 10 on x86 gcc4.1.2 yes yes

Windows! XP, Vistaand 7 Minimalist GNU for Windows | yes no
(MinGW) gcc 4.2.1

1. SystemC supported on this platform with gcc-4.2.1-mingw32vc9.

For acomplete list of supported platforms and SystemC compilers see the Supported Platforms
section of the Installation and Licensing Guide. Also, refer to SystemC Simulation in the
ModelSm User’s Manual for further details.

Preparing an OSCI SystemC design

For an OpenSystemC Initiative (OSCI) compliant SystemC design to run on Model Sim, you
must first:

®* Replace sc_main() withan SC_MODULE, potentially adding a process to contain any
test bench code.

® Replace sc_start() by using the run command in the GUI.
®* Removecalsto sc_initialize().
® Export the top level SystemC design unit(s) using the SC_ MODULE_EXPORT macro.

In order to maintain portability between OSCI and Model Sim simulations, we recommend that
you preserve the original code by using #ifdef to add the M odel Sim-specific information. When
the design is analyzed, sccom recognizes the MTI_SY STEMC preprocessing directive and
handles the code appropriately.

56 ModelSim SE Tutorial, v10.1

Simulating SystemC Designs
Preparing an OSCI SystemC design

For more information on these modifications, refer to Modifying SystemC Source Code in the
User’'s Manual.

1. Create anew directory and copy thetutorial filesinto it.

Start by creating a new directory for this exercise (in case other users will be working
with these lessons). Create the directory, then copy all filesfrom
<install_dir>/examples/systemc/sc_basic into the new directory.

2. Start Model Sim and change to the exercise directory.

If you just finished the previous lesson, Model Sim should already be running. If not,
start ModelSim.

a. Typevsimat aUNIX shell prompt or use the Model Sim icon in Windows.
If the Welcome to Model Sim dialog appears, click Close.
b. Select File> Change Directory and change to the directory you created in step 1.

3. Useatext editor to view and edit the basic_orig.cpp file. To use ModelSim’ s editor,
from the Main Menu select File > Open. Change the files of type to C/C++ filesthen
double-click basic_orig.cpp.

a. If you areusing ModelSim’ s editor, right-click in the source code view of the
basic_orig.cpp file and uncheck the Read Only option in the popup menu.

b. Usingthe#ifdef MTI_SYSTEM C preprocessor directive, add the
SC_MODULE_EXPORT(top); to the design as shown in Figure 6-1.

c. Savethefileasbasic.cpp.

ModelSim SE Tutorial, v10.1 57

Simulating SystemC Designs
Preparing an OSCI SystemC design

Figure 6-1. The SystemC File After Modifications.
ln# | | -]

/{ basic.cpp (modified file)

I]
[T

$#include "basic.h™

int 2c main(int, char*[]]

1z
13 $#ifdef HTI_SYSTEHC
15 SC_MODULE_EXPORT (top) ;
16

7 felsze

Q

sc_clnck clk:

IR S T

mod & af "a" j:
a.clk(clk):

[T

2c_initializel):

return 0;
¥

S I S R

L i B3 K3 BRI BRI RS ORI RIS RY RY R R
1 @y n

#endif LI

=l [

A correctly modified copy of the basic.cpp isaso available in the sc_basic/gold directory.

1. Edit the basic_orig.h header file as shown in Figure 6-2.

a. If you areusing Model Sim’ s editor, right-click in the source code view of the
basic_orig.h file and uncheck the Read Only option in the popup menu.

b. AddaModeSim specific SC_ MODULE (top) as shown in lines 52 through 65 of
Figure 6-2.

The declarations that were in sc_main are placed here in the header file, in
SC_MODULE (top). This creates atop level module above mod_a, which allows
the tool’ s automatic name binding feature to properly associate the primitive
channels with their names.

58 ModelSim SE Tutorial, v10.1

Simulating SystemC Designs
Compiling a SystemC-only Design

Figure 6-2. Editing the SystemC Header File.

e L PEY— p— e e
il — . ~ - - ._.‘_/ T e . —

(AR,

T e L e

SC_CTOR(mod &)

[Ty
I

1%
I

I
-1 0

SC METHCD(main action method }:
SC THREAD| main action thread }:

1%

44 SC CTHREAD(main action cthread, clk.pos() |:
g }

0 ¥

2 #ifdef MTI SYSTEMC

3 5C MODULE (top)

5 sc_clock clk:

& mod & a;

SC_CTCR (top)

Fa O B I s L = T T T T o O T T T O T Y
[T I W]

: clk{"clk", 200, 0.5, 0.0, false),
al:rlarl
2 a.clk(clk }:
3 }
4 ¥
5 #endif -
il :

c. Savethefileasbasic.h.

A correctly modified copy of the basic.h isalso available in the sc_basic/gold
directory.

Y ou have now made all the edits that are required for preparing the design for compilation.

Compiling a SystemC-only Design

With the edits complete, you are ready to compile the design. Designs that contain only
SystemC code are compiled with sccom.

1. Createawork library.
a. Typevlib work at the Model Sim> prompt in the Transcript window.
2. Compileand link all SystemC files.
a. Type sccom -g basic.cpp at the Model Sim> prompt.
The -g argument compiles the design for debug.

b. Type sccom -link at the Model Sim> prompt to perform the final link on the
SystemC objects.

ModelSim SE Tutorial, v10.1 59

Simulating SystemC Designs
Mixed SystemC and HDL Example

Y ou have successfully compiled and linked the design. The successful compilation verifies that
all the necessary file modifications have been entered correctly.

In the next exercise you will compile and load a design that includes both SystemC and HDL

code.

Mixed SystemC and HDL Example

In this next example, you have a SystemC test bench that instantiates an HDL module. In order
for the SystemC test bench to interface properly with the HDL module, you must create a stub
module, aforeign module declaration. Y ou will use the scgenmod utility to create the foreign
module declaration. Finally, you will link the created C object files using sccom -link.

1

Create a new exercise directory and copy the tutorial filesinto it.

Start by creating a new directory for this exercise (in case other users will be working
with these lessons). Create the directory, then copy all filesfrom
<install_dir>/examples/systemc/sc_vliog into the new directory.

If you have aVHDL license, copy thefilesin <install _dir>/examples/systemc/sc_vhdl
instead.

Start Model Sim and change to the exercise directory.

If you just finished the previous lesson, Model Sim should already be running. If not,
start ModelSim.

a. Typevsim at acommand shell prompt.

If the Welcome to Model Sim dialog appears, click Close.
b. Select File> Change Directory and change to the directory you created in step 1.
Set the working library.
a. Typevlib work in the Model Sim Transcript window to create the working library.
Compile the design.

a. Verilog:
Typevlog *.v in the Model Sim Transcript window to compile all Verilog source
files.

VHDL:
Type vcom -93 *.vhd in the Model Sim Transcript window to compile all VHDL
source files.

Create the foreign module declaration (SystemC stub) for the Verilog module ringbuf.

60

ModelSim SE Tutorial, v10.1

Simulating SystemC Designs
Mixed SystemC and HDL Example

a. Verilog:
Type scgenmod -map " scalar=bool" ringbuf > ringbuf.h at the Model Sim>
prompt.

The-map " scalar=bool" argument is used to generate boolean scalar port types
inside the foreign module declaration. See scgenmod for more information.

VHDL.:
Type scgenmod ringbuf > ringbuf.h at the Model Sim> prompt.

The output is redirected to the file ringbuf.h (Figure 6-3).

Figure 6-3. The ringbuf.h File.
$ifndef _SCGENMOD ringkbuf

R S

$define _SCGENMOD ringkbuf

4 $include "systemc.h"

& cizzs ringbuf : public sc_foreign module

8 | public:

a sc_in<bool> clock:
10 sc_in<bool> reset:
11 sc_in<bool> txda;
12 sc_out<bool> rxda:
13 sc_out<bool> txc;
14 sc_out<bool> cutstrobe;
16
i7 ringbuf (sc_module name nm, sonst char® hdl name,
13 int num generics, const char®*® generic list)
13 sc_foreign module (nm),
20 clock ("clock™),
21 reset ("reset"),
22 txda ("txda"),
23 rxda ("rxda"),
24 tHe ("tra"),
25 outstrobe ("outatrobe™)
26
27 elaborate foreign module (hdl name, num generics, generic lis=st):
28 } - - - - -
23 ~ringbuf ()
30 {}
31
32 b
33
34 $endif
35

Thetest_ringbuf.h fileisincluded in test_ringbuf.cpp, as shown in Figure 6-4.

ModelSim SE Tutorial, v10.1 61

Simulating SystemC Designs
Mixed SystemC and HDL Example

Figure 6-4. The test_ringbuf.cpp File

L

3
m
W
it
H

[
1
]
o

b
H
%]
]
[e]

$#include "test ringbuf.h"
i —
¥

include <iostream>
15 5C_MODULE EXPORT (test_ringbuf):

6. Compile and link all SystemC files, including the generated ringbuf.h.
a. Typesccom -gtest_ringbuf.cpp at the Model Sim> prompt.

The test_ringbuf.cpp file contains an include statement for test_ringbuf.h and a
required SC_MODULE_EXPORT (top) statement, which informs Model Sim that
the top-level moduleis SystemC.

b. Type sccom -link at the Model Sim> prompt to perform the final link on the
SystemC objects.

7. Optimize the design with full debug visibility.
a. Enter the following command at the Model Sim> prompt:
vopt +acc test_ringbuf -o test_ringbuf_opt

The +acc switch for the vopt command provides full visibility into the design for
debugging purposes.

The -0 switch designates the name of the optimized design (test_ringbuf_opt).

Note
Y ou must provide a name for the optimized design file when you use the vopt command.

8. Load the design.
a. Load the design using the optimized design name.
vsim test_ringbuf opt

9. Make sure the Objects window is open and the Processes window is open in “Active”
mode, as shown in Figure 6-5. To open or close these windows, use the View menu.

62 ModelSim SE Tutorial, v10.1

Simulating SystemC Designs
Viewing SystemC Objects in the GUI

Figure 6-5. The test_ringbuf Design

Inskance Dresign unit T |Visibiliky

B I kest_ringbuf kesk_ringbuf +acc=-=none 0
o print_restore kest_ringbuf i L INACTINVE
o print_errar kest_ringbuf i False

o) generate_data test_ringbuf
o reset_generator kest_ringbuf
o) compare_data kest_ringbuf

+ il cock sc_corensc_clock +acc=alst
[+ ring_INST ringbufifast) +acc=<full=
E Awsim_capacity ¥ +acc=<none=
4 F

il Library i% sim ﬂ_?—'

Q Transcripk R
Loading work.ringbuf(fast)

Loading work.contrali(fast)

Loading work.store(fast)

Loading work.retrieve(fazt)

WaIM 11> —

| | Onstalus Mowe: 0 ns Delk y
£

Viewing SystemC Objects in the GUI

SystemC objects are denoted in the ModelSim GUI with agreen’S' in the Library window and
agreen square, circle, or diamond icon elsewhere.

1. View objectsin the Library window.
a. Click onthe Library tab and expand the work library.
SystemC objects have agreen’S' next to their names (Figure 6-6).

ModelSim SE Tutorial, v10.1 63

Simulating SystemC Designs

Viewing SystemC Objects in the GUI

Figure 6-6. SystemC Objects in the work Library

s

2. Observe window linkages.

a. Click on the Structure window (sim) tab to make it active.

b. Select the clock instance in the Structure window (Figure 6-7).

Mame Type Path

;HIL wark Library C: ftutarialsfsystemcisc_viogfwark ’
—M _opt Optimized. ..
] control Module s 'n,b.ltturials'n,systemc'n,s-:_vll:ug,"c-:untrl:ul.'-.r*
— 1] retrieve Module C: Ytutorials\systemctsc_viog fretrieve.v
—n ringbuf Module = '|,t|_|t0rials'ﬁystemc'nsc_vlugfringbuf.u:
[] store Module C: \tutarials\systemctsc_viog/store, v
— 5] test_ringbuf ScModule |

+ floatfixdib Library EMODEL_TECH/.. ffloatfixdib

The Objects window updates to show the associated SystemC or HDL objects.

Figure 6-7. SystemC Objects in Structure (sim) and Objects Windows

Instance

Design unit

= | Wisibilicy

kest_ringbuf

o print_restore
o print_error

WP gererate_data
o reset_generator
o) compare_data

kest_ringbuf
kest_ringbuf
kest_ringbuf
kest_ringbuf
kest_ringbuf
kest_ringbuf

Facc=<nonex

FFclock sc_core:sc_clock +acc=alsk
+ gl ring_IMST ringbufifask) +acc=<full =
|g #ysim_capacity# +acc=<none >
4 I I *
&l 4|3

rn_mki_negedge_pr...
m_rti_posedge_pro.
m_rti_turn_off_ne
m_rnti_turm_off_pos, .. False

Processes {Ackive)
T‘Ir'-lame

|Ty|:|e (filkered)

Y o

3. Add objectsto the Wave window.

a. Inthe Structure window, right-click test_ringbuf and select Add Wave from the
popup menu.

64 ModelSim SE Tutorial, v10.1

Simulating SystemC Designs
Viewing SystemC Objects in the GUI

Setting Breakpoints and Stepping in the Source Window

Aswith HDL files, you can set breakpoints and step through SystemC files in the Source
window. In the case of SystemC, Model Sim uses C Debug, an interface to the open-source gdb
debugger. Refer to the C Debug chapter in the User’s Manual for complete details.

1. Before we set a breakpoint, we must disable the Auto Lib Step Out feature, which ison
by default. With Auto Lib Step Out, if you try to step into a standard C++ or SystemC
header file (<install_dir>/include/systemc), Model Sim will automatically do a step-out.

a. Select Tools> C Debug > Allow lib step from the Main menus.
2. Set abreakpoint.
a. Double-click test_ringbuf in the Structure window to open the source file.
b. Inthe Source window:
Verilog: scroll to the area around line 150 of test_ringbuf.h.
VHDL: scroll to the area around line 155 of test_ringbuf.h.

c. Click in the line number column next to the red line number of the line containing
(shown in Figure 6-8):

Verilogibool var_dataerror_newval = actual.read()...
VHDL: sc_logic var_dataerror_newval = acutal.read ...
Note

Model Sim recognizes that the file contains SystemC code and automatically launches C
Debug. There will be adlight delay while C Debug opens before the breakpoint appears.

Once the debugger is running, Model Sim places a solid red ball next to the line
number (Figure 6-8).

ModelSim SE Tutorial, v10.1 65

Simulating SystemC Designs
Viewing SystemC Objects in the GUI

Figure 6-8. Active Breakpoint in a SystemC File

M C:/ftutorials/systemcfsc_vlog/test_ringbuf.h S i A

Lz

147 " On ewvery negedge of the clock, compare actual and expected da
149 inline woid test_ringbuf::compare_data()

1518 bool war dataerror newval = actual.read() " !expected.read()

152 dataerror.write (var dataerror_newval);

153

154 if (reset.read() == 0)

156 storage.write(0) ;

|
r

expected.write (0) ;

1
i

[

l M Wave [E] test_ringbuf.h | 4| ®

3. Run and step through the code.

F
—

a. Typerun 500 at the VSIM> prompt.

When the simulation hits the breakpoint it stops running, highlights the line with a
blue arrow in the Source window (Figure 6-9), and issues a message like thisin the
Transcript:

C breakpoint c.1
test_ringbuf::compare_data (this=0x27c4d08) at test_ringbuf.h:151

Figure 6-9. Simulation Stopped at Breakpoint

M C:ftutorialsfsystemc/sc_viogftest_ringbuf.h iy -4
Lz
147 /4 On every negedge of the clock, compare actual and expected da
145 inline wolid test_ringbuf::compare data|)
150
'_E-'_ﬂ | bool war dataerror newval = actual.read(] © !expected.read()
152 dataerror.write (var dataerror newval);
153 B B
154 if (reset.read() == 0)
156 storage.write (0);
157 expected.write (0) ; .

1| r
l £E| Wave I C] test_ringbuf.h | ﬂi'l

b. Click the Step icon on the Step Into toolbar. '!"

66 ModelSim SE Tutorial, v10.1

Simulating SystemC Designs
Viewing SystemC Objects in the GUI

This steps the simulation to the next statement. Because the next statement isa
function call, Model Sim steps into the function, which isin a separate file —
sc_signal.h (Figure 6-10).

Figure 6-10. Stepping into a Separate File

. 1 fquestasim_mainfinchide)systemnc/sc_signal b - Default

Lrg 4| Mo |

147 mp | { return mw_cur val; }

443

G444 S get a reference to the current value (for tracing)

445 wirtual const hoolé get data ref (] const .

d46 { sc_deprecated get data ref(]; return w cur val; }

447

445

449 S was there a wvalue changed event?

450 wirtual hool event ()] const

451 { return simcontext (] -revent occurredi(m delta + 1]; } LI

] >|

£ Wave [.__. kest_ringbuf. b —I || sc_signal.h | _ﬂ_ﬂ

c. Click the Continue Runicon in the toolbar. | [Z1f

The breakpoint in test_ringbuf.h is hit again.

Examining SystemC Objects and Variables

To examine the value of a SystemC object or variable, you can use the examine command or
view the value in the Objects window.

1. View thevalue and type of an sc_signal.

a. Enter the show command at the CDBG > prompt to display alist of all design
objects, including their types, in the Transcript.

Inthislist, you'll seethat the type for dataerror is*“boolean” (sc_logic for VHDL)
and counter is“int” (Figure 6-11).

ModelSim SE Tutorial, v10.1 67

Simulating SystemC Designs
Viewing SystemC Objects in the GUI

Figure 6-11. Output of show Command

Transaipt ————————————— 48

COBG 15= show

ptype this

type = dass test_ringbuf : public sc_core::sc_module {

public:

sc_core::sc_dock dodk;
sc_rore::sc_event reset_deactivation_event;
sc_rcores:sc_signal<bool = reset;
sc_core::sc_signal<bool = tda;
sc_rore::sc_signal<bool = rxda;
sc_core::sc_signal <bool = twe;
sc_corel:sc_signal<bool = outstrobe;
sc_rore::sc_signal<sc_dtiisc_uint<20= > pseudo;
sc_core::sc_signal<sc_dtiisc_uint<20> > storage;
sc_rore::sc_signal<bool > expected;
sc_rore::sc_signal<bool = dataerror;
sc_core::sc_signal <bool = actual;
int counter;
ringbuf *ring_INST;
void reset_generator();
void generate_data();
void compare_data();
woid print_errar();
void print_restore();
test_ringbuf{sc_core::sc_module_name);
~test_ringbuf{int);

} * const

ptype var_dataerror_newwval

type = boal

R T O L R T L LR L KA PR O R TR O R TR R R TR R T I

COEG 163 |

|Nuw: 10ns Delta: 1 |sim:Itest_ringbuﬁmmpare_da?

b. Enter the examine dataerror command at the CDBG > prompt.
The value returned is "true”.
2. View the value of a SystemC variable.

a. Enter the examine counter command at the CDBG > prompt to view the value of
thisvariable.

The value returned is"-1".

Removing a Breakpoint

1. Return to the Source window for test_ringbuf.h and right-click the red ball in the line
number column. Select Remove Breakpoint from the popup menu.

2. Click the Continue Run button again.

The simulation runs for 500 ns and waves are drawn in the Wave window (Figure 6-12).

68 ModelSim SE Tutorial, v10.1

Simulating SystemC Designs
Viewing SystemC Objects in the GUI

If you are using the VHDL version, you might see warnings in the Main window

transcript. These warnings are related to VHDL value conversion routines and can be
ignored.

Figure 6-12. SystemC Primitive Channels in the Wave Window
m —Defaglf ———————————————————————————

Msgs

-40
IN&CTIVE

Mow

Cursor 1

2SI bl

[[

[+]]

Lesson Wrap-up

This concludes the lesson. Before continuing we need to quit the C debugger and end the
current simulation.

1. Select Tools> C Debug > Quit C Debug.

2. Select Simulate > End Simulation. Click Yeswhen prompted to confirm that you wish
to quit simulating.

ModelSim SE Tutorial, v10.1 69

Simulating SystemC Designs
Viewing SystemC Objects in the GUI

70 ModelSim SE Tutorial, v10.1

Chapter 7
Analyzing Waveforms

Introduction

The Wave window allows you to view the results of your ssmulation as HDL waveforms and
their values. The Wave window is divided into a number of panes (Figure 7-1). Y ou can resize
the pathnames pane, the values pane, and the waveform pane by clicking and dragging the bar
between any two panes.

Figure 7-1. Panes of the Wave Window

Jop)pycik; C [LI L]

Pathname °
Pane

£
£
x
:
£

i
iZ

oooioio

Related Reading
User’'s Manual sections: Wave Window and Recording Simulation Results With Datasets

ModelSim SE Tutorial, v10.1 71

Analyzing Waveforms
Loading a Design

Loading a Design

For the examplesin this |esson, we will use the design simulated in Basic Simulation.

1. If you just finished the previous lesson, Model Sim should already be running. If not,
start Model Sim.

a. Typevsim at aUNIX shell prompt or use the Model Sim icon in Windows.
If the Welcome to Model Sim dialog appears, click Close.
2. Load the design.

a. Select File > Change Directory and open the directory you created in the “Basic
Simulation” lesson.

The work library should already exist.

b. Usethe optimized design name to load the design with vsim.
vsim testcounter_opt

Model Sim loads the design and opens a Structure (sim) window.

Add Objects to the Wave Window

Model Sim offers several methods for adding objects to the Wave window. In this exercise, you
will try different methods.

1. Add objects from the Objects window.
a. Open an Objects window by selecting View > Objects.

b. Select anitem in the Objects window, right-click, and then select Add > To Wave >
Signalsin Region.

Model Sim opens a Wave window and displays signalsin the region.

c. Placethe cursor over an object and click the middle mouse button to place an object
in the Wave window.

d. Select agroup of objects then click the middle mouse button while the cursor is
placed over the group.

2. Undock the Wave window.

By default Model Sim opens the Wave window in the right side of the Main window.
Y ou can change the default via the Preferences dialog (T ools > Edit Prefer ences).
Refer to the Simulator GUI Preferences section in the User’s Manual for more
information.

a. Click the undock icon on the Wave window. ﬂ

72

ModelSim SE Tutorial, v10.1

Analyzing Waveforms
Zooming the Waveform Display

The Wave window becomes a standal one, un-docked window. Resize the window as
needed.

3. Add objects using drag-and-drop.

Y ou can drag an object to the Wave window from many other windows (e.g., Structure,
Objects, and Locals).

a. Inthe Wave window, select Edit > Select All and then Edit > Delete.
b. Drag aninstance from the Structure (sim) window to the Wave window.
Model Sim adds the objects for that instance to the Wave window.
c. Dragasignal from the Objects window to the Wave window.
d. Inthe Wave window, select Edit > Select All and then Edit > Delete.
4. Add objects using the add wave command.

a. Typethefollowing at the VSIM> prompt.
add wave *

ModelSim adds all objects from the current region.

b. Run the simulation for 500 ns so you can see waveforms.

Zooming the Waveform Display

There are numerous methods for zooming the Waveform display.

1. Zoom the display using various techniques.

a Click the Zoom Mode icon on the Wave window toolbar. | 0,

b. Inthewaveform display, click and drag down and to the right.

Y ou should see blue vertical lines and numbers defining an areato zoom in
(Figure 7-2).

ModelSim SE Tutorial, v10.1 73

Analyzing Waveforms
Using Cursors in the Wave Window

Figure 7-2. Zooming in with the Mouse Pointer

EEDD IDDDJDDIDDJDDED

LY
i& Th
|—J-r|r 102 ng to 240 ne

c. Select View > Zoom > Zoom L ast.

The waveform display restores the previous display range.

d. Click the Zoom Inicon afew times. Cﬂ

e. Inthewaveform display, click and drag up and to the right.
Y ou should see a blue line and numbers defining an area to zoom out.

f. Sdect View > Zoom > Zoom Full.

Using Cursors in the Wave Window

Cursors mark simulation time in the Wave window. When Model Sim first draws the Wave
window, it places one cursor at time zero. Clicking anywhere in the waveform display brings
that cursor to the mouse location.

Y ou can also:

® add additional cursors;
®* name, lock, and delete cursors;
® usecursorsto measuretimeintervals;, and

® usecursorsto find transitions.

First, dock the Wave window in the Main window by clicking the dock icon. ¥

Working with a Single Cursor
1. Position the cursor by clicking and dragging.

74 ModelSim SE Tutorial, v10.1

Analyzing Waveforms
Using Cursors in the Wave Window

a. Click the Select Mode icon on the Wave window toolbar. | ®

b. Click anywherein the waveform pane.

A cursor isinserted at the time where you clicked (Figure 7-3).

Figure 7-3. Working with a Single Cursor in the Wave Window

Cursar 1 322 ns

1 3K [l |'||.

c. Drag the cursor and observe the value pane.

The signal values change as you move the cursor. Thisis perhaps the easiest way to
examine the value of asignal at a particular time.

d. Inthewaveform pane, drag the cursor to the right of atransition with the mouse
positioned over a waveform.

The cursor "snaps’ to the nearest transition to the left. Cursors "snap” to awaveform
edge if you click or drag a cursor to within ten pixels of awaveform edge. Y ou can
set the snap distance in the Window Preferences dialog (select Tools > Window
Prefer ences).

e. Inthe cursor pane, drag the cursor to the right of atransition (Figure 7-3).
The cursor doesn’'t snap to atransition if you drag in the cursor pane.
2. Rename the cursor.
a. Right-click "Cursor 1" in the cursor pane, and select and del ete the text.
b. TypeA and press Enter.

The cursor name changesto "A" (Figure 7-4).

ModelSim SE Tutorial, v10.1 75

Analyzing Waveforms
Using Cursors in the Wave Window

Figure 7-4. Renaming a Cursor

) 322 ns

v « 3 (] o

3. Jump the cursor to the next or previous transition.

Click signal count in the pathname pane.

Click the Find Next Transition icon on the Wave window toolbar. | =

The cursor jumps to the next transition on the selected signal.

Click the Find Previous Transition icon on the Wave window toolbar. | %

The cursor jumps to the previous transition on the selected signal.

Working with Multiple Cursors

1. Add asecond cursor.

a
b.

C.

[test_counker)clk, 0 ;l

+
Click the Insert Cursor icon on the Wave window toolbar. Q
Right-click the name of the new cursor and del ete the text.
Type B and press Enter.

Drag cursor B and watch the interval measurement change dynamically (Figure 7-5).

Figure 7-5. Interval Measurement Between Two Cursors

3] 129ns

v] « [o |

76

ModelSim SE Tutorial, v10.1

Analyzing Waveforms
Saving and Reusing the Window Format

2. Lock cursor B.
a. Right-click the yellow box associated with cursor B (at 56 ns).
b. Select Lock B from the popup menu.

The cursor color changesto red and you can no longer drag the cursor (Figure 7-6).

Figure 7-6. A Locked Cursor in the Wave Window

B 129ns I

3. Delete cursor B.
a. Right-click cursor B (the red box at 56 ns) and select Delete B.

Saving and Reusing the Window Format

If you close the Wave window, any configurations you made to the window (e.g., signals added,
cursors set, etc.) are discarded. However, you can use the Save Format command to capture the
current Wave window display and signal preferencesto a.do file. Y ou open the .do file later to
recreate the Wave window as it appeared when the file was created.

Format files are design-specific; use them only with the design you were simulating when they
were created.

1. Saveaformat file.
a Inthe Wave window, select File > Save For mat.

b. Inthe Pathname field of the Save Format dialog, leave the file name set to wave.do
and click OK.

c. Close the Wave window.
2. Load aformat file.
a Inthe Main window, select View > Wave.

b. Undock the window.

ModelSim SE Tutorial, v10.1 77

Analyzing Waveforms
Saving and Reusing the Window Format

All signals and cursor(s) that you had set are gone.

c. Inthe Wave window, select File > L oad.

d. Inthe Open Format dialog, select wave.do and click Open.

Model Sim restores the window to its previous state.
e. Close the Wave window when you are finished by selecting File > Close Window.
Lesson Wrap-Up
This concludes this lesson. Before continuing we need to end the current simulation.

1. Select Smulate> End Simulation. Click Yes.

78

ModelSim SE Tutorial, v10.1

Chapter 8
Creating Stimulus With Waveform Editor

Introduction

The Waveform Editor creates stimulus for your design viainteractive manipulation of
waveforms. Y ou can then run the simulation with these edited waveforms or export them to a
stimulusfile for later use.

In this lesson you will do the following:

® Create anew directory and copy the counter design unit into it.
® Load the counter design unit without atest bench.

® Create wavesviaawizard.

® Edit wavesinteractively in the Wave window.

® Export the wavesto an HDL test bench and extended VCD file.
® Runthe simulation.

® Re-simulate using the exported test bench and VCD file.

Related Reading

User’'s Manual Sections. Generating Stimulus with Waveform Editor and Wave Window.

Design Files for this Lesson

The sample design for this lesson is a simple 8-bit, binary up-counter that was used in Basic
Simulation. The pathnames are as follows:

Verilog - <install_dir>/examples/tutorials/verilog/basicSmulation
VHDL - <install_dir>/examples/tutorials/vhdl/basicSmulation

This lesson uses the Verilog version in the examples. If you have a VHDL license, use the
VHDL version instead. When necessary, we distinguish between the Verilog and VHDL
versions of the design.

ModelSim SE Tutorial, v10.1 79

Creating Stimulus With Waveform Editor
Compile and Load the Design

Compile and Load the Design

Note

O

Y ou can also use the Waveform Editor prior to loading a design. Refer to the section
Using Waveform Editor Prior to Loading a Design in the User Manual for more
information.

. Create anew Directory and copy the tutoria filesinto it.

Start by creating a new directory for this exercise (in case other users will be working
with these lessons). Create the directory and copy the file counter.v from
<install_dir>/examples/tutorials/'verilog/basicSmulation to the new directory.

If you have aVHDL license, copy the file counter.vhd from
<install_dir>/examples/tutorials/vhdl/basicS mulation to the new directory.

. Start Model Sim and change to the directory you created for thislesson in step 1.

If you just finished the previous lesson, Model Sim should already be running. If not,
start ModelSim.

a Typevsim at aUNIX shell prompt or use the Model Sim icon in Windows.
If the Welcome to Model Sim dialog appears, click Close.
b. Select File> Change Directory and change to the directory you created in step 1.

. Create the working library and compile the design.

a. Typevlib work at the Model Sim> prompt.
b. Compilethe designfile:

Verilog:
Type vlog counter.v at the Model Sim> prompt.

VHDL:
Type vcom counter.vhd at the Model Sim> prompt.

. Load the design unit.

a. Typevsim -novopt counter at the Model Sim> prompt.

. Open aWave window.

a. Seect View > Wave from the Main window menus.

80

ModelSim SE Tutorial, v10.1

Creating Stimulus With Waveform Editor
Create Graphical Stimulus with a Wizard

Create Graphical Stimulus with a Wizard

Waveform Editor includes a Create Pattern Wizard that walks you through the process of
creating editable waveforms.

1. Usethe Create Pattern Wizard to create a clock pattern.

a. Inthe Objects window, right click the signal clk and select Modify > Apply Wave
(Figure 8-1).

Figure 8-1. Initiating the Create Pattern Wizard from the Objects Window

Objects

Thame |vale [kind __[Mode |

4 tpd reset_to_count 3 Parameter Internal

4 tpd dk_to_count 2 Parameter Internal
“, count b, wx Packed ... Out

View Memory, Contents

Add Wave Ctrl -+
Add Dataflow Ctrl+D
Add to

Event Traceback

Copy

Insert Breakpoint

Toggle Coverage

Modify Force...
Remave Force
Change Value...

Apply Clock. .

This opens the Create Pattern Wizard dialog where you specify the type of pattern
(Clock, Repester, etc.) and a start and end time.

b. The default pattern is Clock, which is what we need, so click Next (Figure 8-2).

ModelSim SE Tutorial, v10.1 81

Creating Stimulus With Waveform Editor
Create Graphical Stimulus with a Wizard

Figure 8-2. Create Pattern Wizard

Create Pattern Wizard x|

Generate a wawveform for any signal For Select Pattern .

the chosen pattern. —Patkernis Signal Mame

The allowed patterns are: 2im: foounter folk

Constant & Clock I “ !

EE_IEE‘M " Constant Start Time End Time Tirne Urit
Repeater " Random IIII looao |1'13 ﬂ
Counker " Repeater

Select the pattern in the right-hand -

Frame. Counker

«::F‘re'-.fin:nus| Mexk = | Cancel |

c. Inthesecond dialog of the wizard, enter 1 for Initial Value. Leave everything else as
isand click Finish (Figure 8-3).

Figure 8-3. Specifying Clock Pattern Attributes

sim:/counter /clk <Pattern : clock>= x|

— Clock Attributes
Initial % alue

|1
Clock Period Time Unit
[100 ln: wd

Dty Cycle

B

<F'reviu:uus| Firiizh I Cancel I

Bpecify the Clock Pattern
Attributes.

A generated waveform appearsin the Wave window (Figure 8-4). Notice the small
red dot on the waveform icon and the prefix "Edit:". These items denote an editable
wave. (Y ou may want to undock the Wave window.)

82 ModelSim SE Tutorial, v10.1

Creating Stimulus With Waveform Editor
Edit Waveforms in the Wave Window

Figure 8-4. The clk Waveform

“' 1 Edit: feounker/clk

Cursor 1

2 3 KT

o |

2. Create a second wave using the wizard.

a. Right-click signal reset in the Objects window and select M odify > Apply Wave
from the popup menu.

b. Select Constant for the pattern type and click Next.
c. Enter Ofor the Vaue and click Finish.

A second generated waveform appears in the Wave window (Figure 8-5).

Figure 8-5. The reset Waveform

Edit Waveforms in the Wave Window

Waveform Editor gives you numerous commands for interactively editing waveforms (e.g.,
invert, mirror, stretch edge, cut, paste, etc.). Y ou can access these commands via the menus,
toolbar buttons, or viakeyboard and mouse shortcuts. Y ou will try out several commandsin this
part of the exercise.

1. Insert apulseon signal reset.
a. Click the Wave window title bar to make the Wave window active.

b. Click the Edit Mode icon in the toolbar. it

ModelSim SE Tutorial, v10.1 83

Creating Stimulus With Waveform Editor
Edit Waveforms in the Wave Window

c. Inthe Wave window Pathnames column, click the reset signal so it is selected.
d. Click the Insert Pulseicon in the Wave Edit Toolbar.]ﬁ

Or, inthe Wave window, right-click on the reset signal waveform (not the pathname
or value) and select Wave > Wave Editor > Insert Pulse.

e. Inthe Edit Insert Pulse dialog, enter 100 in the Duration field and 100 in the Time
field (Figure 8-6), and click OK.

Figure 8-6. Edit Insert Pulse Dialog

Edit Insert Pulse x|

Signal Mame

| Edit: Acounter/reset

Cruration Time Tirne U nit

100 100 .
EI Ear‘u:ell

Signal reset now goes high from 100 ns to 200 ns (Figure 8-7).

Figure 8-7. Signal reset with an Inserted Pulse

- Cursor 1

2. Stretch an edge on signal clk.

a. Click the signal clk waveform just to the right of the transition at 350 ns. The cursor
should snap to the transition at 350 ns.

b. Right-click that same transition and select Wave Editor > Stretch Edge from the
popup menu.

If the command is dimmed out, the cursor probably isn’t on the edge at 350 ns.

c. Inthe Edit Stretch Edge dialog, enter 50 for Duration, make sure the Time field
shows 350, and then click OK (Figure 8-8).

84 ModelSim SE Tutorial, v10.1

Creating Stimulus With Waveform Editor
Edit Waveforms in the Wave Window

Figure 8-8. Edit Stretch Edge Dialog

Edit Stretch Edge x|

Signal Mame
| Edit: Acounterdclk

Direction
’75' Fonward ¢ Backward

Cruratian Time Tirne Lt

|50 | 350 .
EI Ear‘u:ell

The wave edge stretches so it is high from 300 to 400 ns (Figure 8-9).

Figure 8-9. Stretching an Edge on the clk Signal

U
Cursar 1 350 ns I

Fl 3 I 3 (KT l"’”.

Note the difference between stretching and moving an edge — the Stretch command
moves an edge by moving other edges on the waveform (either increasing waveform
duration or deleting edges at the beginning of simulation time); the Move command
moves an edge but does not move other edges on the waveform. Y ou should seein
the Wave window that the waveform for signal clk now extends to 1050 ns.

3. Delete an edge.

a. Click signal clk just to the right of the transition at 400 ns.
The cursor should "snap" to 400 ns.

b. Click the Delete Edgeicon. | 1¢-

This opens the Edit Delete Edge dialog. The Timeis already set to 400 ns. Click
OK. The edge is deleted and clk now stays high until 500 ns (Figure 8-10).

ModelSim SE Tutorial, v10.1 85

Creating Stimulus With Waveform Editor
Save and Reuse the Wave Commands

L
@se

Figure 8-10. Deleting an Edge on the clk Signal

Cursar 1

3f i I

4. Undo and redo an edit.

a. ClicktheUndoicon. | ¥

. Click theRedoicon. | ¢

The Edit Undo dialog opens, allowing you to select the Undo Count - the number of
past actions to undo. Click OK with the Undo Count set to 1 and the deleted edge at
400 ns reappears in the waveform display.

. Reselect the clk signal to activate the Redo icon.

. Click OK inthe Edit Redo dialog.

The edge is deleted again. Y ou can undo and redo any number of editing operations
except extending all waves and changing drive types. Those two edits cannot be
undone.

Save and Reuse the Wave Commands

Y ou can save the commands that Model Sim used to create the waveforms. Y ou can load this
"format" file at alater time to re-create the waves. In this exercise, we will save the commands,
quit and reload the simulation, and then open the format file.

1. Savethewave commandsto aformat file.

a. Select File > Close in the menu bar and you will be prompted to save the wave

commands.

. Click Yes.
. Type wave.do in the File name field of the Save Commands dialog that opens and

then click Save.

Thissavesa DO file named waveedit.do to the current directory and closes the Wave
window.

86

ModelSim SE Tutorial, v10.1

Creating Stimulus With Waveform Editor
Exporting the Created Waveforms

2. Quit and then reload the optimized design.

a

In the Main window, select Simulate > End Simulation, and click Y esto confirm
you want to quit simulating.

Enter the following command at the Model Sim> prompt.

vsim -novopt counter

3. Open the format file.

Select View > Wave to open the Wave window.
Select File> L oad from the menu bar.
Double-click wave.do to open thefile.

The waves you created earlier in the lesson reappear. If waves do not appear, you
probably did not load the counter design unit.

Exporting the Created Waveforms

At this point you can run the ssmulation or you can export the created waveforms to one of four
stimulus file formats. Y ou will run the ssmulation in aminute but first export the created
waveforms so you can use them later in the lesson.

1. Export the created waveformsin an HDL test bench format.

a
b.

Select File> Export > Waveform.

Select Verilog Testbench (or VHDL Testbench if you are using the VHDL sample
files).

Enter 1000 for End Time if necessary.

Type “export” in the File Name field and click OK (Figure 8-11).

ModelSim SE Tutorial, v10.1 87

Creating Stimulus With Waveform Editor
Exporting the Created Waveforms

Figure 8-11. The Export Waveform Dialog

x|
Sawe As
’7 " ForceFile EVCDFile © VHDL Testbench f* Verilog Testbench
Start Time End Time Time Unit
o 1000 s
Design Unit Mame
In:nunr.er
File Mame
’V| eXport Browse...
oK | Cancel |

Model Sim creates a file named export.v (or export.vhd) in the current directory.
Later in the lesson we will compile and simulate the file.

2. Export the created waveformsin an extended VCD format.
a. Select File> Export > Waveform.
b. Select EVCD File.
c. Enter 1000 for End Timeif necessary and click OK.
Model Sim creates an extended V CD file named export.ved. We will import thisfile
later in the lesson.
Run the Simulation

Once you have finished editing the waveforms, you can run the simulation.

1. Addadesignsignal.
a. Inthe Objects window, right-click count and select Add Wave.
The signal is added to the Wave window.
2. Run the simulation.
a. Enter the following command at the Model Sim> prompt.

run 1000

The ssmulation runs for 1000 ns and the waveform is drawn for
sim:/counter/count (Figure 8-12).

88 ModelSim SE Tutorial, v10.1

Creating Stimulus With Waveform Editor
Simulating with the Test Bench File

Figure 8-12. The counter Waveform Reacts to Stimulus Patterns

‘ﬂ Edit: fcounterclk
4 Edit:

500 ns 1000 ns

O]

Look at the signal transitions for count from 300 ns to 500 ns. The transitions occur
when clk goes high, and you can see that count follows the pattern you created when
you edited clk by stretching and deleting edges.

3. Quit the ssmulation.

a IntheMain window, select Simulate > End Simulation, and click Y esto confirm
you want to quit ssmulating. Click No if you are asked to save the wave commands.

Simulating with the Test Bench File

Earlier in the lesson you exported the created waveformsto atest benchfile. In thisexerciseyou
will compile and load the test bench and then run the simulation.

1. Compile and load the test bench.

a. At the ModelSim prompt, enter vliog export.v (or vcom export.vhd if you are
working with VHDL files).

Y ou should see a design unit named export appear in the work library (Figure 8-13).

Figure 8-13. The export Test Bench Compiled into the work Library

Type Path

- ik, Library s frutorialsverilogibasicSimulationwork,
J_Ilii] courter Module i kutorialsh verilogibasicSimulation)counter

I |—J expork Module Cibutorialshverilogibasicsimulationfexport.
ﬂ—ﬂl Floakfixlib Library $MODEL_TECH/ [Floatfixlib
ﬂ—jﬂ_ mcz_lib Library $MODEL_TECH/. . fmcZ_lib
+ ki Library $MODEL_TECH/. . [avm
+ ki Library $MODEL_TECH/. . Jovm-2.0,3

. *hliL..mtiP&.r... A I MO TECHL, (03 At

b. Enter the following command at the Model Sim> prompt.

ModelSim SE Tutorial, v10.1 89

Creating Stimulus With Waveform Editor
Importing an EVCD File

vsim -voptargs="+acc" export
2. Add waves and run the design.
a. AttheVSIM> prompt, type add wave *.
b. Next typerun 1000.

The waveforms in the Wave window match those you saw in the last exercise
(Figure 8-14).

Figure 8-14. Waves from Newly Created Test Bench

3. Quit the ssimulation.

a. AttheVSIM> prompt, type quit -sim. Click Y esto confirm you want to quit
simulating.

Importing an EVCD File

Earlier in the lesson you exported the created waveforms to an extended VCD file. In this
exercise you will use that file to stimulate the counter design unit.

1. Load the counter design unit and add waves.
a. Enter the following command at the Model Sim> prompt.
vsim -voptargs="+acc" counter
b. In the Objects window, right-click count and select Add Wave.
2. Import the VCD file.

a. Make sure the Wave window is active, then select File> Import > EVCD from the
menu bar.

b. Double-click export.vcd.

The created waveforms draw in the Wave window (Figure 8-15).

90 ModelSim SE Tutorial, v10.1

Creating Stimulus With Waveform Editor
Importing an EVCD File

Figure 8-15. EVCD File Loaded in Wave Window

- =)
-

Cursar 1 Ons (gt I

F v« 3 [O |

c. Click the Run -All icon.

The ssmulation runs for 1000 ns and the waveform is drawn for
sim:/counter/count (Figure 8-16).

Figure 8-16. Simulation results with EVCD File

+ simi; fcounterfoount: I ;l
-

Cursor 1 Ons ||fs I

F v « 3 [O |

When you import an EVCD file, signal mapping happens automatically if signal
names and widths match. If they do not, you have to manually map the signals. Refer

to the section Signal Mapping and Importing EVCD Filesin the User’s Manual for
more information.

Lesson Wrap-Up
This concludes this lesson. Before continuing we need to end the current simulation.

1. AttheVSIM> prompt, type quit -sim. Click No if you are asked to save the wave
commands.

ModelSim SE Tutorial, v10.1 91

Creating Stimulus With Waveform Editor
Importing an EVCD File

92 ModelSim SE Tutorial, v10.1

Chapter 9
Debugging With The Schematic Window

Introduction

The Schematic window allows you to explore the physical connectivity of your design; to trace
events that propagate through the design; and to identify the cause of unexpected outputs. The
window displays processes, signals, nets, registers, VHDL architectures, and Verilog modules.

The Schematic window provides two views of the design — a Full View, which is a structural
overview of design hierarchy; and an Incremental View, which uses click-and-sprout actions to
incrementally add to the selected net's fanout. The Incremental view displays the logica gate
equivalent of the RTL portion of the design, making it easier to understand the intent of the
design.

A “View” indicator is displayed in the top left corner of the window (Figure 9-1). You can
toggle back and forth between views by ssimply clicking this“View” indicator.

Figure 9-1. Schematic View Indicator
E Schiematic E Schematic - sim: fsmsip_usif

Wiew: Full —
M| Follaw line_ 417

Wi Incremental

line__419

The Incremental View isideal for design debugging. It allows you to explore design
connectivity by tracing signal readers/drivers to determine where and why signals change
values at various times.

Note
D The Schematic window will not function without an extended dataflow license. If you

attempt to create the debug database (vsim -debugdb) without this license the following
error message will appear: “Error: (vsim-3304) Y ou are not authorized to use -debugdb,
no extended dataflow license exists.”

Design Files for this Lesson

The sample design for thislesson is atest bench that verifies a cache module and how it works
with primary memory. A processor design unit provides read and write requests.

The pathnames to the files are as follows:

ModelSim SE Tutorial, v10.1 93

Debugging With The Schematic Window

Verilog —<install_dir>/examples/tutorials/verilog/schematic

VHDL —<ingtall_dir>/examples/tutorials/vhdl/schematic

This lesson uses the Verilog version in the examples. If you have aVHDL license, use the
VHDL version instead. When necessary, we distinguish between the Verilog and VHDL
versions of the design.

Related Reading

User’'s Manual section: Schematic Window.

Compile and Load the Design

In this exercise you will use aDO file to compile and load the design.

1

Create anew directory and copy the tutorial filesinto it.

Start by creating a new directory for this exercise (in case other users will be working
with these lessons). Create the directory and copy all files from
<install_dir>/examples/tutorials/verilog/schematic to the new directory.

If you have aVHDL license, copy thefilesin
<install _dir>/examples/tutorial s/vhdl/schematic instead.

Start Model Sim and change to the exercise directory.

If you just finished the previous lesson, Model Sim should already be running. If not,
start ModelSim.

a Typevsim at aUNIX shell prompt or use the Model Sim icon in Windows.
If the Welcome to Model Sim dialog appears, click Close.
b. Select File> Change Directory and change to the directory you created in step 1.
Change your WildcardFilter settings.
Execute the following command:

set WildcardFilter "Variable Constant Generic Parameter SpecParam Memory
Assertion Endpoint ImmediateAssert"

With this command, you remove “CellInternal” from the default list of Wildcard filters.
Thisallowsall signalsin cellsto belogged by the simulator so they will bevisiblein the
debug environment.

Execute the lesson DO file.
a. Typedorun.do at the Model Sim> prompt.
The DO file does the following:

94

ModelSim SE Tutorial, v10.1

Debugging With The Schematic Window
Exploring Connectivity

® Createsthe working library — vlib work

® Compilesthe design files— vlog or vcom

® Optimizesthe design — vopt +acc top -0 top_opt

® Collects combinatorial and sequential logic data— vdbg top_opt
® Loadsthe designinto the simulator — vsim -debugdb top_opt

® Addssignalsto the Wave window — add wave /top/p/*

®* Logsal signasinthedesign — log -r /*

® Runsthe ssmulation — run -all

Exploring Connectivity

A primary use of the incremental view of the Schematic window is exploring the physical
connectivity of your design. Y ou do this by expanding the view from process to process, to
display the drivers/receivers of a particular signal, net, register, process, module or architecture.

1. Open the Schematic window.

a Select View > Schematic from the menus or use the view schematic command at the
VSIM prompt in the Transcript window.

The Schematic window opens to the Incremental view.
2. Add asignal to the Schematic window.
a. Make sureinstance p is selected in the Structure (sim) window.

b. Drag the strb signal from the Objects window to the Schematic window
(Figure 9-2).

ModelSim SE Tutorial, v10.1 95

Debugging With The Schematic Window
Exploring Connectivity

Figure 9-2. A Signal in the schematic Window
E Schematic ——————————————————————————

Yiew: Incremental

Name: Jtop/p
DU Type: Module
DT Path: work.proc(fast)

Kl — b
M ' ave l Proc.s I g Schernatic | ﬂ_?"

The Incremental view shows the strb signal, highlighted in orange. Y ou can display
atooltip - atext information box - as shown in Figure 9-2, by hovering the mouse
cursor over any design object in the schematic. In this case, the tooltip shows that the
process driving the strb signal is #A SSIGN#25#1.

The schematic aso shows that the processis a part of module p, denoted by the light
gray box.

Signal values are displayed at the ends of each signal net. Y ou can toggle signals
values on and off with the ‘v’ key on your keyboard when the Schematic window is
active.

3. Find the readers of the strb signal.

When you mouse-over any signal pin the mouse cursor will change to a right-pointing
arrow, aleft-pointing arrow, or a double-headed arrow. If the arrow points to the right,
you can double-click the pin to expand the signal fanout to its readers. If the arrow
points |eft, you can double-click to expand the signal fanout to its drivers. Double-
clicking a double-headed arrow will expand to drivers and readers.

a. Place the cursor over the strb signal as shown in Figure 9-3, so you see aright
pointing arrow indicating readers, and double click.

96

ModelSim SE Tutorial, v10.1

Debugging With The Schematic Window
Exploring Connectivity

Figure 9-3. Right Pointing Arrow Indicates Readers

This sprouts all readers of strb (Figure 9-4).

Figure 9-4. Expanding the View to Display Readers of strb Signal
E T 1 = | o s ———— -

Wiew: Incremental

M Wiave l Proc.y I 3 Schernatic | ﬂ_?-l

In Figure 9-4, the signal values for the clk signal in the ¢ module cannot be easily
distinguished because the values at each end of the net overlap.

Figure 9-5. Signal Values Overlapped

b. Click the Regenerate button '3 to redraw the Schematic with all design elements,
signal values, and pin names clearly displayed (Figure 9-6).

ModelSim SE Tutorial, v10.1 97

Debugging With The Schematic Window
Exploring Connectivity

Figure 9-6. Signal Values After Regenerate

In Figure 9-6, notice the gray dot next to the state of the input clk signal for the
#ALWAY S#155 process (labeled line_84 in the VHDL version). The gray dot
indicates an input in the sensitivity list for the process. A changein any input with a
gray dot triggers process execution. Inputs without gray dots are read by the process
but will not trigger process execution, and are not in the sensitivity list (will not
change the output by themselves).

Note
D Gray dots are only shown on the signals in the sensitivity list of a process that did not

synthesize down to gate components. Gates will not have the grey dots because the
behavior of their inputsis clearly defined.

4. Find the drivers of the signal test on process #NAND#50 (labeled line_71 in the VHDL
version).

a. Click the Show Wave button ﬂ to open the Schematic Window' s embedded
Wave Viewer. You may need to increase the size of the schematic window to see
everything

b. Select the #NAND#50 gate (labeled line_71 in the VHDL version) in the schematic.
This loads the wave signals for the inputs and outputs for this gate into the Wave
Viewer and highlights the gate.

c. Select the signal test in the Wave Viewer. This highlights the test input in the
schematic (Figure 9-7).

98 ModelSim SE Tutorial, v10.1

Debugging With The Schematic Window
Exploring Connectivity

Figure 9-7. Select test signal

E Schematic (wave)

St [strb St

— Inpuks:

QM

|h||:|||:|| dyn] b=
— Qubputs:
4 topfp/t_out St

i~
m e 'ISI | i 'I=I'II'Ir|'I N e 1||||||r|
ﬁt"ﬂ‘ Cursaor 1 0ns
< ||_|—| O] |

B Wave .-U-L proc.v | mE| Schematic | 3

Notice that the title of the Schematic window is * Schematic (wave)” when the
embedded Wave Viewer is active and “ Schematic (schematic)” when the
Incremental View isactive. In the next step we have to select a pin in the schematic
to make the Incremental View and associated toolbar buttons active.

d. Select the pin for the highlighted signal — test — in the schematic. This makes the
schematic view active.

e. Click the Expand net to all driversicon. This expands the test signal to its
driving process - an i0 NAND gate — which isincluded in the p module =L
(Figure 9-8).

ModelSim SE Tutorial, v10.1 99

Debugging With The Schematic Window
Exploring Connectivity

Figure 9-8. The test Net Expanded to Show All Drivers
E Schematic - Default (schematic)

View: Incremental ¢ 2820 sk] b~

5. Open the readersfor signal oen on process #ALWAYS#155 (labeled line_84 in the
VHDL version).

a. Click the oen pin to make it active.

b. Right-click anywhere in the schematic to open the popup menu and select Expand
Net To > Readers. Figure Figure 9-9 shows the results.

Figure 9-9. Signal oen Expanded to Readers

100 ModelSim SE Tutorial, v10.1

Debugging With The Schematic Window
Viewing Source Code from the Schematic

Continue exploring the design with any of the methods discussed above — double-click signal
pins, use the toolbar buttons, or use menu selections from the right-click popup menu.

When you are finished, click the Delete All button to clear the schematic viewer. »:

Click the Show Wave button ﬂ to close the embedded Wave Viewer.

Viewing Source Code from the Schematic

The Schematic window allows you to display a source code preview of any design object.

1. Addasignal to the Schematic window.
a. Make sureinstance p is selected in the Structure (sim) window.
b. Dragsignal t_out from the Objects window to the Schematic window.

c. Double-click the NAND gate - #NAND#50 - to display a Code Preview window
(Figure 9-10). The source code for the selected object is highlighted and centered in

the display.

Figure 9-10. Code Preview Window
E Schematic - Default

\iew: Incremental |+ 2820ns % ¥ ";I

(ndE l'n:m

4
E {teat?. tw. test_in):
|-| nar 11 (t_out, test, strb):;
TS Ty S E g fTENE Y g e 17 17 ATk
task write: | seder Tor sekeeied objeet s highlichigd
53 input ["addr size-1:0] ar
o4 input ["word size-1:0] d;
55 begin
o6 if (verbose) &display("%t: Writing datae=%h to addr=%h",
i) addr r = a;

L —

The Code Preview window provides afour-button toolbar that allows you to take the
following actions:

ModelSim SE Tutorial, v10.1 101

Debugging With The Schematic Window
Unfolding and Folding Instances

* view the source code in a Source Editor

® recenter the selected code in the Code Preview window if you have scrolled it
out of the display

® copy selected code so it can be pasted elsewhere

® open the Find toolbar at the bottom of the Code Preview window so you can
search for specific code

d. Experiment with the Code Preview toolbar buttons to see how they work.

When you are finished, close the Code Preview window and click the Delete All button to clear
the schematic viewer.

Unfolding and Folding Instances

Contents of complex instances are folded (hidden) in the Incremental view to maximize screen
space and improve the readability of the schematic.

1. Display afolded instance in the Incremental view of the schematic.
a. Expand the hierarchy of the ¢ module in the Structure window.

b. Drag the s2 module instance (in the c module) from the Structure window to the
Schematic.

Figure 9-11. Folded Instance

E Schematic - Default
View: Incremental & 2820 ns * “;I

00001001 1_

jaddr

The folded instance is indicated by a dark blue square with dashed borders
(Figure 9-11). When you hover the mouse cursor over afolded instance, the tooltip (text
box popup) will show that it is**FOLDED**.

2. Unfold the folded instance.

a. Right-click inside the folded instance to open a popup menu.

102 ModelSim SE Tutorial, v10.1

Debugging With The Schematic Window
Unfolding and Folding Instances

b. Select Fold/Unfold to unfold the instance as shown in Figure 9-12.

Figure 9-12. Unfolded Instance

E Schematic - Default

View: Incremental | 2820ns % ¥ ";I

Since we have not traced any signalsinto the folded instance (we simply dragged it into
the Incremental view), we cannot see the contents of the s2 instance.

3. Display the contents of the s2 instance.

a. Double-click the addr pin inside the s2 instance to cause the connected gates and
internal instances to appear (Figure 9-13).

Figure 9-13. Contents of Unfolded Instance s2
EE!SChEmEﬁC-—DEFEUH =

View: Incremental

+a0 fullz

BALWAYSET3

wWen
00001001 addr
il addr data_out

data_mem

N0 -
00001001

4. Fold instance s2.
a. Left-click the s2 instance border so it is highlighted.

b. Right-click to open the popup menu and select Fold/Unfold to fold the instance.

ModelSim SE Tutorial, v10.1 103

Debugging With The Schematic Window
Tracing Events

Figure 9-14. Instance s2 Refolded
E Schematic - Default
View: Incremental c 1+ 2820 ns % 4 b 4]

<full

AYSET3

Experiment with other folded instances (0, s1, s3). When you are finished, click the Delete All
button to clear the schematic.

Tracing Events

The Schematic window gives you the ability to trace eventsto their cause. Event traceback
options are available when you right-click anywhere in the Incremental View and select Event
Traceback from the popup menu (Figure 9-15).

Figure 9-15. Event Traceback Menu Options

Wiew Seleckion L4
Zoom L4

Expand Met Tao L4

Show Cause
Highlight: L4 Show Driver

Shiowe Riook Cause

Edit: L4
Find. .. Shiow %' Cause (Chasex)
Show L

The event trace begins at the current “active time,” which is set:

® by the selected cursor in the Wave window

® by the selected cursor in the Schematic window’ s embedded Wave viewer

104 ModelSim SE Tutorial, v10.1

Debugging With The Schematic Window
Tracing Events

®* or with the Active Timelabd in the Schematic window.

We will use the active time set by the cursor in the embedded Wave viewer. The Active Time

label ison by default, the following instructions allow you to turn it off or on in the Incremental
View;

1. Withthe Incremental view active, select Schematic > Prefer ences to open the
Incremental Schematic Options dialog.

2. Inthe Show section of the dialog, click the Active Time label box so a checkmark
appears, then click the OK button to close the dialog.

Figure 9-16. Selecting Active Time Label Display Option

]
—Show
[¥ Instance names [T Design Unit names W Active Time label
¥ Busripper indices W Signal values ¥ Redundant buffers
¥ Pin names [T cell contents ¥ Redundant inverters
[T Metnames at: VWire Corner —

S

i A,

The Active Time label appears in the upper right corner of Incremental view.

Figure 9-17. Active Time Label in the Incremental View

Now we'll trace and event.

1. Add an object to the schematic window.

a. Make sureinstance p is selected in the Structure (sim) window.

b. Drag signal t_out from the Objects window to the schematic window.
2. Open the Schematic window’s Wave viewer.

a Click the Show Wave button in the toolbar.
3. Show signalsfor a process in the Schematic window’s Wave viewer.

a. Select the #NAND#50 gate (labeled line_71 in the VHDL version) in the schematic.

This loads the wave signals for the inputs and outputs for this gate into the Wave
viewer.

ModelSim SE Tutorial, v10.1 105

Debugging With The Schematic Window
Tracing Events

4. Place acursor in the Wave viewer to designate the Active Time.

a. Click the strb waveform in the Wave viewer on (or near) the transition at 465 ns.
Thiswill highlight the strb signal pathname in the Wave viewer and the strb signal
net in the schematic (Figure 9-18).

Figure 9-18. The Embedded Wave Viewer
E schematic (wave) —M8 ————————————————

B

J

Cursor 1 465 NS I

: 3 T T | o |
M Wave . proc, Iﬂ Schematic | ﬂﬁl

Notice that the Active Time label in the upper right corner of the schematic displays
the time of the selected cursor - 465 ns.

5. Traceto the cause of the event.
a. Right-click the highlighted signal in the schematic to open the popup menu.

b. Select Event Traceback > Show Cause. Thiswill open a Source window where the
immediate driving process will be highlighted (Figure 9-19).

106 ModelSim SE Tutorial, v10.1

Debugging With The Schematic Window
Tracing Events

Figure 9-19. Immediate Driving Process in the Source Window

C: [Tukarialf schematicfproc, v
Lri# Je4e0ns |«
T4 strbh r = 1;
0-=1
= verhose = 1:
1
76
—
77 forever khegin
= £/ Wait for first clock, then perform re:
hd
a| | 3
M Wave I proc,y | 3 Schematic ‘él ?-l

It will also open the Active Driver Path Details window (Figure 9-20). This window
displays information about the sequential process(es) that caused the selected event.
It shows the selected signal name, the time of each process in the causality path to

thefirst sequential process, and details about the location of the causal processin the

code.

Figure 9-20. Active Driver Path Details Window

Active Driver Path Details x|
The path details started From:
Signal: sim:/top,/p/strh
At kire: 465 ns
1l"ITimE |T';.f|:|e |Sn:|:||:|e |Signal Mame |Process MName |File Mame |Line # |S|:n_|r|:e Line |
460 ns Gate ftop/p strh r #ASSIGHNAZ5#] | ticfproc.w 25 wire #(5rwL
460 ns Gate Jtop/p #IMITIAL#6D .. ticfproc.w 74 strb_r=1;
< | -]
¥ automatically show Path Details after a trace completes
ghaTrace fo Roof Cause| Seleck All Signals in Path Wiew Path Details in: @ :| M :| M

6. View path detailsfor strb_r from the #A SSIGN#25#1 process in the Schematic window.

a. Click thetop linein the Active Driver Path Details window to select the strb r

signal driver.

b. Click the Schematic Window button in the View Path Details section of the Active

Driver Path Details dialog (Figure 9-21).

ModelSim SE Tutorial, v10.1

107

Debugging With The Schematic Window
Tracing Events

Figure 9-21. Schematic Window Button

Schematic Window Wave Window

Miew Path Details in: xi-l llr/

Thiswill open a dedicated Schematic (Path Details) window that displays the path
details for the selected driver of the signal (Figure 9-22).

Figure 9-22. Schematic Path Details Window

strb Sti

FA Path Times: 460 Start (@4651 ALL

q 3K 3 KT | |
M W ave | i proc.y l @ Schematic I ﬂ Schematicl |

B
w
1
Trace End 460 ns 460 ns I
e

The Wave viewer section of the dedicated Schematic (Path Details) window displays
aTrace Begin and a Trace End cursor.

Experiment with tracing other events and viewing path details in the dedicated
Schematic and Wave windows.

7. Clear the Schematic window before continuing.
a. Closethe Active Driver Path Details window.
b. Close the Schematic (Path Details) window.
c. Select the original Schematic window by clicking the Schematic tab.
d. Click the Delete All icon to clear the Schematic Viewer.

e. Click the Show Waveicon to close the Wave view of the schematic window.

108 ModelSim SE Tutorial, v10.1

Debugging With The Schematic Window
Tracing Events

Lesson Wrap-Up

This concludes this lesson. Before continuing we need to end the current simulation.

1. Typequit -sim at the VSIM> prompt.

To return the wildcard filter to its factory default settings, enter:

set WildcardFilter "default”

ModelSim SE Tutorial, v10.1 109

Debugging With The Schematic Window
Tracing Events

110 ModelSim SE Tutorial, v10.1

Chapter 10
Debugging With The Dataflow Window

Introduction

The Dataflow window allows you to explore the "physical” connectivity of your design; to trace
events that propagate through the design; and to identify the cause of unexpected outputs. The
window displays processes; signals, nets, and registers; and interconnect.

Note
D The functionality described in this lesson requires a dataflow license feature in your

ModelSim license file. Please contact your Mentor Graphics sales representative if you
currently do not have such afeature.

Design Files for this Lesson

The sample design for this lesson is atest bench that verifies a cache module and how it works
with primary memory. A processor design unit provides read and write requests.

The pathnames to the files are as follows:
Verilog —<install_dir>/examples/tutorial s/verilog/datafl ow
VHDL —<install_dir>/examples/tutorials/vhdl/dataflow

This lesson uses the Verilog version in the examples. If you have a VHDL license, use the
VHDL version instead. When necessary, we distinguish between the Verilog and VHDL
versions of the design.

Related Reading
User’s Manual Sections. Debugging with the Dataflow Window and Dataflow Window.

Compile and Load the Design

In this exercise you will use aDO file to compile and load the design.

1. Create anew directory and copy thetutorial filesinto it.

Start by creating a new directory for this exercise (in case other users will be working
with these lessons). Create the directory and copy all files from
<install_dir>/examples/tutorials/verilog/dataflow to the new directory.

ModelSim SE Tutorial, v10.1 111

Debugging With The Dataflow Window
Exploring Connectivity

If you have aVHDL license, copy thefilesin
<install_dir>/examples/tutorial s/vhdl/datafl ow instead.

. Start Model Sim and change to the exercise directory.

If you just finished the previous lesson, Model Sim should already be running. If not,
start ModelSim.

a Typevsim at aUNIX shell prompt or use the Model Sim icon in Windows.
If the Welcome to Model Sim dialog appears, click Close.
b. Select File> Change Directory and change to the directory you created in step 1.

. Change your WildcardFilter settings.

Execute the following command:

set WildcardFilter "Variable Constant Generic Parameter SpecParam Memory
Assertion Endpoint ImmediateAssert"

With this command, you remove “CellInternal” from the default list of Wildcard filters.
Thisallowsall signalsin cellsto belogged by the simulator so they will bevisiblein the
debug environment.

. Execute the lesson DO file.

a. Typedorun.do at the Model Sim> prompt.
The DO file does the following:
® Createsthe working library
® Compilesthe design files
® Optimizesthe design
® | oadsthe designinto the simulator
® Addssignalsto the Wave window
® Logsal signasinthedesign

®* Runsthe simulation

Exploring Connectivity

A primary use of the Dataflow window is exploring the "physical” connectivity of your design.
Y ou do this by expanding the view from process to process. This allows you to see the
drivers/receivers of a particular signal, net, or register.

1. Open the Dataflow window.

112

ModelSim SE Tutorial, v10.1

Debugging With The Dataflow Window
Exploring Connectivity

a. Select View > Dataflow from the menus or use the view dataflow command at the
VSIM prompt in the Transcript window.

2. Add asignal to the Dataflow window.
a. Make sureinstance p is selected in the Structure (sim) window.

b. Dragsignal strb from the Objects window to the Dataflow window (Figure 10-1).

Figure 10-1. A Signal in the Dataflow Window
E Dataflow - Default

HASSIGN#25#1
1/ ._ st

~ Jstrb

3. Explorethe design.

a. Click the Expand net to all readersicon. N

The view expands to display the processes that are connected to strb (Figure 10-2).

ModelSim SE Tutorial, v10.1 113

Debugging With The Dataflow Window
Exploring Connectivity

Figure 10-2. Expanding the View to Display Connected Processes
E Dataflow - Default

+gco==full=

#ALWAYS#155

ASSIGNE25#1

#P-JAP!D#ED
: S

Notice the gray dot next to the state of the input clk signal for the ZALWAY S#155
process (labeled line_84 in the VHDL version). The gray dot indicates an input that
isinthe sengitivity list for the process. A changein any input with agray dot triggers
process execution. Inputs without gray dots are read by the process but will not
trigger process execution, and are not in the sensitivity list (will not change the
output by themselves).

b. Findthedriversof the signal test on process #NAND#50 (labeled line_71 in the
VHDL version).

i. Click the Show Waveicon M to open the Wave Viewer. Y ou may need to
increase the size of the Dataflow window to see everything

ii. Select the #NAND#50 gate (labeled line_71 in the VHDL version) in the
Dataflow Viewer. This loads the wave signals for the inputs and outputs for this
gate into the Wave Viewer and highlights the gate.

iii. Select the signal test in the Wave Viewer. This highlights the test input in the
Dataflow Viewer. (Figure 10-3)

114 ModelSim SE Tutorial, v10.1

Debugging With The Dataflow Window
Exploring Connectivity

Figure 10-3. Select test signal

E Dataflow - Default (dataflow)

1 |
strb_rl,

— Inputs:
4u [top/pfstrb
[top/p/test
— Outputs:
4 [top/pft_out

Mow 2820 ns
Cursor 1 Ons

2 K i

[/

iv. Select the highlighted signal in the Dataflow Viewer (this makes the Dataflow
Viewer portion of the Dataflow window active) then click the Expand net to all
driversicon.

D¢

Figure 10-4. The test Net Expanded to Show All Drivers
E Dataflow - Default (dataflow)

M2 51

In Figure 10-4, notice that after you selected the signal test, the signal linefor strbis
highlighted in green. This highlighting indicates the path you have traversed in the
design.

ModelSim SE Tutorial, v10.1 115

Debugging With The Dataflow Window
Tracing Events

Select net for the signal oen on process #ALWAYS#155(1abeled line_84 in the
VHDL version), and click the Expand net to all readersicon. v

Continue exploring if you wish.

When you are done, click and hold the Delete Content button then select Delete All
to clear the Dataflow Viewer. -

Tracing Events

Another useful debugging feature is tracing events that contribute to an unexpected output
value. Using the Dataflow window’ s embedded Wave Viewer, you can trace backward from a
transition to a process or signal that caused the unexpected output.

1. Setthedefault behavior to show driversin the Dataflow window when double-clicking a
signal in the Wave window.

a
b.

Click the Wave window tab.

Select Wave > Wave Preferences. This opens the Wave Window Prefer ences
dialog.

Select Show Driversin Dataflow Window in the Double-click will: menu then
click OK. (Figure 10-5)

116

ModelSim SE Tutorial, v10.1

Debugging With The Dataflow Window
Tracing Events

Figure 10-5. Wave Window Preferences Dialog

Wave Window Preferences x|

Display I Grid & Timeline] 4|3
—Display Signal Path———— —Snap Distance
0 (# elements) 10 (pixels)
—FR.ow Margi
Use 0 for full path R
4 (pixels)
—Justify Value —Child Row Margin
% Left Right 2 ([pixels)

—Enable /Disable
v Waveform popup showing data value
™ waveform selection highlighting

¥ Scroll to end when run completes

[” ©On dose, ask about saving window contents
IF On dgs‘e‘_ ask ahim it 2avinn editahle waves Fnmmands

[Pa waveform | Do Nothing
Shaow Drivers in Schematic
Double-didk will; Shaow Drivers in Dataflow
: Find Active Driver h‘
—Dataset Prefix Display————— Display Signal Array Size
™ Always show [™ show vector and array indicies

% Show if 2 or more
™ Never show

| Cancel | Apply

2. Add an object to the Dataflow window.
a. Make sureinstance p is selected in the Structure (sim) window.
b. Dragsignal t_out from the Objects window to the Dataflow window.

c. Click the Show Waveicon ﬂ to open the Wave Viewer if it is not already open.
Y ou may need to increase the size of the Dataflow window to see everything

(Figure 10-6).

ModelSim SE Tutorial, v10.1 117

Debugging With The Dataflow Window
Tracing Events

Figure 10-6. The Embedded Wave Viewer

E Dataflow - Default (dataflow)

st1 #NAND#50
o StX

T Cursor 1
1 L 5

3. Tracetheinputs of the nand gate.

a. Double-click process #NAND#50 (labeled line_71 in the VHDL version) in the
Dataflow Viewer. The active display jJumps to the source code view, with a blue
arrow pointing to the declaration of the NAND gate (Figure 10-7).

Figure 10-7. Source Code for the NAND Gate

'-'-q{g "--—.___..a-"----z-v-.._,—,.-.--'«'-'-.___,_.,_--' T e ST e e
40 nor itesti, rw, LEst_in):
50 B nand (t_out, test, strh):
L1
52 task write:
53 input [addr =ize-1:0] &a;
L4 input ["word size-1:0] d;

SEﬂu\qH hegin . ‘r.u._#ahu-l

b. Click the Dataflow tab to move back to the Dataflow window. All input and output
signals of the process are displayed in the Wave Viewer.

c. IntheWave Viewer, scroll to the last transition of signal t_out.

d. Click just to theright of the last transition of signal t_out. The cursor should snap to
time 2785 ns. (Figure 10-8)

118 ModelSim SE Tutorial, v10.1

Debugging With The Dataflow Window
Tracing Events

Figure 10-8. Signals Added to the Wave Viewer Automatically

E Dataflow - Default (wave)

#NAND#50

StX

— Inputs:
4. ftopfp/strb
4 ftop/fp/test
— Dutputs:
ftopyp/t_out

Mow

Cursor 1

b KT

e. Double-click just to theright of the last transition of signal t_out. The active display
will jump, once again, to the source code view. But thistime, the signal t_out is
highlighted (Figure 10-9).

Figure 10-9. Source Code with t_out Highlighted

— - - - -
T - A T T s e e L

45

49 nor [cesta, rw, Test_in);

=18 ﬁ nand (It_n:iut; test, 3trh):

51

5z task write;

53 input ["addr size-1:0] =a;

oS4 input ["word size-1:0] d;
N-"IS‘-E‘ — 'L.q-.-“wlllm h‘“"‘“rwm

f. Click the Dataflow tab to move back to the Dataflow window.

g. Thesigna t_out in the Dataflow Viewer should be highlighted. Click on the
highlighted signal to make the signal active, then select Tools> Trace > Trace next
event to trace the first contributing event.

Model Sim adds a cursor to the Wave Viewer to mark the last event - the transition of
the strobe to O at 2745 ns - which caused the output of St1 ont_out (Figure 10-10).

ModelSim SE Tutorial, v10.1 119

Debugging With The Dataflow Window
Tracing Events

N T
ase
ase

E Dataflow - Default (wave)

— Inputs:
ftop/p/strb
4 ftop/pftest
— Outputs:

4 ftopfp/t_out

Figure 10-10. Cursor in Wave Viewer Marks Last Event

#NAND#50

MNow 2820 ns
Cursor 1 2785 ns
Cursor 2 2745 ns

1

2 2

Select Tools> Trace > Trace next event two more times and watch the cursor jump
to the next event.

Select Tools> Trace > Trace event set.

The Dataflow flow diagram sprouts to the preceding process and shows the input
driver of the strb signal (Figure 10-11). Notice, also, that the Wave Viewer now
shows the input and output signals of the newly selected process.

120

ModelSim SE Tutorial, v10.1

Debugging With The Dataflow Window
Tracing an X (Unknown)

Figure 10-11. Tracing the Event Set
E Dataflow - Default (dataflow)

HASSIGN#25#1

#NAND#50

0 0
0 0
. Cursor 3 2705 ns m
1 v « 3 (] o |

Y ou can continue tracing events through the design in this manner: select Trace
next event until you get to atransition of interest in the Wave Viewer, and then
select Trace event set to update the Dataflow flow diagram.

4. When you are finished, select File > Close Window to close the Dataflow window.

Tracing an X (Unknown)

The Dataflow window lets you easily track an unknown value (X) as it propagates through the
design. The Dataflow window is dynamically linked to the Wave window, so you can view
signalsin the Wave window and then use the Dataflow window to track the source of a
problem. Asyou traverse your design in the Dataflow window, appropriate signals are added
automatically to the Wave window.

1. Viewt_outinthe Wave and Dataflow windows.
a. Scroll in the Wave window until you can see /top/p/t_out.

t_out goesto an unknown state, StX, at 2065 ns and continues transitioning between
1 and unknown for the rest of the run (Figure 10-12). The red color of the waveform
indicates an unknown value.

ModelSim SE Tutorial, v10.1 121

Debugging With The Dataflow Window
Tracing an X (Unknown)

Figure 10-12. A Signal with Unknown Values

Vawve - Default

Oy

+ op/p/data
op/p
op/p/sirb
IR LI

opip O

Jtop/pft_set St

hd|
0 a2l
Cursor 1 2786 ns 2786 ns

7 v 4 3 K |1

opip O

QR e

b. Double-click thet_out waveform at the last transition of signal t_out at 2785 ns.
Once again, the source code view is opened with thet_out signal highlighted.

Double-clicking the waveform in the Wave window also automatically opens a
Dataflow window and displayst_out, its associated process, and its waveform.

c. Click the Dataflow tab.

Since the Wave Viewer was open when you last closed the window, it opens again
inside the Dataflow window with the t_out signal highlighted (Figure 10-13).

122 ModelSim SE Tutorial, v10.1

Debugging With The Dataflow Window
Tracing an X (Unknown)

Figure 10-13. Dataflow Window with Wave Viewer

E Dataflow - Default (dataflow)

Cursor 1 2785 ns m
4 3 K |l []|

B
N D
op(p
Clutp
op(p o
-
L]

d. Movethe cursor in the Wave Viewer.

Asyou move the cursor in the Wave Viewer, the value of t_out changesin the flow
diagram portion of the window.

Position the cursor at atime whent_out is unknown (for example, 2725 ns).
2. Trace the unknown.
a. Selectt_out signal inthe Wave Viewer. This highlights the output signal t_out.

b. Inthe Dataflow Viewer, click the highlighted signal to make the Viewer active. (A
black frame appears around the Dataflow Viewer when it is active. The signal will
be orange when selected.)

Cc. Select Tools> Trace > ChaseX from the menus.

The design expands to show the source of the unknown state for t_out

(Figure 10-14). In this case thereisaHiZ value (U in the VHDL version) on input
signal test_ inand a0 oninput signal _rw (bar_rw in the VHDL version). This
causes the test2 output signal to resolve to an unknown state (StX). The unknown
state propagates through the designto t_oui.

ModelSim SE Tutorial, v10.1 123

Debugging With The Dataflow Window
Displaying Hierarchy in the Dataflow Window

Figure 10-14. ChaseX Identifies Cause of Unknown on t_out
E Dataflow - Default {dataflow)

op/p o
op,/p 0

op/pA0 D

Jtop/pftest2 Sty

J
W a2
Cursar 1 2785 ns 2785 ne|

Pl 3 K 3 T []|

3. Clear the Dataflow window before continuing.
a. Click the Delete All icon to clear the Dataflow Viewer.

b. Click the Show Wave icon to close the Wave view of the Dataflow window.

Displaying Hierarchy in the Dataflow Window

Y ou can display connectivity in the Dataflow window using hierarchical instances. Y ou enable
this by modifying the options prior to adding objects to the window.

1. Change optionsto display hierarchy.

a. Select Dataflow > Dataflow Prefer ences > Options from the Main window menus.
(When the Dataflow window is undocked, select Tools > Options from the
Dataflow window menu bar.) This will open the Dataflow Options dialog
(Figure 10-15).

124 ModelSim SE Tutorial, v10.1

Debugging With The Dataflow Window
Displaying Hierarchy in the Dataflow Window

Figure 10-15. Dataflow Options Dialog

Dataflow Options x|
—Show
| I Hierarchy ¥ Redundant buffers
[cell contents V¥ Redundant inverters
[Active Time label
~Miscellaneous
[V Keep Dataflow content [V Select environment
[¥ Bottom inout pins ¥ Automatic add to Wave
[Disable sprout [~ Stop on port
[T selectequivalentnets | Enable tooltip popups
v Log nets
—Warnings
[¥ Enable diverging ¥ fanin warning
[¥ Enable depth limit warning
[¥ Enable ¥ event at time 0 warning
¥ Enable Add Dataflow warning
o = | = | Apply |

b. Select Show: Hierarchy and then click OK.
2. Addsignal t_out to the Dataflow window.
a. Typeadd dataflow /top/p/t_out at the VSIM> prompt.

The Dataflow window will display t_out and all hierarchical instances
(Figure 10-16).

ModelSim SE Tutorial, v10.1 125

Debugging With The Dataflow Window
Displaying Hierarchy in the Dataflow Window

Figure 10-16. Displaying Hierarchy in the Dataflow Window
E Dataflow - Default

#NAND#50

Lesson Wrap-Up

This concludes this lesson. Before continuing we need to end the current simulation.

1. Typequit -sim at the VSIM> prompt.

To return the wildcard filter to its factory default settings, enter:

set WildcardFilter "default"

126 ModelSim SE Tutorial, v10.1

Chapter 11
Viewing And Initializing Memories

Introduction

In this lesson you will learn how to view and initialize memories. Model Sim defines and lists
any of the following as memories:

®* reg, wire, and std_logic arrays
® Integer arrays
® Single dimensional arrays of VHDL enumerated types other than std_logic

Design Files for this Lesson

The installation comes with Verilog and VHDL versions of the example design located in the
following directories:

Verilog —<install_dir>/examples/tutorials/verilog/memory
VHDL —<install_dir>/examples/tutorials/'vhdl/memory

This lesson uses the Verilog version for the exercises. If you have aVHDL license, use the
VHDL version instead.

Related Reading
User's Manual Section: Memory List Window.

Reference Manual commands. mem display, mem load, mem save, and radix.

Compile and Load the Design
1. Create anew directory and copy thetutorial filesinto it.

Start by creating a new directory for this exercise (in case other users will be working
with these lessons). Create the directory and copy all files from
<install_dir>/examples/tutorials/verilog/memory to the new directory.

If you have aVHDL license, copy thefilesin
<install_dir>/examples/tutorial s/vhdl/memory instead.

2. Start Model Sim and change to the exercise directory.

ModelSim SE Tutorial, v10.1 127

Viewing And Initializing Memories
View a Memory and its Contents

If you just finished the previous lesson, Model Sim should already be running. If not,
start ModelSim.

a

b.

a
b.

a

Note

Typevsim at a UNIX shell prompt or use the ModelSim icon in Windows.
If the Welcome to Model Sim dialog appears, click Close.
Select File > Change Directory and change to the directory you created in step 1.

. Create the working library and compile the design.

Type vlib work at the Model Sim> prompt.

Verilog:
Typevlog *.v at the Model Sim> prompt to compile all verilog filesin the design.

VHDL:
Typevcom -93 sp_syn_ram.vhd dp_syn_ram.vhd ram_tb.vhd at the Model Sim>
prompt.

. Optimize the design

Enter the following command at the Model Sim> prompt:
vopt +acc ram_tb -o ram_tb_opt

The +acc switch for the vopt command provides visibility into the design for
debugging purposes.

The -0 switch allows you designate the name of the optimized design file
(ram_tb_opt).

Y ou must provide a name for the optimized design file when you use the vopt command.

5. Load the design.

a. OntheLibrary tab of the Main window Workspace, click the "+" icon next to the

b.

work library.
Use the optimized design name to load the design with the vsim command:

vsim ram_tb_opt

View a Memory and its Contents

The Memory window lists all memory instances in the design, showing for each instance the
range, depth, and width. Double-clicking an instance opens a window displaying the memory

data

128

ModelSim SE Tutorial, v10.1

Viewing And Initializing Memories
View a Memory and its Contents

1. Open the Memory window and view the data of a memory instance

a. If the Memory window is not already open, select View > Memory List.

A Memory window opens as shown in Figure 11-1.

Figure 11-1. The Memory List in the Memory window

b. Double-click the /ram_tb/spraml/mem instance in the memory list to view its

contents.

"IInsEm:e |F‘.ange |Depﬁ1 |'|.ﬂ.|'id1i1 |
“ jram_tb/spram1/mem [D:4095] 4096 a
« fram_tb/spram2/mem [0:2047] 2043 17
Q Jjram_tb/spram3/mem [0:65535] £5536 32
£~ fram_tb/spram4/mem [0:3] 4 16
* Jjram_tb/dpram1/mem [0:15] 16]
i Ubraryl E sim I R Memary] KE|

A Memory Data window opens displaying the contents of spraml. The first column
(blue hex characters) lists the addresses, and the remaining columns show the data

values.

If you are using the Verilog example design, the datais all X (Figure 11-2) because
you have not yet simulated the design.

Figure 11-2. Verilog Memory Data Window

Mermory Data - fram_tb)'spraml frem

OOO00000 |Hae=aee HHEsses
OOO00005 e HEsesx
OOO0000a [Heaee s
OOO0000E M HamEss
OOO000L1 [Reese XMExnsx
OOO000L1Y |Reese XMmxnnsx
000000 e |ReExEEMe XMHEXMKEX
OO0000ES |HrExmeee XMHEXMKEX
OO0000ES [KEMEAENKK XMEXMKEX
OOO0002d |Heeeeee HHEEsesx

[R 1

FOHHMEENN MENMNEEY
FOHHMEENN MENMNEEY
SO MR
SO MEEEEEEN
DO M MM N
DO M MM N
PO MO
PO MO
R
FOHHMEENN MENMNEEY

HEMMEENE
HEMMEENE
FOMMEENEE
FHMMHEENE
A
A
A S
A S
L S
HEMMEENE

2|

If you are using the VHDL example design, the datais all zeros (Figure 11-3).

ModelSim SE Tutorial, v10.1

129

Viewing And Initializing Memories
View a Memory and its Contents

Figure 11-3. VHDL Memory Data Window

Memory Daka - fram_kb/sprami frem

aooooaoa
noooaoda
nooooold
nooooole
aooooozg
QooooosE
aooooosc
aooooods
aooooasa
noooaosa
nooooosd

m 2l

]
=
]

oo oo oo oo o0
o o oo oo oo oo
o o oo oo oo oo
oo oo oo oo ooo
o o oo oo o oo oo
oo oo oo oo ooo
oo oo oo oo ooo
o o oo oo o oo oo
oo oo oo oo ooo
oo oo oo oo o oo

c. Double-click the instance /ram_tb/spram2/memin the Memory window. This opens
a second Memory Data window that contains the addresses and data for the spram2
instance. For each memory instance that you click in the Memory window, a new
Memory Data window opens.

2. Simulate the design.

a Click therun -all icon in the Main window.

A Source window opens showing the source code for the ram_tb file at the point
where the smulation stopped.

VHDL:

In the Transcript window, you will see NUMERIC_STD warnings that can be ignored
and an assertion failure that is functioning to stop the ssmulation. The simulation itself
has not failed.

a. Click the Memory ...spraml/mem tab to bring that Memory data window to the
foreground. The Verilog datafields are shown in Figure 11-4.

Figure 11-4. Verilog Data After Running Simulation

Memory Data - fram_th/spram 1fmem

00000000 |00101000 00101001 00

00000006 (00101110 00101111 o0

1
1
0000000c |00110100 00110101 €01
1
i}

[]
[)
[
[
=
L]
L]
[}
[
L
=
[
[)
[
L]
L]
L]
[}
[}
=
L]
L]

=
L]
L]
=
L]
[=]
[]

L]
[ol

00000012 (00111010 00111011 O

=]
=]
=]
|l
- T .
[T o e |

[T |
[T Sl S
[R el i
[T e |
[T ol o

[o
=

[T |

[T |

[- |
[I el S
[I el s
=
=

o
==
(==

=]
[]
L]

10 01000111 01001000
00 01001101 0

10 01010011 0
00 01011001 01011010

P Mam mamran1a mrammenn
LI _"I_I Ll'l

I B Memory ...spramlfmem] EE Memary ...=pram2 fmem l h] ram_ﬁ:.u] ﬂ_?'

f

=
o
o

[}

-
[
L]
[
L]
=)
L]
[=]
[ol

=]
3

Pt
o
o

R e B I = STl = =
o
B e T

o
PP PP
P

3=
=
e
3

L]

[]

[

(=]

-

=)
El L]
AR e
& [

[]

[e

3
M

130 ModelSim SE Tutorial, v10.1

Viewing And Initializing Memories
View a Memory and its Contents

The VHDL datafields are show in Figure 11-5.

Figure 11-5. VHDL Data After Running

Simulation

Memory Data - fram_tbfspramimem

oooooooo 4an 4] 42 43 44 45 a6 47 ﬂ
ooooooos 48 49 50 5l L2 53 L4 5L
oooooolo L6 57 5a 59 &0 6l B2 63
ooooools 64 65 1 a7 65 69 70 71
oooooozo T2 T3 T4 75 76 77 T8 79
oooooozs =41} gl g2 g3 =1 g5 1= g7
oooooozo as g9 a0 al =hes a3 a4 o5
oooooozs a6 o7 o3 99 100 1ol 102 103
ooooooan g4 105 1os 107 1oz 109 110 111

N 5]

[B Memary ...spraml,l'mem] B Memary ...spramEImeml H] ram_tl:n.\-'hdJ ﬂ_?‘l

3. Change the address radix and the number of words per line for instance
/ram_tb/spraml/mem.

a. Right-click anywhere in the spraml1 Memory Datawindow and select Properties.

b. The Properties dialog box opens (Figure 11-6).

Figure 11-6. Changing the Address Radix

x

— Addrezz Radis—] [Data Badis—
™ Hexadecimal ¥ Sumbolic
* Decimal " Binary
i~ Octal
i~ Decimal
i~ Urnsigned
i~ Hexadecimal
— Line %rap
© Fitin Windaw
' ‘wiords per Line |1_

ak

I LCanicel I

c. For the Address Radix, select Decimal. This changes the radix for the addresses

only.

d. Select Wordsper lineand type 1 inthefield.

e. Click OK.

ModelSim SE Tutorial, v10.1

131

Viewing And Initializing Memories
View a Memory and its Contents

Y ou can see the Verilog results of the settingsin Figure 11-7 and the VHDL resultsin
Figure 11-8. If the figure doesn’t match what you have in your Model Sim session, check
to make sure you set the Address Radix rather than the Data Radix. Data Radix should
still be set to Symbolic, the default.

Figure 11-7. New Address Radix and Line Length (Verilog

Memory Data - fram_tb/spramfmem

0olol0oa i’

oololool
oolololao
oolololl
oolol1oa0
oolollol
0ol0lllad
oolollll

nol 1nnmm
[T [25|

I B Memory ...spraml,l'mem] B Memory ...spramz mem l |h] ram_tl:u.v] ﬂ_?—'

O =1 o s L O

Figure 11-8. New Address Radix and Line Length (VHDL)

Memary Data - fram_tbfsprami frmem

40 :EJ
41

4z

43

44

45

46

a7

45

o oEn x|

I B Memary . ..spramil/mem] E Memary ...spramz,l'meml H] ram_tb.vhd ﬂﬁl

)

L= R e R N R

Navigate Within the Memory

Y ou can navigate to specific memory address locations, or to locations containing particular
data patterns. First, you will go to a specific address.

1. Use Goto to find a specific address.
a. Right-click anywhere in address column and select Goto (Figure 11-9).
The Goto dialog box opensin the data pane.

132 ModelSim SE Tutorial, v10.1

Viewing And Initializing Memories
View a Memory and its Contents

Figure 11-9. Goto Dialog

ﬂ
Goto Address
|7|3EI

ak. I Cancel I

b. Type 30in the Goto Addressfield.
c. Click OK.
The requested address appears in the top line of the window.
2. Edit the address location directly.
a. Toquickly moveto aparticular address, do the following:
i. Double click address 38 in the address column.

li. Enter address 100 (Figure 11-10).

Figure 11-10. Editing the Address Directly

Memory Data - fram_th/spram 1fmem

30 |ol000110
31 |o1000111
32 |o1001000
33 |o1001001
34 |ol001010
35 |ol001011
36 |01001100
37 |olo001101
100 01001110

4| i N =

I B mMemary ...spramlfmem] FH Memory ...spram2/mem l h] ram_ﬁ:.u] 43

L

iii. Pressthe Enter or Return key on your keyboard.
The pane jumps to address 100.
3. Now, let'sfind a particular data entry.
a. Right-click anywhere in the data column and select Find.
The Find in dialog box opens (Figure 11-11).

ModelSim SE Tutorial, v10.1 133

Viewing And Initializing Memories
Export Memory Data to a File

Figure 11-11. Searching for a Specific Data Value

Find in /ram_tb/spramil /mem El

— Find Data Find Mest |
Pattern: (11111016

& glob (E.g. 1234, 101 011, *05?, 'hfa3g) | _Feplace

.
SR Feplace Al

Replace with: |

™ Find backwards Close

b. Verilog: Type 11111010 in the Find data: field and click Find Next.
VHDL: Type 250 in the Find data: field and click Find Next.

The data scrolls to the first occurrence of that address. Click Find Next afew more
times to search through the list.

c. Click Close to close the dialog box.

Export Memory Data to a File

Y ou can save memory datato afile that can be loaded at some later point in simulation.

1. Export amemory pattern from the /ram_tb/spraml/meminstance to afile.
a. Make sure/ram_tb/spraml/mem s open and selected.

b. Select File> Export > Memory Data to bring up the Export Memory dialog box
(Figure 11-12).

134 ModelSim SE Tutorial, v10.1

Viewing And Initializing Memories
Export Memory Data to a File

Figure 11-12. Export Memory Dialog

Export Memory x|

— Instance Mame
Irar_tbjsprami fmem

— #Address Range
= al

" aAddresses {in decimal)

Start |0 End |4095
File Format
£ Yerilog Hex [Mo addresses
" verilog Binary [T Compress
&+ M1
— Address Radiz) [Data Radiz—
" Hexadecimal " Symbalic
% Decimal % Binary
" Octal
" Decimal
" Unsigred
" Hexadecimal

—Line YWrap
£~ Fit in Windaow

% words per Line I]_

File Save

Filename |data mem. menl Browse. ..

[8]4 | Cancel |

For the Address Radix, select Decimal.
For the Data Radix, select Binary.

e o

e. For the Words per Line, set to 1.

f. Typedata mem.mem into the Filename field.
g. Click OK.

Y ou can view the exported file in any editor.

Memory pattern files can be exported as rel ocatable files, smply by leaving out the
address information. Rel ocatable memory files can be loaded anywhere in a memory
because no addresses are specified.

ModelSim SE Tutorial, v10.1 135

Viewing And Initializing Memories
Initialize a Memory

2. Export arelocatable memory pattern file from the /ram_th/spram2/mem instance.

a
b.

C.

Select the Memory Data window for the /ram_tb/spram2/mem instance.
Right-click on the memory contents to open a popup menu and select Properties.

In the Properties dialog, set the Address Radix to Decimal; the Data Radix to
Binary; and the Line Wrap to 1 Words per Line. Click OK to accept the changes
and close the dialog.

Select File > Export > Memory Data to bring up the Export Memory dialog box.
For the Address Range, specify a Start address of 0 and End address of 250.

For the File Format, select MTI and No addr esses to create a memory pattern that
you can use to relocate somewhere else in the memory, or in another memory.

g. For Address Radix select Decimal, and for Data Radix select Binary.

For the Words per Line, set to 1.

. Enter the file name as reloc.mem, then click OK to save the memory contents and

close the dialog. You will use thisfile for initialization in the next section.

Initialize a Memory

In ModelSim, it is possible to initialize amemory using one of three methods: from an exported
memory file, from afill pattern, or from both.

First, let’sinitialize amemory from afile only. Y ou will use the one you exported previously,
data_mem.mem.

1. View instance /ram_tb/spram3/mem.

a

Double-click the /ram_tb/spram3/mem instance in the Memories tab.

Thiswill open anew Memory Data window to display the contents of
/ram_tb/spram3/mem. Familiarize yourself with the contents so you can identify
changes once the initialization is complete.

Right-click and select Properties to bring up the Properties dialog.

Changethe Address Radix to Decimal, Data Radix to Binary, Wordsper Lineto 1,
and click OK.

2. Initialize spram3 from afile.

a

Right-click anywhere in the data column and select Import Data Patternsto bring
up the Import Memory dialog box (Figure 11-13).

136

ModelSim SE Tutorial, v10.1

Viewing And Initializing Memories
Initialize a Memory

Figure 11-13. Import Memory Dialog

Import Memory El

—Instance Mame

Jram_thb/spram3fmem

— Load Type Address Range
= File only & al
" Data Only " Addresses (in decimal)
" Both File and Data Start |0 End |65535
—File Load
— File Farmat [Update Properties
" verilog Hex

" Yerilog Binary Loading Mode

£ MTI
¥ specified in File

¥ Incremental

£ Mo Incremental

Filenarne

data mem. mertl Browse, ..

—[rata Load
—Fill Type Fill Data
& yalue I
£ Increment
" Decrement Skip
£ Random |D wiord(s)

Ik Cancel

The default Load TypeisFile Only.
b. Typedata_mem.memin the Filename field.
c. Click OK.

The addresses in instance /ram_tb/spram3/mem are updated with the datafrom
data_mem.mem (Figure 11-14).

ModelSim SE Tutorial, v10.1 137

Viewing And Initializing Memories
Initialize a Memory

Figure 11-14. Initialized Memory from File and Fill Pattern

Memory Data - fram_th/spram3/mem

0wl 2=

HH Memory ...spram1/mem l HH Memory ...spram2/mem l |h] ram_tb.v I B Memory ...spram3/mem]-ﬂil

In this next step, you will experiment with importing from both afile and afill pattern.
Y ou will initialize spram3 with the 250 addresses of data you exported previously into
the relocatablefile reloc.mem. Y ou will also initialize 50 additional address entries with
afill pattern.

3. Import the /ram_tb/spram3/mem instance with a relocatable memory pattern
(reloc.mem) and afill pattern.

a. Right-click in the data column of spram3 and select Import Data Patternsto bring
up the Import Memory dialog box.

b. For Load Type, select Both File and Data.

c. For Address Range, select Addresses and enter O as the Start address and 300 asthe
End address.

This means that you will be loading the file from 0 to 300. However, the reloc.mem
file contains only 251 addresses of data. Addresses 251 to 300 will be loaded with
thefill data you specify next.

d. For File Load, select the M TI File Format and enter reloc.mem in the Filename
field.

e. For DatalLoad, select aFill Type of Increment.
f. IntheFill Datafield, set the seed value of O for the incrementing data.
Click OK.

h. View the data near address 250 by double-clicking on any address in the Address
column and entering 250.

Y ou can see the specified range of addresses overwritten with the new data. Also, you
can see the incrementing data beginning at address 251 (Figure 11-15).

138 ModelSim SE Tutorial, v10.1

Viewing And Initializing Memories
Interactive Debugging Commands

Figure 11-15. Data Increments Starting at Address 251

Mernory Daka - frarm_tbispram3)mern

K

250 (00000000000000000010010000100010 3
251 |0000o000o0o0oo0oooo0oooo0ooaoona0
252 |00000000000000000000000000000001
253 |00000000000000000000000000000010
254 |000000000o0ooo0aoooaoooooonoonll
255 |00000000000000000000000000000100
£56 |00000000000000000000000000000101
257 |00000000o0o0ooo0aoooaoooaoonaollo

Co [pinininintainintntnininlinliginininiaininintainininintninialh B in |

214 21+

B Memory ...spraml,l'meml B Memary ...spramz/menm l |h] ram_th.v I B Memary ...spram3jimern]*él ?‘l

Now, before you leave this section, go ahead and clear the memory instances already
being viewed.

4. Right-click in one of the Memory Data windows and select Close All.

Interactive Debugging Commands

The Memory Data windows can also be used interactively for avariety of debugging purposes.
The features described in this section are useful for this purpose.

1. Open amemory instance and change its display characteristics.

a
b.

Double-click instance /ram_tb/dpraml/memin the Memories window.
Right-click in the dpraml Memory Data window and select Properties.
Change the Address and Data Radix to Hexadecimal.

Select Words per line and enter 2.

Click OK. Theresult should be asin Figure 11-16.

Figure 11-16. Original Memory Content

i=2 Memory Data - fram_tbfsprami fmem

nooooooo |28 29 ﬂ
noooooog |Z2a Zb
nooooood j2c z2d
nooooooge |2e 2
Qoooooog |30 3l
noooooda |32 33
noooooocs |34 35
nooooaode |36 37

o e 2=
ram_th,w IE Memary .. .spramlimem | ﬂ_?*l

ModelSim SE Tutorial, v10.1 139

Viewing And Initializing Memories
Interactive Debugging Commands

2. Initialize arange of memory addresses from afill pattern.

a. Right-click in the data column of /ram_tb/dpraml/mem and select Change to open
the Change Memory dialog (Figure 11-17).

Figure 11-17. Changing Memory Content for a Range of Addresses**OK

Change Memory x|

— Instance Mame
Jram_tbfdpram1mem

— #Address Range Fill Tvpe
 al i value

* aAddresses {in hexadecimal) € Increment

™ Decrement

Stark |0x 00000006 End | 000000003

% Random
Fill Drata Skip
I':l IIII word(s)
[0]4 | Cancel | Apply |

b. Select Addresses and enter the start address as 0x00000006 and the end address as
0x00000009. The "0x" hex notation is optional.

c. Select Random asthe Fill Type.
d. Enter 0 asthe Fill Data, setting the seed for the Random pattern.
e. Click OK.

The data in the specified range are replaced with a generated random fill pattern
(Figure 11-18).

Figure 11-18. Random Content Generated for a Range of Addresses

i=2 Memory Data - fram_tbfsprami fmem

nooooooo |28 29 ﬂ
noooooog |Z2a Zb
nooooood j2c 24
noooooos |22 40
Qoooooog o4 31
noooooda |32 33
oooooooc |34 35
nooooode |36 37

[R [=
ram_th,w lﬁ Memary .. spramiimem | ﬂ_?"

3. Change contents by highlighting.

140 ModelSim SE Tutorial, v10.1

Viewing And Initializing Memories
Interactive Debugging Commands

Y ou can aso change data by highlighting them in the Address Data pane.

a. Highlight the data for the addresses 0x0000000c: 0x0000000g, as shown in
Figure 11-19.

Figure 11-19. Changing Memory Contents by Highlighting

=2 Memary Data - fram_thy'spramimem

oooooaon (28 29 ﬂ
oooooaoz |Z2a b
oooooood j2c 24
oooooaoe |92 40
ooooooog o4 31
oooooooa |32 33

puilayuyuinge:
oooooaode 37

[. [2+
ram_kb.w IE Mermary ...spraml fmem I ﬂ_?'

b. Right-click the highlighted data and select Change.

This brings up the Change memory dialog box. Note that the Addressesfield is
already populated with the range you highlighted.

c. Select ValueastheFill Type. (Refer to Figure 11-20)
d. Enter the datavaluesinto the Fill Datafield asfollows: 24 25 26.

Figure 11-20. Entering Data to Change**OK

Change Memory x|

— Instance Mame

[fram_th/spram1 fmem

— #Address Range Fill Tvpe
ol % walue
' Addresses (in hexadecimal) " Increment
" Decrement
Start [0000000¢C End | 0000000
" Randam
—Fill Data Skip
|24 25 2¢] 0 words)
Ok | Cancel | Apply |
e. Click OK.

ModelSim SE Tutorial, v10.1 141

Viewing And Initializing Memories

Interactive Debugging Commands

The data in the address | ocations change to the values you entered (Figure 11-21).

Figure 11-21. Changed Memory Contents for the Specified Addresses

222 Memory Data - fram_thfsprami frmem

aooooaoa
oooooooz
nooooood
aoooooog
aoooooog
ooooaooa
Qoo0000c
oooooode

28
2a
2C
9z
04
32
24
26

[(7

29
Zh
2d
40
31
33
25
37

ram_th,w IE Memary .. .spramlimem |

4. Edit datain place.

To edit only one value at atime, do the following:

a. Double click any value in the Data column.

b. Enter the desired value and press the Enter or Return key on your keyboard.

If you needed to cancel the edit function, press the Esc key on your keyboard.

Lesson Wrap-Up

This concludes this lesson. Before continuing we need to end the current simulation.

1. Select Smulate> End Simulation. Click Yes.

142

ModelSim SE Tutorial, v10.1

Chapter 12
Analyzing Performance With The Profiler

Introduction

The Profiler identifies the percentage of simulation time spent in each section of your code as
well as the amount of memory allocated to each function and instance. With this information,
you can identify bottlenecks and reduce simulation time by optimizing your code. Users have
reported up to 75% reductions in simulation time after using the Profiler.

This lesson introduces the Profiler and shows you how to use the main Profiler commandsto
identify performance bottlenecks.

Note

D The functionality described in this tutorial requires a profile license feature in your
ModelSim license file. Please contact your Mentor Graphics sales representative if you
currently do not have such afeature.

Design Files for this Lesson

The example design for thislesson consists of afinite state machine which controls a behavioral
memory. The test bench test_sm provides stimulus.

The ModelSim installation comes with Verilog and VHDL versions of thisdesign. Thefilesare
located in the following directories:

Verilog — <install_dir>/examples/tutorials/verilog/profiler
VHDL —<install_dir>/examples/tutorials/vhdl/profiler_sm seq

This lesson uses the Verilog version for the exercises. If you have a VHDL license, use the
VHDL version instead.

Related Reading
User’s Manual Chapters. Profiling Performance and Memory Use and Tcl and Macros (DO
Files).

Compile and Load the Design

1. Create anew directory and copy thetutorial filesinto it.

ModelSim SE Tutorial, v10.1 143

Analyzing Performance With The Profiler

Start by creating a new directory for this exercise (in case other users will be working
with these lessons). Create the directory and copy all files from
<install_dir>/examples/tutorials/verilog/profiler to the new directory.

If you have aVHDL license, copy thefilesin
<install_dir>/examples/tutorials/vhdl/profiler_sm seq instead.

2. Start Model Sim and change to the exercise directory.

If you just finished the previous lesson, Model Sim should already be running. If not,
start ModelSim.

a. Typevsim at aUNIX shell prompt or use the Model Sim icon in Windows.
If the Welcome to Model Sim dialog appears, click Close.
b. Select File> Change Directory and change to the directory you created in step 1.
3. Create thework library.
a Typevlib work at the Model Sim> prompt.
4. Compilethe design files.

a. Verilog: Typevlogtest_sm.v sm_seq.v sm.v beh_sram.v at the Model Sim>
prompt.

VHDL: Type vcom -93 sm.vhd sm_seq.vhd sm_sram.vhd test_sm.vhd at the
Model Sim> prompt.

5. Optimize the design.
a. Enter the following command at the Model Sim> prompt in the Transcript window:
vopt +acc test_sm -0 test_sm_opt

The +acc switch for the vopt command provides visibility into the design for
debugging purposes.

The -o switch allows you designate the name of the optimized design file
(test_sm_opt).

Note
Y ou must provide a name for the optimized design file when you use the vopt command.

6. Load the optimized design unit.
a. Enter vaim test_sm_opt at the Model Sim> prompt.

Run the Simulation

Y ou will now run the simulation and view the profiling data.

144 ModelSim SE Tutorial, v10.1

Analyzing Performance With The Profiler
View Performance Data in Profile Windows

1. Enablethe statistical sampling profiler.

a. Select Tools > Profile > Performance or click the Performance Profiling icon in

the toolbar. ﬂ

Thismust be done prior to running the ssmulation. Model Sim is now ready to collect
performance data when the smulation is run.

2. Runthe smulation.
a. Typerun 1 msatthe VSIM> prompt.

Notice that the number of samples taken is displayed both in the Transcript and the
Main window status bar (Figure 12-1). (Y our results may not match thosein the
figure.) Also, Model Sim reports the percentage of samples that were taken in your
design code (versusin internal simulator code).

Figure 12-1. Sampling Reported in the Transcript

Transcript

399111 illegal op received

993155 outof = 000000

H 993495 autof = 00000022

999585 outof = 000000bD

993615 outof = 000000c:

999675 autaf = 000000=d

999735 outof = 000000ce

9997571 illegal op received

Q99795 ruabnf = OOONONRF

Prafiling pauzed. 1871 zamples taken [73% in uzer code]

WEIM 4 |
|N|:|w: 1 ms Delta: 2 |Profile Samples: 181

View Performance Data in Profile Windows

Statistical performance datais displayed in four profile windows: Ranked, Call Tree, Structural,
and Design Unit. Additional profile details about those statistics are displayed in the Profile
Details window. All of these windows are accessible through the View > Profiling menu
selection in the Main GUI window.

1. View ranked performance profile data.
a. Select View > Profiling > Ranked Profile.

The Ranked window displays the results of the statistical performance profiler and
the memory allocation profiler for each function or instance (Figure 12-2). By
default, ranked performance data is sorted by valuesin the In% column, which
shows the percentage of the total samples collected for each function or instance.
(Y our results may not match those in the figure.)

ModelSim SE Tutorial, v10.1 145

Analyzing Performance With The Profiler
View Performance Data in Profile Windows

Figure 12-2. The Ranked Window

Click here to hide —sd*{Mame Iniraw) Ini%a) Under(%) [Under(rawy| | =]
or display columns. Tel_\WaitForEvent 26 3.0% 31.0% 26
_wl_systF_calltf 14 16,79 52.4% 44
kesk_sm.w:92 5 6. 0% 5.0% 5
kest_sm.vil36 3 36% 3.6% 3
TolpHasSockets z Z.4% 2.4% z |
SIM_sed.% z2 204% 2.4%: 2
test_sm.wil22 1 1.2%: Z2.4%: 2
Tel_DeleteTimerHandler 1 1.2% 1.2% 1
_malloc_skack_space 1 1.2% 1.2% 1
_wl_new_general_thread 1 1.2% 1.2% 1
beh_sram.v:22 1 1.2% 1.2% 1 -
£E| Wave I @ Ranked I ﬂi'l

Y ou can sort ranked results by any other column by simply clicking the column
heading. Or, click the down arrow to the left of the Name column to open a
Configure Columns dialog, which allows you to select which columns are to be
hidden or displayed.

The use of colorsin the display provides an immediate visual indication of where
your design is spending most of its simulation time. By default, red text indicates
functions or instances that are consuming 5% or more of simulation time.

The Ranked tab does not provide hierarchical, function-call information.
2. View performance profile datain a hierarchical, function-call tree display.
a. Select View > Profiling > Call TreeProfile.

b. Right-click in the Calltree window and select Expand All from the popup window.
This displays the hierarchy of function calls (Figure 12-3). Datais sorted (by
default) according to the Under(%) column.

146 ModelSim SE Tutorial, v10.1

Analyzing Performance With The Profiler
View Performance Data in Profile Windows

Figure 12-3. Expand the Hierarchical Function Call Tree

5

= wl_systf_callf 43 10 45, 3% 10.5%

=k Tel_DoCneEvent 33 1] 3. 7% 0.0%

Tel_twaitForEvent 27 27 28.4% 28.4%:

- 'EI_DEIEI:eTimerHandler 5 1] 5, 3% 0.0%:
Tel_GetTime 5 5 5.3% 5.3% —

=F TchwinOpenConsoleChannel 1 0 1.1% 0.0%

Tel_zetThreadData 1 1 1.1% 1.1%

best_sm.w:92 5 5 5.3% 5.3%

——gm.i T3 % 0 4.2% 0.0%

=+ _I_vl_systf_calltf 4 1] 4, 2% 0.0%:

- ﬁ_DnOneEvent] 0 3.2% 0.0%:

t Tel_waitForEvent] 3 3.2% 3.2%

TR 1 1 1.1% 1.1%
kest_srmvi 136 2 2 2.1% 2.1%: -
| Wave | @ Ranked I 1L Callres] ﬂi'l

Note

D Y our results may look dlightly different as aresult of the computer you’ re using and
different system calls that occur during the simulation. Also, the line number reported
may be one or two lines off in the actual source file. This happens due to how the
stacktrace is decoded on different platforms.

3. View instance-specific performance profile datain a hierarchical format.
a. Select View > Profiling > Structural Profile.

b. Right-click in the Structural profile window and select Expand All from the popup
menu. Figure 12-4 displays information found in the Calltree window but adds an
additional dimension with which to categorize performance samples. Datais sorted
(by default) according to the Under(%) column.

Figure 12-4. Structural Profile Window

Eruckural

- tsm_seq[l 7 z T.4% 2.1%
]i o sm_n 5 5 5.3% 5.3%
ol sram_0 4 4 4,2% 4, 2%

| Wave @ Ranked | $Lz Calltree I 2 Structural 3

ModelSim SE Tutorial, v10.1 147

Analyzing Performance With The Profiler
View Performance Data in Profile Windows

4. View performance profile data organized by design unit.
a. Select View > Profiling > Design Unit Profile.

The Design Units profile window provides information similar to the Structural
profile window, but organized by design unit, rather than hierarchically. Datais
sorted (by default) according to the Under(%) column.

Figure 12-5. Design Unit Performance Profile

w2 Design Units

Marne Counk Under(rawm) | Inraw) Under(%:1 |Inf%s) -
L sm.v:53 1 1 1.1% 1.1%
=beh_sram 1 4 4 4.2% 4.2%
— beh_sram, w30 1 1 1.1%: 1.1%
— beh_sram, w32 1 1 1.1%: 1.1%
— beh_sram, w43 1 1 1.1%: 1.1%
L beh_sram, w44 1 1 1.1%: 1.1%
;’—tlest_sm 1 6l &l o4, 2% o4, 2%
=} test_sm.wi105 44 1 45, 3% 1.1%
= vl systf_callf 43 10 45, 3%, 10.5%
=F Tcl_DeCneEvent 33] 3. 7% 0.0%
Tel_WaitFarE, .. 27 27 28.4% 28.4%:
- ']il_DeletETim... 5 0 5.3% 0.0%:
Tel_GetTi. ., 5 o 5. 3% 5.3%
=} TehwinOpenc., .. 1 0 1.1% 0.0%:
Tel_GetTh... 1 1 1.1% 1.1% -
ﬂ W arve l @ Ranked l ;@ Calltree l @ Structural I @ Design nits J ﬂ_?'

View Source Code by Clicking in Profile Window

The performance profile windows are dynamically linked to the Source window. Y ou can
double-click a specific instance, function, design unit, or line and jump directly to the relevant
source code in a Source window. Y ou can perform the same task by right-clicking any function,
instance, design unit, or line in any of the profile windows and selecting View Sour ce from the
popup menu.

a. Verilog: Double-click test_sm.v:105 in the Design Units profile window. The
Source window opens with line 105 displayed (Figure 12-6).

VHDL : Double-click test_sm.vhd: 203. The Source window opens with line 203
displayed.

148 ModelSim SE Tutorial, v10.1

Analyzing Performance With The Profiler
View Profile Details

Figure 12-6. Source Window Shows Line from Profile Data

105 |alwa5rs B joutof] J/ any change of outof

106 fdisplay (§$time,,"outof = 3h",outof);

107

108 integer i

102

110

111

11z % teats %/ —

113 initial

114 hegin LI
4| k

g Wave | £ Ranked | {2 Calltree | £23 Structural | 523 Design Llnitsltest_sm.vl _ﬂ_?l

View Profile Detalls

The Profile Detailswindow increases visibility into simulation performance. Right-clicking any
function in the Ranked or Call Tree windows opens a popup menu that includes a Function
Usage selection. When you select Function Usage, the Profile Details window opens and
displays al instances that use the selected function.

1. View the Profile Details of afunction in the Call Tree window.

a. Right-click the Tcl_WaitForEvent function and select Function Usage from the
popup menu.

The Profile Details window displays all instances using function Tcl_WaitFor Event
(Figure 12-7). The statistical performance data show how much simulation timeis
used by Tcl_WaitForEvent in each instance.

Figure 12-7. Profile Details of the Function Tcl_Close

2 Profile Details

Instances using funckion: Tel_WaitForEvent

'l"|Name |Lln|:|er|:raw]l |Inl{raw]l |Lln|:|er|:°.-"o]l |Inl{°.-"o]| | |
ol frest_sm 19 19 22.4%: 22.4%
Ml frest_smyjsm_seqlsm_0 fi f 7% 7%

£ Wave l @ Ranked l ;@ Calltree l @ Struckursl l @ Design Lnits I @ Profile Details]_ﬂ_?'l

When you right-click a selected function or instance in the Structural window, the popup menu
displays either a Function Usage selection or an Instance Usage selection, depending on the
object selected.

ModelSim SE Tutorial, v10.1 149

Analyzing Performance With The Profiler
Filtering the Data

1. View the Profile Details of an instance in the Structural window.
a. Select the Structural tab to change to the Structural window.
b. Right-click test_smand select Expand All from the popup menu.

c. Verilog: Right-click the sm_0 instance and select | nstance Usage from the popup
menu. The Profile Details shows all instances with the same definition as
/test_sm/sm_seqO/sm 0 (Figure 12-8).

Figure 12-8. Profile Details of Function sm_0O

% Profile Details

Instances with same definition as ftest_smfsm_seql)sm_0
‘l"IName |Lln|:|er|{raw]| |Inl{raw]| |Lln|:|er|{%]| |Inl{%]| | |
ol ftest_smfsm_seqdism_0 11 11 12.9% 12.9%

£ Wave | 32 Ranked | {2 Calltree

233 Skructural

4 Diesign Linits [£ Profile Details]_ﬂﬁl

VHDL : Right-click the dut instance and select | nstance Usage from the popup
menu. The Profile Details shows all instances with the same definition as
/test_smvdut.

Filtering the Data

Asalast step, you will filter out lines that take less than 3% of the simulation time using the
Profiler toolbar.

1. Filter linesthat take less than 3% of the simulation time.
a. Click the Calltree tab to change to the Calltree window.
b. Change the Under (%) field to 3 (Figure 12-9).

Figure 12-9. The Profile Toolbar

| | s oEA 00 v

If you do not see these toolbar buttons, right-click in a blank area of the toolbar and
select Profile from the popup menu of avialable toolbars.

c. Click the Refresh Profile Data button. | €

Model Sim filters the list to show only those lines that take 3% or more of the
simulation time (Figure 12-10).

150 ModelSim SE Tutorial, v10.1

Analyzing Performance With The Profiler
Creating a Performance Profile Report

Figure 12-10. The Filtered Profile Data

Marne Under(raw | Infraw) Under(%) |Inf%)
- sb_sm,vi105 43 1] 20, 6% 0,0%:
=+ vl systf_callef 43 14 50.6%: 16.5%:
=} Tel_DooneEvent 23 n 32.9% 0.0%:
Tcl_WaitForEvent 19 19 22.4%: 22.4%
=} TclSignalExitThread g a 5.9% 0.0%
Tel_zetTime 4 4 4.7% 4. 7%
—|—am.vi 73 11 1] 12.9%: 0.0%z
=k awl_systf_callf 11 4 12.9% 4,7%:
= Tol_DoCneEvent & 1] 1% 0.0%
Tel_\yaitForEwvent =] & Fol% Tl%
besk_smm,yvi92] 3 3.5% 3.5%

M Wave Q Ranked [@ Calltree @ Skructural @ Design nits l Q Frafile Details] ﬂ_?l

Creating a Performance Profile Report

1. Createacall treetype report of the performance profile.

a. With the Calltree window open, select Tools> Profile > Profile Report from the
menus to open the Profile Report dialog.

b. Inthe Profile Report dialog (Figure 12-11), select the Call Tree Type.

ModelSim SE Tutorial, v10.1 151

Analyzing Performance With The Profiler
Creating a Performance Profile Report

e o

@

~Type

Figure 12-11. The Profile Report Dialog

Profile Report

¥ Call Tree
" Ranked

£ Skructural £~ Design Units

Fook{opk): I
[T Include funckion call hisrarche
[T sSpecify structure level
=

i Callers and Callees

Funickion: I

i~ Funckion ta instance

Funickion: I

" Instances using same definition

Instance: I

—Performance [Memory data

" Defaulk {data collected)
* Performance only
£~ Memory anly

" Performance and memary

X

—Cuktoff percent

i~ Defaulk (0%

* Specify I Sil

—oukpuk

£ Wirite ko Eranscripk

&+ Write ko file Iu:alltree.rptl
IV Wi File

Browse. ..

[8]4 | Zancel

Specify the Cutoff percent as 3%.

In the Performance/Memory data section select Performance only.

Select Write to file and type calltree.rpt in the file name field.

View fileis selected by default when you select Writeto file. Leave it selected.
Click OK.
The calltree.rpt report file will open automatically in Notepad (Figure 12-12).

152

ModelSim

SE Tutorial, v10.1

Analyzing Performance With The Profiler
Creating a Performance Profile Report

Figure 12-12. The calltree.rpt Report

_lojx

File Edit Window

= |calltree. rpt

b

Platform: win3z

Calltree profile generated Wed Now 25 13:10:32 2009
Mumber of samples: 85

Number of samples in user code: 61 [(72%)
Cutoff percentage: 3%

Keep unknouwn: 0

Collapse sections: 0

Collect callstacks: O

Memory tCrim height: 0O

Eeep free: 1

Profile data: wsimk [(Model3im kernel)

MName Underiraw) In(raw) Under(%) In(%) 3*Parent
test_sm.w:l05 473 0 s0.6 o.o a0
_wl_systf_calltf 43 14 J0.4 la. 5 100
Tcl_DodneEvent 23 0 32.9 0.0 63
Tcl _WaitForEvent 14 14 2z.4 Ei.4 63
TeliignmalExitThread 5] 5.9 0.0 15
Tcl_GetTine 4 4 4.7 4.7 a0
am.w: 73 11 1] 1z.9 0.0 15
_wl_systf_calltf 11 4 1z.49 4.7 100
Tcl_DodneEvent & 0 7.1 o.o 35
Tcl_WaitForEwent & & 7.1 7.1 1aoa
test_sm.wvig2 3 3 3.5 3.5 3

Questalin wvsim QA& Baseline: 6.6 Beta - 21543585 Simulator 2009.11 Now 23 2009

| calltree. rpk |

o3

Y ou can also output this report from the command line using the profile report

command. See the ModelSm Command Reference for details.

Lesson Wrap-Up

This concludes this lesson. Before continuing we need to end the current simulation.

Select Simulate > End Simulation. Click Yes.

ModelSim SE Tutorial, v10.1

153

Analyzing Performance With The Profiler
Creating a Performance Profile Report

154 ModelSim SE Tutorial, v10.1

Chapter 13
Simulating With Code Coverage

Introduction

Model Sim Code Coverage gives you graphical and report file feedback on which executable
statements, branches, conditions, and expressions in your source code have been executed. It
also measures bits of logic that have been toggled during execution.

Note
D The functionality described in this lesson requires a coverage license feature in your

ModelSim license file. Please contact your Mentor Graphics sales representative if you
currently do not have such afeature.

Design Files for this Lesson

The sample design for this lesson consists of afinite state machine which controls a behavioral
memory. The test bench test_sm provides stimulus.

The ModelSim installation comes with Verilog and VHDL versions of thisdesign. Thefilesare
located in the following directories:

Verilog — <install_dir>/examples/tutorials/verilog/coverage
VHDL —<install_dir>/examples/tutorials/vhdl/coverage

This lesson uses the Verilog version in the examples. If you have a VHDL license, use the
VHDL version instead. When necessary, we distinguish between the Verilog and VHDL
versions of the design.

Related Reading
User's Manual Chapter: Code Coverage.

Compile the Design

Enabling Code Coverage is a simple process: Y ou compile the design files and identify which
coverage statistics you want to collect. Then you load the design and tell Model Sim to produce
those statistics.

1. Create anew directory and copy thetutorial filesinto it.

ModelSim SE Tutorial, v10.1 155

Simulating With Code Coverage

Start by creating a new directory for this exercise (in case other users will be working
with these lessons). Create the directory and copy all files from
<install_dir>/modeltech/examples/tutorial s/verilog/coverage to the new directory.

If you have aVHDL license, copy thefilesin
<install_dir>/modeltech/examples/tutorials/'vhdl/coverage instead.

2. Start Model Sim and change to the exercise directory.

If you just finished the previous lesson, Model Sim should already be running. If not,
start ModelSim.

a. Typevsim at aUNIX shell prompt or use the Model Sim icon in Windows.
If the Welcome to Model Sim dialog appears, click Close.
b. Select File> Change Directory and change to the directory you created in step 1.
3. Create the working library.
a Typevlib work at the Model Sim> prompt.
4. Compileall design files.
a. For Verilog—Typevlog *.v at the Model Sim> prompt.
For VHDL — Type vcom *.vhd at the Model Sim> prompt.
5. Designate the coverage statistics you want to collect.
a. Typevopt +cover=bcesxf test_sm -otest_sm_opt at the Model Sim> prompt.

The +cover =bcesxf argument instructs Model Sim to collect branch, condition,
expression statement, extended toggle, and finite state machine coverage statistics.
Refer to the Overview of Code Coverage Typesin the User’s Manual for more
information on the available coverage types.

The -0 argument is used to designate a name (in this case, test_ sm_opt) for the
optimized design. This argument is required with the vopt command.

Note
By default, Model Sim optimizations are performed on all designs (see Optimizing
Designs with vopt).

Load and Run the Design
1. Loadthedesign.

a. Enter vsim -coveragetest_sm_opt at the Model Sim> prompt. (The optimized
design isloaded.)

156 ModelSim SE Tutorial, v10.1

Simulating With Code Coverage

Three code coverage windows will open: Code Coverage Analysis, Instance
Coverage, and Coverage Details (Figure 13-1).

Figure 13-1. Code Coverage Windows

Code Coverage &nalysis

Skatement Analysis - by instance (ftest_sm) =
~HuL] test_sm.w -
¥ 24 4 5 into = . Y: 4/ op_word
Xs 31 #° dinto = { s v // ctrl word
I—){s 32 B (posedge clk) Code Coverage Analysis
I—)(s 33 #5 into = data; | -
— ¥ =
§-1 Transcript | £L Inskance Details l‘l Chjects lm Lihraryl =i Files I(S Analysis]-E =i I -éI ?I
|Nu:uw: Nps Delta: 0 |sim:,l'test_sm | y
Instance Coverage Coverage Details

Within the Code Coverage Analysis window you can perform statement, branch,
condition, expression, FSM, and toggle coverage analysis. Each line in the Code
Coverage analysis window includes an icon that indicates whether elementsin the
line (statements, branches, conditions, or expressions) were executed, not executed,
or excluded. Table 13-1 displays the Code Coverageicons.

Table 13-1. Code Coverage Icons

Icon | Description/Indication

{ All statements, branches, conditions, or expressions on a
particular line have been executed

¥ Multiple kinds of coverage on the line were not executed

i True branch not executed (BC column)

¥ False branch not executed (BC column)

}{ Condition not executed (Hits column)
o

}{E Expression not executed (Hits column)

}{ Branch not executed (Hits column)
B

¥ Statement not executed (Hits column)
5

ModelSim SE Tutorial, v10.1 157

Simulating With Code Coverage

Table 13-1. Code Coverage Icons

Icon | Description/Indication

Indicates aline of code to which active coverage exclusions
E have been applied. Every item on the lineis excluded; none

are hit.
E Some excluded items are hit
Ex Some items are excluded, and all items not excluded are hit
[

E Some items are excluded, and some items not excluded
B | have missing coverage

Auto exclusions have been applied to thisline. Hover the
Ez | cursor over the E and atool tip balloon appears with the
reason for exclusion,

Y ou can select the analysis you want to perform in the Analysis toolbar
(Figure 13-2).

Figure 13-2. Analysis Toolbar

J Type |Statement inalysis |_$ |? l? |E_

Statement Analysis

Branch Analysis
Expression hnalvsis
Condition Analysis
FaM Analysis

ogqgle Analysis

Y ou can identify which analysisis currently open by the title bar in the Code
Coverage Analysiswindow (Figure 13-3).

Figure 13-3. Title Bar Displays Current Analysis

% Code Coverage gnalysis

E Statement Analysis - by instance (ftest_sm)

~rrmﬁs&. Bl i o st o

Title har displays current analysis.

By default, Statement Analysisis displayed the first time the Code Coverage
Analysis window opens. For subsequent invocations, the |ast-chosen analysis
window is displayed.

2. Run the ssimulation

a. Typerun 1 msat the VSIM> prompt.

158 ModelSim SE Tutorial, v10.1

Simulating With Code Coverage

When you load a design with Code Coverage enabled, Model Sim adds several coverage data
columnsto the Files and Structure (sim) windows (Figure 13-4). Use the horizontal scroll bar to
see more coverage data columns. (Y our results may not match those shown in the figure.)

Figure 13-4. Code Coverage Columns in the Structure (sim) Window

Specified path |Full path
wsin, wlf i Tukorialf. ..
SIL Sl i Tukorialf.. werilog 25 2z g5.000 N |
SIN_se. v SIn_se. v CfTukorialf. .. werilog 16 15 9370
beh_sram.v beh_sram.v CifTutorialf... werilog & 5 83333]
kest_sm.w kest_sm.w CfTukorialf. .. werilog 7 LU VRN |
e —
[1 Transcript iI Instance iE Dietails a Ohijecks lﬂjl Library l £ Files]E Bnalysis l E sim]
|N|:uw: 1ms Delka: 2 |5im:,|'test_5m 1

Y ou can open and close coverage windows with the View > Cover age menu selection.

Figure 13-5. Coverage Menu

Yiew Compile Simulate Add
Zall Stack,
Capaciky
Class Browser k
W v Coverage dnalysis
Data v Instance Coverage
v Files (o) v Dekails
F3M List {q) i
v Library (u) Essertluhs .
List Cower Direckives
lpe=ls Covergroups
- ﬂww ywﬂr*-’._‘_‘ e i e fhanh Bt il e

All coverage windows can be re-sized, rearranged, and undocked to make the data more easily
viewable. To resize awindow, click-and-drag on any border. To move awindow, click-and-
drag on the header handle (three rows of dotsin the middle of the header) or click and drag the
tab. To undock awindow you can select it then drag it out of the Main window, or you can click
the Dock/Undock button in the header bar (top right). To redock the window, click the
Dock/Undock button again.

We will look at some of the coverage windows more closely in the next exercise.

ModelSim SE Tutorial, v10.1 159

Simulating With Code Coverage
Viewing Coverage Data

Viewing Coverage Data
Let’stake alook at the coverage data displayed in different coverage windows.

1. View coverage datain the Structure (ssim) window.

a. Select the sim tab and use the horizontal scroll bar to view coverage datain the
coverage columns. Coverage data is shown for each object in the design.

b. Select the Filestab to switch to the Files window and scroll to the right. Y ou can
change which coverage data columns are displayed by right clicking on any column
name, selecting Change Column Visibility, and selecting columns from the popup
list.

Figure 13-6. Right-click a Column Heading to Show Column List

Configure Columns x|

¥ Eranch % Iv Full path

V¥ Branch Count ¥ specified path
I¥ Eranch Graph Iw states %

v Eranch Hits [V states Count
v Condition 2 [w states Graph
v Condition Court [¥ states Hits
Iv Condition Graph I stmt 2.

v Condition Hits Iv Stk Count
¥ Expression % Iw stmt Graph

v Expression Counk v Stk Hits

¥ Expression Graph v Toggle %

[V Expression Hits ¥ Toggle nodes

v FEC Condition % v Toggled graph
¥ FEC Condition Count W Toggles hit

v FEC Condition Graph ™ Transitions %

v FEC ConditionHits ™ Transitions Count
Iw FEC Expression % Iw Transitions Graph
v FEC Expression Counk ¥ Transitions Hits
¥ FEC Expression Graph W Tvpe

v FEC Expression Hits

Ok | Cancel|

All checked columns are displayed. Unchecked columns are hidden. The status of
every column, whether displayed or hidden, is persistent between invocations of
ModelSim.

2. View coverage datain the Statement Analysis view of the Code Coverage Analysis
window.

160 ModelSim SE Tutorial, v10.1

Simulating With Code Coverage
Viewing Coverage Data

a. If the Statement Analysisview is not displayed in the Code Coverage Analysis
window, select Statement Analysis from the Analysis toolbar (Figure 13-7).

Figure 13-7. Select Statement Analysis

A X

J TYDE|Statement Analysis
Statement Analysis
Eranch Analysis
Expression Analyais
Condition Analysis
FiM Analyais

oggle Analvyais

b. Select different files from the Files window. The Code Coverage Analysis window
updates to show coverage data for the selected file in the Statement Analysis view.

c. Double-click any entry in the Statement Analysis view to display that linein a
Source window.

3. View toggle coverage details in the Coverage Details window.

a. Switch to the Toggle Analysis view in the Code Coverage Analysis window by
selecting the Toggle Analysisin the Analysis Toolbar (Figure 13-7).

b. Click the Details tab to open the Coverage Details window.

If the Details tab is not visible, select View > Coverage > Details from the Main
menu.

c. Select any object in the Toggle Analysis and view its coverage detailsin the
Coverage Details window (Figure 13-8).

Figure 13-8. Coverage Details Window Undocked

Cowerage Details

Instance: /test_sm
Sigmal: dat
|[Hode count: 32

IH--0L: &

L--1H: 5

0L--Z: 30

Z--0L: 32

IH--&: &

Z-=1H: &

Toggle Coverage: 15.75%
071 Coverage: :=1.55%
|[Full Coverage: 47.9:2%

Z Coverage: o0.94%

E-1 Transcript l @ Analysis I@ Dietails | ‘I Ohjec

ModelSim SE Tutorial, v10.1 161

Simulating With Code Coverage
Coverage Statistics in the Source Window

4. View instance coverage data.

a. Click the Instance tab to switch to the Instance Coverage window. If the Instance tab
isnot visible, select View > Coverage > | nstance Cover age from the Main menu.

The Instance Coverage window displays coverage statistics for each instancein a
flat, non-hierarchical view. Double-click any instance in the Instance Coverage
window to see its source code displayed in the Source window.

Figure 13-9. Instance Coverage Window

Instan
Inskance Design unit |Design unit bype |Stmk count |Skmts bt (Stmks missed |Stmt 9% |Skmt graph
ol ftest_sm kest_sm Module 7 70 R R=L N
I [test_smfsm_seqd sm_seq Module 1 3.8%:
Ml frest_smyjsm_seqd)... sm Module 25 2z 3 g5% [|
Ml frest_smyjsram_0 bieh_sram Module] 5 1 &83.53%]
4

I —
k-3 Transcript is Analysis l ‘I Dhjects lM Library l £ Files l@ Inskance r% sinm l kest_sm.y - by file l@ Details

Coverage Statistics in the Source Window

The Source window contains coverage statistics of its own.

1. View coverage statistics for beh_sramin the Source window.

a. Double-click beh_sram.v in the Files window to open a source code view in the
Source window.

b. Scroll the Source window to view the code shown in Figure 13-10.

162 ModelSim SE Tutorial, v10.1

Simulating With Code Coverage
Coverage Statistics in the Source Window

Figure 13-10. Coverage Statistics in the Source Window

;i Tutorialfexamples tukorialsverilog/cover age/beh_sram. v - by File
Hit= BC Lrg | Mo £ [
3G
39 always @ [(negedge clk)
e ¥ 4o if (rd || wr) begin
37493 9372t 231:Z26f 41 s G
e 4z dat r #M DLY mwem[addr];
v ¥ 43 if ('wr_) |/test sm/sram O/rd
f 44 memn [addr]st]
45
46 end
17 else
Xe Hr a8 if fied w0
}{3 49 fdizsplay(§stime,, "Error: Simultanscous Reads &
[~]
D
[Transcript l @ finialysis l %4 Obijects l beh_sramm.y - by fil,

The Source window includes a Hits and a BC column to display statement Hits and
Branch Coverage, respectively. In Figure 13-10, the mouse cursor is hovering over
the source code in line 41. This causes the coverage icons to change to coverage
numbers. Table 13-2 describes the various coverage icons.

Table 13-2. Coverage Icons in the Source Window

I con Description

green checkmark | Indicates a statement that has been executed

green E Indicates aline that has been excluded from
code coverage statistics
red X An X in the Hits column indicates a missed

(unexecuted) statement (Xg), branch (Xg), or
condition (X¢). An X inthe BC column
indicates amissed true (X) or false (Xg)
branch.

c. Select Tools> Code Coverage > Show coverage numbers.

The coverageiconsin the Hits and BC columns are replaced by execution counts on
every line. Red numbers indicate missed coverage in that line of code. An éllipsis
(...) isdisplayed whenever there are multiple statements on the line.

ModelSim SE Tutorial, v10.1 163

Simulating With Code Coverage
Toggle Statistics in the Objects Window

Figure 13-11. Coverage Numbers Shown by Hovering the Mouse Pointer

:Tukariallexamples ftutorialsverilog/coverage /beh_sram.« - by File
Hits BC Lria# | o £ | -
38
iv499 a9 always @ (negedge clk)
57499 37495t 1f 40 if (rd || wr) begin
iva95 9372t Z281Z2ef 41 if ('rd)
9372 4z dat r <= #I-I_DLY mem[addr] ;
Iv495 9376t Z81z2Zf 43 if ('wr_]
Q576 44 mem[addr] <= #M DLY dat;
45
46 end
47 el=se
1 Ot 1f 45 if ffrd || wr) == 0] |
] 43 fdisplavijscime,, "Error: Simultaneous Eea
S0 ;I
A o)
iwCripk l @ Analysis 1@ Details l ‘I Dhjects Library | = z beh_sram. - by File [ﬂ_?-'

d. Select Tools> Code Coverage > Show cover age number s again to uncheck the
selection and return to icon display.

Toggle Statistics in the Objects Window

Toggle coverage counts each time alogic node transitions from one state to another. Earlier in
the lesson you enabled six-state toggle coverage by using the -cover x argument with the vlog,
vcom, or vopt command. Refer to the section Toggle Coverage in the User’s Manual for more
information.

1. View toggle datain the Objects window.
a. Select test_smin the Structure (sim) window.

b. If the Objects window isn’t open already, select View > Objects. Scroll to the right
to see the various toggle coverage columns (Figure 13-12), or undock and expand
the window until all columns are displayed. If you do not see the toggle coverage
columns, simply right-click the column title bar and select Show All Columns from
the popup menu.

164 ModelSim SE Tutorial, v10.1

Simulating With Code Coverage
Excluding Lines and Files from Coverage Statistics

Figure 13-12. Toggle Coverage in the Objects Window

=}
1
1
&
&
4

L3
iCripk ig Analysis iE Dretails I‘I Objects beh_sram.w - by File I 1| %—I

Excluding Lines and Files from Coverage
Statistics

Model Sim allows you to exclude lines and files from code coverage statistics. Y ou can set
exclusions with GUI menu selections, with atext file called an "exclusion filter file", or with
"pragmas’ in your source code. Pragmas are statements that instruct Model Sim to ignore
coverage statistics for the bracketed code. Refer to the section Coverage Exclusionsin the
User's Manual for more details on exclusion filter files and pragmas.

1. Excludealinein the Statement Analysis view of the Code Coverage Analysis window.

a. Right click alinein the Statement Analysis view and select Exclude Selection from
the popup menu. (Y ou can also exclude the selection for the current instance only by
selecting Exclude Selection For Instance <inst_name>.)

2. Cancel the exclusion of the excluded statement.

a. Right-click the line you excluded in the previous step and select Cancel Selected
Exclusions.

3. Exclude an entirefile.

a. IntheFileswindow, locate the sm.v file (or the sm.vhd file if you are using the
VHDL example).

b. Right-click the file name and select Code Coverage > Exclude Selected File
(Figure 13-13).

ModelSim SE Tutorial, v10.1 165

Simulating With Code Coverage
Creating Code Coverage Reports

Figure 13-13. Excluding a File Using GUI Menus

Skrnk Hiks

Skrnk Counk

Full path

Specified path Type

wsinm, wlf i Tutori...
S Sy C:Tukari, ., verilog 25 22 68000
v werilog

SIM_sed.% SM_Sed. v C: I Tukari

T & 0., '-.-'E!r'i||:||;| i = H3.333
YWiew Source i... verilog e

open in external editar

Code Coverage Code Coverage Reports, ..

Exclude Selected File

Properties. ..

Clear Cu:unlé"\}tcuverage Data

= e, Rt B O e e, St e i e, ity R ks S TR A e Bl e B oyt B el s e B e P G S

Creating Code Coverage Reports

Y ou can create textual or HTML reports on coverage statistics using menu selectionsin the GUI
or by entering commands in the Transcript window. Y ou can aso create textual reports of
coverage exclusions using menu selections.

To create textual coverage reports using GUI menu selections, do one of the following:

® Select Tools > Coverage Report > Text from the Main window menu bar.

® Right-click any object in the sim or Files windows and select Code Coverage > Code
Coverage Reports from the popup context menu.

® Right-click any object in the Instance Coverage window and select Code cover age
reportsfrom the popup context menu. Y ou may also select I nstance Coverage > Code
cover age reports from the Main window menu bar when the Instance Coverage
window is active.

Thiswill open the Coverage Text Report dialog (Figure 13-14) where you can elect to report
on:

o alfiles,

o all instances,

o al design units,

o specified design unit(s),
o specified instance(s), or
o 9specified source file(s).

166 ModelSim SE Tutorial, v10.1

Simulating With Code Coverage
Creating Code Coverage Reports

Figure 13-14. Coverage Text Report Dialog

Coverage Text Report il

~Report kind

Report an |.C'.II Files !I

Ol Mame | Browse, .,

File [Mame |sm. v Erowse, .,

Instance Name| Browse, ..
T Recursive I Depth I_

—Werbosity —_overage Type
" Default
toktals per instance /DU File V¥ Assertions
% Details v Covergroups
I all Toggles ¥ Cover directives
™ Condition/Expression Tables v Code coverage
[T Covergroup Options [T all code coverage
V¥ Source snnotation ¥ Branches
[T FEC Analysis ¥ Conditions
|- Metric Analysis v Expressions
™ Tokal Coverage ¥ Statements
¥ Fsms
—Cutpuk Mode
¥ Toggles
™ ®ML Format

~Report Pathname

|rep|:|rt.t:-ct Browse. ..

[aAppend to file

Advanced 0|:utiu:un5...| [8]4 | Caru:el|

Model Sim creates afile (named report.txt by default) in the current directory and immediately
displays the report in the Notepad text viewer/editor included with the product.

To create a coverage report in HTML, select Tools > Coverage Report > HTML from the
Main window menu bar. This opens the Coverage HTML Report dialog where you can
designate an output directory path for the HTML report.

ModelSim SE Tutorial, v10.1 167

Simulating With Code Coverage
Creating Code Coverage Reports

Figure 13-15. Coverage HTML Report Dialog

Coverage HTML Report El

Cther Opkions

—Colarization Threshold

High |20 [~ werbose [Mo Details
Lowe |50 [MoSource Code [Mo Frames

~HTML Qukput Direckory Path

|-:Dvhtmlrep|:|rt Browse., ..

V¥ “iew report in browser when complete

i Cancel

Restaore Defaulk

By default, the coverage report command will produce textua filesunlessthe -html argument is
used. Y ou can display textua reports in the Notepad text viewer/editor included with the
product by using the notepad <filename> command.

To create a coverage exclusionsreport, select Tools> Coverage Report > Exclusionsfrom the
Main window menu bar. This opensthe Coverage Exclusions Report dialog where you can elect
to show only pragma exclusions, only user defined exclusions, or both.

Figure 13-16. Coverage Exclusions Report Dialog

Coverage Exclusion Report El

~Exclusion Type

¥ Pragma Exclusions ¥ User Defined Exclusions

~Report Pathname

|Exclusinn. dal Browse, ..

[T append ta file

Ik Cancel

Lesson Wrap-Up
This concludes this lesson. Before continuing we need to end the current simulation.

1. Typequit -sim at the VSIM> prompt.

168 ModelSim SE Tutorial, v10.1

Chapter 14
Comparing Waveforms

Introduction

Waveform Compare computes timing differences between test signals and reference signals.
The general procedure for comparing waveforms has four main steps:

1. Select the simulations or datasets to compare
2. Specify the signals or regions to compare
3. Run the comparison
4. View the comparison results
In this exercise you will run and save a simulation, edit one of the sourcefiles, run the

simulation again, and finally compare the two runs.

Note
D The functionality described in this tutorial requires a compare license feature in your

ModelSim license file. Please contact your Mentor Graphics sales representative if you
currently do not have such afeature.

Design Files for this Lesson

The sample design for this lesson consists of afinite state machine which controls a behavioral
memory. The test bench test_sm provides stimulus.

The ModelSim installation comes with Verilog and VHDL versions of thisdesign. Thefilesare
located in the following directories:

Verilog — <install_dir>/examples/tutorials/verilog/compare
VHDL —<install_dir>/examples/tutorials/vhdl/compare

This lesson uses the Verilog version in the examples. If you have a VHDL license, use the
VHDL version instead. When necessary, instructions distinguish between the Verilog and
VHDL versions of the design.

Related Reading
User's Manual sections: Waveform Compare and Recording Simulation Results With Datasets.

ModelSim SE Tutorial, v10.1 169

Comparing Waveforms
Creating the Reference Dataset

Creating the Reference Dataset

The reference dataset is the .wif file that the test dataset will be compared against. It can be a
saved dataset, the current simulation dataset, or any part of the current simulation dataset.

1. Create anew directory and copy the tutorial filesinto it.

Start by creating a new directory for this exercise (in case other users will be working
with these lessons). Create the directory and copy all files from
<install_dir>/examples/tutorials/verilog/compare to the new directory.

If you have aVHDL license, copy thefilesin
<install_dir>/examples/tutorial s/vhdl/compare instead.

2. Start Model Sim and change to the exercise directory.

If you just finished the previous lesson, Model Sim should already be running. If not,
start ModelSim.

a. Typevsim at a UNIX shell prompt or use the Model Sim icon in Windows.
If the Welcome to Model Sim dialog appears, click Close.
b. Select File> Change Directory and change to the directory you created in step 1.
3. Execute the following commands:
o Verilog

vlib work

vliog *.v

vopt +acc test_sm -o opt_test_gold
vsim -wlf gold.wlf opt_test_gold
add wave *

run 750 ns

quit -sim

o VHDL

vlib work

vcom -93 sm.vhd sm_seqg.vhd sm_sram.vhd test_sm.vhd
vopt +acc test_sm -o opt_test_gold

veim -wlf gold.wlf opt_test_gold

add wave *

run 750 ns

quit -sim

The -wlf switch is used with the vsim command to create the reference dataset called
gold.wif.

170 ModelSim SE Tutorial, v10.1

Comparing Waveforms
Creating the Test Dataset

Creating the Test Dataset

The test dataset is the .wif file that will be compared against the reference dataset. Like the
reference dataset, the test dataset can be a saved dataset, the current simulation dataset, or any
part of the current simulation dataset.

To simplify matters, you will create the test dataset from the simulation you just ran. However,

you will edit the test bench to create differences between the two runs.

Verilog
1.

VHDL

Edit the test bench.

d.

Compile the revised file and rerun the simulation.

Select File > Open and open test_sm.v.
Scrall to line 122, which looks like this:
@ (posedge clk) wt_wd('hl0, 'haa);
Change the data pattern "haa’ to 'hab’:
@ (posedge clk) wt_wd('hl0, 'hab);

Select File > Save to save thefile.

vlog test_sm.v

vopt +acc test_sm -o opt_test_sm
vsim opt_test_sm

add wave *

run 750 ns

Edit the test bench.

d.

Compile the revised file and rerun the simulation.

@)

Select File > Open and open test_sm.vhd.
Scroll to line 151, which looks like this:
wt_wd (16#10#, 16#aa#, clk, into);
Change the data pattern’aa to'ab’:

wt_wd (16#10#, 16#ab#, clk, into);

Select File > Save to save thefile.

VHDL

ModelSim SE Tutorial, v10.1

171

Comparing Waveforms
Comparing the Simulation Runs

vcom test_sm.vhd

vopt +acc test_sm -o opt_test_sm
vsim opt_test_sm

add wave *

run 750 ns

Comparing the Simulation Runs

Model Sim includes a Comparison Wizard that walks you through the process. Y ou can also
configure the comparison manually with menu or command line commands.

1. Create acomparison using the Comparison Wizard.
a. Select Tools> Waveform Compare > Comparison Wizard.

b. Click the Browse button and select gold.wif as the reference dataset (Figure 14-1).
Recall that gold.wif is from the first smulation run.

Figure 14-1. First dialog of the Waveform Comparison Wizard

Comparison Wizard x|
The first step in creating a ~Reference Dataset
comparison is to open the |g,:1:j.w1:- ﬂ e
reference and test datasets (.wlf
files). ~Test Dataset
Either dataset can be a saved .wlf ¥ Use Current Simulation
file or a dataset that is already v Update comparison after each run
opened.
" Specfy Dataset
Use the Browse buttona to browse | Browse. .
for a saved dataset, or click the | '_J

down arrow to select a file from
the dataset selection history.

Mext = | « Previous | Cancel |

c. Leaving thetest dataset set to Use Current Simulation, click Next.
d. Select Compare All Signalsin the second dialog (Figure 14-2) and click Next.

172 ModelSim SE Tutorial, v10.1

Comparing Waveforms
Viewing Comparison Data

Figure 14-2. Second dialog of the Waveform Comparison Wizard

Comparison Wizard x|
With the reference and test | [Comparison Method

datasets selected, the next * Compare all Signals

step i3 to select a comparison

o
rethod. Compare Top Level Ports

" Specify Comparison by Signal
Compare Rll Signals - " Specify Comparison by Region
compares all signals in the
teat dataset againat the
3ignals in the reference
dataset.

Compare Top Lewvel Ports -
compares the top lewel ports of =~
the selected datasets.

Ji

Mext = | < Previous | Cancel

e. Inthe next three dialogs, click Next, Compute Differences Now, and Finish,
respectively.

Model Sim performs the comparison and displays the compared signalsin the Wave
window.

Viewing Comparison Data

Comparison datais displayed in the Structure (compare), Transcript, Objects, Wave and List
windows. Compare objects are denoted by ayellow triangle.

The Compare window shows the region that was compared.

The Transcript window shows the number of differences found between the reference and test
datasets.

The Objects window shows comparison differences when you select the comparison object in
the Structure (compare) window (Figure 14-3).

ModelSim SE Tutorial, v10.1 173

Comparing Waveforms
Viewing Comparison Data

Figure 14-3. Comparison information in the compare and Objects windows

i% Compare e e o s AN % Objects
|‘l'11nstann:e |Desi-;|n ik |Design unit bype

WirtualRegion

|:| |:| I III
op),

4 I I PI
i | Library ’I sim |I gold ﬁ COMpare ﬂ_?-l

Comparison Data in the Wave Window

The Wave window displays comparison information as follows:
® timing differences are denoted by ared X’sin the pathnames column (Figure 14-4),

Figure 14-4. Comparison objects in the Wave window

. |match
. | diff
... [match
h... [match
. | diff
... [maktch
. |match
. |match

. |match

oy
Cursor 1| 451100 ps 451100 ps
1] | AR vl EER N | I Ol |

* red areasin the waveform view show the location of the timing differences,
® redlinesin the scrollbars also show the location of timing differences,
® and, annotated differences are highlighted in blue.

The Wave window includes six compare icons that let you quickly jump between differences
(Figure 14-5).

174 ModelSim SE Tutorial, v10.1

Comparing Waveforms
Viewing Comparison Data

Figure 14-5. The compare icons
[l e T 2 o B

From left to right, the buttons do the following: Find first difference, Find previous annotated
difference, Find previous difference, Find next difference, Find next annotated difference, Find
last difference. Use these icons to move the selected cursor.

The compare icons cycle through differences on all signals. To view differencesin only a
selected signal, use <tab> and <shift> - <tab>.

Comparison Data in the List Window

Y ou can aso view the results of your waveform comparison in the List window.

1. Add comparison datato the List window.
a. Select View > List from the Main window menu bar.

b. Dragthetest_smcomparison object from the compare tab of the Main window to the
List window.

c. Scroll down the window.

Differences are noted with yellow highlighting (Figure 14-6). Differences that have
been annotated have red highlighting.

ModelSim SE Tutorial, v10.1 175

Comparing Waveforms

Saving and Reloading Comparison Data

Figure 14-6. Compare differences in the List window

st =10l x|
File Edit Wiew add Tools ‘Window
|DsE& s B g% o
PE— compare: ftest sm/houtof<routo £, cnmpare:ftest_smﬁ\nut_wire{a:J
delta—, compare: /ffLest sm W rstEFrsth,
compare: ftest_sm/\clk<rclkh—
430000 40| 00000000000000000000000000000000 1 1 ooooooooooooooooaaoan
431000 +1 | 0O00O00O00O0000000000000000000000000 1 1 oooooooooooooaooaaoan
435000 +0 | 000O00000000000000000000000000000 1 1 oooooooooooooaooaaoan
440000 40 | oo00oo0ooooaooooooaaoaoooaooaaoon 0O 0 oaooooooooaoooooaooaan
450000 40| 00000000000000000000000000000000 1 1 oooooooooooooaooaaoan
451000 +1 | 0O0O00O00O0000Q000000000000000000000 1 1 oooooooooooooaooaaoan
451000 +2 | 00000000000000000000000000000000 1 1 oooooooooooooaooaaoan
455000 40| oo0oooooooaoooooooaoooo0lolalola 11 DDDDDDDDDDDDDDDDDDDDD-J
460000 +0 | 00000000000000000000000010101010 0 0 0o0oooo0oo0o0aooaaoan
.IIIIIIIIIIZIDDDDDDDDDDDDDDDDDDDDlDlDlIIIlIII RO Oo00000000000000a0a0
470000 +0 | 000O00O000000000000000000010101010 1 1 oooooooooooooaooaaoan
471000 +1 | oo0ooooooooooooooaaoooo0lolalola 1 1 oooooooooooooooaooann
471000 +& | 00000000000000000000000010101010 1 1 oooooooooooooaooaaoan
475000 +0 | 00000000000000000000000010101010 1 1 oooooooooooooaooaaoan
4830000 +0 | 0O00O00O0O00O00QQ00000000000010101010 0 0 Qooooooooooo0aooaaoan
490000 40 | oo0oooooooaooooooaaoooo0lolalola 1 1 oaoooooooooooooaooaan
421000 +1 | 0O00O00O0O0O0O0O00Q00000000000010101010 11 DDDDDDDDDDDDDDDDDDDDD;j
163 lines + | | i

Saving and Reloading Comparison Data

Y ou can save comparison data for later viewing, either in atext file or in files that can be

reloaded into Model Sim.

To save comparison data so it can be reloaded into Model Sim, you must save two files. First,
you save the computed differences to one file; next, you save the comparison configuration
rules to a separate file. When you reload the data, you must have the reference dataset open.

1. Savethe comparison datato atext file.

a. Inthe Main window, select Tools> Waveform Compare > Differences> Write
Report.

b. Click Save.
This saves compare.txt to the current directory.

c. Typenotepad compare.txt at the VSIM> prompt to display the report
(Figure 14-7).

176 ModelSim SE Tutorial, v10.1

Comparing Waveforms
Saving and Reloading Comparison Data

Figure 14-7. Coverage data saved to a text file

Motepad
File Edit Window

||E

£ compare. tet

Total signals compared = 11

Total primary differences = 6
Total secondary differences =

g

HNumber of primary sSighals with differences = 4

Diff nuber 1, From time 135 ns delta 0 Lo Cinme 155 ns delta
gold:/test_sm/into = 00000000000000000000000010101010
Sim:/test_amdinto = 00000000000000000000000010101011

Diff nuber 2, From time 135 ns delta 0 Lo Cinme 155 ns delta
gold:/test_am/into[0] = 0O

Sim:/test_sam/into[0] = 1

Diff nuber 3, From time 171 ns delta 1 Lo Line 191 ns delta
gold:/test_smf/dat = 00000000000000000000000010101010
Sim:/test_amd/dat = 00000000000000000000000010101011

Diff nuber 4, From time 171 ns delta 1 to CLinme 191 ns delta
gold:/test_smidat[0] = StO

sim:/test_smi/dat[0] = 3tl

Diff nuber 5, From time 409 ns delta 1 Lo Cine 411 ns delta
gold:/test_smf/dat = 00000000000000000000000010101010
Sim:/test_amd/dat = 00000000000000000000000010101011

Diff nuber 6, From time 409 ns delta 1 to Cine 411 ns delta
gold:/test_smidat[0] = StO

sim:/test_smi/dat[0] = 3tl

Diff nuber 7, From time 431 ns delta 1 Lo Cine 491 ns delta

11

LRt e B T Yot S e e e B e B

h
[o]

2. Savethe comparison datain files that can be reloaded into Model Sim.

d. Close Notepad when you have finished viewing the report.

a. Select Tools > Waveform Compar e > Differences > Save.
b. Click Save.
This saves compare.dif to the current directory.
c. Select Tools> Waveform Compare > Rules> Save.
d. Click Save.
This saves compare.rul to the current directory.

e. Select Tools> Waveform Compare > End Comparison.

3. Reload the comparison data.

a. With the Structure (sim) window active, select File > Open.

b. ChangetheFilesof Typeto Log Files (*.wlf) (Figure 14-8).

ModelSim SE Tutorial, v10.1

177

Comparing Waveforms
Saving and Reloading Comparison Data

L VPR L BRI bl T e

c. Double-click gold.wif to open the dataset.
d. Select Tools> Waveform Compare > Reload.

Since you saved the data using default file names, the dialog should already have the
correct Waveform Rules and Waveform Difference files specified (Figure 14-9).

Figure 14-9. Reloading saved comparison data
Reload and Redizplay Compare Differences =] E3

—waveform Fules file name

Icumpare.rul Browse...

—waveform Difference file name

Icumpare.dif Browse...

ok Cancel

e. Click OK.

The comparison reloads. Y ou can drag the comparison object to the Wave or List
window to view the differences again.

Lesson Wrap-Up

This concludes this lesson. Before continuing we need to end the current simulation and close
the gold.wif dataset.

1. Typequit -sim at the VSIM> prompt.
2. Typedataset close gold at the Model Sim> prompt.

178 ModelSim SE Tutorial, v10.1

Chapter 15
Automating Simulation

Introduction

Aside from executing a couple of pre-existing DO files, the previous lessons focused on using
Model Sim in interactive mode: executing single commands, one after another, viathe GUI
menus or Main window command line. In situations where you have repetitive tasks to
complete, you can increase your productivity with DO files.

DO files are scripts that allow you to execute many commands at once. The scripts can be as
simple as a series of Model Sim commands with associated arguments, or they can be full-blown
Tcl programs with variables, conditional execution, and so forth. Y ou can execute DO files
from within the GUI or you can run them from the system command prompt without ever
invoking the GUI.

Note
D This lesson assumes that you have added the <install_dir>/<platform> directory to your

PATH. If you did not, you will need to specify full pathsto the tools (i.e., vlib, vmap,
vlog, vcom, and vsim) that are used in the lesson.

Related Reading
User’s Manual Chapter: Tcl and Macros (DO Files).

Practical Programming in Tcl and Tk, Brent B. Welch, Copyright 1997

Creating a Simple DO File

Creating aDO fileis as simple as typing a set of commands in atext file. In this exercise, you
will create aDO file that |oads a design, adds signals to the Wave window, provides stimulusto
those signal's, and then advances the ssmulation. Y ou can also create a DO file from a saved
transcript file. Refer to "Saving a Transcript File asaMacro (DO file)."

1. Changeto the directory you created in the "Basic Simulation™ |esson.

2. CreateaDO filethat will add signals to the Wave window, force signals, and run the
simulation.

a. Select File > New > Source > Do to create anew DO file.
b. Enter the following commands into the Source window:

vsim testcounter_opt

ModelSim SE Tutorial, v10.1 179

Automating Simulation
Running in Command-Line Mode

add wave count
add wave clk
add wave reset
force -freeze clk 0 0, 1 {50 ns} -r 100
force reset 1
run 100

force reset 0
run 300

force reset 1
run 400

force reset 0
run 200

3. Savethefile.

a. Select File> Save As.

b. Typesim.dointhe File name: field and save it to the current directory.
4. Executethe DO file.

a. Enter do sim.do at the VSIM> prompt.

Model Sim loads the design, executes the saved commands and draws the waves in
the Wave window. (Figure 15-1)

Figure 15-1. Wave Window After Running the DO File

[(aT% 1000 ns .

4 v 4 v 4] m |

5. When you are done with this exercise, select File > Quit to quit Model Sim.

Running in Command-Line Mode

We use the term "command-line mode" to refer to ssmulations that are run from aDOS/ UNIX
prompt without invoking the GUI. Several Model Sim commands (e.g., vsim, vlib, vlog, etc.)
are actually stand-alone executables that can be invoked at the system command prompt.
Additionally, you can create aDO file that contains other Model Sim commands and specify that
file when you invoke the simulator.

1. Create anew directory and copy thetutorial filesinto it.

180 ModelSim SE Tutorial, v10.1

Automating Simulation
Running in Command-Line Mode

Start by creating a new directory for this exercise. Create the directory and copy the
following filesinto it:

* /<install_dir>/examples/tutorial s/verilog/automation/counter.v
* /<install_dir>/examples/tutorial s/'verilog/automation/stim.do

This lesson usesthe Verilog file counter.v. If you have a VHDL license, use the
counter.vhd and stim.do filesin the /<install_dir>/examples/tutorial s'vhdl/automation
directory instead.

2. Create anew design library and compile the sourcefile.

Again, enter these commands at a DOS/ UNIX prompt in the new directory you created
instep 1.

a. Typevlib work at the DOS/ UNIX prompt.

b. For Verilog, type vliog counter.v at the DOS/ UNIX prompt. For VHDL, type vcom
counter.vhd.

3. CreateaDOfile.
a. Open atext editor.
b. Typethefollowing linesinto anew file:

list all signals in decimal format
add list -decimal *

read in stimulus
do stim.do

output results
write list counter.lst

quit the simulation
quit -f

c. Savethefilewith the name sim.do and place it in the current directory.
4. Optimize the counter design unit.
a. Enter the following command at the DOS/UNIX prompt:
vopt +acc counter -0 counter_opt
5. Run the batch-mode simulation.
a. Enter the following command at the DOS/UNIX prompt:
vsim -c -do sim.do counter_opt -wlf counter_opt.wlf

The -c argument instructs Model Sim not to invoke the GUI. The -wlIf argument
saves the smulation resultsin a WLF file. This allows you to view the simulation
results in the GUI for debugging purposes.

ModelSim SE Tutorial, v10.1 181

Automating Simulation
Running in Command-Line Mode

6. View thelist output.

a. Open counter.lst and view the simulation results. Output produced by the Verilog
version of the design should look like the following:

ns /counter/count
delta /counter/clk
/counter/reset
0 +0 X z *
3 +0 0z *
50 +0 0 * =
100 +0 0 0 *
100 +1 000
150 +0 0 * 0
152 40 1 *0
200 +0 1 00
250 +0 1 *0

The odtput may appear dightly different if you used the VHDL version.
7. View theresultsin the GUI.

Since you saved the simulation resultsin counter_opt.wif, you can view them in the GUI
by invoking VSIM with the -view argument.

Note
Make sure your PATH environment variable is set with the current version of ModelSim

at the front of the string.

a. Typevsim -view counter _opt.wlf at the DOS/ UNIX prompt.
The GUI opens and a dataset tab named "counter_opt" is displayed (Figure 15-2).

Figure 15-2. The counter_opt.wlf Dataset in the Main Window Workspace

& counter_opt ——————— 5 $a Objects e e - 1

Instance Design unit |Design unit bype

Mame Yalue
B4 count 01100100

F counter counker Miodule

4k Sk0
4 peset Sk

4 |
|]il Librarsy | @ u:u:uunter_u:uth ﬂ_?'l .| | ,

b. Right-click the counter instance and select Add > To Wave > All itemsin region.

The waveforms display in the Wave window.

8. When you finish viewing the results, select File > Quit to close Model Sim.

182 ModelSim SE Tutorial, v10.1

Automating Simulation
Using Tcl with the Simulator

Using Tcl with the Simulator

The DO files used in previous exercises contained only ModelSim commands. However, DO
filesarereally just Tcl scripts. This means you can include awhole variety of Tcl constructs
such as procedures, conditional operators, math and trig functions, regular expressions, and so
forth.

In this exercise, you create asimple Tcl script that tests for certain values on asignal and then
adds bookmarks that zoom the Wave window when that value exists. Bookmarks allow you to
save a particular zoom range and scroll position in the Wave window. The Tcl script aso
creates buttons in the Main window called bookmarks.

1. Createthe script.

a. Inatext editor, open anew file and enter the following lines:

proc add_wave_zoom {stime num} {

echo "Bookmarking wave S$num"

bookmark add wave "bkSnum" "[expr $stime - 50] [expr S$stime + 100]" O
add button "$num" [list bookmark goto wave bkS$Snum]

}

These commands do the following:

® Create anew procedure called "add _wave zoom" that has two arguments, stime
and num.

® Create abookmark with azoom range from the current simulation time minus 50
time units to the current ssimulation time plus 100 time units.

* Add abutton to the Main window that calls the bookmark.

b. Now add these lines to the bottom of the script:

add wave -r /*
when {clk'event and clk="1"} {
echo "Count is [exa count]"

if {[examine count]== "00100111"} ¢
add_wave_zoom Snow 1
} elseif {[examine count]== "01000111"} {

add_wave_zoom Snow 2
}
}

These commands do the following:
® Add all signalsto the Wave window.
® Useawhen statement to identify when clk transitionsto 1.

* Examinethe value of count at those transitions and add a bookmark if itisa
certain value.

c. Savethe script with the name "add_bkmrk.do" into the directory you created in the
Basic Simulation lesson.

ModelSim SE Tutorial, v10.1 183

Automating Simulation
Using Tcl with the Simulator

2. Loadthetest_counter design unit.
a. Start ModelSim.

b. Select File> Change Directory and change to the directory you saved the DO file
toin step 1c above.

c. Enter the following command at the QuestaSim> prompt:
vsim testcounter_opt

3. Executethe DO file and run the design.
a. Typedoadd_bkmrk.do at the VSIM> prompt.
b. Typerun 1500 ns at the VSIM> prompt.
The simulation runs and the DO file creates two bookmarks.

It also creates buttons (labeled "1" and "2") on the Main window toolbar that jump to
the bookmarks (Figure 15-3).

Figure 15-3. Buttons Added to the Main Window Toolbar

Mew Bookmarks
File Edit Wiew Compile Simulate Add ‘Wawve Tools Lawout

‘Window Help

JJv =2l & i i-.éf.iﬁéa'_&;”ﬂgﬂﬂ]IEJHelp ﬁJ
JJleii-% lflTnnsﬂlthl@@ B e B 0T

&} sim o L H A X (e
HInstanu:e |Desi-;|n unit
B I test_counker kest_counter(fask) 4 ok
+ gl dut counkerifast) 4 reset]
o FIMITIAL#1T kest_counker(Fast) o4 count 01001011 Doniiion Jponiiiol g

c. Click the buttons and watch the Wave window zoom in and scroll to the time when
count is the value specified in the DO file.

d. If the Wavewindow isdocked in the Main window make it the active window (click
anywhere in the Wave window), then select Wave > Bookmarks > bk1. If the
window is undocked, select View > Bookmar ks> bk1 in the Wave window.

Watch the Wave window zoom in and scroll to the time when count is 00100111.
Try the bk2 bookmark as well.
Lesson Wrap-Up

This concludes this lesson.

184 ModelSim SE Tutorial, v10.1

Automating Simulation
Using Tcl with the Simulator

1. Select File> Quit to close Model Sim.

ModelSim SE Tutorial, v10.1 185

Automating Simulation
Using Tcl with the Simulator

186 ModelSim SE Tutorial, v10.1

Chapter 16
Getting Started With Power Aware

Introduction

The following sections describe how to run a Power Aware simulation of an RTL design.
Objectives of thislab include:

® Creating aconfiguration filein Unified Power Format (UPF), which defines the low-
power design intent.

* Working through the usage flow for Power Aware verification, such as user-defined
assertions, power intent UPF file isolation, retention.

® Observing therole of Power Aware retention flip-flop models in accurately modeling
power up/ down and retention behavior at the Register Transfer Level.
Design Files For This Lesson

The design for this example is a clock-driven memory interleaver with an associated test bench.
The directory structure is located under <install_dir>/examples/tutorials/pa_sim/

where

pa_sim

example_one

+-- Libraries Verilog and SystemVerilog library source
l—— io
l—— sram_256x16

+-- Questa Simulation directory
l—— scripts Compilation & simulation commands

+—— RTL .. it Source files for interleaver design

l—— UPFcco... UPF file for power intent

For this exercise, you run all simulations from the example_one directory.

ModelSim SE Tutorial, v10.1 187

Getting Started With Power Aware
Create a Working Location

Script Files

The /Questa/scripts directory contains do files for compiling and running all simulation:

® anayze rtl.do— Anayze UPF and extract PA netlist
® compile_rtl.do— Compile RTL source
® /scriptg/doit_rtl.do — Run RTL simulation

® /scripts/sim.do — Simulation commands

Create a Working Location

Before you simulate the design for this example, you should make a copy of it in aworking
location, create alibrary, and compile the source code into that library.

1. Create anew directory outside your installation directory for Model Sim, and copy the
design files for this example into it.

2. Invoke ModelSim (if necessary).
a Typevsimat aUNIX shell prompt or double-click the ModelSim icon in Windows.

When you open Model Sim for thefirst time, you will see the Welcometo ModelSim
dialog box. Click Close.

b. When Model Sim displays, choose File > Change Directory from the main menu, and
navigate to

<my_tutorial>/pa_sim/example_one

where my_tutorial isthe directory you created in Step 1.

Compile the Source Files of the Design

The compilation step processes the HDL design and generates code for simulation. Thisstepis
the same for both Power Aware and non-Power Aware simulation. 'Y ou use the same output for
either kind of simulation.

1. Tocompileall RTL sourcefilesfor this example, enter the following in the Transcript
window:

do ./Questa/scripts/compile_rtl.do
Note that thisdo fileis a script that runs the following Model Sim commands:

vlib work

vlog -novopt -f ./Questa/scripts/compile_rtl.f

188 ModelSim SE Tutorial, v10.1

Getting Started With Power Aware
Annotate Power Intent

Also note that neither of these commands provides any special actions related to Power
Aware.

Annotate Power Intent

The power annotation step processes the Unified Power Format (UPF) file or files associated
with the design, extracts the power intent from those files, and extends the compiled HDL
model to reflect this power intent. Thisincludes the following:

Construction of the power distribution network (supply ports, nets, sets, and switches),

Construction of the power control architecture (retention registers, isolation cells, level
shifters, and their control signals)

Insertion of power-related behavior (retention, corruption, and isolation clamping on
power down; restoration on power up)

Insertion of automatic assertions to check for power-related error conditions (such as
correct control signal sequencing)

To anayze the UPF and perform power annotation, enter the following in the Transcript
window:

do ./Questa/scripts/analyze_rtl.do

which runs the vopt command with the following Power Aware arguments:
vopt rtl_top \
-pa_upf .JUPF/rtl_top.upf\
-pa_prefix "/interleaver_tester/" \
-pa_replacetop "dut" \
-pa_genrpt=u+v \
-pa_checks=i+r+p+cp+s+uml\

-0 discard_opt

Note that these arguments of the vopt command control the power annotation process:

-pa_upf Specifies the location of the power intent file written in UPF.

-pa_prefix Specifies the name of the testbench into which the DUT (for which power

annotation is being done) will be instantiated.

-pa_replacetop Specifies the instance name of the top-level DUT.

-pa_genrpt Generates a power-aware report file that is saved to the current directory.

-pa_checks Enables built-in assertion checks.

ModelSim SE Tutorial, v10.1 189

Getting Started With Power Aware
Simulate the Power Aware Design

Specifying Power Aware Options

There are many options for Power Aware simulation available as arguments to the vopt
command. Refer to the vopt command in the Reference Manual for a complete list of these
Power Aware arguments (all begin with -pa).

Specifying “s’ as part of the -pa_checks argument turns on static checks for insertion of level
shifters. During analysis, messages are printed to standard out indicating valid and missing
level shifters. The output from the above run of vopt shows the following:

** Note: (vopt-9694) [UPF_LS_STATIC_CHK] Found Total 29 Valid level
shifters.

1. Open thetext file named report.static.txt, which is atext file written to the current
directory. The -pa_checks argument creates this report, which contains a detailed list of
al level shiftersincluding the source and sink domains for each level shifter.

2. Examinethelist of level shiftersin the report.
3. Closethefile.

Simulate the Power Aware Design

Power Aware simulation accurately models the behavior of the power architecture and the
effects of the power architecture on the HDL design. It also monitors the operation of the power
control signals and detects and reports possible errors.

1. To begin Power Aware simulation, enter the following in the Transcript window:

do ./Questa/scripts/doit_rtl.do

which runs the vsim command with the following arguments:
vsim interleaver_tester \

-novopt\
+nowarnTSCALE\
+nowarnTEMPC \
-L mtiPA\
-pa\
-l rtl.log \
-wlif rtl.wlif \
-assertdebug \
+notimingchecks \

-do ./scripts/sim.do

190 ModelSim SE Tutorial, v10.1

Getting Started With Power Aware
Simulate the Power Aware Design

For simulation, the -pa argument of vsim causes the simulator to be invoked in Power
Aware mode. The mtiPA library isaprecompiled library containing default models for
corruption, isolation, and retention. Thislibrary isloaded with the -L library switch.

2. Note that the main window has added Object, Wave, and Source windows, along with
the sim tab in the Structure window.

3. Inthe Structure window, click the sim tab then scroll to the top of the list until you see
the testbench labeled interleaver_tester.

4. Double-click oninterleaver_tester in the sim tab, which displays the source file for the
testbench (interleaver_tester.sv) in the Source window.

5. Inthe Source window, scroll down and look for the section named " Simulation control "
section (beginning at line 54). This block provides an abstract representation of the
power management block and runs the following tests:

power_down_normal (Test 1, line 92) Normal power-down cycle where retention,
isolation, and clock gating are done correctly.

power_down_no_iso (Test 2, line 96) Power-down cycle with the isolation control
signal not toggled correctly.

power_down_no clk gate (Test 3, line 100) Power-down cycle where the clock is not
gated properly.

sram_PWR (Test 4, line 85/87) Toggles the built-in power control signal
for the SRAM models.

Analyze Results

1. Click the wave tab on the right side of the main window to view results of this
simulation displayed in the Wave window.

2. Inthe Wave window, adjust the zoom level so that it shows the first three tests (about
155msto 185ms), as shown in Figure 16-1.

ModelSim SE Tutorial, v10.1 191

Getting Started With Power Aware
Simulate the Power Aware Design

Figure 16-1. Results of the Power Aware RTL Simulation

E] nwlrmﬂg aou@”ﬁza T

“'él“"f\--&f—*‘c‘:

LI I LLILLL
mnmmtnmtm!:: l:ctn:a:(:rn:ctn!a:mm:
0 1T 11

| 156400 s to 165 us | Mow: 192,830 ns Dela 0

Results from Test 1 (power_down_normal)

1. Zoominalittle more to focus on the first test (around 155msto 163ms). Thistestisa
normal power-down cycle shown in Figure 16-2.

Figure 16-2. Retention of addr During Normal Power Down Cycle

|ssan|| T um NI L

sllebeyricd|wwusaaaarn

[156944205 ps to 163385113 ps | Now: 152,830 s Dok 0

192 ModelSim SE Tutorial, v10.1

Getting Started With Power Aware
Simulate the Power Aware Design

The isolation strategy for this example specified “parent” for the isolation insertion
point. Notice that all the outputs from the "Memory Controller" are unknown. If you
look at the downstream blocks from the memory controller's outputs, you can see the
isolated values. At the inputs to the SRAMS, the addressis clamped at 0 and the chip
and write enables are clamped at 1.

2. Look at the addr output from the memory controller. The last good value to the left of
the unknown state (just before this block is powered down) is 00011011. Now look at
thissame signal just before power isturned back on. Thevalueisrestored to 00011011.
This demonstrates the proper retention behavior.

Results from Test 2 (power_down_no_iso)

Now move alittle later in time to the next test starting at about 167ms. This test powers down
the design again, but thistime without isolation. Notice that in this test the address input to the
SRAM modelsis not clamped at zero. The unknown values from the memory controller have
propagated to the SRAMs—thisis a problem.

The solution is to use a built-in assertion to catch this. In this case, it is enabled with the
-pa_checks=i argument that was specified for the vopt command.

1. Open the transcript window by choosing the following from the main menu:
View > Transcript
Y ou will see a message from this built-in assertion describing the problem:

** Error: MSPA_ISO_EN_PSO: Isolation control (0) is not enabled when power
is switched OFF for the following: Port: /interleaver_tester/dut/mc0/addr.

To complement the assertions built into Model Sim, you can also write your own
assertions.

2. Open the Assertions window by choosing the following from the main menu:
View > Coverage > Assertions

All assertions that have fired are highlighted in red. The immediate assertion that
generates the message shown above is |abeled:

/mspa_top/blk6/MSPA_ISO_EN_PSO_1
Thisisabuilt-in assertion. There are also some failed user-defined assertions.
3. Undock the Assertions window and look at the assertion named:

/interleaver_ tester_ a_addr _m2_ iso

Thisis auser-defined assertion. In the Assertions window, you can see the signals that
make up the assertion, the assertion expression, and various counts associated with that
assertion. Thisisshown in Figure 16-3.

ModelSim SE Tutorial, v10.1 193

Getting Started With Power Aware
Simulate the Power Aware Design

Figure 16-3. The Assertions Window

Ble Edr Yew fdd Window

[D-sE>@E| {02 AED
| ¥IMame [Assertion Type [Language [Palure Count * [Pass Count [Assmnb:pﬂudm j

Concurrant SWA 1 I)odgv‘ clock2]](t(w’(m‘: _SAVE))|-)Bs\'!bll‘{dllf mcl.cl Il)EH’ Jdut.mel), ok throw ,\j‘n:(l
B4 /finterleaves T 2 > ut(1 #2{0:§]4r0 '
=}P] fnterleaver_te il _so
& [interlsaver Lestujmc PR
& Interleaver_testerfdutim1fa_i
=] firkerleaver_tester/|@{posadge dodk2),
& firtereaver_besterfclock2

+-A /mspa_top/blké/MSPR TS0 EN PSD 3 Innediste SvA 1 2 assert (repa?_mem_ctil_iso_0)
1A finterleaver tester/a addr m2? iso Concurrent VA 1 2 assert] @{posedoe clock2) ($elime_PWR)|-=1dut.m2,A_i throughout{] #2{0:§Hrose{m:_PWR))
3i-A fmepa_top/blke/MSPR_ISO_EN PSD 2 Teediate SVA 1 2 assert (mepab_mem_ctil_iso_L)
j finterleaver testerfa ald.{ nl iso Concurrent SWA 1 as‘mtt ﬁmstdo:da:‘v?.;tﬁcﬂmc PWRN|->1dut.m3,A_i throughouti 1 ##{0:§)4roselme_PWR)

P o gl - g —— cua 2 t e b =l
« I 2

P

4. Select thisassertion and right-click to display a popup menu.

5. Choose Add Wave > Selected Objects. This adds the group of Assertionsto the
pathname pane on the | eft side of the Wave window.

6. Inthe Wave window, zoom out alittle bit so you can see al threetests. The green and
red triangles represent assertion passes and failures, respectively.

During Test 1, which simulates the normal power-down cycle, you will see the assertion
change from inactive (blue line) to active (green line) at power-down. At power-up, the
assertion passes, which isindicated with a green triangle. The assertion then becomes
inactive until the next test.

During Test 2, isolation is not enabled properly. The assertion starts at power-down.
However, it fails on the next clock, since the address input to the SRAM is not clamped
at the correct value. Thisisindicated by the red triangle, as shown in Figure 16-4.

Figure 16-4. User-Defined Assertion Failure (red triangle)

Ho EM Yow add Fomat [ooks Mindow

i I 0 [T

V56452098 ps to 194350709 ps |NO'~! 192,60 s Deka: 0

194 ModelSim SE Tutorial, v10.1

Getting Started With Power Aware
Simulate the Power Aware Design

7. Place acursor over thered triangle at time 167727ns.

8. From the main menu, choose Wave > Assertion Debug. This opens adebug pane at the

bottom of the Wave window, as shown in Figure 16-5. When the cursor ison an

assertion failure, this pane displaysinformation on the signal of interest. In thiscase, the

message states that the assertion failed because:

/interleaver_tester/dut/ml/A_1=XXXXXXXX

Figure 16-5. Assertion Debug Window

=10l |

Fi= Edit View Add Format Tools ‘Window

D@8 $R@D2 BTSN o4 aib||SERN|| L Umimi | &
PR e ey e I EE TR L LY

Messages 1
If“ (V00000080 s o
'I':" Y Y T

INILTLTLI;

BR8]

n

B e

LR - R R
»
=
1]

528

F £
-3

oo

3

Era

L ActiveCount

H e
-

o [p 0w ! [! [W [[b
Now 192830 ris i
Cursor 1 167727 ns 15 |

i [7] O

7| Directive Name Value Start Time Signals Of Interest
finkerleaver_testerfa_addr_mi_jso & 167727000 ns finkerleaver_bester [dutimlfA_j=cosooo

156476054 ps bo 183576652 ps | Now: 192,630 ns Delta: 0 A

Results from Test 3 (power_down_no_clk _gate)

The retention models used in this example require that the clock be gated LOW during a
savelrestore sequence. Thethird test verifies that the example does gate the clock LOW

properly. Inthe RTL description, you can use an assertion to check for appropriate clock
gating.

In the Assertions window, note that the assertion named a_ret_clk_gate has failed.
1. Select thisassertion and right-click to display a popup menu.

2. Choose Add Wave > Selected Objects, which addsiit to the Wave window.

3. Figure 16-6 shows that this assertion passed during the first two tests and failed during
the third test.

ModelSim SE Tutorial, v10.1 195

Getting Started With Power Aware
Simulate the Power Aware Design

Figure 16-6. Clock-Gating Assertion Failure

=101 x|

Fie Edit View Add Format Tools Window

+ M a_ret_ck_gate

[156973274 ps to 154872606 ps | Now: 192,830 s Delka: 0

4. If you place acursor on the failure at time 177780ns, the attached debug window will
show you the assertion failed because:

/interleaver_tester/dut/mc0/clk=Stl

5. By default, the messages from all the assertion firings seen in these tests are dumped to
the Transcript window, which can become cluttered with messages, commands, and
miscellaneous transcript information. Model Sim provides a Message Viewer window
(Figure 16-7) that organizes all messages for easy viewing, which you can display by
choosing the following from the main menu:

View > Message Viewer

Figure 16-7. Message Viewer Window

R Message Viewer

'L"}!.':EH&EE‘HHD .Y

Time Region

=y Misc (9)
=& Error (9}

e M5PA_1S0_EN_PS0: Isalstion control (0) is not enabled when power is switched OFF For the folowing:

Fort: finterleaver_tester/dutfme0jceb,
e MSPA_ISO_EM_PSO: Isclation control {0} is not enabled when power is switched OFF Far the Following:

Port: finterleaver_tester{dutfmcljweb,

: MEPA_150_EN_PSO: Isolation control {0) is not enabled when power is switched OFF for the following:
Paort: finterleaver_tester/dut/mcOdo_acpt,

ey MEPA_ISO_EM_PSO: solstion control (0) is not enabled when power is switched OFF Far the following:
Port: finterleaver testerfdutjmeD)addr .

167715000 ps Jmspa_top/bleMSPA_ISO_EN_PSO_L
167715000 ps jmspa_top/blke/MSPA_ISO_EN_PSO_2
167715000 ps [mspa_top/bke/MSPA_ISO_EN_PSC_3
167715000 ps Jmspa_top/blke/MSPA_ISO_EN_PSO_4

fm 167727 nst Invalid damp value: m1 addrss 167727000 ps finterleaver_tester/a_sddr_m1_iso
= 167727 ns: Invalid clamp value: m addess 167727000 ps finterleaver_tester/a_sddr_mZ_iso
" 167727 ns: Invalid damp value: m3 addrss 167727000 ps finterleaver_tester/a_addr_m3_iso
e 167727 ns: Invalid clamp value: md addrss 167727000 ps finterleaver_tester/a_addr_m4_iso
ﬂ 177780 ns: Clock not gaked low during SAVE/RESTORE 177750000 ps finterleaver_tester/a_ret_ck_gate

+ gy User (11)

| |

N

196 ModelSim SE Tutorial, v10.1

Getting Started With Power Aware
Simulate the Power Aware Design

From thiswindow, it is easier to navigate from the error message to the assertion's
source, the Wave window, or the assertion debug pane.
Results from Test 4 (sram_PWR)

The SRAM models have a built-in power-down mode that clamps the model output to zero.
Thisfinal test toggles the power signal to the model to test this capability.

1. Inthewave window, move the cursor to time 152260 ns (asin Figure 16-8).

2. In the pathname pane, find the signal named SRAM #1, and click [+] to expand the
listing below it (if it is not already expanded).

3. Find the power control signal m1/PD and note that it toggles at thistime point. While the
PD signal is active, output m1/Q from the SRAM is correctly clamped at zero.

Figure 16-8. SRAM Power-Down

View Add Format Tools Window

[ETECIFL LR
‘ﬂ{#w;z? 100 ps & 2

1144

B3R
111
-]

|
g

®

+ p g s

\h\\\\%\h\\\\h\\\\l
FTEEH TS

>

1=}

£

2 [T
[150053814 ps to 159233553 ps | Now: 192,830 s Dela: 0

192830 ns
152260 ns 152260 ns
A

Lesson Wrap-Up

This concludes this exercise. Before continuing, you should finish the current simulation.

1. Sdlect Smulate> End Simulation.

ModelSim SE Tutorial, v10.1 197

Getting Started With Power Aware
Simulate the Power Aware Design

2. Click Yeswhen prompted to confirm that you wish to quit ssmulating.

3. You can now exit Model Sim or continue with another simulation.

198 ModelSim SE Tutorial, v10.1

ABCDEFGHI JKLMNOPQRSTUVWXY Z

Index

— A —
aCC, 56
add dataflow command, 125
add wave command, 73
a, 127
Assertions
debug window, 195
window, 193

— B —
break icon, 29
breakpoints
in SystemC modules, 65
setting, 30

stepping, 32

—C—
C Debug, 65
Click and sprout

schematic window

incremental view, 93

Code Coverage

enabling, 156

excluding lines and files, 165

reports, 166

Source window, 162
command-line mode, 180
Compile, 25
compile order, changing, 38
compiling your design, 18
Coverage

enabling, 156
coverage report command, 168
cursors, Wave window, 74, 88

—D—

Dataflow window
displaying hierarchy, 124
expanding to drivers/readers, 112
options, 124

tracing events, 116

tracing unknowns, 121
dataset close command, 178
design library

working type, 19
design optimization, 17
Drivers

expand to, 95
drivers, expanding to, 112

— E—
Enable coverage, 156
Event traceback, 104
externa libraries, linking to, 50

— F—
folders, in projects, 41
format, saving for Wave window, 77

hierarchy, displaying in Dataflow window, 124

— | —
Incremental view
click and sprout, 93

— L —
libraries
design library types, 19
linking to external libraries, 50
mapping to permanently, 53
resource libraries, 19
working libraries, 19
working, creating, 23
linking to external libraries, 50

— M —

mapping libraries permanently, 53
memories

ModelSim SE Tutorial, v10.1

199

ABCDEFGHI JKLMNOPQRSTUVWXY Z

changing values, 140

initializing, 136
memory contents, saving to afile, 134
Message Viewer window, 196

— N —
notepad command, 176

— 0 —
optimization, 17
options, ssmulation, 44

—P—
Performance Analyzer
filtering data, 150
Physical connectivity
Schematic window, 95
physical connectivity, 112
Power Aware
simulation, 187
power intent, 189
Profiler
profile details, 149
viewing profile details, 149
projects
adding itemsto, 36
creating, 35
flow overview, 19
organizing with folders, 41
simulation configurations, 44

—Q—
guit command, 51, 52
—R—

reference dataset, Waveform Compare, 170

reference signals, 169
run -all, 29
run command, 29

—S—
saving simulation options, 44
Schematic

click and sprout, 93

views, 93
Schematic window

expand to drivers/readers, 95

trace event, 104
simulation

basic flow overview, 18

restarting, 30

running, 28
simulation configurations, 44
stepping after a breakpoint, 32
SystemC

setting up the environment, 56

supported platforms, 56

viewing in the GUI, 63

— T —
Tcl, using in the simulator, 183
test dataset, Waveform Compare, 171
test signals, 169
time, measuring in Wave window, 74, 88
toggle statistics, Signals window, 164
Trace event

Incremental view, 104
tracing events, 116
tracing unknowns, 121

—U—
Unified Power Format (UPF), 187
unknowns, tracing, 121

UPF, 187

—V —
vcom command, 128
Views

schematic, 93
vlib command, 128
vlog command, 128
vsim command, 24, 188

— W —
Wave window
adding itemsto, 72, 81
cursors, 74, 88
measuring time with cursors, 74, 88
saving format, 77
zooming, 73, 83
Waveform Compare
reference signals, 169
saving and reloading, 176
test signals, 169

200

ModelSim SE Tutorial, v10.1

ABCDEFGHI JKLMNOPQRSTUVWXY Z

working library, creating, 18, 23
— X —
X values, tracing, 121

-7
zooming, Wave window, 73, 83

ModelSim SE Tutorial, v10.1 201

ABCDEFGHI JKLMNOPQRSTUVWXY Z

202 ModelSim SE Tutorial, v10.1

End-User License Agreement

The latest version of the End-User License Agreement is available on-line at:
www.mentor.com/eula

IMPORTANT INFORMATION

USE OF ALL SOFTWARE IS SUBJECT TO LICENSE RESTRICTIONS. CAREFULLY READ THIS LICENSE
AGREEMENT BEFORE USING THE PRODUCTS. USE OF SOFTWARE INDICATES CUSTOMER’S
COMPLETE AND UNCONDITIONAL ACCEPTANCE OF THE TERMS AND CONDITIONS SET FORTH IN
THIS AGREEMENT. ANY ADDITIONAL OR DIFFERENT PURCHASE ORDER TERMS AND CONDITIONS
SHALL NOT APPLY.

END-USER LICENSE AGREEMENT (“Agreement”)

Thisisalegal agreement concerning the use of Softwar e (as defined in Section 2) and har dwar e (collectively “ Products’)
between the company acquiring the Products (“Customer”), and the Mentor Graphics entity that issued the
corresponding quotation or, if no quotation was issued, the applicable local Mentor Graphics entity (“Mentor
Graphics’). Except for license agreementsrelated to the subject matter of this license agreement which are physically
signed by Customer and an authorized representative of Mentor Graphics, this Agreement and the applicable quotation
contain the parties entire understanding relating to the subject matter and supersede all prior or contemporaneous
agreements. If Customer does not agree to these terms and conditions, promptly return or, in the case of Software
received electronically, certify destruction of Software and all accompanying items within five days after receipt of
Softwar e and receive a full refund of any license fee paid.

ORDERS, FEESAND PAYMENT.

1.1. To the extent Customer (or if agreed by Mentor Graphics, Customer’s appointed third party buying agent) places and
Mentor Graphics accepts purchase orders pursuant to this Agreement (“Order(s)”), each Order will constitute a contract
between Customer and Mentor Graphics, which shall be governed solely and exclusively by the terms and conditions of
this Agreement, any applicable addenda and the applicable quotation, whether or not these documents are referenced on the
Order. Any additional or conflicting terms and conditions appearing on an Order will not be effective unless agreed in
writing by an authorized representative of Customer and Mentor Graphics.

1.2. Amounts invoiced will be paid, in the currency specified on the applicable invoice, within 30 days from the date of such
invoice. Any past due invoices will be subject to the imposition of interest charges in the amount of one and one-half
percent per month or the applicable legal rate currently in effect, whichever is lower. Prices do not include freight,
insurance, customs duties, taxes or other similar charges, which Mentor Graphics will state separately in the applicable
invoice(s). Unlesstimely provided with avalid certificate of exemption or other evidence that items are not taxable, Mentor
Graphics will invoice Customer for all applicable taxes including, but not limited to, VAT, GST, sales tax and service tax.
Customer will make all payments free and clear of, and without reduction for, any withholding or other taxes; any such
taxes imposed on payments by Customer hereunder will be Customer’s sole responsibility. If Customer appoints a third
party to place purchase orders and/or make payments on Customer’s behalf, Customer shall be liable for payment under
Orders placed by such third party in the event of defauilt.

1.3. All Products are delivered FCA factory (Incoterms 2000), freight prepaid and invoiced to Customer, except Software
delivered electronically, which shall be deemed delivered when made available to Customer for download. Mentor
Graphicsretains a security interest in all Products delivered under this Agreement, to secure payment of the purchase price
of such Products, and Customer agrees to sign any documents that Mentor Graphics determines to be necessary or
convenient for usein filing or perfecting such security interest. Mentor Graphics' delivery of Software by electronic means
is subject to Customer’s provision of both a primary and an alternate e-mail address.

GRANT OF LICENSE. The software installed, downloaded, or otherwise acquired by Customer under this Agreement,
including any updates, modifications, revisions, copies, documentation and design data (“ Software”) are copyrighted, trade
secret and confidential information of Mentor Graphics or its licensors, who maintain exclusive title to all Software and retain
all rights not expressly granted by this Agreement. Mentor Graphics grants to Customer, subject to payment of applicable
license fees, a nontransferable, nonexclusive license to use Software solely: (a) in machine-readable, object-code form (except
as provided in Subsection 5.2); (b) for Customer’s internal business purposes; (c) for the term of the license; and (d) on the
computer hardware and at the site authorized by Mentor Graphics. A site is restricted to a one-half mile (800 meter) radius.
Customer may have Software temporarily used by an employee for telecommuting purposes from locations other than a
Customer office, such as the employee's residence, an airport or hotel, provided that such employee's primary place of
employment is the site where the Software is authorized for use. Mentor Graphics' standard policies and programs, which vary
depending on Software, license fees paid or services purchased, apply to the following: (a) relocation of Software; (b) use of
Software, which may be limited, for example, to execution of a single session by a single user on the authorized hardware or for
arestricted period of time (such limitations may be technically implemented through the use of authorization codes or similar
devices); and (c) support services provided, including eligibility to receive telephone support, updates, modifications, and
revisions. For the avoidance of doubt, if Customer requests any change or enhancement to Software, whether in the course of
receiving support or consulting services, evaluating Software, performing beta testing or otherwise, any inventions, product

http://www.mentor.com/eula

improvements, modifications or developments made by Mentor Graphics (at Mentor Graphics' sole discretion) will be the
exclusive property of Mentor Graphics.

ESC SOFTWARE. If Customer purchases a license to use development or prototyping tools of Mentor Graphics Embedded
Software Channel (“ESC”), Mentor Graphics grants to Customer a nontransferable, nonexclusive license to reproduce and
distribute executable files created using ESC compilers, including the ESC run-time libraries distributed with ESC C and C++
compiler Software that are linked into a composite program as an integral part of Customer’s compiled computer program,
provided that Customer distributes these files only in conjunction with Customer’s compiled computer program. Mentor
Graphics does NOT grant Customer any right to duplicate, incorporate or embed copies of Mentor Graphics' real-time operating
systems or other embedded software products into Customer’s products or applications without first signing or otherwise
agreeing to a separate agreement with Mentor Graphics for such purpose.

BETA CODE.

4.1. Portionsor al of certain Software may contain code for experimental testing and evaluation (“Beta Code”), which may not
be used without Mentor Graphics' explicit authorization. Upon Mentor Graphics' authorization, Mentor Graphics grants to
Customer a temporary, nontransferable, nonexclusive license for experimental use to test and evaluate the Beta Code
without charge for alimited period of time specified by Mentor Graphics. This grant and Customer’ s use of the Beta Code
shall not be construed as marketing or offering to sell alicense to the Beta Code, which Mentor Graphics may choose not to
release commercialy in any form.

4.2. If Mentor Graphics authorizes Customer to use the Beta Code, Customer agrees to evaluate and test the Beta Code under
normal conditions as directed by Mentor Graphics. Customer will contact Mentor Graphics periodically during Customer’s
use of the Beta Code to discuss any malfunctions or suggested improvements. Upon completion of Customer’s evaluation
and testing, Customer will send to Mentor Graphics a written evaluation of the Beta Code, including its strengths,
weaknesses and recommended improvements.

4.3. Customer agrees to maintain Beta Code in confidence and shall restrict access to the Beta Code, including the methods and
concepts utilized therein, solely to those employees and Customer |ocation(s) authorized by Mentor Graphics to perform
beta testing. Customer agrees that any written evaluations and all inventions, product improvements, modifications or
developments that Mentor Graphics conceived or made during or subsequent to this Agreement, including those based
partly or wholly on Customer’s feedback, will be the exclusive property of Mentor Graphics. Mentor Graphics will have
exclusive rights, title and interest in all such property. The provisions of this Subsection 4.3 shall survive termination of
this Agreement.

RESTRICTIONS ON USE.

5.1. Customer may copy Software only as reasonably necessary to support the authorized use. Each copy must include all
notices and legends embedded in Software and affixed to its medium and container as received from Mentor Graphics. All
copies shall remain the property of Mentor Graphics or its licensors. Customer shall maintain a record of the number and
primary location of al copies of Software, including copies merged with other software, and shall make those records
available to Mentor Graphics upon request. Customer shall not make Products available in any form to any person other
than Customer’s employees and on-site contractors, excluding Mentor Graphics competitors, whose job performance
requires access and who are under obligations of confidentiality. Customer shall take appropriate action to protect the
confidentiality of Products and ensure that any person permitted access does not disclose or use it except as permitted by
this Agreement. Customer shall give Mentor Graphics written notice of any unauthorized disclosure or use of the Products
as soon as Customer learns or becomes aware of such unauthorized disclosure or use. Except as otherwise permitted for
purposes of interoperability as specified by applicable and mandatory local law, Customer shall not reverse-assemble,
reverse-compile, reverse-engineer or in any way derive any source code from Software. Log files, datafiles, rule files and
script files generated by or for the Software (collectively “Files’), including without limitation files containing Standard
Verification Rule Format (“SVRF”) and Tcl Verification Format (“TVF") which are Mentor Graphics' proprietary
syntaxes for expressing process rules, constitute or include confidential information of Mentor Graphics. Customer may
share Files with third parties, excluding Mentor Graphics competitors, provided that the confidentiality of such Filesis
protected by written agreement at least as well as Customer protects other information of a similar nature or importance,
but in any case with at |east reasonable care. Customer may use Files containing SVRF or TVF only with Mentor Graphics
products. Under no circumstances shall Customer use Software or Files or allow their use for the purpose of developing,
enhancing or marketing any product that isin any way competitive with Software, or disclose to any third party the results
of, or information pertaining to, any benchmark.

5.2. If any Software or portions thereof are provided in source code form, Customer will use the source code only to correct
software errors and enhance or modify the Software for the authorized use. Customer shall not disclose or permit disclosure
of source code, in whole or in part, including any of its methods or concepts, to anyone except Customer’s employees or
contractors, excluding Mentor Graphics competitors, with a need to know. Customer shall not copy or compile source code
in any manner except to support this authorized use.

5.3. Customer may not assign this Agreement or the rights and duties under it, or relocate, sublicense or otherwise transfer the
Products, whether by operation of law or otherwise (“ Attempted Transfer”), without Mentor Graphics' prior written
consent and payment of Mentor Graphics' then-current applicable relocation and/or transfer fees. Any Attempted Transfer
without Mentor Graphics' prior written consent shall be amaterial breach of this Agreement and may, at Mentor Graphics
option, result in the immediate termination of the Agreement and/or the licenses granted under this Agreement. The terms
of this Agreement, including without limitation the licensing and assignment provisions, shall be binding upon Customer’s
permitted successors in interest and assigns.

10.

11.

12.

5.4. The provisions of this Section 5 shall survive the termination of this Agreement.

SUPPORT SERVICES. To the extent Customer purchases support services, Mentor Graphics will provide Customer updates
and technical support for the Products, at the Customer site(s) for which support is purchased, in accordance with Mentor
Graphics' then current End-User Support Terms located at http://supportnet.mentor.com/about/legal/.

AUTOMATIC CHECK FOR UPDATES; PRIVACY. Technological measures in Software may communicate with servers
of Mentor Graphics or its contractors for the purpose of checking for and notifying the user of updates and to ensure that the
Software in useislicensed in compliance with this Agreement. Mentor Graphics will not collect any personally identifiable data
in this process and will not disclose any data collected to any third party without the prior written consent of Customer, except to
Mentor Graphics' outside attorneys or as may be required by a court of competent jurisdiction.

LIMITED WARRANTY.

8.1. Mentor Graphics warrants that during the warranty period its standard, generally supported Products, when properly
installed, will substantially conform to the functional specifications set forth in the applicable user manual. Mentor
Graphics does not warrant that Products will meet Customer’s requirements or that operation of Products will be
uninterrupted or error free. The warranty period is 90 days starting on the 15th day after delivery or upon installation,
whichever first occurs. Customer must notify Mentor Graphicsin writing of any nonconformity within the warranty period.
For the avoidance of doubt, this warranty applies only to the initial shipment of Software under an Order and does not
renew or reset, for example, with the delivery of (a) Software updates or (b) authorization codes or alternate Software under
a transaction involving Software re-mix. This warranty shall not be valid if Products have been subject to misuse,
unauthorized modification or improper installation. MENTOR GRAPHICS ENTIRE LIABILITY AND CUSTOMER'S
EXCLUSIVE REMEDY SHALL BE, AT MENTOR GRAPHICS OPTION, EITHER (A) REFUND OF THE PRICE
PAID UPON RETURN OF THE PRODUCTS TO MENTOR GRAPHICS OR (B) MODIFICATION OR
REPLACEMENT OF THE PRODUCTS THAT DO NOT MEET THIS LIMITED WARRANTY, PROVIDED
CUSTOMER HAS OTHERWISE COMPLIED WITH THIS AGREEMENT. MENTOR GRAPHICS MAKES NO
WARRANTIES WITH RESPECT TO: (A) SERVICES; (B) PRODUCTS PROVIDED AT NO CHARGE; OR (C) BETA
CODE; ALL OF WHICH ARE PROVIDED “ASIS.”

8.2. THE WARRANTIES SET FORTH IN THIS SECTION 8 ARE EXCLUSIVE. NEITHER MENTOR GRAPHICS NOR
ITSLICENSORS MAKE ANY OTHER WARRANTIES EXPRESS, IMPLIED OR STATUTORY, WITH RESPECT TO
PRODUCTS PROVIDED UNDER THIS AGREEMENT. MENTOR GRAPHICS AND ITS LICENSORS
SPECIFICALLY DISCLAIM ALL IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NON-INFRINGEMENT OF INTELLECTUAL PROPERTY.

LIMITATION OF LIABILITY. EXCEPT WHERE THIS EXCLUSION OR RESTRICTION OF LIABILITY WOULD BE
VOID OR INEFFECTIVE UNDER APPLICABLE LAW, IN NO EVENT SHALL MENTOR GRAPHICS OR ITS
LICENSORS BE LIABLE FOR INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES (INCLUDING
LOST PROFITS OR SAVINGS) WHETHER BASED ON CONTRACT, TORT OR ANY OTHER LEGAL THEORY, EVEN
IFMENTOR GRAPHICSOR ITS LICENSORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. IN
NO EVENT SHALL MENTOR GRAPHICS OR ITSLICENSORS' LIABILITY UNDER THIS AGREEMENT EXCEED
THE AMOUNT RECEIVED FROM CUSTOMER FOR THE HARDWARE, SOFTWARE LICENSE OR SERVICE GIVING
RISE TO THE CLAIM. IN THE CASE WHERE NO AMOUNT WAS PAID, MENTOR GRAPHICS AND ITS LICENSORS
SHALL HAVE NO LIABILITY FOR ANY DAMAGES WHATSOEVER. THE PROVISIONS OF THISSECTION 9 SHALL
SURVIVE THE TERMINATION OF THIS AGREEMENT.

HAZARDOUS APPLICATIONS. CUSTOMER ACKNOWLEDGES IT IS SOLELY RESPONSIBLE FOR TESTING ITS
PRODUCTS USED IN APPLICATIONS WHERE THE FAILURE OR INACCURACY OF ITS PRODUCTS MIGHT
RESULT IN DEATH OR PERSONAL INJURY (“HAZARDOUS APPLICATIONS"). NEITHER MENTOR GRAPHICS
NOR ITS LICENSORS SHALL BE LIABLE FOR ANY DAMAGES RESULTING FROM OR IN CONNECTION WITH
THE USE OF MENTOR GRAPHICS PRODUCTS IN OR FOR HAZARDOUS APPLICATIONS. THE PROVISIONS OF
THIS SECTION 10 SHALL SURVIVE THE TERMINATION OF THIS AGREEMENT.

INDEMNIFICATION. CUSTOMER AGREES TO INDEMNIFY AND HOLD HARMLESS MENTOR GRAPHICS AND
ITSLICENSORS FROM ANY CLAIMS, LOSS, COST, DAMAGE, EXPENSE OR LIABILITY, INCLUDING
ATTORNEYS' FEES, ARISING OUT OF OR IN CONNECTION WITH THE USE OF PRODUCTS AS DESCRIBED IN
SECTION 10. THE PROVISIONS OF THIS SECTION 11 SHALL SURVIVE THE TERMINATION OF THIS
AGREEMENT.

INFRINGEMENT.

12.1. Mentor Graphicswill defend or settle, at its option and expense, any action brought against Customer in the United States,
Canada, Japan, or member state of the European Union which alleges that any standard, generally supported Product
acquired by Customer hereunder infringes a patent or copyright or misappropriates a trade secret in such jurisdiction.
Mentor Graphics will pay costs and damages finally awarded against Customer that are attributable to the action. Customer
understands and agrees that as conditions to Mentor Graphics' obligations under this section Customer must: (a) notify
Mentor Graphics promptly in writing of the action; (b) provide Mentor Graphics all reasonable information and assistance
to settle or defend the action; and (c) grant Mentor Graphics sole authority and control of the defense or settlement of the
action.

http://supportnet.mentor.com/about/legal/

13.

14.

15.

16.

17.

18.

12.2. If aclaimismade under Subsection 12.1 Mentor Graphics may, at its option and expense, (a) replace or modify the Product
so that it becomes noninfringing; (b) procure for Customer the right to continue using the Product; or (c) require the return
of the Product and refund to Customer any purchase price or license fee paid, less a reasonable alowance for use.

12.3. Mentor Graphics has no liability to Customer if the action is based upon: (a) the combination of Software or hardware with
any product not furnished by Mentor Graphics; (b) the modification of the Product other than by Mentor Graphics; (c) the
use of other than a current unaltered release of Software; (d) the use of the Product as part of an infringing process; (€) a
product that Customer makes, uses, or sells; (f) any Beta Code or Product provided at no charge; (g) any software provided
by Mentor Graphics' licensors who do not provide such indemnification to Mentor Graphics' customers; or
(h) infringement by Customer that is deemed willful. In the case of (h), Customer shall reimburse Mentor Graphics for its
reasonabl e attorney fees and other costs related to the action.

12.4. THIS SECTION 12 1S SUBJECT TO SECTION 9 ABOVE AND STATES THE ENTIRE LIABILITY OF MENTOR
GRAPHICS AND ITS LICENSORS FOR DEFENSE, SETTLEMENT AND DAMAGES, AND CUSTOMER'S SOLE
AND EXCLUSIVE REMEDY, WITH RESPECT TO ANY ALLEGED PATENT OR COPYRIGHT INFRINGEMENT
OR TRADE SECRET MISAPPROPRIATION BY ANY PRODUCT PROVIDED UNDER THIS AGREEMENT.

TERMINATION AND EFFECT OF TERMINATION. If a Software license was provided for limited term use, such license
will automatically terminate at the end of the authorized term.

13.1. Mentor Graphics may terminate this Agreement and/or any license granted under this Agreement immediately upon written
notice if Customer: (a) exceeds the scope of the license or otherwise fails to comply with the licensing or confidentiality
provisions of this Agreement, or (b) becomes insolvent, files a bankruptcy petition, institutes proceedings for liquidation or
winding up or entersinto an agreement to assign its assets for the benefit of creditors. For any other material breach of any
provision of this Agreement, Mentor Graphics may terminate this Agreement and/or any license granted under this
Agreement upon 30 days written notice if Customer fails to cure the breach within the 30 day notice period. Termination of
this Agreement or any license granted hereunder will not affect Customer’s obligation to pay for Products shipped or
licenses granted prior to the termination, which amounts shall be payable immediately upon the date of termination.

13.2. Upon termination of this Agreement, the rights and obligations of the parties shall cease except as expresdly set forthin this
Agreement. Upon termination, Customer shall ensure that all use of the affected Products ceases, and shall return hardware
and either return to Mentor Graphics or destroy Software in Customer’s possession, including all copies and
documentation, and certify in writing to Mentor Graphics within ten business days of the termination date that Customer no
longer possesses any of the affected Products or copies of Softwarein any form.

EXPORT. The Products provided hereunder are subject to regulation by local laws and United States government agencies,
which prohibit export or diversion of certain products and information about the products to certain countries and certain
persons. Customer agrees that it will not export Products in any manner without first obtaining all necessary approval from
appropriate local and United States government agencies.

U.S. GOVERNMENT LICENSE RIGHTS. Software was developed entirely at private expense. All Software is commercial
computer software within the meaning of the applicable acquisition regulations. Accordingly, pursuant to US FAR 48 CFR
12.212 and DFAR 48 CFR 227.7202, use, duplication and disclosure of the Software by or for the U.S. Government or a U.S.
Government subcontractor is subject solely to the terms and conditions set forth in this Agreement, except for provisions which
are contrary to applicable mandatory federal laws.

THIRD PARTY BENEFICIARY. Mentor Graphics Corporation, Mentor Graphics (Ireland) Limited, Microsoft Corporation
and other licensors may be third party beneficiaries of this Agreement with the right to enforce the obligations set forth herein.

REVIEW OF LICENSE USAGE. Customer will monitor the access to and use of Software. With prior written notice and
during Customer’s normal business hours, Mentor Graphics may engage an internationally recognized accounting firm to
review Customer’s software monitoring system and records deemed relevant by the internationally recognized accounting firm
to confirm Customer’ s compliance with the terms of this Agreement or U.S. or other local export laws. Such review may include
FLEXIm or FLEXnet (or successor product) report log files that Customer shall capture and provide at Mentor Graphics'
request. Customer shall make records available in electronic format and shall fully cooperate with data gathering to support the
license review. Mentor Graphics shall bear the expense of any such review unless a material non-complianceisrevealed. Mentor
Graphics shall treat as confidential information all information gained as a result of any request or review and shall only use or
disclose such information as required by law or to enforce its rights under this Agreement. The provisions of this Section 17
shall survive the termination of this Agreement.

CONTROLLING LAW, JURISDICTION AND DISPUTE RESOLUTION. The owners of certain Mentor Graphics
intellectual property licensed under this Agreement are located in Ireland and the United States. To promote consistency around
the world, disputes shall be resolved as follows: excluding conflict of laws rules, this Agreement shall be governed by and
construed under the laws of the State of Oregon, USA, if Customer islocated in North or South America, and the laws of Ireland
if Customer is located outside of North or South America. All disputes arising out of or in relation to this Agreement shall be
submitted to the exclusivejurisdiction of the courts of Portland, Oregon when the laws of Oregon apply, or Dublin, Ireland when
the laws of Ireland apply. Notwithstanding the foregoing, all disputesin Asiaarising out of or in relation to this Agreement shall
be resolved by arbitration in Singapore before a single arbitrator to be appointed by the chairman of the Singapore International
Arbitration Centre (“SIAC”) to be conducted in the English language, in accordance with the Arbitration Rules of the SIAC in
effect at the time of the dispute, which rules are deemed to be incorporated by reference in this section. This section shall not

19.

20.

restrict Mentor Graphics' right to bring an action against Customer in the jurisdiction where Customer’s place of businessis
located. The United Nations Convention on Contracts for the International Sale of Goods does not apply to this Agreement.

SEVERABILITY. If any provision of this Agreement is held by a court of competent jurisdiction to be void, invalid,
unenforceable or illegal, such provision shall be severed from this Agreement and the remaining provisions will remain in full
force and effect.

MISCELLANEOUS. This Agreement containsthe parties’ entire understanding relating to its subject matter and supersedes all
prior or contemporaneous agreements, including but not limited to any purchase order terms and conditions. Some Software
may contain code distributed under athird party license agreement that may provide additional rights to Customer. Please see
the applicable Software documentation for details. This Agreement may only be modified in writing by authorized
representatives of the parties. Waiver of terms or excuse of breach must be in writing and shall not constitute subsequent
consent, waiver or excuse.

Rev. 100615, Part No. 246066

	Bookcase
	Table of Contents
	List of Figures
	List of Tables
	Chapter 1 Introduction
	Assumptions
	Where to Find ModelSim Documentation
	Download a Free PDF Reader With Search

	Mentor Graphics Support
	Before you Begin
	Example Designs

	Chapter 2 Conceptual Overview
	Design Optimizations
	Basic Simulation Flow
	Project Flow
	Multiple Library Flow
	Debugging Tools

	Chapter 3 Basic Simulation
	Create the Working Design Library
	Compile the Design Units
	Optimize the Design
	Load the Design
	Run the Simulation
	Set Breakpoints and Step through the Source

	Chapter 4 Projects
	Create a New Project
	Add Objects to the Project
	Changing Compile Order (VHDL)
	Compile the Design
	Optimize for Design Visibility
	Load the Design

	Organizing Projects with Folders
	Add Folders
	Moving Files to Folders

	Simulation Configurations

	Chapter 5 Working With Multiple Libraries
	Creating the Resource Library
	Creating the Project
	Linking to the Resource Library
	Verilog
	VHDL
	Linking to a Resource Library

	Permanently Mapping VHDL Resource Libraries

	Chapter 6 Simulating SystemC Designs
	Setting up the Environment
	Preparing an OSCI SystemC design
	Compiling a SystemC-only Design
	Mixed SystemC and HDL Example
	Viewing SystemC Objects in the GUI
	Setting Breakpoints and Stepping in the Source Window
	Examining SystemC Objects and Variables
	Removing a Breakpoint

	Chapter 7 Analyzing Waveforms
	Loading a Design
	Add Objects to the Wave Window
	Zooming the Waveform Display
	Using Cursors in the Wave Window
	Working with a Single Cursor
	Working with Multiple Cursors

	Saving and Reusing the Window Format

	Chapter 8 Creating Stimulus With Waveform Editor
	Compile and Load the Design
	Create Graphical Stimulus with a Wizard
	Edit Waveforms in the Wave Window
	Save and Reuse the Wave Commands
	Exporting the Created Waveforms
	Simulating with the Test Bench File
	Importing an EVCD File

	Chapter 9 Debugging With The Schematic Window
	Exploring Connectivity
	Viewing Source Code from the Schematic
	Unfolding and Folding Instances
	Tracing Events

	Chapter 10 Debugging With The Dataflow Window
	Exploring Connectivity
	Tracing Events
	Tracing an X (Unknown)
	Displaying Hierarchy in the Dataflow Window

	Chapter 11 Viewing And Initializing Memories
	View a Memory and its Contents
	Navigate Within the Memory

	Export Memory Data to a File
	Initialize a Memory
	Interactive Debugging Commands

	Chapter 12 Analyzing Performance With The Profiler
	View Performance Data in Profile Windows
	View Source Code by Clicking in Profile Window

	View Profile Details
	Filtering the Data
	Creating a Performance Profile Report

	Chapter 13 Simulating With Code Coverage
	Viewing Coverage Data
	Coverage Statistics in the Source Window
	Toggle Statistics in the Objects Window
	Excluding Lines and Files from Coverage Statistics
	Creating Code Coverage Reports

	Chapter 14 Comparing Waveforms
	Creating the Reference Dataset
	Creating the Test Dataset
	Comparing the Simulation Runs
	Viewing Comparison Data
	Comparison Data in the Wave Window
	Comparison Data in the List Window

	Saving and Reloading Comparison Data

	Chapter 15 Automating Simulation
	Creating a Simple DO File
	Running in Command-Line Mode
	Using Tcl with the Simulator

	Chapter 16 Getting Started With Power Aware
	Create a Working Location
	Compile the Source Files of the Design
	Annotate Power Intent
	Specifying Power Aware Options

	Simulate the Power Aware Design
	Analyze Results
	Results from Test 1 (power_down_normal)
	Results from Test 2 (power_down_no_iso)
	Results from Test 3 (power_down_no_clk_gate)
	Results from Test 4 (sram_PWR)

	Index
	End-User License Agreement
	Documentation Feedback

