
 2011 Mentor Graphics Corporation
All rights reserved.

This document contains information that is proprietary to Mentor Graphics Corporation. The original recipient of this
document may duplicate this document in whole or in part for internal business purposes only, provided that this entire
notice appears in all copies. In duplicating any part of this document, the recipient agrees to make every reasonable
effort to prevent the unauthorized use and distribution of the proprietary information.

DesignChecker User Guide

Software Version 2010.3

June, 2011

This document is for information and instruction purposes. Mentor Graphics reserves the right to make
changes in specifications and other information contained in this publication without prior notice, and the
reader should, in all cases, consult Mentor Graphics to determine whether any changes have been
made.

The terms and conditions governing the sale and licensing of Mentor Graphics products are set forth in
written agreements between Mentor Graphics and its customers. No representation or other affirmation
of fact contained in this publication shall be deemed to be a warranty or give rise to any liability of Mentor
Graphics whatsoever.

MENTOR GRAPHICS MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE.

MENTOR GRAPHICS SHALL NOT BE LIABLE FOR ANY INCIDENTAL, INDIRECT, SPECIAL, OR
CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING BUT NOT LIMITED TO LOST PROFITS)
ARISING OUT OF OR RELATED TO THIS PUBLICATION OR THE INFORMATION CONTAINED IN IT,
EVEN IF MENTOR GRAPHICS CORPORATION HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

RESTRICTED RIGHTS LEGEND 03/97

U.S. Government Restricted Rights. The SOFTWARE and documentation have been developed entirely
at private expense and are commercial computer software provided with restricted rights. Use,
duplication or disclosure by the U.S. Government or a U.S. Government subcontractor is subject to the
restrictions set forth in the license agreement provided with the software pursuant to DFARS 227.7202-
3(a) or as set forth in subparagraph (c)(1) and (2) of the Commercial Computer Software - Restricted
Rights clause at FAR 52.227-19, as applicable.

Contractor/manufacturer is:
Mentor Graphics Corporation

8005 S.W. Boeckman Road, Wilsonville, Oregon 97070-7777.
Telephone: 503.685.7000

Toll-Free Telephone: 800.592.2210
Website: www.mentor.com

SupportNet: www.mentor.com/supportnet
Send Feedback on Documentation: www.mentor.com/supportnet/documentation/reply_form.cfm

TRADEMARKS: The trademarks, logos and service marks ("Marks") used herein are the property of
Mentor Graphics Corporation or other third parties. No one is permitted to use these Marks without the
prior written consent of Mentor Graphics or the respective third-party owner. The use herein of a third-
party Mark is not an attempt to indicate Mentor Graphics as a source of a product, but is intended to
indicate a product from, or associated with, a particular third party. A current list of Mentor Graphics’
trademarks may be viewed at: www.mentor.com/terms_conditions/trademarks.cfm.

http://www.mentor.com
http://www.mentor.com/supportnet
http://www.mentor.com/supportnet/documentation/reply_form.cfm
http://www.mentor.com/terms_conditions/trademarks.cfm

DesignChecker User Guide, V2010.3 3
June, 2011

Table of Contents

Chapter 1
About DesignChecker. 9

Overview . 9
Related Publications. 10
Introduction . 10

Base Rules. 11
Rulesets . 11
Policies . 12
Rulesets and Rule Categories . 12
Design Checking Flow . 13
Checking Mixed Language Designs . 13

Invoking DesignChecker . 14
Running DesignChecker . 14

Exiting from DesignChecker . 16

Chapter 2
Configuring DesignChecker. 17

Introduction . 18
Initial Settings . 19

The Setup Tab . 19
Viewing the Base Rules . 22
Using the Search Bar . 26
Using the Advanced Search . 27

Running an Advanced Search. 27
Other Methods to Run an Advanced Search. 30
Viewing Search Results . 32
Running an Advanced Search with Synonyms. 33

Working with Rulesets. 40
The Essentials Ruleset . 41
Reuse Methodology Manual (RMM) Ruleset. 43
Creating a Ruleset . 43
Configuring Rules. 45
Setting Object Properties . 46
Configuring Rule SeveritySets . 49

Working with Policies . 54
Creating a Policy. 54
Setting the Default Policy . 56

Saving Rulesets, Policies and Preferences. 57
Exporting Rulesets . 58
Design Quality Metric . 59

Configuring Quality Scoring Settings. 60
Calculating Quality Scoring . 62

Table of Contents

4
June, 2011

DesignChecker User Guide, V2010.3

Setting Exclusions . 64

Chapter 3
Running DesignChecker and Working with Results. 67

Selecting Files/Design Items for Analysis. 67
The Results Tab . 68

Results Tab Notation. 70
Using the Results Tab . 70
Viewing Severity Levels. 72
Understanding the Types of Violations . 74
Controlling the Display of Results . 74
Disabling and Enabling Checks . 83
The Results Summary Pane . 85
Cross-referencing Results . 88

The Exclusions Tab . 89
The Rule Details Tab . 90
The Checked Files/Design Units Tab . 91
Exporting Results. 93

Exporting Quality Reports . 98

Appendix A
Supporting Synthesizable Designs. 101

Rules Specific to Synthesizable Code . 101
SystemVerilog Support . 102

Appendix B
Further Understanding Design Checking Rule Behavior . 105

Design Correctness and Synthesizability. 105
Introduction. 105
Syntax Errors . 106
Elaboration and Elaboration Errors . 106
Synthesis Errors . 108
Summary . 112

Register and Control Signal Inference. 113
Introduction. 113
Flip-Flop Controls. 113
Counter controls inference . 122
Behavior with constant/unused flip-flops or counters . 124
‘Z’ Propagation Across Flip-Flops . 125

Finite State Machines (FSMs) . 126
Introduction. 126
Necessary Conditions for FSM inference . 126
FSM-related violations . 129

Miscellaneous . 132
Enum encoding in VHDL . 132
Tristates and Enables . 134
Design-wide (Hierarchical) Rules. 134

Table of Contents

DesignChecker User Guide, V2010.3 5
June, 2011

Index

End-User License Agreement

Table of Contents

6
June, 2011

DesignChecker User Guide, V2010.3

DesignChecker User Guide, V2010.3 7
June, 2011

List of Tables

Table 2-1. Setup Tab Notation . 21
Table 2-2. Exclusion Types . 65
Table 3-1. Results Tab Notation . 70
Table A-1. Supported SystemVerilog Constructs . 102
Table B-1. Table 1 . 112

List of Tables

8
June, 2011

DesignChecker User Guide, V2010.3

DesignChecker User Guide, V2010.3 9
June, 2011

Chapter 1
About DesignChecker

This chapter provides an overview of the key features of the DesignChecker static checking tool
and its user interface.

Overview . 9

Related Publications . 10

Introduction . 10
Base Rules. 11
Rulesets . 11
Policies . 12
Rulesets and Rule Categories . 12
Design Checking Flow . 13
Checking Mixed Language Designs . 13

Invoking DesignChecker . 14
Running DesignChecker . 14

Exiting from DesignChecker. 16

Overview
This user guide describes DesignChecker checking and analysis tool.

An HTML version of this user guide can be accessed from the Help menu in the main
DesignChecker window.

You can click on the icon at the top of each HTML page in the user guide to access a
printable Adobe Acrobat portable document format (PDF) version.

Other DesignChecker documentation which you can access from the Help menu includes a
separate reference guide in HTML format describing the base rules supported by
DesignChecker. The relevant HTML pages in the Base Rule Reference Guide can also be
accessed directly from the corresponding base rule.

A tutorial is available in HTML and PDF format from the DesignChecker InfoHub; to access
the tutorial, select Help and Manuals from the Help menu and then open the Support and
Training tab.

Additionally, HTML pages concerning Common Base Rule Parameters and the syntax of
Regular Expressions are also available from the Help menu.

DesignChecker User Guide, V2010.310

About DesignChecker
Related Publications

June, 2011

DesignChecker is an add-on tool; it integrates with various interface tools such as HDL
Designer Series, Visual Elite, and so on. You can refer to the integration documents available
through the Help menu of the interface tool.

It should be noted that the screen shots and examples used in this user guide are taken from
DesignChecker using HDL Designer Series as the interface tool. Hence, the content of the
screen shots may differ with other interface tools.

For general information about HDL coding practices and test issues, we recommend Michael
Keating’s and Pierre Bricaud’s Reuse Methodology Manual.

Related Publications
Michael Keating and Pierre Bricaud, Reuse Methodology Manual, 3rd edition, Kluwer
Academic Publishers, 2002.

Introduction
The DesignChecker static checking and analysis tool ensures interoperability and consistency
across design styles and coding practices for developers and development teams creating
complex designs. It is a powerful solution for individual engineers, and can be used in situations
where a number of individuals and/or teams are involved in the design and development
processes.

DesignChecker can operate in batch mode, or with a full featured Graphical User Interface
(GUI). The batch process and commands differ according to the interface tool that is being used
with DesignChecker; refer to the integration documents available through the Help menu of the
interface tool. The user interface supports quick and easy rule configuration, with powerful
results cross-referencing between DesignChecker and the editor of the interface tool. For
example, in case of interfacing with HDL Designer Series, you will be able to cross-reference
between DesignChecker results and the DesignPad text editor and any of the HDL Designer
graphical editing tools.

DesignChecker includes a set of parameterized base rules which you use as the building blocks
to create the checks you need to run. Base rules are used to create rulesets. The rulesets, which
are created by the project manager or team leader, provide the core interoperability and
consistency checks, and should be configured to meet appropriate development design and
coding standards in the organization. Further information about how to configure rulesets can
be found in “Working with Rulesets” on page 40.

You can adapt DesignChecker to meet individual user needs by referencing rulesets and
enabling or disabling certain checks through user-defined policies. DesignChecker policies can
be configured by individual users to run the subset of checks appropriate to the design. These
can be run during coding to provide interactive analysis and feedback, enabling you to rapidly

About DesignChecker
Introduction

DesignChecker User Guide, V2010.3 11
June, 2011

identify problems during the development cycle. Further information about how to configure
and use policies can be found in “Working with Policies” on page 54.

DesignChecker provides powerful, configurable reporting options, enabling you to rapidly
identify potential design, simulation and synthesis issues early in the development cycle. The
user interface provides powerful results visualization and cross-referencing between the results
and the source files. The viewpoint manager includes sophisticated filtering capabilities
enabling you to focus your analysis on key areas. Your results can be exported from the GUI as
comma separated values (CSV), tab separated values (TSV) or HTML files for ease of
reference. Results from running DesignChecker in batch mode can be output to the screen, text
or HTML files.

The base rules support VHDL, Verilog, SystemVerilog, or mixed VHDL and Verilog language
designs. Definitions and configuration options can be found in the Base Rule Reference Guide
which you can access from the Help menu.

Base Rules
A wide range of parameterized base rules are provided in DesignChecker. Read-only versions
of the base rules are stored in the Base Rules folder. You can create writable copies of the read-
only base rules in your rulesets and policies. You can modify the parameters of these copies. By
providing base rules in a configurable and extensible form, you have the flexibility to tailor
these to your precise requirements in a simple and intuitive manner. You can find full details of
the parameters and configuration options for each base rule in the Base Rule Reference Guide
in the Help menu. Further information about configuring and working with your rulesets and
user policies can be found in “Working with Rulesets” on page 40 and “Working with Policies”
on page 54.

Note
Base rules that support SystemVerilog are marked with a SystemVerilog overlay .

Rulesets
A project manager typically sets up one or more rulesets. These will be company or
development team specific. Such rulesets provide the core interoperability and consistency
checks, and should be configured to meet appropriate development design and coding
standards. Further information about how to configure rulesets can be found in “Working with
Rulesets” on page 40.

A ruleset can reference other rulesets and configured base rules. DesignChecker comes
preconfigured with a number of rulesets that differ according to the interface tool you are using.

For example, in case of HDL Designer Series, DesignChecker comes provided with the Reuse
Methodology Manual (RMM) ruleset which is derived from Michael Keating and Pierre

DesignChecker User Guide, V2010.312

About DesignChecker
Introduction

June, 2011

Bricaud’s Reuse Methodology Manual. In addition, DesignChecker provides the Essentials,
Altera, Xilinx, Checklist, Safety-Critical and DO-254 rulesets.

Policies
Any number of rulesets can be referenced in a user defined policy. A policy also contains
optional disable settings for the rules referenced by the policy. These settings are specific to
each policy. Further information about configuring and working with your user policies can be
found in “Working with Policies” on page 54.

Rulesets and Rule Categories
Rulesets are the building blocks of the DesignChecker checking process. DesignChecker
supports the following rule categories:

• Standard Language Syntax & Semantics: Specifies the language or dialects that apply.

• Coding Practices: Design style (for example, synchronous or asynchronous, clocking
scheme, gated clocks), language constructs and naming conventions.

• Simulation: Limited checking for design style issues that impact simulation (for
example, race conditions).

• Synthesis: Static checks that would identify constructs which are typically not
synthesizable (for example, clocks, resets and registers) or other synthesis coding issues.

• Testability: Checks for coding styles (for example, combinational loops) that impact
design-for-test (DFT).

• Portability, Reuse and Cross-language compatibility: Checks which limit the constructs
used in either language to a subset which can reliably be translated between them. These
checks are important for re-usable components which need to support either language.
These checks can also ensure that designs use a subset which is common to all tools used
on the project.

The syntax and semantic checks are a function of each language and therefore common to all
designers using that language.

The cross-language compatibility checks are typically also fixed since they relate to constructs
which are equivalent between the different languages and dialects.

Most of the other checks are based on generally accepted concepts. However, the exact details
and the applicability of rules may vary between organizations, projects and the downstream
tools being used. For example, it is generally helpful to have a naming convention to easily
identify clocks and resets although the exact name and usage of a prefix or a suffix may vary.
Rulesets are used for this purpose, and will normally have been configured to reflect company
specific design and coding practices. Individual users can reference rulesets in user policies, and

About DesignChecker
Introduction

DesignChecker User Guide, V2010.3 13
June, 2011

adapt these to meet specific needs. For further information about configuring and working with
user policies refer to “Working with Policies” on page 54.

Design Checking Flow
The DesignChecker flow typically follows this process:

1. Choose an existing policy or create a new policy. A policy references rulesets and
specifies which rules are enabled or disabled.

Rulesets consist of configured base rules, and should be created beforehand by a project
manager or team leader.

2. Specify which files or objects to include or exclude from analysis.

3. Run the analysis.

4. View the results. The results can be sorted, grouped, filtered, summarized and exported.

5. Cross-reference error and warning messages to the source text, or graphical diagram or
table source views.

Checking Mixed Language Designs
DesignChecker can check files written in either VHDL or Verilog.

If the design being analyzed is single language and a rule is enabled for this language, the rule
will be applied to all the files.

If the design being analyzed is single language and a rule is disabled for this language, it will
not be applied to any of the files.

If the design being analyzed is mixed language, a rule will run for all the files regardless of its
language settings as some errors or associated files could be in an HDL file whose language
differs from the default language setting.

DesignChecker User Guide, V2010.314

About DesignChecker
Invoking DesignChecker

June, 2011

Invoking DesignChecker
DesignChecker can be invoked through the interface tool. Refer to the integration documents
available through the Help menu of the interface tool.

For example, in case of HDL Designer Series, you can invoke DesignChecker by choosing
Manage Policies/Rulesets from the Tools menu in the main HDL Designer Series design
manager.

Once DesignChecker has been invoked a separate DesignChecker window is launched with the
Setup tab active.

You use the Setup tab to configure your rulesets and policies. A ruleset contains the full suite of
design checks that can be run. A policy determines which of these checks will actually be run,
and specifies which rules should be excluded from analysis. Both rulesets and policies can be
configured to meet your needs.

Refer to “The Setup Tab” on page 19 for further information on how you use the Setup tab.

Running DesignChecker
You can run DesignChecker directly through the interface tool. Refer to the integration
documents available through the Help menu of the interface tool.

About DesignChecker
Invoking DesignChecker

DesignChecker User Guide, V2010.3 15
June, 2011

For example, if you are using DesignChecker with HDL Designer Series, then you can invoke it
by running the default analysis on a specified file/design unit by using the button or by
choosing DesignChecker Flow from the Tasks menu in the design explorer, a graphical editor
or the DesignPad text editor. Consequently, the DesignChecker flow generates HDL for the
specified view or hierarchy of views (if the selection includes graphical views) and runs the
default design checks policy.

DesignChecker is invoked with the current default viewpoint displayed in the Results tab. For
example the following picture shows the results displayed in the Severity & Ruleset viewpoint
after an analysis has been performed.

The button and menu provide options to run the analysis. For example, in case of HDL
Designer Series, you can run the analysis on a single level, through blocks or components from
the selected object, or through all components below the design root.

In DesignChecker you can choose Re-run Last Analysis from the Run menu to re-run the last
analysis.

Refer to “The Results Tab” on page 68 for further information about interacting with the results.

DesignChecker User Guide, V2010.316

About DesignChecker
Exiting from DesignChecker

June, 2011

Note
The DesignChecker Exclusions tab displays the current exclusion settings. For example,
in case of HDL Designer Series, this tab shows the code/rule exclusions, black box
exclusions, pragmas, and so on. Exclusions allow you to ignore specific parts of the
design or specific rules during the analysis. For further information, refer to “Setting
Exclusions” on page 64.

Note
It should be noted that for some checks to run properly in DesignChecker, the designs
must be complete and synthesizable first. This is applicable to specific rules in
DesignChecker; refer to “Rules Specific to Synthesizable Code” on page 101.

Exiting from DesignChecker
You can exit from DesignChecker by choosing Exit from the File menu. You are prompted to
save any rulesets or policies that have not been saved.

The position, size and window layout (including the active viewpoint used for the last analysis)
is remembered and re-used when DesignChecker is next invoked.

DesignChecker User Guide, V2010.3 17
June, 2011

Chapter 2
Configuring DesignChecker

This chapter describes the configuration options for DesignChecker. It explains how to
configure your analysis options using the parametrized base rules, how you can selectively
implement checks with user policies, how you can assess the quality of your design, and so on.

Introduction . 18

Initial Settings . 19
The Setup Tab . 19

Viewing the Base Rules . 22

Using the Search Bar . 26

Using the Advanced Search. 27
Running an Advanced Search. 27
Other Methods to Run an Advanced Search. 30
Viewing Search Results . 32
Running an Advanced Search with Synonyms. 33

Working with Rulesets . 40
The Essentials Ruleset . 41
Reuse Methodology Manual (RMM) Ruleset. 43
Creating a Ruleset . 43
Configuring Rules. 45
Setting Object Properties . 46
Configuring Rule SeveritySets . 49

Working with Policies . 54
Creating a Policy. 54
Setting the Default Policy . 56

Saving Rulesets, Policies and Preferences . 57

Exporting Rulesets . 58

Design Quality Metric . 59
Configuring Quality Scoring Settings. 60
Calculating Quality Scoring . 62

Setting Exclusions . 64

DesignChecker User Guide, V2010.318

Configuring DesignChecker
Introduction

June, 2011

Introduction
DesignChecker provides a flexible and intuitive analysis and static checking solution. You use
rulesets and policies in conjunction to define the precise checks carried out each time you run
DesignChecker. Your organization will implement their design and coding standards in rulesets.
You can use your policies to control which checks are applied to each DesignChecker pass. This
enables you to focus your attention on specific design and development issues as work
progresses, ensuring that you are presented with results that are relevant to your immediate
development needs, rather than being overwhelmed with information.

That is to say, the project manager or team lead is basically responsible for configuring rulesets.
Policies, the entity that references rulesets and is applied to your analysis, can be created by
team members (or by the project manager or team lead at times). While running an analysis,
team members can use the policy to control which rules should or should not be applied in that
specific analysis.

For example, the following figure shows RuleSet A and RuleSet B. The project manager creates
these rulesets using the variety of configurable base rules provided by DesignChecker
(according to the coding standards of the organization). Team members create policies to
reference the rulesets, and they select a default policy to use when running the analysis.
Moreover, when running the analysis, team members have the ability to disable certain rules
only on the policy level (if needed).

Configuring DesignChecker
Initial Settings

DesignChecker User Guide, V2010.3 19
June, 2011

Initial Settings
When you invoke DesignChecker for the first time, the base rules are loaded in addition to built-
in rulesets and user policies. The setup tab displays three folders for Base Rules, RuleSets and
Policies:

Note
The Base Rules folder has an overlay indicating that the base rules are read-only. The
RuleSets and Policies folders you create are initially shown with an overlay. This
indicates that they have not yet been saved. All new or edited rulesets and policies are
shown as modified until they have been saved.

The Setup Tab
You use the setup tab to configure your DesignChecker rulesets and policies. The setup tab
opens automatically when DesignChecker is launched.

DesignChecker User Guide, V2010.320

Configuring DesignChecker
Initial Settings

June, 2011

There are three main regions - the Folders pane, the Content pane and the Parameters pane. You
use these areas in conjunction to create and adapt rulesets and policies to meet your
development needs.

The Folders pane contains folders for Base Rules, RuleSets and Policies. The Base Rules folder
provides you with the building blocks for creating rulesets and policies appropriate to your
organization’s and your own development requirements.

If you are working as a member of a development team, team specific rulesets should be
available to you within the RuleSets Folder. Rulesets are normally created by a project leader
and are read-only for team members. Details about how to set up rulesets for project leaders can
be found in “Creating a Ruleset” on page 43.

Team members can adapt rulesets using individual user policies. These enable you to turn on or
off selected sets of checks as well as adapting the results and the reporting options to best suit

Configuring DesignChecker
Initial Settings

DesignChecker User Guide, V2010.3 21
June, 2011

your needs. You can create as many policies as you need. You create your policies in the
Policies folder. Details about how to set up individual user policies can be found in “Working
with Policies” on page 54.

Setup Tab Notation
The setup tab displays information using the icons shown in the following table:

Table 2-1. Setup Tab Notation

Icon Description

Base rule folder

Open base rule folder

Policy folder

Open policy folder

Ruleset folder

Open ruleset folder

Base rule

Configured rule

Parameter

Default policy marker

Enabled rule or ruleset

Partially enabled ruleset

Disabled rule or ruleset

DesignChecker User Guide, V2010.322

Configuring DesignChecker
Viewing the Base Rules

June, 2011

Viewing the Base Rules
Base rules are provided for the following categories:

Each base rule relates to a single topic and has a number of configurable parameters.

The base rules are read-only. You can configure them by making a copy and adapting the
copy’s parameters to make a ruleset. A wide variety of specific checks can be produced using
base rules in this way, enabling you to adapt, extend and apply your rulesets and policies in an
intuitive and flexible manner.

You can view the base rules by expanding the Base Rules folder and selecting the required rule.
You can search for appropriate base rules using keywords in the search field or by using the
Base Rule Reference Guide from the Help menu. Refer to “Using the Search Bar” on page 26
for further information.

Note
To use DesignChecker effectively you must identify and adapt the most appropriate base
rules for your purposes. The use of parameterized base rules in DesignChecker means
that there may be multiple ways to implement a specific check. Care should be taken to
ensure that your rulesets and policies accurately reflect your design and coding standards.
Refer to “Working with Rulesets” on page 40 and “Working with Policies” on page 54
for further information on how to configure these options.

Note
Base rules that support SystemVerilog are marked with a SystemVerilog overlay in
the Content pane.

Allow
Assignments
Case
Clocks & Resets
Comments
Complexity
Conditions
Configurations
Dead Logic
Declarations
Directives
FSM
Gates
Hierarchy
Instances

Labels
Logic Optimization
Naming
Order
Partition
Race Conditions
Ranges
Registers
Report
Sensitivity
Style
Sub-programs
VITAL

Configuring DesignChecker
Viewing the Base Rules

DesignChecker User Guide, V2010.3 23
June, 2011

The content of the base rule category is shown in the Content pane. On selecting any base rule
category folder in the Folders pane, the Content pane consequently displays all the rules
belonging to that category along with data about each rule. This data is presented in the form of
columns as follows:

• Base Rule Category — The name of the category to which the base rules belongs.

• Base Rule Name — The name of the base rule.

• Design-wide — This column indicates whether the base rule can be configured and
applied to the entire design hierarchy (Yes) or not (No). This column is applicable with
certain interface tools such as HDL Designer Series and Visual Elite.

It is important to note that a design-wide rule depends on your configuration of the rule.
That is to say, if a rule is indicated as being design-wide (Yes), then this does not
necessarily mean that the rule already has a design-wide configuration that is suitable for
running on a full design; this rather means that the rule has capacity for such
configurations.

Additionally, if you are running a DesignChecker analysis using design-wide rules, you
should pay attention to the level of analysis you wish to run according to the object of
your analysis (that is, whether the analysis includes a full design or only a part of it).
This affects the accuracy of your results.

For example, if you want to analyze an individual design unit, running a single-level
analysis may not be the best choice if this design unit is dependent on other design units.
This is because the chosen design unit will not solely include all the information
required by the design-wide rules, thus leading to inaccurate results. In that case, you
should select a different depth for analysis such as Through Components or Through
Design Root.

As previously mentioned, you can run the analysis on a single level, through blocks or
components from the selected object, or through all components below the design root.

• Name — The name by which the base rule is identified.

• Short Description — A brief note on the function of the base rule.

• Synthesis — This column indicates whether the rule can run only on synthesizable code
or not. Refer to “Rules Specific to Synthesizable Code” on page 101. This column is
applicable with certain interface tools, mainly with RTL tools such as HDL Designer
Series and Visual Elite.

• Type — The type of the rule (base rule, ruleset, or configured rule). In this case (that is,
in case of viewing the base rules of a category), this column always displays the type as
Base Rule.

DesignChecker User Guide, V2010.324

Configuring DesignChecker
Viewing the Base Rules

June, 2011

Only the following columns are displayed in the Content pane by default: Name, Design-wide,
Synthesis, and Short Description.You can control which information to display in the Content
pane by doing the following:

1. Right-click on the title bar of any column in the Content pane.

2. From the Select Columns cascade, choose whether you want to display All Columns,
No Columns, or specific columns such as Base Rule Category, Base Rule Name,
Design-wide, Name, Short Description, Synthesis, or Type.

When you select a rule in the Content pane, its default parameters are shown in the Parameters
pane. The following example shows the parameters for the Edge Detection rule in the Clocks &
Resets category:

Configuring DesignChecker
Viewing the Base Rules

DesignChecker User Guide, V2010.3 25
June, 2011

You can access detailed information and configuration options for each base rule by choosing
Base Rule Reference Guide from the Help menu to display the Base Rule Reference Guide in
your HTML browser.

You can directly access the description of a base rule by using the button or by choosing
Base Rule Details from the popup menu in the Content pane when the required rule is selected.

DesignChecker User Guide, V2010.326

Configuring DesignChecker
Using the Search Bar

June, 2011

Using the Search Bar
Identifying the appropriate base rule or ruleset is the key to configuring your own rulesets and
policies. You can search for a text string within any rule name or description by using the
button to display the Search bar:

The search is performed when you click the , or key and any
rules that match the search strings are displayed in a new Search pane between the Content and
Parameters panes.

You can enter one or more search strings and choose whether to match all words. For example,
the following rules are found when you search for the string reset:

If you enter multiple strings, all matching rules will be found. For example, if you enter the
strings reset control, all rules containing reset or control are found. However, if you set the
Match All Words option, only the rules containing both strings together will be found.

Configuring DesignChecker
Using the Advanced Search

DesignChecker User Guide, V2010.3 27
June, 2011

For a more refined search, click Advanced Search to customize your own search options. Refer
to “Using the Advanced Search” on page 27, for further information.

Using the Advanced Search
In order to create your own rulesets, DesignChecker enables you to search for the corresponding
base rule using two methods: the Simple Search, and the Advanced Search. Whereas the simple
search automatically looks for the search string only in the Name and Short Description of the
available base rules and configured rules, the advanced search gives you the ability to expand or
limit the scope of your search to ensure more specific results. Refer to “Using the Search Bar”
on page 26, for further information on simple searches.

Running an Advanced Search
Advanced searches enable you to customize your search options to facilitate the retrieval of the
required results.

To run an Advanced Search:

1. Open the Setup tab. From the Tools menu, select Advanced Search. Another method to
invoke the Advanced Search dialog is through the Advanced Search button on the
simple search bar.

2. Click New Search to initialize the dialog.

DesignChecker User Guide, V2010.328

Configuring DesignChecker
Using the Advanced Search

June, 2011

3. Enter the search string in the “Search for” field.

4. Specify an exact search location using the “Look in” section, where a hierarchical view
of the available rulesets and base rules is displayed. Expand the tree and select the check
box of the required ruleset or base rule category in which the search shall occur. Note
that all rules are selected by default.

5. Select the required search parameters in the Search Selected Parameters section. By
default, the simple search looks for the string in the Name and Short Description
parameters only. Unlike the simple search, the advanced search allows you to specify
the parameters to look in.

The parameters available are Name, Severity, Score, Weight, Language, Hint, Short
Description, and Keywords, in addition to Rule-specific Parameters.

This allows a more flexible search; for instance, you can search for the string Warning
and select only the parameter Severity, this leads to obtaining all rules that have the
severity set as warning.

Note
You can manually edit the Keywords parameter of your configured rules to define the
terms relevant to those rules. This facilitates future searches for your configured rules.
That is to say, the keyword can be typed as a search string to retrieve all configured rules
associated to that keyword.

6. Select a search option if necessary. The available search options are as follows:

• Match All Words — This option obtains the rules that contain all the entered strings,
regardless of the word order. For example, if you enter clock reset, all rules
including both strings clock and reset are retrieved such as the base rule Mixed
Clocks Resets.

Note
To search for multiple strings in their exact order, enclose the strings between double
quotations. For instance, type “gated clocks” and select Match All Words, on clicking
Find Now, you will receive only rules that have both strings in the same entered order.

• Match Whole Word Only — This option obtains the rules that contain the search
string exactly as it has been entered. For example, if you type clock and select Match
Whole Word Only, then you will receive only rules having the word clock - such as
the Clock Boundaries rule - discarding any other form of the word such as clocks,
clocked, and so on.

• Match Case — This option allows a case-sensitive search; it obtains the rules that
match the search string in the exact entered case.

• Regular Expression — This option enables you to search for strings using regular
expressions. For example, entering the search string \<cl would find strings starting

Configuring DesignChecker
Using the Advanced Search

DesignChecker User Guide, V2010.3 29
June, 2011

with the characters cl. A list of supported regular expressions can be displayed by
choosing Regular Expressions from the Help menu.

• Include Synonyms — This option allows you to search for synonyms of the entered
string. For more details, refer to “Running an Advanced Search with Synonyms” on
page 33.

7. Click Find Now; consequently, the search results are displayed in the Search pane. You
can manipulate the resulting rules through the Search pane directly; for example, you
can right-click on the required rule and select Copy from the popup menu, and then
right-click on the relevant ruleset (in the Folders pane) and select Paste.

8. Click Close to exit the Advanced Search dialog.

Note
The Advanced Search dialog preserves your last search entries; in other words, on closing
and re-opening the Advanced Search dialog, you will find the last entered search string
and search options. To initialize the dialog, click New Search.

DesignChecker User Guide, V2010.330

Configuring DesignChecker
Using the Advanced Search

June, 2011

Other Methods to Run an Advanced Search
There are two more methods to run an advanced search on rules: Find In Here and Find Where
Used.

Find In Here
This method enables you to invoke the Advanced Search dialog box directly through the ruleset
or base rule folder in which you want the search to take place.

To search in a RuleSet or Base Rule Category:

1. In the Folders pane, right-click on the ruleset or base rule category.

Or you can right-click on a ruleset in the Content pane.

2. Select Find In Here; consequently, the Advanced Search dialog opens. Note that the
search location is automatically specified in the “Look in” section.

3. Enter the search string and select the necessary options.

4. Click Find Now.

Configuring DesignChecker
Using the Advanced Search

DesignChecker User Guide, V2010.3 31
June, 2011

Find Where Used
This feature enables you to identify the rules in which a base rule has been previously
configured. This helps you to avoid creating the same rules for the same base rule more than
once.

To find where a Base Rule is used:

1. In the Folders pane, right-click on the required base rule category; or you can right-click
on a specific base rule in the Content pane.

DesignChecker User Guide, V2010.332

Configuring DesignChecker
Using the Advanced Search

June, 2011

2. Select Find Where Used. Therefore, all the configured rules using the base rule appear
in the search results in the Search pane.

Viewing Search Results
After running a search, the results are displayed in the Search pane. The search results section is
characterized by the following:

• Highlighting Search Strings: The values corresponding to the specified search string are
highlighted in yellow.

• Sorting Search Results: The search results are ordered from the most relevant result -
that is to say the result which matches the largest number of search strings - to the least
relevant result.

For instance, if you enter Gated Clocks as the search string and click Find Now, all rules
containing both words Gated and Clocks appear first, then followed by the rules
containing either the word Gated or the word Clocks.

• Displaying Results in Columns: The results’ data are displayed in the form of columns.
The default columns are Name, Base Rule Category, Location, and Short Description.
The displayed columns can be easily customized.

To customize results’ columns:

Configuring DesignChecker
Using the Advanced Search

DesignChecker User Guide, V2010.3 33
June, 2011

a. In the Search pane, right-click on the header row of the search results, and choose
Select Columns.

b. Select whether you want to display All Columns, No Columns, or specific columns
such as Base Rule Category, Base Rule Name, Design-wide, Language,
Location, Name, Short Description, Synthesis or Type.

Note
The Search pane can be closed through the button at the upper right corner.

Running an Advanced Search with Synonyms
Terminologies commonly used in one company may differ from the terminologies used in the
base rules existing in DesignChecker. This may act as a hindrance when running a search.

The senior team member can, thus, define the company’s synonyms in the DesignChecker,
export these synonyms in a text file, and send this file to other team members to import into
their systems.

Editing Synonyms
The senior team member defines the company’s terms and links them to their corresponding
DesignChecker terms. For example, some companies may use the term control signal instead of
the term load.

DesignChecker User Guide, V2010.334

Configuring DesignChecker
Using the Advanced Search

June, 2011

To edit synonyms:

1. Open the Setup tab. From the Tools menu, select Edit Synonyms. Another method to
invoke the Edit Synonyms dialog is through the Edit Synonyms button in Advanced
Search dialog.

2. Click Add next to the Terms list; in the Add New Term dialog, enter the original term
existing in the DesignChecker such as the term load and click OK.

Configuring DesignChecker
Using the Advanced Search

DesignChecker User Guide, V2010.3 35
June, 2011

3. Click Add next to the Synonyms list; in the Add New Synonym dialog, enter the
equivalent term such as the term control signal and click OK.

4. Use the Synonyms Description text area to enter general notes on the current list of
terms.

5. Click OK in the Edit Synonyms dialog box; on re-opening the dialog box later, you will
find the term and its synonym added.

Exporting Synonyms
Having added the required synonyms to the DesignChecker, the senior team member can now
export the current existing synonyms into a text file to be sent to other team members, or to be
kept as backup.

To export synonyms:

1. Open the Setup tab. From the Tools menu, select Edit Synonyms. Another method to
invoke the Edit Synonyms dialog is through the Edit Synonyms button in Advanced
Search dialog.

2. Click Export.

DesignChecker User Guide, V2010.336

Configuring DesignChecker
Using the Advanced Search

June, 2011

3. In the Export Synonyms File dialog, specify the path in which the text file shall be kept
and enter the File Name of the exported synonyms file.

4. Click Save.

Importing Synonyms
Text files including previously exported synonyms are sent to team members, who in their turn
import these text files into their systems.

To import synonyms:

1. Open the Setup tab. From the Tools menu, select Edit Synonyms. Another method to
invoke the Edit Synonyms dialog is through the Edit Synonyms button in Advanced
Search dialog.

2. Click Import.

Configuring DesignChecker
Using the Advanced Search

DesignChecker User Guide, V2010.3 37
June, 2011

3. In the Import Synonyms File dialog, browse for the path from which the text file shall be
obtained and select the file of the imported synonyms file.

4. Click Open.

Restoring Default Synonyms
After adding any synonyms, you may need to discard those added synonyms and restore the
default synonyms list existing in DesignChecker.

DesignChecker User Guide, V2010.338

Configuring DesignChecker
Using the Advanced Search

June, 2011

To restore default synonyms:

1. Open the Setup tab. From the Tools menu, select Edit Synonyms. Another method to
invoke the Edit Synonyms dialog is through the Edit Synonyms button in Advanced
Search dialog.

2. Click Default.

3. A message is raised requesting your confirmation to replace the current synonyms with
the default ones; click Yes. By that, any previously added terms and synonyms are
deleted from the list.

Applying Advanced Searches Using Synonyms
After adding your company’s synonyms in the DesignChecker, you now have the ability to
search for rules using your own company-specific terms.

To use Advanced Searches with Synonyms:

1. Open the Setup tab. From the Tools menu, select Advanced Search. Another method to
invoke the Advanced Search dialog is through the Advanced Search button on the
simple search bar.

2. Click New Search to initialize the dialog.

Configuring DesignChecker
Using the Advanced Search

DesignChecker User Guide, V2010.3 39
June, 2011

3. Enter the synonym in the “Search for” field. For example, if you have defined Control
Signal as a synonym for Load, then enter the search string as “Control Signal”.

4. Select the Include Synonyms option.

5. Click Find Now; consequently, the results displayed in the Search pane include all the
rules having the term load such as Asynchronous Load Signals and Operator
Overloading.

DesignChecker User Guide, V2010.340

Configuring DesignChecker
Working with Rulesets

June, 2011

Working with Rulesets
A ruleset can contain any number of configured rules and lower level rulesets. Your rulesets
should contain the full range of interoperability, design and coding checks used within your
organization. A development team leader or project manager normally defines these using the
DesignChecker base rules. Such rulesets are specific to your organization and so will vary
between different organizations.

Configuring rulesets is normally a ‘once only’ operation, as the rulesets are intended to ensure
that team specific design and coding standards are being adhered to - consequently rulesets
should be transferable between projects. Rulesets can be set to read-only by specifying file
permissions on individual ruleset files. See “Saving Rulesets, Policies and Preferences” on
page 57 for information on how to locate your ruleset files.

The team leader can share rulesets by saving them in a single location that can be accessed by
all team members. The steps of sharing rulesets differ according to the interface tool you are
using. Refer to the integration documents available through the Help menu of the interface tool
for further details on sharing rulesets.

The default Essentials ruleset is provided as a core set of rules typical of those used in the
design community. This ruleset is editable as it allows modifications if necessary.

RMM ruleset is preconfigured and, like all rulesets, can be viewed by expanding the RuleSets
folder. This read-only example ruleset implements the RTL coding guidelines described in the
third edition of the Reuse Methodology Manual.

The Altera and Xilinx rulesets are preconfigured to be compatible with the design code
implemented using Altera and Xilinx tools.

The Checklist ruleset provides the checks performed by 0-IN®; these checks can be applied to
both VHDL and Verilog designs.

The Safety-Critical ruleset provides high-impact checks for safe coding practices to avoid
typical design errors and to provide safe synthesis.

The DO-254 ruleset extends the Safety-Critical ruleset to add code checks that ensure efficient
code reviews.

Note that the rulesets provided with DesignChecker may differ according to the interface tool
you are using.

Configuring DesignChecker
Working with Rulesets

DesignChecker User Guide, V2010.3 41
June, 2011

The contents of ruleset folders can be viewed in a similar way to the Base Rules folder. For
example, the following picture shows the content and parameters for the Portability folder in
the RMM ruleset:

The Essentials Ruleset
By default, the Essentials ruleset runs on your code if you do not create your own rulesets or
policies or choose other DesignChecker rulesets and policies. The Essentials ruleset provides a
set of core rules that check your code for common coding practices, downstream tool problems,
and reuse. These checks are common in the design community and have proven to be a very
good indication of the quality of your code.

The Essentials rules are editable as you have the ability to make modifications in their content;
that is to say, the Essentials rules are not read-only. You can directly apply your changes in the
Essentials ruleset folder, instead of copying the rules to your own ruleset in order to change
them.

DesignChecker User Guide, V2010.342

Configuring DesignChecker
Working with Rulesets

June, 2011

Note
Unlike the other built-in DesignChecker rulesets which are read-only (such as Altera,
RMM, and Xilinx), the read-only overlay is not found on the Essentials ruleset folder
indicating that it is configurable.

Restoring the Essentials Ruleset
If you modify or delete the Essentials ruleset, you can easily restore the original Essentials
ruleset by doing the following:

1. In the Folders pane, right-click on the RuleSets folder and select Essentials from the
Load Example RuleSet cascade.

Alternatively, this step can be achieved from the File menu by selecting Example
RuleSet from the Load cascade, and then selecting Essentials (note that the Rulesets
folder must be selected first in the Folders pane, in order to have Essentials enabled in
the File menu).

Configuring DesignChecker
Working with Rulesets

DesignChecker User Guide, V2010.3 43
June, 2011

2. If the Essentials ruleset already exists with this name, it will be loaded with the same
name suffixed by (_1); for example, the name of the loaded ruleset becomes
Essentials_1. Note that the number following the underscore is incremental in case you
re-load more than once.

In that case, as shown in the following picture, a message is raised informing you of the
existing ruleset’s name as well as the name given to the newly loaded ruleset; click OK.

On the other hand, if the Essentials ruleset is renamed or deleted, a warning message is raised
on re-invoking the DesignChecker tool to set up rulesets or policies. The warning message
prompts you to confirm whether you wish to re-load the Essentials ruleset or not.

Reuse Methodology Manual (RMM) Ruleset
Reuse has become essential to achieving engineering quality and the timely completion of
complex projects for modern electronic design. The Reuse Methodology Manual emerged from
a collaborative project between Mentor Graphics and Synopsys, and has been widely adopted in
the electronics industry as an effective methodology for creating reusable designs for System-
on-a-Chip (SoC) design methodology.

A preconfigured RMM ruleset is supplied with DesignChecker, that you can use to check your
code for reuse quality. The RMM is provided in a read-only format. You can also adapt the
RMM ruleset to meet specific needs by creating a copy of the RMM ruleset and modifying it, in
the same way that you configure the base rules.

Creating a Ruleset
You can create as many Rulesets as you need. You can create a new ruleset folder by using the

shortcut or by choosing Ruleset from the popup menu (or from the New cascade of the File
menu).

DesignChecker User Guide, V2010.344

Configuring DesignChecker
Working with Rulesets

June, 2011

If the RuleSets folder is selected in the Folders pane, a new ruleset is created at the top level.
However, you can also create lower level rulesets by selecting any other folder. In the RMM
ruleset for example, on expanding the Portability ruleset, you will find lower level rulesets for
Use IEEE Types and Coding for Translation.

You can use the Edit or popup menu to Cut, Copy, Paste or Delete a ruleset or any of the base
rules or configured rules used in a ruleset. You can rename a ruleset by directly editing its name
or by choosing Rename from the popup menu.

Note
The same base rule can be copied any number of times to create as many configured rules
as you require.

Note
Modified rulesets and configured rules are shown with an overlay until they have been
saved.

Configuring DesignChecker
Working with Rulesets

DesignChecker User Guide, V2010.3 45
June, 2011

Configuring Rules
You can configure any of the rules in a ruleset by clicking on its default value in the Parameter
pane.

DesignChecker has a variety of selection options. Some parameters can be configured by
entering a text string or number. For example, to change the name of a rule, you can double-
click on the default value of the Name parameter and then enter the new name; this also applies
to other parameters such as the Short Description, Hint, etc. However, if you attempt to enter an
invalid value or combination of parameter values, the rule is reset to its default values.

Some parameters provide a pulldown choice list. For example you can choose Error, Warning
or Note for the Severity parameter.

Other parameters may display a list of options in a dialog box. For example, the following
dialog box can be used to set values for the Language parameter:

The following parameters are common to all base rules:

• Name is an arbitrary, user-specified string which identifies the configured rule and must
be unique within the ruleset.

As mentioned earlier, you can rename a configured rule by double-clicking on the value
of the Name parameter (so that it would be editable) and then typing the new name.

DesignChecker User Guide, V2010.346

Configuring DesignChecker
Working with Rulesets

June, 2011

• Severity identifies the type of violation (Error, Warning or Note). The default is Error.
You can create user-defined severitysets with different severity levels, and then assign
the severitysets to their appropriate rulesets. For further information, refer to
“Configuring Rule SeveritySets” on page 49.

• Language specifies the language (VHDL Any or Verilog Any).

• Hint provides information about the possible cause of the rule violation.

• Short Description is an optional user-specified string describing the configured rule.

• Keywords are terms indicative of the rule; they facilitate searching for the rule using
the Advanced Search feature.

You can add more keywords for the configured rule if required. By double-clicking on
the Keywords row and opening the Parameters for Keywords dialog box, you can enter a
string of keywords delimited by spaces in the Custom Parameter field. Alternatively, by
clicking on the Parameter File button, a path can be specified to a file containing a list
of keywords delimited by white space.

Note
Additional parameters are available for many rules. Consult the Base Rule Reference
Guide available from the Help menu for the configuration options for each base rule.

Note
The Score and Weight parameters will also be available only if the option to perform
design quality analysis is set. For further information about those two parameters, refer to
“Design Quality Metric” on page 59.

You can access information about base rule parameters by choosing Common Base Rule
Parameters from the Help menu to directly display the corresponding page of the Base Rule
Reference Guide in your HTML browser.

You can directly access the description of the base rule corresponding to a configured rule by
using the button or by choosing Base Rule Details from the popup menu in the Content
pane when the required rule is selected.

Setting Object Properties
After creating the ruleset, you can set its properties through the Object Properties dialog.

Setting the SeveritySet Property
You can use the Object Properties dialog to assign the appropriate severityset to its ruleset.
Refer to “Configuring Rule SeveritySets” on page 49 for further information on SeveritySets.

Configuring DesignChecker
Working with Rulesets

DesignChecker User Guide, V2010.3 47
June, 2011

To set the SeveritySet property:

1. Open the Setup tab. In the Folders pane, open the RuleSets folder.

2. Right-click on a top-level ruleset and select Object Properties, or select Object
Properties from the Edit menu. The Object Properties dialog opens.

3. Select “SeveritySet” from the list on the left hand side; consequently, the dialog shows
the name of the ruleset and its current severityset. If you have not manually assigned a
severityset before, you will find that the default severityset is automatically assigned to
the ruleset.

4. From the New SeveritySet drop-down menu, select the severityset you want to associate
to the ruleset. The drop-down menu contains all the previously user-defined severitysets
in addition to the default built-in DesignChecker SeveritySet. Refer to“Creating a
SeveritySet” on page 50 for information on how you can create user-defined
severitysets.

Note that after selecting the severityset, the following information is displayed by the
DesignChecker:

• The severity levels pertinent to the selected severityset are displayed in the white
text area.

DesignChecker User Guide, V2010.348

Configuring DesignChecker
Working with Rulesets

June, 2011

• The grey text area shows the mapping that shall be applied by DesignChecker
between the old severity levels and the new ones.

5. Click OK and then save the ruleset.

Note
Modified rulesets and configured rules are shown with an overlay until they have been
saved.

On selecting any configured rule from the ruleset, and checking its severity parameter,
you will find the parameter values updated according to the severity levels of the
assigned severityset.

It is important to observe the following remarks:

• Upon copying a base rule in the modified ruleset, the severity parameter of the rule is
updated according to the severityset assigned to the parent ruleset.

Configuring DesignChecker
Working with Rulesets

DesignChecker User Guide, V2010.3 49
June, 2011

• If a child ruleset is created for the modified ruleset, on opening the Object Properties
dialog of the child ruleset, you will find that it has inherited the same severityset of the
parent ruleset.

• Upon copying a configured rule from one parent RuleSet X to another parent RuleSet Y,
the copied rule inherits the severity levels of the new parent ruleset Y. Furthermore, the
severity value of the configured rule copied from RuleSet X is automatically mapped to
a corresponding severity value in RuleSet Y.

This is illustrated in the following example:

a. RuleSet X is created and assigned the DesignChecker Default SeveritySet which
constitutes of the three levels Error, Warning, and Note.

b. In RuleSet X, three configured rules X1, X2 and X3 are created and given the
severity values Error, Warning, and Note respectively.

c. RuleSet Y is created and assigned a user-defined severityset that constitutes of five
levels such as Very High, High, Normal, Low, and Very Low.

Refer to“Creating a SeveritySet” on page 50 for information on how you can create
user-defined severitysets.

d. In RuleSet Y, the three configured rules X1, X2 and X3 are copied from RuleSet X.

Hence, being under RuleSet Y, the three rules X1, X2 and X3 now inherit the
severity levels Very High, High, Normal, Low, and Very Low. Furthermore, an
automatic mapping occurs between the old levels and the new levels.

The following table shows the mapping of severity values:

However, on copying the three configured rules back to RuleSet X, the copied rules
will be altered back to Error, Warning, and Note respectively.

Configuring Rule SeveritySets
DesignChecker enables you to create user-defined severitysets. The SeveritySet is a group of
severity levels that signify the criticality of the rule violation; each severity level is associated to
a different color. The colors are used later in highlighting violations displayed in the Results tab
after running the analysis. This feature helps you obtain more accurate results by identifying the
exact measure of the rule violation severity.

Configured Rule RuleSet X RuleSet Y

X1 Error High

X2 Warning Normal

X3 Note Very Low

DesignChecker User Guide, V2010.350

Configuring DesignChecker
Working with Rulesets

June, 2011

Creating a SeveritySet
You can create as many severitysets as required to be applied to RuleSets. DesignChecker
enables you to configure up to 10 levels for each severityset.

To create a SeveritySet:

1. Open the Setup tab. From the Setup menu, select Rule Severity and Design Quality
Settings. The Rule Severity and Design Quality Settings dialog is opened. It constitutes
of two main sections as follows:

• The Available Severity list shows the previously user-defined severitysets, in
addition to the default built-in DesignChecker SeveritySet. The DesignChecker
SeveritySet is read-only.

• The smart table shows the severity levels and colors of each severityset, in addition
to the Score and Weight of each severity level (the score and weight are used only in
the design quality analysis).

Configuring DesignChecker
Working with Rulesets

DesignChecker User Guide, V2010.3 51
June, 2011

2. Click Add and use the Add SeveritySet dialog to enter the name of the new severityset.
The new severityset is displayed in the Available SeveritySets list.

Modifying the name of a severityset takes place through the Rule Severity & Design
Quality Settings dialog. Select the severityset in the Available SeveritySets list, double-
click on its name to show the cursor, and then type the new name.

3. From the Available SeveritySets section, select the newly added severityset;
consequently, an empty smart table appears.

4. Use the smart table to enter the severity levels and their corresponding colors as follows:

a. Double-click on the Severity Level cell, and enter the name of the severity level.

b. Double-click on the Color cell, and select the corresponding color from the Select
Color dialog.

c. Double-Click on the Score and Weight cells to specify the score and weight of each
severity level; they are used in the Design Quality Metric feature. For more
information, refer to “Design Quality Metric” on page 59.

d. To maintain the required order of levels, use the Up and Down buttons. It is
recommended to arrange the severity levels from the most critical to the least
critical. This ensures a proper mapping between severity levels on changing the
severityset assigned to a ruleset.

e. To remove a severity level, you can either click Delete or delete the name of the
severity level directly from its cell.

Note
The table does not allow repeating the same severity level more than once.

5. To make the current severityset the default for rulesets, click the Set Default button
adjacent to the Available SeveritySets list. By that, all the new RuleSets will
automatically acquire the current severityset. The default severityset is indicated by a
marker.

DesignChecker User Guide, V2010.352

Configuring DesignChecker
Working with Rulesets

June, 2011

Note
By setting a severityset as the default, it is automatically assigned to any future created
RuleSets only. However, this default severityset is not assigned to the already existing
RuleSets unless you do that manually; refer to “Assigning a SeveritySet to a RuleSet” on
page 53 for information on manual assignment.

You can also configure quality scoring settings for severitysets through the Rule Severity and
Design Quality Settings dialog box; refer to “Design Quality Metric” on page 59 for more
information.

Copying a SeveritySet
DesignChecker enables you to make a duplicate of an existing severityset, thus, saving you the
time of re-creating a similar severityset with the same levels and colors.

To copy a SeveritySet:

1. From the Setup menu, select Rule Severity and Design Quality Settings.

2. Select the severityset from the Available SeveritySets list.

3. Click Copy and use the Add SeveritySet dialog to enter the name of the new severityset.
By default, the Add SeveritySet dialog displays the name of the original severityset
suffixed by (_1); you can change this name if necessary.

The duplicate severityset is displayed in the Available SeveritySets section. On selecting
the new severityset, the same severity levels and colors of the original severityset are
displayed in the smart table.

Deleting a SeveritySet
You can delete a previously defined severityset. If the deleted severityset is assigned to a
ruleset, DesignChecker automatically changes the severityset of that ruleset to the default.

To delete a SeveritySet:

1. From the Setup menu, select Rule Severity & Design Quality Settings.

2. Select the severityset from the Available SeveritySets list.

Configuring DesignChecker
Working with Rulesets

DesignChecker User Guide, V2010.3 53
June, 2011

3. Click Delete. A confirmation message is raised informing you that rulesets using the
current severityset will have their severityset switched to the default; click Yes to delete.

Assigning a SeveritySet to a RuleSet
Having created severitysets, you can now assign the appropriate severityset to its ruleset. The
severityset is a property of the ruleset that is set up through the Object Properties dialog. To
open the dialog, right-click on the ruleset and select Object Properties. Refer to “Setting Object
Properties” on page 46, for details on assigning severitysets.

DesignChecker User Guide, V2010.354

Configuring DesignChecker
Working with Policies

June, 2011

Working with Policies
A policy specifies the rulesets that you want to run and allows you to enable or disable any of
the configured rules or rulesets in the selected policy. You can display the default policy by
expanding the Policies folder.

A referenced ruleset can be configured, while the ruleset it references remains unchanged.
Consequently you can use referenced rulesets to build policies that reflect your development
needs. The contents of any policy can be viewed in a similar way to the Base Rules and RuleSets
folders.

Note
A referenced ruleset is indicated by the overlay.

Policies are basically created by team members. Yet, the project manager or team leader can
create policies and share them among team members. The project manager can create policies,
set them as read-only, and then copy the policies directory to a central server so that each
individual in the team has access to these shared policies. Subsequently, the team members can
reference the policies by setting the appropriate path. The steps of sharing policies differ
according to the interface tool you are using. Refer to the integration documents available
through the Help menu of the interface tool for further details.

Creating a Policy
You can create a new policy folder by using the shortcut or by choosing Policy from the
popup menu (or from the New cascade of the File menu) when the Policies folder is selected in
the Folders pane.

You can use the Edit or popup menu to Cut, Copy, Paste or Delete a policy or any of the
configured rulesets used in a policy. You can rename a ruleset or policy by directly editing its
name or by choosing Rename from the popup menu.

You can also drag and drop a rule into a ruleset, or a ruleset into a policy.

You can enable or disable a rule or ruleset within a policy by setting the check box or by
choosing Enable or Disable from the Setup or popup menu. If you unset one or more rules
within a ruleset but there is still one or more enabled rule, the ruleset check box is shown with a
gray check mark . If the ruleset is fully enabled, the check box is shown with a blue check
mark . If a rule or ruleset is disabled, the check box is empty . See “Adding Justification
for Disabled Rules” on page 55.

Configuring DesignChecker
Working with Policies

DesignChecker User Guide, V2010.3 55
June, 2011

The following picture shows the Clock name prefix rule in the General Naming ruleset:

Note
Modified policies, rulesets and configured rules are shown with an overlay until they
have been saved.

Adding Justification for Disabled Rules

You can add a justification for disabling a ruleset/rule, for your own reference.

1. Open the policy you are using in the Setup tab.

2. Right-click on the disabled ruleset/rule in the content pane and select Edit Justification
from the popup menu. A dialog box opens in which you can type a justification.

DesignChecker User Guide, V2010.356

Configuring DesignChecker
Working with Policies

June, 2011

The justification will be displayed in the Rule Details tab after running the analysis (see The
Rule Details Tab).

Setting the Default Policy
If you have created more than one policy, you can set the default policy by selecting the
required policy and using the shortcut or by choosing Set As Default from the Setup or
popup menu. Each time you run a DesignChecker analysis, the current default policy is applied.

The default policy is indicated by a marker.

Configuring DesignChecker
Saving Rulesets, Policies and Preferences

DesignChecker User Guide, V2010.3 57
June, 2011

Saving Rulesets, Policies and Preferences
You can back out of changes to a policy or ruleset and replace it by the last saved version by
choosing Revert from the popup menu.

You can save all modified rulesets and policies by using the button or by choosing Save All
from the File menu. You can control whether a ruleset can be modified by setting the
appropriate file permissions.

On Windows XP systems your rulesets and policies are saved by default in the DesignChecker
directory within your user preferences. The following figure shows the location of the
DesignChecker directory with HDL Designer Series for example.

On Unix and Linux systems, your rulesets, policies and preferences are written within
$HOME/<interface tool name>/dc_user.

DesignChecker preferences include information about your settings and the last viewpoint you
selected.

Note
You must have write permissions to your preferences location to save a modified ruleset.

DesignChecker User Guide, V2010.358

Configuring DesignChecker
Exporting Rulesets

June, 2011

Exporting Rulesets
You can export a copy of your Ruleset as a file using the RuleSet Report command from the
Setup menu. This facility is only available from the Setup tab, when a ruleset has been selected.
You must enable the export and specify a destination path and filename in the Export Ruleset
dialog box.

The report can be generated in .txt format.

Configuring DesignChecker
Design Quality Metric

DesignChecker User Guide, V2010.3 59
June, 2011

The exported text file contains full details of your ruleset. For example, an exported ruleset
report is shown below.

Design Quality Metric
The Design Quality Metric feature enables you to measure the quality and reusability of your
design. This feature allows you to set up quality scoring standards in DesignChecker in order to
identify how far your code adheres to your company’s quality standards, and thus measure the
effectiveness of your code if reused.

This is achieved in DesignChecker through three main phases: configuring your quality scoring
standards through setting up a user-defined severityset, calculating quality using the scoring
standards of the active policy, and reporting the quality scoring.

DesignChecker User Guide, V2010.360

Configuring DesignChecker
Design Quality Metric

June, 2011

Configuring Quality Scoring Settings
Setting up your quality scoring standards takes place through defining a SeveritySet in which
you define a score and weight for each severity level in the set. These scores and weights are
used to calculate the final quality score of your design. For further information about user-
defined severitysets, refer to “Configuring Rule SeveritySets” on page 49.

 To set up quality scoring:

1. From the Setup menu, select Rule Severity and Design Quality Settings.

2. In the Rule Severity and Design Quality Settings dialog box, select the required
severityset from the Available SeveritySets list. You can define a new severityset if
necessary and set its severity levels; refer to “Creating a SeveritySet” on page 50 for
more details.

3. In the smart table, define a Score and Weight for each severity level in the respective
columns.

Configuring DesignChecker
Design Quality Metric

DesignChecker User Guide, V2010.3 61
June, 2011

Note
The preconfigured DesignChecker severitysets - namely the Default, Altera, and RMM
SeveritySets - have a default score and weight which cannot be modified.

On assigning a severityset to a ruleset, all the children rules are by default given the same score
and weight of the rule’s severity level. If you display the parameters of the rule, you will find
the score and weight corresponding to the rule’s severity as shown in the following picture.

Note that if scoring is disabled in the Design Quality Options dialog box, then the Score and
Weight parameters will not be displayed in the Parameters pane.

You can directly modify the score and weight parameters for a specific rule to override those of
the severityset. On the other hand, if you modify the severity parameter of the rule, the score
and weight parameters will be updated accordingly.

Also, if you make global modifications to the score and weight of the SeveritySet itself in the
Rule Severity and Design Quality Settings dialog box, this will in turn affect the score and
weight of any previously associated rules.

DesignChecker User Guide, V2010.362

Configuring DesignChecker
Design Quality Metric

June, 2011

Note
It is important to note that when you define a severityset in the Rule Severity and Design
Quality Settings dialog box and set it as the default, only newly created RuleSets will be
automatically assigned this default severityset and thus inherit its quality scoring settings.
In case of any RuleSets that have been created prior to setting this default severityset, you
will have to manually assign the severityset in order for these RuleSets to inherit the new
global severity and scoring settings. Refer to “Creating a SeveritySet” on page 50 and
“Assigning a SeveritySet to a RuleSet” on page 53 for information.

Calculating Quality Scoring
Quality calculation occurs on running an analysis for your design. DesignChecker estimates the
Quality Score percentage of your design using the total possible score and the total actual score.
The total possible score is the sum of the possible scores (score * weight) of all the rules in the
policy. On running the analysis, if any rule fails, then it takes a score of zero; the total actual
score is hence calculated by subtracting the product of the score and weight values (possible
score) for each failing rule from the total possible score. The final Quality Score is the quotient
of the total actual score and the total possible score as a percentage value that is rounded to the
nearest tenth.

For example, Rule X has a score of 5 and a weight of 2, then the possible score for Rule X is 10;
Rule Y has a score of 3 and a weight of 1, then the possible score for Rule Y is 3; the total
possible score is therefore 13. On running analysis, Rule Y was violated and therefore its
possible score was subtracted to give a total actual score of 10. Based on the total possible score
of 13 and the total actual score of 10, the final Quality Score is 77%.

To calculate the design’s quality score, do the following:

1. Enable the Design Quality Metric feature by doing the following:

a. From the Options menu, select Design Quality Options.

b. In the Design Quality Options dialog box, select the option Perform Design Quality
Analysis.

Configuring DesignChecker
Design Quality Metric

DesignChecker User Guide, V2010.3 63
June, 2011

You can choose to “Include Disabled Rules” in order to add the possible score (score
* weight) of all available disabled rules to the total possible score during calculation.
However, disabled rules are given an actual score of zero.

In this case, the final Quality Score is also the quotient of the total actual score and
the total possible score (which now includes the possible scores of disabled rules) as
a percentage value that is rounded to the nearest tenth. If this option is not selected,
then the possible score of the disabled rules will be excluded from the total possible
score.

Following the example mentioned above, if there is Rule Z which has a score of 2
and a weight of 1, then its possible score is 2. If Rule Z is disabled and you have
chosen to Include Disabled Rules, then the total possible score becomes 15 and the
total actual score remains as 10. The final Quality Score is thus 67%.

2. Make sure that the rulesets in the current active policy are assigned to the appropriate
severitysets (with the scores and weights set as required; refer to “Configuring Quality
Scoring Settings” on page 60).

Note
As the score and weight parameters of an individual configured rule can override the
global score and weight preset for the SeveritySet, DesignChecker hence performs
calculation based on those of the configured rules in the ruleset.

3. Run the analysis after having selected the design items in the interface tool first.

DesignChecker User Guide, V2010.364

Configuring DesignChecker
Setting Exclusions

June, 2011

The Results tab opens displaying the outcome of the analysis; the quality scoring is
reported in the Design Quality section of the Summary pane.

For information about obtaining the results of the design quality analysis, refer to “Reporting
Quality Scoring” on page 87 and “Exporting Quality Reports” on page 98.

Setting Exclusions
The Exclusions feature enables you to exclude certain areas of your code from being analyzed
or to exclude certain rules or rulesets from being run whether on the entire design or on specific
design items or files within your code.

Skipping certain areas of your code from being generally checked, or more specifically from
being checked by certain rules, saves you the hassle of having to go through the violations that
may be generated by this code, which might be in fact behaving as designed or is third-party
code which does not comply to your coding standards.

Configuring DesignChecker
Setting Exclusions

DesignChecker User Guide, V2010.3 65
June, 2011

DesignChecker has the following types of exclusions:

Note that the exclusion types offered by DesignChecker differ according to the interface tool.
For example, in case of using DesignChecker with Certe Testbench Studio, you will be able to
apply File/Folder Exclusions to your Certe projects; in case of using DesignChecker with HDL
Designer Series, you will be able to apply Code/Rule Exclusion, Pragma Exclusion, Black Box
Exclusion, or Don’t Touch Exclusion.

Once you run an analysis, an Exclusions tab is displayed allowing you to review all the
exclusion settings that have been applied to your analysis.

For further information on exclusions and how they can be configured, refer to the integration
documents available through the Help menu of the interface tool.

Table 2-2. Exclusion Types

Exclusion Type Description

Code/Rule Exclusion Excludes specific checks from being performed on
specific parts of the design.

Pragma Exclusion Allows you to skip specific code blocks.

Black Box Exclusion Ensures that DesignChecker recognizes that a component
is present, but does not apply any checks to it.

Don’t Touch Exclusion Ensures that a file is not loaded or analyzed by
DesignChecker.

File/Folder Exclusion Excludes a specific file or folder from being analyzed.

DesignChecker User Guide, V2010.366

Configuring DesignChecker
Setting Exclusions

June, 2011

DesignChecker User Guide, V2010.3 67
June, 2011

Chapter 3
Running DesignChecker and Working with

Results

This chapter describes how to run DesignChecker and how to use the different reporting options
provided in the tool. It includes general procedures for using the DesignChecker Results tab, the
range of results available, and the ways in which these results can be manipulated and exported
in different formats. Additionally, it provides information on the Exclusions, Rule Details and
Checked Files/Design Units tabs.

Selecting Files/Design Items for Analysis . 67

The Results Tab . 68
Results Tab Notation. 70
Using the Results Tab . 70
Viewing Severity Levels. 72
Understanding the Types of Violations . 74
Controlling the Display of Results . 74
Disabling and Enabling Checks . 83
The Results Summary Pane . 85
Cross-referencing Results . 88

The Exclusions Tab . 89

The Rule Details Tab . 90

The Checked Files/Design Units Tab . 91

Exporting Results. 93
Exporting Quality Reports . 98

Selecting Files/Design Items for Analysis
You can specify the design or part of the design you wish to analyze through the interface tool
you are using. You can also run the DesignChecker analysis through the interface tool. Refer to
the integration documents available through the Help menu of the interface tool.

Once you run the analysis, the following tabs appear in DesignChecker: The Results Tab, The
Exclusions Tab, The Rule Details Tab, and The Checked Files/Design Units Tab.

Note
Before running DesignChecker, ensure that you have set the policy you wish to apply as
your default policy.

DesignChecker User Guide, V2010.368

Running DesignChecker and Working with Results
The Results Tab

June, 2011

The Results Tab
Once you have run DesignChecker, the results tab is displayed. This contains facilities to group,
sort, or filter your results and to cross-reference error messages to the source files.

The Results tab is displayed automatically when you run an analysis, you can return to it at any
time by selecting the Results tab in DesignChecker. The Results tab is divided into a results
viewpoint and summary pane, as shown in the picture below. The summary pane (shown on the
right) contains high-level information about the files analyzed, rulesets and policies applied, and
the violations identified. Refer to “The Results Summary Pane” on page 85 for further
information.

The viewpoint (shown on the left) displays the detailed results in a smart table. The content and
appearance of the table are based on the settings of the current default viewpoint; refer to
“Using Viewpoints” on page 74 for further details. For example, the following picture shows
the results displayed in the Severity & Ruleset viewpoint after an analysis has been performed.
You can use this pane to explore and examine specific occurrences of code violations by
clicking on the icon. DesignChecker also has the capability to automatically cross-reference
and open the source file of any identified item.

Running DesignChecker and Working with Results
The Results Tab

DesignChecker User Guide, V2010.3 69
June, 2011

As illustrated in the following picture, there are two types of violations in DesignChecker:
primary and associated. The primary violation is the main violation; it might be a single
independent violation, or it might involve other associated violations. Therefore, in that sense,
associated violations are secondary violations grouped under one primary violation; they
represent further details relevant to the primary violation.

Associated violations can represent the children violations that resulted from the primary
violation, they can represent the instances in which the primary violation occurred, or they can
represent parts of a compound primary violation, etc.

DesignChecker User Guide, V2010.370

Running DesignChecker and Working with Results
The Results Tab

June, 2011

Results Tab Notation
 The following icons are used to identify objects in the results tab:

Information is displayed using multi-column, multi-row “smart-tables” which support multiple
alternative viewpoints for column selection, grouping, sorting and filtering.

You can change the content and format of the results display using viewpoints as described in
“Using Viewpoints” on page 74.

You can display information about each result in a popup object tip by moving the cursor over
the result rows.

Note
You can enable or disable object tips by setting the Object Tips option in the View
menu.

Using the Results Tab
You can use the Results tab as the starting point for examining, reviewing and updating your
designs. The powerful cross-referencing capabilities of DesignChecker enable you to navigate
directly to areas of your design which have been highlighted for attention. You will see your
source code opened and the relevant area highlighted in the editor. With some interface tools,
you can also open the relevant area in an appropriate graphical editor.

Table 3-1. Results Tab Notation

Icon Description

VHDL architecture

VHDL entity

Verilog module

File

VHDL configuration declaration

VHDL package body

VHDL package header

Error message (red)

Warning message (blue)

Note message (green)

Running DesignChecker and Working with Results
The Results Tab

DesignChecker User Guide, V2010.3 71
June, 2011

Expanding and Collapsing Results
In the Results tab, when the default viewpoint is active, you can use the or icons buttons
to drill down from the high-level summaries of results to specific issues. You can do this by
expanding each result row and displaying the suggested correction and the code fragment where
a rule violation occurs.

You can expand or collapse the selected rows by choosing Expand From Here or Collapse
From Here from the popup menu.

You can expand all rows by using the button or by choosing Expand All from the Edit or
popup menu.

You can collapse all rows by using the button or by choosing Collapse All from the Edit or
popup menu.

The following picture shows expanded results for the eth_top example design (from HDL
Designer Series) displayed using the default Severity & Ruleset viewpoint. The violation itself
is highlighted and shown in its context. You can expand the contextualized view of the code
snippet within the results table by dragging the upper or lower boundaries of the results cell with
your mouse.

Note
You can open any section of code for direct editing in the corresponding text editor by
double-clicking in the Results tab cell.

You can move to the next rule violation message (automatically expanding the results row if
necessary) by using the button or by choosing Next Message from the Results menu.

DesignChecker User Guide, V2010.372

Running DesignChecker and Working with Results
The Results Tab

June, 2011

You can move to the previous rule violation message (automatically expanding the result row if
necessary) by using the button or by choosing Previous Message from the Results menu.

Copying Results
DesignChecker enables you to copy a violation message to the clipboard so you can paste it in
any external editor. To do that, select a violation, and then right-click and choose Copy
Message from the popup menu. Multi-selection of violations is allowed by holding down the
Ctrl or Shift keys.

Note
If the violated rule belongs to the Report base rules, then you will copy the message and
the report as well.

Opening Design Views from the Results Tab
DesignChecker has powerful cross-referencing capabilities. You can open the source file
corresponding to a result row by choosing Open HDL/Open Source from the popup menu. For
further information, refer to the integration documents available through the Help menu of the
interface tool.

Showing the Setup Tab
You can open the setup tab showing the configured rule, ruleset and policy that corresponds to
the selected result by choosing Show Rule from the Results or popup menu.

Note
You can access the description of the corresponding base rule by using the button or
by choosing Base Rule Details from the popup menu.

Viewing Severity Levels
If there are severitysets assigned to rulesets, they are reflected on the Results tab after running
the analysis. According to the configuration of the severityset, the severity levels and colors are
used in highlighting violations displayed in the Results tab. Refer to “Configuring Rule
SeveritySets” on page 49 for information on severitysets.

The severity levels affect both the Results tab and the Results Summary pane as follows:

• In the Results tab, the Severity column shows the severity levels of the rules for which
violations have been found (for example: high, medium, etc.). Note that the background
color of the violation reflects the color predefined in the severityset.

• In the Results Summary pane, the number of violations of each user-defined severity
level is displayed.

Running DesignChecker and Working with Results
The Results Tab

DesignChecker User Guide, V2010.3 73
June, 2011

To view Severity Levels:

1. In the Setup tab, create a new policy and add to it the ruleset to which the user-defined
severityset is assigned. Set the created policy as the default policy. Refer to Working
with Policies “Working with Policies” on page 54 for further information.

2. Run the analysis. The Results tab opens displaying the violations highlighted according
to the severity levels of the configured rules and their corresponding colors.

DesignChecker User Guide, V2010.374

Running DesignChecker and Working with Results
The Results Tab

June, 2011

Note that through the Summary pane, you can view the number of violations per
severity level in the Violations section. Furthermore, on double-clicking on a specific
severity level in the Violations section, you will be able to view the violation details
pertinent only to that severity level in the Results pane.

Note
If the default policy used in running the analysis includes rulesets that are associated to
different severitysets, then all the severity levels of those severitysets are shown
collectively in the Violations section of the Summary pane.

Understanding the Types of Violations
In the Results tab, each violation is given a certain severity level depending on the prior
configurations of your ruleset. For example, if the ruleset is using the severity set titled Default
SeveritySet, the violations will have the severity levels Error, Note or Warning, and if the
ruleset is using the severity set titled RMM_SeveritySet, the violations will have the severity
levels Rule or Guideline. Refer to “Configuring Rule SeveritySets” on page 49 for further
information.

However, apart from the current severity set used in your analysis, you may find some
violations having different titles such as Syntax Error, Synthesis Error or Elaboration Error.
For more information on these errors, refer to Design Correctness and Synthesizability.

Controlling the Display of Results
This section describes how you can manage the layout and organization of the displayed
DesignChecker results.

Using Viewpoints
A default viewpoint is used in the results tab to display the messages issued by DesignChecker.
Viewpoints are used to control how the results are displayed and persist that information
between work sessions.

The last viewpoint used is stored in your preferences and automatically re-opened when you
invoke a new session so that the same columns are displayed with the same groups and filters
also applied.

You can create and modify any number of viewpoints. These are automatically saved in your
preferences.

You can display or hide the viewpoint manager window by choosing Viewpoint Manager from
the Results menu or by using the button or the shortcut.

Several example viewpoints are defined:

Running DesignChecker and Working with Results
The Results Tab

DesignChecker User Guide, V2010.3 75
June, 2011

• Severity & Ruleset — displays the code snippet, design unit name, hint, and message
columns.

• All: (No Groups) — displays the results with all columns visible.

• List: (No Groups) — displays the design unit name, filename, hint, filename, leaf
filename, library, line number, message, rule category, rule name, rule severity, ruleset
and scope columns.

• Severity & File — displays the code snippet, hint, and message columns.

• Severity & Rule Path — displays the Severity & RulePath, library/design unit/scope,
message, line number, code snippet and hint.

The default Severity & Ruleset viewpoint (indicated by the icon and name in bold font) is
shown as active in the following example:

You can make a viewpoint active by using the button or you can create a new editable
viewpoint by using the button.

Note
When you create a new viewpoint it is automatically made active and given the same
initial properties as the previous active viewpoint.

You can set the default viewpoint using the Default button.

You can delete the selected viewpoint using the button or change the name of a
viewpoint using the button.

You can revert to the previously active viewpoint by choosing Revert Viewpoint from the
Results menu or by using the button or shortcut.

DesignChecker User Guide, V2010.376

Running DesignChecker and Working with Results
The Results Tab

June, 2011

Changing the Displayed Columns
You can choose the Columns option to display the column management window:

You can select from a list of available columns which includes:

• Code Snippet displays the code fragment containing the rule violation.

• Design Unit Name is the design unit containing a source design object.

• File and Line displays the leaf filename and line number.

• Filename is the full path for the physical file system object.

• Full Message is the full message text including the leaf filename, rule severity, rule
name, rule category and message.

• Full Message with Rule Path is the full message text (including the leaf filename, line
number, rule severity, message) plus the rule path.

• Hint is the suggested corrective action.

• Leaf Filename is the leaf name for the physical file system object.

• Library is the library containing the design object.

• Library, Design Unit and Scope displays the library name, design unit name and scope
in the same cell.

• Line Number displays the line number within the file.

• Message is the text string describing the error, warning or note, or other user-defined
severity levels.

• Rule Category is the category for the base rule.

• Rule Name is the name of the base rule.

• Rule Path is the full hierarchical name of the configured rule including the ruleset
name.

Running DesignChecker and Working with Results
The Results Tab

DesignChecker User Guide, V2010.3 77
June, 2011

• Rule Severity identifies whether the rule violation is an error, warning or note.

• Ruleset is the name of the ruleset.

• Scope is the type of object (Architecture, Configuration, Entity, File, Module or
Package).

• Severity and Rule Path displays the severity and rule path.

• Severity, Ruleset and Rule displays the severity, ruleset and rule name in one cell.

• Type displays whether the violation is primary or associated.

The columns are displayed in the order they are added.

You can also change the displayed columns by checking options in the Select Columns cascade
of the popup menu which is displayed if you click the mouse button over any column
heading.

There is an attribute associated with each column in the list of available fields which controls
how each column is displayed. This attribute defaults to Align Vertical for most of the
columns. However, the attribute for the Code Snippet and Hint columns default to Align
Horizontal.

Note
The column attributes control is not displayed until you select a column name in the list
of available fields.

When the Align Horizontal attribute is set, the column is displayed in a separate row which can
be expanded or collapsed using the and icons.

DesignChecker User Guide, V2010.378

Running DesignChecker and Working with Results
The Results Tab

June, 2011

For example, the following picture shows an analysis for the eth_top design unit in the Ethernet
example library (from HDL Designer Series) using a new viewpoint with columns displaying
the scope, rule severity, leaf filename, line number, message and hint:

Note
It may be necessary to use the horizontal scroll bar if a viewpoint includes more columns
than can be displayed in the window.

You can use the button to select all available columns, button to unselect all
columns or button to reset the default columns.

You can change the width of the columns by dragging the sashes between each column or
automatically resize a column to fit its contents by double-clicking on the sash.

Changing the Column Display Order

You can change the column display order by dragging the column header with the mouse
button.

Changing the Object Row Display Order

You can re-order rows in ascending or descending order for the selected column by choosing
Sort Ascending or Sort Descending from the popup menu when the cursor is over any column
header.

The new sort order is indicated by a or indicator in the column header.

Note
You can quickly toggle the existing order by clicking the mouse button in any
column header.

Running DesignChecker and Working with Results
The Results Tab

DesignChecker User Guide, V2010.3 79
June, 2011

Grouping Design Objects
You can choose the Groups option to set up groups for the current viewpoint:

You can choose to group by any of the column name fields listed in “Changing the Displayed
Columns” on page 76.

If you choose to group by a column which is not currently displayed it is added to the list of
displayed columns. You can use the button to unselect all groups.

The specified grouping is applied to the results tab when you use the button.

If you choose more than one column to group by, the groups are nested in the order that you
selected them. However, you can use the and buttons to set the grouping order and use the

 button to apply the modified order to the table.

You can use the icons to expand any group and reveal the objects it contains.

DesignChecker User Guide, V2010.380

Running DesignChecker and Working with Results
The Results Tab

June, 2011

For example, the following picture shows the results from an analysis of the eth_top example
from the Ethernet library (from HDL Designer Series) grouped by design unit name, rule
category, rule name and scope:

You can also group design objects by choosing Group by this column from the popup menu
for a column header.

You can choose Ungroup from the popup menu to remove all column groups.

Filtering Results
DesignChecker is pre-configured with the following standard filters:

• Architectures

• Classes

• Configurations

• Entities

• Files

• Interfaces

• Modules

Running DesignChecker and Working with Results
The Results Tab

DesignChecker User Guide, V2010.3 81
June, 2011

• Package Bodies

• Package Headers

• Program Blocks

• SV Packages

• Syntax Errors

Additionally you can use the Filters option to set up filters for the current viewpoint:

You can use the button to select all the filters or button to unselect all filters.

You can also filter the list by selecting one of the column fields from the dropdown list and
entering a text string to show only those objects in the selected field which contain the specified
string.

The filter can be a simple string match (including wildcards such as acc*) or you can set options
to match case, match whole word only or match a regular expression.

Note
Recently entered filter expressions can be selected from a dropdown list.
A list of supported regular expressions can be displayed by choosing Regular
Expressions from the Help menu.

The displayed objects are filtered to show only objects that match the specified pattern.

DesignChecker User Guide, V2010.382

Running DesignChecker and Working with Results
The Results Tab

June, 2011

For example, the following picture shows the results for the eth_top example (from HDL
Designer Series) filtered for the text string bitwise operators in the Message column with the
show modules object filter selected:

You can enable or disable the selected filter by setting or unsetting the Enable Filters option.

Use the Apply button to apply your filter settings.

Note
The columns, groups and filters available in DesignChecker might change according to
the interface tool you are using.

Adding a Viewpoint Shortcut
You can add a shortcut to any viewpoint by dragging its name from the viewpoint management
window onto the Viewpoints group in the shortcut bar or remove a viewpoint shortcut by
choosing Remove from the popup menu in the shortcut bar.

You can re-order shortcuts in the shortcut bar by dragging a shortcut to the required position.

The active viewpoint is identified in the viewpoint management window and shortcut bar by a
red check mark overlay. For example, the following shortcut shows that the Severity & File
viewpoint is active:

You can set the active viewpoint by clicking on a shortcut to change the viewpoint currently
shown in the results tab.

Running DesignChecker and Working with Results
The Results Tab

DesignChecker User Guide, V2010.3 83
June, 2011

You can access the Viewpoints shortcuts in DesignChecker at any time by choosing the
Viewpoints Shortcut Bar.

Disabling and Enabling Checks
Checking and updating code is an iterative process. At times you will need to turn on or off
certain checks within DesignChecker, without wishing to change either your user policies or
rulesets. You can do this easily from the DesignChecker Results tab.

You can disable the rule corresponding to the selected result row by choosing Disable Rule For
from the Results or popup menu, and then from the cascade menu, you can choose to disable
the rule on the level of the policy, design unit or source file.

In the same way, you can enable the rule corresponding to the selected result row by choosing
Enable Rule For from the popup menu, and then from the cascade menu, you can choose to
enable the rule on the level of the policy, design unit or source file.

You can disable the ruleset corresponding to the selected result row by choosing Disable
RuleSet For from the Results or popup menu, and then from the cascade menu, you can choose
to disable the ruleset on the level of the policy, design unit or source file.

In the same way, you can enable the ruleset corresponding to the selected result row by
choosing Enable RuleSet For from the popup menu, and then from the cascade menu, you can
choose to enable the ruleset on the level of the policy, design unit or source file.

Note that the content of the popup menu may differ according to the interface tool you are using
with DesignChecker. You can refer to the integration documents available through the Help
menu of the interface tool.

DesignChecker User Guide, V2010.384

Running DesignChecker and Working with Results
The Results Tab

June, 2011

By using the above explained methods to disable checks, the results relevant to the checks you
disable will be highlighted in yellow as shown in the following figure.

If you wish to remove the highlighted results of the disabled rule/ruleset, you can do so by
selecting Results > Remove Highlighted Results or by clicking Remove Highlighted Results

in the shortcut bar on the left hand side. By doing that, the results will not be displayed in
the Results tab.

Any rules or rulesets you disable for design units or source files are displayed in the Exclusions
tab.

Running DesignChecker and Working with Results
The Results Tab

DesignChecker User Guide, V2010.3 85
June, 2011

The Results Summary Pane
The results summary pane appears by default once DesignChecker has been run. This can be
displayed or hidden by setting or unsetting Summary Window in the View menu (or hidden by
unsetting this option in the popup menu when the window is displayed). In addition to providing
an overview of the DesignChecker results, you can use the Summary pane to rapidly move
between viewpoints by double-clicking on any item listed in the Summary pane tables. For
example, double-clicking on Warnings in the Violations section, changes the viewpoint to show
only warning violations.

The results summary pane displays an overview of the results in tabular form under the
following headings:

• Settings: This displays information related to the design that has been analyzed such as
the policy that has been used, the name of the design that has been analyzed, and so on.

DesignChecker User Guide, V2010.386

Running DesignChecker and Working with Results
The Results Tab

June, 2011

• Exclusions: This section shows information on the exclusion settings that affected the
latest analysis results.

• Design Quality: This displays the results of the design quality analysis. If the Design
Quality Metric feature is not activated, then this section does not display any
information and only indicates that “Analysis is turned off.” For further information on
this section, refer to “Reporting Quality Scoring” on page 87.

• Violations: Displays the number of violations for each of the error, warning and note
severities, or other user-defined severity levels. Also shows the number of violations and
the percentage in each scope.

You can right-click on any item and select Show Results from the popup menu. By that,
only the results pertinent to that item are displayed in the Results pane.

• Rules: Shows the name of the current default policy used for the analysis and shows
information related to each ruleset.

You can right-click on any ruleset and select Show Results from the popup menu. By
that, only the results pertinent to that ruleset are displayed in the Results pane. By right-
clicking on a ruleset and selecting Show RuleSet from the popup menu, the Rule Details
tab will be opened displaying the corresponding ruleset and its content. Furthermore,
you have the ability to enable or disable a ruleset by right-clicking on the ruleset’s row
and selecting Enable RuleSet for Policy or Disable RuleSet for Policy; if the rule is
currently enabled then only Disable RuleSet for Policy will be activated and vice-versa.

• Design Units: Displays various information on each design unit type involved in the
analysis.

You can right-click on any design unit type and select Show Results from the popup
menu. By that, only the results pertinent to that item are displayed in the Results pane.

Note
You can collapse or expand the summary tables by using the or icons.

Running DesignChecker and Working with Results
The Results Tab

DesignChecker User Guide, V2010.3 87
June, 2011

Reporting Quality Scoring
After running an analysis for your design, the Results tab is opened showing the quality scoring
results in the Summary pane.

In the Design Quality section, you are given the details on the quality scoring calculation:

• Quality Score — the percentage of the code quality.

• Score/Total Possible Score — the total actual score and the total possible score; in
addition to that, the number of disabled rules included (in case the Include Disabled
Rules option is set in the Design Quality Options dialog box) or the number of disabled
rules excluded (in case the option is not set).

• RuleSet Hierarchy Report — a hierarchy of the rulesets within the policy. This section
shows the score of each ruleset, the quality percentage, the number of violated rules for

DesignChecker User Guide, V2010.388

Running DesignChecker and Working with Results
The Results Tab

June, 2011

each severity level, the total number of configured rules in each ruleset, and the number
of disabled rules in each ruleset.

You can filter the violations displayed in the Results pane by a specific ruleset. This is
achieved either by double-clicking on that ruleset in the RuleSet Hierarchy Report table,
or by right-clicking on the ruleset and selecting Show Results. By that, only the results
pertinent to that ruleset are displayed in the Results pane. This can also be applied on the
level of the policy.

Furthermore, you have the ability to enable or disable a ruleset directly through the
RuleSet Hierarchy Report table by right-clicking on the ruleset and selecting Enable
RuleSet for Policy or Disable RuleSet for Policy; if the rule is currently enabled then
only Disable RuleSet for Policy will be activated and vice-versa.

By right-clicking on a ruleset and selecting Show RuleSet from the popup menu, the
Rule Details tab will be opened displaying the corresponding ruleset and its content.

Note
If quality analysis is disabled in the Design Quality Options dialog box, then the Design
Quality section in Summary pane will not display the above mentioned data. Instead, it
will only display the statement “Analysis turned off.” Note that you can open the Design
Quality Options dialog box by right-clicking inside the Design Quality section and
selecting Design Quality Options.

Cross-referencing Results
You can easily cross-reference between your DesignChecker results and your source code by
right-clicking on any code snippet in the DesignChecker Results tab and selecting Open
HDL/Open Source from the popup menu. By doing that, the text editor corresponding to the
interface tool you are using will be invoked showing the source code in which the violation
occurs.

With some tools, you will be able to cross-reference your results with graphical source views.

Running DesignChecker and Working with Results
The Exclusions Tab

DesignChecker User Guide, V2010.3 89
June, 2011

Refer to the integration documents available through the Help menu of the interface tool for
further information.

The Exclusions Tab
Once you have run DesignChecker, the Exclusions tab is available from which you can review
the exclusion settings related to the last run. The Exclusions tab consists of several panes that
reflect the exclusion types used with the interface tool. For example, in case of using HDL
Designer Series with DesignChecker, this tab will display code/rule exclusions, black box
exclusions, Don’t Touch exclusions, pragma exclusions and so on.

You can perform some operations through the Exclusions tab that differ according to the
exclusion type. For example, you can add or remove certain exclusion types directly through the
Exclusions tab, you can cross-reference to the source black-boxed or Don’t Touch files, and so
on.

DesignChecker User Guide, V2010.390

Running DesignChecker and Working with Results
The Rule Details Tab

June, 2011

The Exclusions tab also contains a summary pane on the right including summarized data on the
exclusion settings applied in the latest analysis.

For more details on the content of the Exclusions tab, refer to the integration documents
available through the Help menu of your interface tool.

The Rule Details Tab
This tab displays the policy applied to the latest DesignChecker analysis. It shows a list of the
rulesets in the policy along with the pertinent configured rules.

The Rule Details tab contains the following columns:

• Name — shows the name of the policy, ruleset or configured rule.

• Enabled — shows whether the rule is enabled or disabled.

• Run — shows whether the rule was fully run (run on the entire design), partially run
(run on part of the design), or not run.

• Failed — shows whether the rule has been violated (Fail) or not (Pass).

• Justification — shows the justification for disabling the rule or ruleset.

Double-clicking on any rule will open the Setup tab with the same rule highlighted, or you can
right-click on any rule and select Show Rule/RuleSet from the popup menu. The same applies
to rulesets.

Running DesignChecker and Working with Results
The Checked Files/Design Units Tab

DesignChecker User Guide, V2010.3 91
June, 2011

The Checked Files/Design Units Tab
This tab shows the files and design units that have been analyzed in the latest DesignChecker
analysis. This tab contains two panes: the Checked Files pane and the Checked Design Units
pane. The Checked Files pane shows all the files that have undergone the last analysis, and
similarly, the Checked Design Units pane shows all the design units that have undergone the
last analysis.

If you run file level checking, then the analyzed file will be displayed in the Checked Files pane
and only the design units related to that file will be displayed in the Checked Design Units pane.
Likewise, if you run design unit level checking, the analyzed design unit will be displayed in the
Checked Design Units pane, and the file to which the design unit belongs will be displayed in
the Checked Files pane.

Each pane constitutes of columns showing information on the file or design unit.

Columns in the Checked Files pane:

• Name — shows the name of the analyzed file.

DesignChecker User Guide, V2010.392

Running DesignChecker and Working with Results
The Checked Files/Design Units Tab

June, 2011

• Order — shows the order of the file in analysis.

• Language — shows whether the language of the file is VHDL, Verilog or System
Verilog.

• Syntax Error(s) — indicates the existence of syntax errors in the file.

• Excluded — shows whether the file is excluded from analysis or not.

• Library — shows the name of the library to which the file belongs.

• Path — shows the location of the file on the hard disk.

Columns in the Checked Design Units pane:

• Primary — shows the primary name of the design unit.

• Design Unit Type — shows the type of the design unit. For example: entity,
architecture, SV Package, Interface, and so on.

• Secondary — shows the secondary name of the design unit.

• RTL — shows the RTL status of the design unit: RTL, Non-RTL or not applicable.

• Excluded — shows whether the design unit is excluded from analysis or not.

• Language — shows whether the language is VHDL, Verilog or System Verilog.

• Library — shows the name of the library to which the design unit belongs.

• File Name — shows the name of the file to which the design unit belongs.

• File Path — shows the location of the file to which the design unit belongs.

Note
Note that the panes in the tab may differ according to the interface tool you are using with
DesignChecker. Some tools use both the Checked Files and Checked Design Units pane,
other tools may use only the Checked Files pane.

Running DesignChecker and Working with Results
Exporting Results

DesignChecker User Guide, V2010.3 93
June, 2011

Exporting Results
You can export various information on the latest DesignChecker analysis. The Export Results
dialog box allows you to generate different types of reports. This dialog box enables you to
generate separate reports on the latest results, the summary, the exclusion settings applied to the
analysis, details on the rules used in the analysis, in addition to information on the files/design
units that have been analyzed.

Procedure

1. Open the Export Results dialog box by choosing File > Export Results or click in
the toolbar. Note that you will not be able to open the Export Results dialog box if the
Setup tab is active.

2. Open the tab corresponding to the information you wish to export: Results, Summary,
Exclusions, Rule Details, or Checked Files/Design Units.

3. According to the tab you opened, enable the export of its corresponding information.

For example, if you open the Results tab, you can enforce exporting the analysis results
by setting the option “Enable Export of Results”.

Note that if you enable the export, then you have to configure the remaining options in
the Results tab. If you wish to disable the export, then you can ignore the remaining
options and move on to other tabs (such as Summary, Exclusions, and so on).

4. Specify the path of the file(s) to which you will export the information. For example, if
you have enabled the export of results and summary, then you have to specify the path
of these two reports.

5. Select the type of the file: Comma Separated Format (CSV), Tab Separated Format
(TSV), HTML.

CSV format is written with the file extension.csv, TSV format with the file extension .txt
and HTML format with the extension .htm. These file extensions are normally registered
on a Windows system to open CSV files in Microsoft Excel, TSV files in your default
text editor and HTML files in your default web browser.

6. Configure the options related to the information you are exporting as follows:

DesignChecker User Guide, V2010.394

Running DesignChecker and Working with Results
Exporting Results

June, 2011

• Results Tab:

o Specify whether you want to display the code snippet in which the violation
occurred through the option Code Snippet. If selected, you can also specify the
number of code lines before and after the violation line that you want to include
in the report.

o Specify whether you want to exclude any associated violations from the report
through the option Filter Associated Violations.

Running DesignChecker and Working with Results
Exporting Results

DesignChecker User Guide, V2010.3 95
June, 2011

• Summary Tab:

o The Summary report displays all the content of the Summary pane by default.
You can specify certain sections of the Summary pane to display: Settings,
Exclusions, Design Quality, Violations, Rules, and Design Units. Refer to “The
Results Summary Pane” on page 85 for more information on these sections.

DesignChecker User Guide, V2010.396

Running DesignChecker and Working with Results
Exporting Results

June, 2011

• Exclusions Tab:

o The Exclusions report displays all the content of the Exclusions tab by default.
You can specify certain sections of the Exclusions tab to display: Code/Rule
Exclusions, Black Boxed Files, Don’t Touch Files, Exclusion Pragmas (the
number of pragma types used in the analyzed design), Pragma Code Excluded,
Unbound Component/Instances, and Summary.

Running DesignChecker and Working with Results
Exporting Results

DesignChecker User Guide, V2010.3 97
June, 2011

• Rule Details Tab:

o The Rule Details report does not require extra configuration.

• Checked Files/Design Units Tab:

o You have to specify if you need a report on Checked Files or Checked Design
Units, or both.

7. Click OK after setting the required options in each tab.

DesignChecker User Guide, V2010.398

Running DesignChecker and Working with Results
Exporting Results

June, 2011

Consequently, the separate reports are generated in the specified paths. You are
prompted to overwrite the files if they already exist at the specified locations.

Note
Note that the options within each tab might differ according to the interface tool you are
using with DesignChecker.

Exporting Quality Reports
Using the Export Results dialog box, you can export a Summary report including the quality
analysis results, but you have to make sure that the Design Quality option is selected as
highlighted in the below figure. The exported report can be in one of the following formats:
Comma-Separated Format (CSV), Tab-Separated Format (TSV), or HTML.

Running DesignChecker and Working with Results
Exporting Results

DesignChecker User Guide, V2010.3 99
June, 2011

The following figure shows an excerpt of an exported Summary (in HTML format) including
the Design Quality section:

DesignChecker User Guide, V2010.3100

Running DesignChecker and Working with Results
Exporting Results

June, 2011

DesignChecker User Guide, V2010.3 101
June, 2011

Appendix A
Supporting Synthesizable Designs

DesignChecker contains a number of rules which can only run on synthesizable designs. The
section Rules Specific to Synthesizable Code provides a list of those rules which require the
design to be complete and synthesizable first prior to analysis; this section is applicable only to
RTL tools that interface with DesignChecker. On the other hand, the section SystemVerilog
Support provides a list of all the synthesizable SystemVerilog constructs supported by
DesignChecker.

Rules Specific to Synthesizable Code
The following rules can only analyze synthesizable code. On running DesignChecker, these
rules can cause “synthesis errors” if they find unsynthesizable constructs in the design.
Similarly, these rules can cause “elaboration errors” if the design is incomplete or if there are
unsupported constructs; refer to “Understanding the Types of Violations” on page 74 for more
information about synthesis and elaboration errors.

• Allowed Constructs • Matching Range

• Asynchronous Load Signals • Memory Element Report

• Asynchronous Reset Release • Mixed Assignments

• Arithmetic Gate Report • Mixed Clocks Resets

• Blocking Nonblocking Assignments • Multiple Clocks

• Case instead of if-else-if • Multiple Resets

• Case Statement Directives • Multiple Drivers

• Case Statement Style • Non-Static Ranges

• Clock Declaration Style • Non-Unrollable Loops

• Clock Used As Data • Port Mapping

• Combinatorial Feedback • Re-entrant Outputs

• Consistent Clocks • Register Controllability

• Consistent Resets • Register IO

• Edge Trigger Control • Register Race

• FSM Coding Style • Register Reset Control

• FSM Complexity • Related Combinatorial Logic

DesignChecker User Guide, V2010.3102

Supporting Synthesizable Designs
SystemVerilog Support

June, 2011

Note
During analysis, the above rules will ignore any code inside initial blocks and
translate_off/on or synthesis_off/on pragmas.

SystemVerilog Support
Some rules in DesignChecker support SystemVerilog designs. DesignChecker provides support
for just the following SystemVerilog design units: Modules, Packages and Interfaces.

Note
All the base rules supporting SystemVerilog in DesignChecker are marked with a
SystemVerilog overlay .

This section lists the synthesizable SystemVerilog constructs and features supported by
DesignChecker.

• FSM Report • Reset Logic Function

• FSM State Encoding Style • Sensitivity List

• FSM Transitions • Snake Paths

• Gated Clocks • Sub-Program Body

• Inferred Elements Naming • SV Always Block

• Initialization Assignments • Undriven & Unused Logic

• Input Port Assignments • Unique Names

• Internally Generated Clocks • Unreachable Blocks

• Internally Generated Resets • Untested Edge Trigger

• Latch Inference • Unused Declarations

Table A-1. Supported SystemVerilog Constructs

Construct Details

Literal Values • Integer
• Logic
• Real
• String of type Packed Array
• Array
• Structure Literals

Supporting Synthesizable Designs
SystemVerilog Support

DesignChecker User Guide, V2010.3 103
June, 2011

Data Types • Integer (integer, int, shortint, longint, byte, logic, bit, reg)
• Void
• User-defined Types
• Enumerations
• Structures (Packed/Unpacked) and Unions (Packed)
• Casting

Arrays • Packed and Unpacked Arrays
• Multi-dimensioned Arrays
• Array Indexing and Slicing
• Array Assignment
• Arrays as Arguments

Data Declarations • Constants
• Signal Aliasing

Attributes

Operators and Expressions • Assignment Operators
• Wild Equality and Inequality Operators

Procedural Statements and
Control Flow

• Selection Statements
• Loop Statements

• Do-While Loop
• Enhanced For Loop

• Jump Statements
• Break
• Continue
• Return

• Named Blocks
• Event Control (iff Qualifier)

Processes • Combinatorial Logic
• Latched Logic
• Sequential Logic

Tasks and Functions • Void Functions
• Argument Passing

• Default Argument Values
• Argument Passing by Name

Table A-1. Supported SystemVerilog Constructs (cont.)

Construct Details

DesignChecker User Guide, V2010.3104

Supporting Synthesizable Designs
SystemVerilog Support

June, 2011

Hierarchy • Port Declarations
• Port Connection Rules
• Module Instances

• Instantiation Using Implicit .name Port Connections
• Instantiation Using Implicit .* Port Connections

Interfaces

System Tasks and System
Functions

Compiler Directives • `define Macros

Table A-1. Supported SystemVerilog Constructs (cont.)

Construct Details

DesignChecker User Guide, V2010.3 105
June, 2011

Appendix B
Further Understanding Design Checking

Rule Behavior

In this appendix we will try to cover the different factors affecting the way DesignChecker rules
operate. In doing so we aim to provide a deeper understanding of the violations produced in
terms of reason of issuance and meaning.

The following topics will be explored:

1. Design Correctness and Synthesizability

2. Register and Control Signal Inference

3. Finite State Machines (FSMs)

4. Miscellaneous

These topics are mainly applicable to RTL tools that interface with DesignChecker such as
HDL Designer Series and Visual Elite.

Design Correctness and Synthesizability

Introduction
For synthesis rules to run on a design, the design needs to be correct, i.e. the design should not
contain any syntax or elaboration errors. When a syntax or elaboration error is encountered,
synthesis rules will not be run on the entire design.

Designs can also contain non-synthesizable modules, which also results in synthesis errors.
When a non-synthesizable module is encountered in a design, synthesis rules will not be run on
that module only. However, design checking can still be carried out on the rest of the design.

Note
DesignChecker may not always be able to report all errors in the design in a single run
and multiple runs may be required to make the design completely error-free.

All the different types of errors (syntax, elaboration and synthesis) are described in greater
detail in this section.

DesignChecker User Guide, V2010.3106

Further Understanding Design Checking Rule Behavior
Design Correctness and Synthesizability

June, 2011

Syntax Errors
These result when DesignChecker encounters syntactically incorrect code. In such cases, none
of the rules run on the entire design, and only syntax error violations are displayed. These
syntax errors need to be corrected before DesignChecker can perform design analysis.

The following figure shows syntax errors violations as displayed in the Results tab.

Elaboration and Elaboration Errors
Synthesis rules always operate on a fully elaborated design. Elaboration can loosely be
described as a process by which overridden generic/parameter values in an instantiation are
transferred to the instance master and appropriate port connections are established. Consider the
following example:

module top (input in1, sel, output out1);
 middle #(.p1(7)) inst (.in1(in1), .sel(sel), .out1(out1));
endmodule
module middle (input in1, sel, output reg out1);
parameter p1 = 3;
 always @(in1 or sel)
 begin
 if(p1 == 3)
 out1 <= in1;
 else
 out1 <= sel;
 end
endmodule

Further Understanding Design Checking Rule Behavior
Design Correctness and Synthesizability

DesignChecker User Guide, V2010.3 107
June, 2011

In this case, when instance “inst” of middle is elaborated, the value 7 is propagated to the
parameter p1. As a result, the condition (p1 == 3) will not be true, even if it seems to be the case
if middle is seen in isolation.

Failure to elaborate a design results in elaboration errors. Some common causes of elaboration
errors are as listed below:

• Name/type mismatch in the port/generic map of an instantiation and the corresponding
port/generic in the instance master.

• Incorrect direction in the component of an instance and the corresponding port in the
instance master.

In addition to the above mentioned causes, elaboration errors are also produced in the following
scenarios:

• Top-level generic values not specified.

• Top-level port sizes not specified.

Whenever DesignChecker configured to run some synthesis rules encounters an elaboration
error, none of the synthesis rules will be run on the design and elaboration error violations are
displayed. Only when all the elaboration errors have been fixed would DesignChecker be able
to run the configured synthesis rules. Please note that rules other than synthesis rules are not
affected by the presence of elaboration errors and hence these rules will run the analysis and
display results normally.

DesignChecker User Guide, V2010.3108

Further Understanding Design Checking Rule Behavior
Design Correctness and Synthesizability

June, 2011

The following figure shows elaboration error violations as displayed in the Results tab.

Synthesis Errors
Synthesis errors result when DesignChecker configured to run some synthesis rules encounters
non-synthesizable constructs during design analysis. Some common non-synthesizable
constructs are:

• TIME/REAL/EVENT types

• Classes/Program Blocks/Nested Modules

• Non-unrollable loops

• Mixture of blocking-non blocking assignments on a variable in a single always block
(Verilog)

• Non-synthesizable clocking styles (described later in the section)

In such cases, the synthesis rules do not run on the module containing the non-synthesizable
constructs. However, the synthesis rules would run on the rest of the modules. Furthermore,
rules other than synthesis rules are not affected by non-synthesizable modules and these would
run the analysis normally on the non-synthesizable modules as well.

Further Understanding Design Checking Rule Behavior
Design Correctness and Synthesizability

DesignChecker User Guide, V2010.3 109
June, 2011

Please note that certain kinds of non-synthesizable constructs in modules are simply ignored by
the synthesis rules and the presence of these constructs does not cause DesignChecker to
consider the module as non-synthesizable. Some common constructs are:

• Initial blocks

• Delays e.g. #10 in Verilog, AFTER 10 ns in VHDL

• Certain system tasks like $display, $finish etc.

• SV Assertions

The following figure shows synthesis error violations as displayed in the Results tab.

DesignChecker User Guide, V2010.3110

Further Understanding Design Checking Rule Behavior
Design Correctness and Synthesizability

June, 2011

The HDS log window also displays a report of all modules having non-synthesizable constructs
along with the rules which did not run on those modules.

Note
Some non-synthesizable constructs are also offered as dedicated base rules. For example
(Conditions – Non-Unrollable Loops or Ranges – Non-Static Ranges). Whenever these
rules are part of the active policy, two violations would be produced – one corresponding
to the configured rule and a second synthesis error violation.

Synthesizability and implications for design-wide synthesis rules
When a non-synthesizable module is encountered, it is treated as an undefined module and
hence logic inside that module is not considered for any of the synthesis rules. However,
instances inside that module are considered, but are treated as disconnected from the non-
synthesizable module. This means that if the non-synthesizable module contains instances, then
the connections of those instances with the parent or sibling instances are not created. Consider
the following figure:

Further Understanding Design Checking Rule Behavior
Design Correctness and Synthesizability

DesignChecker User Guide, V2010.3 111
June, 2011

In the above figure, a non-synthesizable module, nonSynth instantiates 2 synthesizable
modules, synth1 and synth2. Let’s assume that the output of synth2 is passed to synth1 through
some combinational logic, as depicted by the orange cloud and that there is a combinational
feedback loop in the design involving the three modules. In this particular case, DesignChecker
synthesis rules view the module nonSynth that contains the non-synthesizable constructs as is
shown in the figure below.

Implications of this are:

• If there are some design-wide (inter-module) violations which are confined to the
synthesizable sub-hierarchy, synth1/synth2, then these would be reported normally.

DesignChecker User Guide, V2010.3112

Further Understanding Design Checking Rule Behavior
Design Correctness and Synthesizability

June, 2011

• However, if the design-wide violations involve the non-synthesizable module, then they
will not be reported. For example, the design actually contains a combinational loop, but
since it involves the non-synthesizable module, nonSynth, hence this violation would
not be reported.

Summary
For DesignChecker synthesis rules to operate properly on the design, it needs to be free of
errors. Syntax errors are the most severe errors which prevent any rule checking from running
on the design. Elaboration errors preclude any synthesis checks from running on the design,
though other rules can run normally. Finally, synthesis errors prevent synthesis rules from
running on specific modules, though they may run normally on synthesizable portions of the
design. Other checks are not affected by synthesizability of the modules. The following table
summarizes the impact of various types of errors on design analysis.

Table B-1. Table 1

Error Synthesis rules Other rules

Syntax error None of the synthesis rules
will run on the design

None of the other rules will
run on the design

Elaboration error None of the synthesis rules
will run on the design

Will run normally on all
modules

Synthesis error None of the synthesis rules
would run on the non-
synthesizable modules,
however, will run normally
on synthesizable modules.
Design-wide rules would be
affected if they involve the
non-synthesizable module.

Will run normally on all
modules

Further Understanding Design Checking Rule Behavior
Register and Control Signal Inference

DesignChecker User Guide, V2010.3 113
June, 2011

The number of Syntax Error, Synthesis Error or Elaboration Error violations found in the design
are also reported in the Violations section of the Summary pane as shown in the below figure.

Register and Control Signal Inference

Introduction
This section deals with the inference of control and data signals for registers to ease the
understanding of violations pertaining to registers and their controls. Several examples are used
to give an insight into the mechanism by which control signals are inferred.

Flip-Flop Controls
All registers in the design are mapped to a flip-flop which has a clock, data inputs and some
synchronous and asynchronous controls. Please note that only one control of a given type can be
inferred for a given flip-flop. The controls which are not active for a particular instance of a flip-
flop are effectively grounded, rendering them inactive.

DesignChecker User Guide, V2010.3114

Further Understanding Design Checking Rule Behavior
Register and Control Signal Inference

June, 2011

Asynchronous Controls

Asynchronous reset

Asynchronous set

Asynchronous load (+ load data)

Synchronous Controls

Synchronous reset

Synchronous set

Synchronous enable

Please note that a ‘reset’ signal of a flip-flop when asserted will drive a ‘0’ value to the Q output
of the flip-flop. A ‘set’ signal is one which when asserted will drive a ‘1’ value to the Q output.
Most of the synthesis rules treat both ‘resets’ and ‘sets’ as resets (i.e. a control signal which
drives the Q output to a constant).

The asynchronous signals can have any priority set amongst them. However, on the
synchronous side, the reset and set should have a higher priority than the enable. If this
condition is not satisfied, i.e. the hold condition has a higher priority than the signals which
drive the register to a constant, the corresponding signals are not inferred as synchronous
set/reset/enable.

The following examples illustrate the corresponding control signals inferred for a given RTL
code snippet for a flip-flop.

Example 1
RTL

always @(posedge clk or negedge neg_a_rst or posedge pos_a_set or negedge
neg_a_load)

if (!neg_a_rst)
q <= 0;

else if (pos_a_set)
q <= 1;

else if (!neg_a_load)
q <= !load_data;

else if (pos_s_set)
q <= 1;

else if (!neg_s_rst)
q <= 0;

else if (pos_s_en)
q <= !d;

Control signals inferred

Further Understanding Design Checking Rule Behavior
Register and Control Signal Inference

DesignChecker User Guide, V2010.3 115
June, 2011

Active low asynchronous reset: neg_a_rst

Active high asynchronous set: pos_a_set

Active low asynchronous load: neg_a_load

Asynchronous load data: !load_data

Active high synchronous set: pos_s_set

Active low synchronous reset: neg_s_rst

Synchronous clock enable: pos_s_en

Example 2
RTL

always @(posedge clk or negedge neg_a_set or posedge pos_a_load)
if (!neg_a_set)

q <= 1;
else if (pos_a_load)

q <= load_data;
else if (pos_s_rst)

q <= 0;
else

q <= d;

Control signals inferred

Active low asynchronous set: neg_a_set

Active high asynchronous load: pos_a_load

Asynchronous load data: load_data

Active high synchronous reset: pos_s_rst

Asynchronous control signals

As already mentioned earlier, the asynchronous control signals have the highest priority. In
addition, a flip-flop can have only one of a particular type of asynchronous control input.
Finally, the asynchronous control signals are allowed to have any priority set among them
another. The following examples demonstrate the asynchronous control signals inferred for
different cases.

Example 3
RTL

always @(posedge clk or posedge rst1 or negedge rst2)
if (rst1)

DesignChecker User Guide, V2010.3116

Further Understanding Design Checking Rule Behavior
Register and Control Signal Inference

June, 2011

q <= 0;
else if (!rst2)

q <= 0;
else

q <= d;

Control signals inferred

Active high asynchronous reset: ~((~rst1) & rst2)

Note
Since only one asynchronous reset can be inferred for a flip-flop, hence a logic function
involving rst1 and rst2 forms the asynchronous reset of the flip-flop. Please note that this
is considered as an internally generated reset. rst1 and rst2 will not be considered as
asynchronous resets because neither of these signals are resets in their own right.

Example 4
RTL

always @(posedge clk or posedge ld or negedge rst2 or posedge set)
if (ld)

q <= ldata;
else if (!rst2)

q <= 0;
else if (set)

q <= 1;
else

q <= d;

Control signals inferred

Active high asynchronous set: set

Active low asynchronous reset: rst2

Active high asynchronous load: ld

Asynchronous load data: ldata

Note
Asynchronous control signals are allowed to have any priority set among them. In the
above case, the flip-flop inferred will have the asynchronous load that has the highest
priority signal.

Example 5
RTL

Further Understanding Design Checking Rule Behavior
Register and Control Signal Inference

DesignChecker User Guide, V2010.3 117
June, 2011

always @(posedge clk or posedge rst2 or negedge ld or negedge rst1 or
posedge set)

if (set)
q <= 1;

else if (!rst1)
q <= 0;

else if (!ld)
q <= ldata;

else if (rst2)
q <= 0;

else
q <= d;

Control signals inferred

Active high asynchronous set: ((ldata & (rst1 & (~ld))) | set)

Active high asynchronous reset: ((~set) & (combinational function of rst1, ld, ldata,
rst2))

Note
In the above example, ‘q’ is asynchronously driven to a value of zero under the influence
of more than one signal and distinct asynchronous control signals cannot be inferred. In
such cases, the tool will map the entire asynchronous control logic to the asynchronous
set and reset inputs of the flip-flops.

Synchronous control signals

As mentioned earlier, the tool infers synchronous set, synchronous reset and synchronous
enable for flip-flops. No more than one of each type of synchronous control input can be present
for a flip-flop. The synchronous set or reset can have any priority set between them. The
synchronous enable always has a lower priority than synchronous set and reset.

Synchronous control signals inference could be trickier than asynchronous control signals
inference because synchronous set and reset signals can always be made a part of the logic
feeding the D input of a flip-flop. Conversely, a complex logic feeding the D input of a flip can
often be broken down to extract a synchronous set and/or a synchronous reset. Consider the
following example:

Example 6
always @(posedge clk)

if (!rst)
q <= 0;

else if (set)
q <= 1;

else
q <= d;

DesignChecker User Guide, V2010.3118

Further Understanding Design Checking Rule Behavior
Register and Control Signal Inference

June, 2011

The above RTL can be modeled as a flip-flop with the following synchronous control signals
and D input:

Active low synchronous reset: rst

Active high synchronous set: set

D input: d

However the following two alternate inferences are also possible:

Alternate Inference 1

Active low synchronous reset: rst

D input: (set | d)

Alternate Inference 2

D input: (rst & (set | d))

Further, consider the following example:

Example 7
always @(posedge clk)

q <= rst & d;

In the above example, either the D-input logic can be inferred to be ‘rst & d’, in which case no
synchronous reset signal is inferred, or, an active low synchronous reset can be inferred either as
‘rst’, in which case the D input is fed by ‘d’ alone.

Hence, in order to be unambiguous and intuitive as far as possible, the tool follows some rules
for synchronous control detection.

Rule 1 – If – else if structure

Synchronous set and reset signals are usually coded as part of a control flow that precedes the D
input assignment (like the if-else-if control flow in Example 6). Hence, the tool will infer a
synchronous set and a synchronous reset for Example 6, but not for Example 7.

Rule 2 – Single RTL Signal

Since control flows can be also be part of combinational logic other than synchronous sets or
resets, the tool avoids inferring synchronous sets or resets for any arbitrary logic that eventually
results in driving a ‘1’ or ‘0’ to the Q output of a flip-flop. This is achieved by searching for a
single RTL signal in the control flow which results in a ‘1’ or ‘0’ assignment to the Q output. If
such a signal is found, a corresponding synchronous set or reset signal will be inferred, or else,
the signals are made part of the D input logic.

Further Understanding Design Checking Rule Behavior
Register and Control Signal Inference

DesignChecker User Guide, V2010.3 119
June, 2011

Rule 3 – Non-constant D-input

A non-constant D input logic must also be inferred to distinguish the user intent of a
synchronous control being inferred for a flip-flop. This is because the synchronous reset and set
are supposed to always drive a constant ‘0’ or a ‘1’ to the Q output, a characteristic that is used
as a distinguishing factor for treating them differently from the D input logic.

The following examples show the synchronous control and D input inference for various
scenarios.

Example 8
RTL

always @(posedge clk)
if (set)

q <= 1;
else if (rst)

q <= 0;
else if (en)

q <= d;

Control signals and D input inferred

Active high synchronous set: set

Active high synchronous reset: rst

Synchronous enable: en

D input: d

Example 9
RTL

always @(posedge clk)
if (en)

q <= d;
else if (set)

q <= 1;
else if (rst)

q <= 0;

Control signals and D input inferred

Synchronous enable: ((rst | set) | en)

D input: (combinational function of d, set, en)

DesignChecker User Guide, V2010.3120

Further Understanding Design Checking Rule Behavior
Register and Control Signal Inference

June, 2011

Note
Here no synchronous set or reset was inferred because a synchronous set or reset can be
inferred only if it is the highest priority signal (over any other logic assignment to the Q
output through the D input).

Example 10
RTL

always @(posedge clk)
if (rst)

q <= 0;
else if (en)

q <= d;
else if (set)

q <= 1;

Control signals and D input inferred

Active high synchronous reset: rst

Synchronous enable: (en | set)

D input: (d | (~en))

Example 11
RTL

always @(posedge clk)
if (rst)

q <= 0;
else if (!set)

q <= 1;
else if (en)

q <= 1;
else

q <= 0;

Control signals and D input inferred

Active high synchronous reset: rst

Active low synchronous set: set

D input: en

Further Understanding Design Checking Rule Behavior
Register and Control Signal Inference

DesignChecker User Guide, V2010.3 121
June, 2011

Example 12
RTL

always @(posedge clk)
if (rst)
q <= 0;
else if (!set)
q <= 1;
else if (en)
q <= 1;

Control signals and D input inferred

Synchronous enable: ~(((~en) & set) & (~rst))

D input: ~rst

Note
Here the tool fails to infer synchronous set or reset because a synchronous enable logic
has to be inferred (to model the Q output retaining behavior) and there is no other explicit
D input logic specified in the RTL, in which case ‘~rst’ itself becomes the D input logic.

Example 13
RTL

always @(posedge clk)
if (rst)
q <= 0;
else if (!rst2)
q <= 0;
else if (en)
q <= d;

Control signals and D input inferred

Active high synchronous reset: rst

Synchronous enable: ~((~en) & rst2)

D input: (d & rst2)

Example 14
RTL

always @(posedge clk)
if (rst & !rst2 || en)
q <= 0;

DesignChecker User Guide, V2010.3122

Further Understanding Design Checking Rule Behavior
Register and Control Signal Inference

June, 2011

else
q <= d;

Control signals and D input inferred

D input: (d & ~((rst & (~rst2)) | en))

Note
As mentioned earlier, in the absence of a single RTL signal that can be inferred as a
synchronous set or reset, the tool will infer the complete logic on the D-side of the flip-
flop. This is because the tool could otherwise infer arbitrary synchronous sets or resets
from normal combinational logic anywhere in a design, resulting in confusing, albeit
functionally correct control logic for flip-flops and subsequent misleading violations for
reset related rules.

Counter controls inference
The tool also infers synchronous counters. The inferred synchronous counters have a similar but
different set of control signals than the flip-flops. Since the number of counters is generally
much less than the number of flip-flops in a design, synchronous counter inference is typically
aggressive in nature. The counter inference process is based on a pre-defined template that the
tool adheres to while inferring counter control and data signals.

The only possible control signals for a counter are

Asynchronous side

Asynchronous reset

Asynchronous set

Synchronous side

Clock enable

Synchronous reset

Synchronous set

Synchronous load (+ load data)

Count enable

Up-down control

The general model of a counter is given below.

always@(posedge clock or posedge aclear or posedge aset)
if (aclear)

Further Understanding Design Checking Rule Behavior
Register and Control Signal Inference

DesignChecker User Guide, V2010.3 123
June, 2011

q <= {WIDTH{1’b0}};
else if (aset)

q <= {WIDTH{1’b1}};
else if (clk_en)

if (sclear)
q <= {WIDTH{1’b0}};
else if (sset)
q <= {WIDTH{1’b1}};
else if (sload)
q <= data;
else if (cnt_en)
if (updn)
q <= q + 1;
else
q <= q - 1;

The control signals in the above model are listed as follows

Asynchronous reset: aclear

Asynchronous set: aset

Clock enable: clk_en

Synchronous reset: sclear

Synchronous set: sset

Synchronous load: sload

Count enable: cnt_en

Up-down control: updn

Please note that as with flip-flops, the asynchronous set and reset signals can have any priority
set among them. Similarly, the synchronous set and reset signals can have any priority set
among them. The remaining control signals will have their relative priorities exactly as shown
in the counter model. If a given RTL cannot be mapped to a valid synchronous counter model, a
flip-flop with appropriate control and data logic for each assigned bit will be inferred instead.

The counter control signals inferred under various scenarios are shown in the examples that
follow.

Example 15
RTL

always @(posedge clk or posedge rst)
if (rst)

q <= 0;
else if (clk_en & en2)

if (s_rst & s_rst2)
q <= 0;

DesignChecker User Guide, V2010.3124

Further Understanding Design Checking Rule Behavior
Register and Control Signal Inference

June, 2011

else if (cnt_en)
q <= q + 1;

Control signals inferred

Active high asynchronous reset: rst

Clock enable: (clk_en & en2)

Active high synchronous reset: (s_rst & s_rst2)

Count enable: cnt_en

Example 16
RTL

always @(posedge clk or posedge rst or posedge set)
if (set)

q <= {5{1’b1}};
else if (rst)

q <= 0;
else if (s_rst & s_rst2)

q <= 0;
else if (cnt_en)

q <= q + 1;

Control signals inferred

Active high asynchronous reset: rst

Active high asynchronous set: set

Active high synchronous reset: (s_rst & s_rst2)

Count enable: cnt_en

Behavior with constant/unused flip-flops or counters
If a flip-flop drives a fixed, constant value under all conditions, then a stuck-at-0 or stuck-at-1
violation will appear for the flip-flop accordingly (if the corresponding rule is enabled) and the
flip-flop will be optimized. For instance, the constant optimized flip-flops will produce no reset
related violations as shown in the example below.

Example 17
RTL

module dut(input clk, rst, en, input [5:0] d_in, output [4:0] q_out);
wire [5:0] d;

Further Understanding Design Checking Rule Behavior
Register and Control Signal Inference

DesignChecker User Guide, V2010.3 125
June, 2011

reg [5:0] q;

assign q_out = q[4:0];
assign d[5:1] = d_in[5:1];
assign d[0] = 0;
always @(posedge clk)

if (rst)
q <= 0;

else if (en)
q <= d;

endmodule

Example violations generated

State bit(s) ‘q[0]’ has/have a stuck-at-0 fault.

Net ‘d_in[0]’ is unused.

Net ‘q[5]’ is unused.

Register ‘q[5:1]’ has not been initialized using asynchronous reset.

As seen above, although flip-flop ‘q[5]’ is unused, it still appears in a reset related violation.
However, the flip-flop ‘q[0]’ is optimized to a constant ‘0’ and no other violations apart from a
stuck-at-0 violation appears for it.

‘Z’ Propagation Across Flip-Flops
Because of the way flip-flops are designed, the input of a flip-flop can never assume a value ‘z’.
So if the RTL source code is such that a ‘z’ needs to be propagated across a flip-flop then some
additional logic needs to be created. This ensures that synthesis and simulation results match.
Please refer to the example below.

Example 18
RTL

module dut(input clk, rst, en, input d, output q_out);
always @(posedge clk)
if (rst)
q_out <= 1’b0;
else if (en)
q_out <= d;
else
q_out <= 1’bz;
endmodule

DesignChecker User Guide, V2010.3126

Further Understanding Design Checking Rule Behavior
Finite State Machines (FSMs)

June, 2011

In this case, the synthesized logic will look like

As seen from the figure above, the ‘Z’ is completely removed from the input cone of the flip-
flop. Whenever rst or en goes high, the enable of the tristate buffer is enabled and hence it acts
as a buffer transmitting the input (0 if rst is high, or d if en is high) to the q_out. However, if rst
and en both are low, then the tristate is disabled and q_out is consequently tristated. Thereby the
simulation and synthesis behavior is kept consistent.

Please note that the tristate enable shown as the bold red line in the figure, is not really an RTL
signal, rather an internally generated one. Hence, this signal will not get reported as the tristate
enable.

Finite State Machines (FSMs)

Introduction
In order to help understand the subtle nature of some of the FSM related violations and reports
generated by DesignChecker, the following sections provide useful reference information. The
information tackles the internal mechanisms of the tool describing how an FSM is inferred,
what states are reported or unreported and some of the violations that are generated.

Necessary Conditions for FSM inference
Some conditions are necessary for DesignChecker to be able to infer an FSM. These conditions
are explained in detail below

Further Understanding Design Checking Rule Behavior
Finite State Machines (FSMs)

DesignChecker User Guide, V2010.3 127
June, 2011

State variable inference
The FSM extraction process starts from the deduction of a potential state variable. Such a state
variable would typically be inferred from the expressions of case statements or equivalent if-
else-if statements written in the RTL. For example, in Code Snippet 1 given below, the FSM
extraction method will assume curr_state as a possible state variable (because of its presence in
a case expression) and start the FSM extraction process. If no such case or equivalent if
statement is found, an FSM will not be extracted. The assignments to the already inferred state
variables will result in further state variables being inferred. In Code Snippet 1, the other state
variable inferred for the same FSM is next_state.

Constant reads and writes of state variables
Each of the state variables inferred in the course of the FSM inference process needs to
necessarily have assignments to or comparisons with constant values only, with the exception of
assignments to other state variables. Other non-constant assignments/comparisons of state
variables will invalidate the FSM. In Code Snippet 1, both curr_state and next_state are
assumed to be state variables and the FSM extraction succeeds because all assignments and
comparisons of both curr_state and next_state are with constant values.

Note
All state variables inferred in the FSM extraction process must be assigned at least once
with either a constant value or another state variable.

State dependent transition
Mere assignments of state variables to constant values are not sufficient for an FSM extraction
to succeed. DesignChecker must also be able to infer a state transition from one state to another
for a valid FSM to get extracted. For example, in Code Snippet 1, the tool sees an assignment to
next_state that depends on curr_state. On the other hand, consider the example in Code Snippet
2 where all the reads and writes of the inferred state variable, curr_state are with constant
values. However, there is no state assignment that is dependent on the value of curr_state and
all the states are assigned independently. In such a case, the tool will not infer the logic
involving curr_state as an FSM.

Presence of a clocked transition
Transitions of states on the edge of a clock are necessary for a valid FSM to get extracted. If no
clocked transitions are found during the FSM extraction process, the corresponding FSM will
be invalidated. In Code Snippet 1, DesignChecker sees the assignment of curr_state to
next_state in a clocked always block. If such a clocked block was not found, the FSM would
not have been extracted.

DesignChecker User Guide, V2010.3128

Further Understanding Design Checking Rule Behavior
Finite State Machines (FSMs)

June, 2011

Code Snippet 1

module FSM(input clock, reset, in1, in2, output reg out1, out2, out3);
 reg [2:0] curr_state, next_state;
 parameter s0 = 0, s1 = 1, s2 = 2, s3 = 3;
always @(posedge clock or negedge reset) begin
 if (!reset)
 curr_state <= s0;
 else
 curr_state <= next_state;
 end
always @* begin
 case (curr_state)
 s0: if (in1) begin
 next_state <= s1;
 end
 s1: if (in1 || in2) begin
 next_state <= s3;
 end
 s2: if (in1) begin
 next_state <= s2;
 end
 else begin
 next_state <= s3;
 end
 s3: if (in2) begin
 next_state <= s0;
 end
 default ;
 endcase
 end
always @* begin
 case (curr_state)
 s0: if (in1)
 out1 <= 1;
 s1: out2 <= 1;
 s2: if (in2)
 out3 <= 1;
 endcase
 end
endmodule

Further Understanding Design Checking Rule Behavior
Finite State Machines (FSMs)

DesignChecker User Guide, V2010.3 129
June, 2011

Code Snippet 2

FSM-related violations
Some of the important FSM-related rules deal with reachability of states and default detection.
This subsection describes how these aspects of FSMs are checked by DesignChecker.

Externally reachable states and unreachable states
DesignChecker performs reachability analysis of states starting from a set of externally
reachable states. An externally reachable state in an FSM is a state to which the FSM can reach
independent of any of the states of the FSMs. If no externally reachable states are found during
the FSM extraction process, but all other valid conditions for FSM extraction are met, an FSM
with no externally reachable states will be reported by the tool. In Code Snippet 1 given above,
the assignment of s0 to curr_state is independent of any of the states of the FSM and hence the
state s0 is an externally reachable state. The reachability analysis will hence start from s0 and
the set of reachable states deduced is {s0, s1, s3}. Note that the state s2 is unreachable and
hence, the FSM report will not show the state s2 as a part of the inferred FSM. This situation has
been diagrammatically presented in Figure 1. Also, the tool will report the state s2 as having no
incoming transitions. Please note that a transition from a state to itself (orange arrow in Figure
1) is not considered as either an incoming or an outgoing transition.

module NO_FSM(input in1, in2, clk, rst, output reg out1, out2);
 reg [1:0] curr_state;
always @*
 case (curr_state)
 2'b00: out1 <= 1;
 2'b11: out2 <= 0;
 default: out1 <= 0;
 endcase
always @(posedge clk)
 if (rst)
 curr_state <= 2'b00;
 else if (in1)
 curr_state <= 2'b01;
 else if (in2 || in1)
 curr_state <= 2'b11;
 else
 curr_state <= 2'b01;
endmodule

DesignChecker User Guide, V2010.3130

Further Understanding Design Checking Rule Behavior
Finite State Machines (FSMs)

June, 2011

Figure B-1. Figure 1

As a further example, consider an FSM with a corresponding transition graph as shown in
Figure 2. In this FSM, the externally reachable state is s0. Performing a reachability analysis
from s0, we arrive at the set of reachable states as {s0, s1, s2, s6, s7} and the same will be seen
in the FSM report. The set of unreachable states of this FSM is {s3, s4, s5}. Since s5 is a state
with no incoming transitions, the tool will report a no-incoming transition primary violation for
s5. The states s3 and s4 are unreachable because s5 has no incoming transitions and they are
reachable only from s5. Hence the tool will also report unreachable state violations for s3 and s4
as associated violations of the no-incoming transition (primary) violation for s5.

Further Understanding Design Checking Rule Behavior
Finite State Machines (FSMs)

DesignChecker User Guide, V2010.3 131
June, 2011

Figure B-2. Figure 2

Further, consider an FSM with the transition graph as in Figure 3. In this case, the set of states
{s3, s4, s5} are still unreachable. However, all the unreachable states have incoming transitions
(albeit from unreachable states). In this case, 3 independent “Unreachable state” violations
would be populated.

Figure B-3. Figure 3

DesignChecker User Guide, V2010.3132

Further Understanding Design Checking Rule Behavior
Miscellaneous

June, 2011

Default handling detection
The purpose of default handling check in FSMs is to detect that the FSM either never goes to an
invalid state or, if it is possible that the FSM may go into an invalid state, then it is able to
recover by going to a valid state in the subsequent cycle. Hence for this check, DesignChecker
tries to figure out the presence of a default branch and an assignment to a state variable in the
default branch (if all possible choices have already not been covered in the case statement). If
such a default handling is not found, the tool will populate a default handling violation. In Code
Snippet 1 above, even though there is a default branch, the tool will report a default handling
violation because there is no state assignment in the default branch, and all possible choices are
already not covered because the state variable is of three bits and can take eight possible values
(but only four choices are covered).

Miscellaneous

Enum encoding in VHDL
Enumerated types in VHDL do not have an encoding associated with them by default.
DesignChecker encodes such enums using binary encoding. For example, if an enum type is
declared as:

type myenum is (S0, S1, S2, S3, S4);
signal x : myenum;

then the enum literals are encoded as follows:

S0 = “000”

S1 = “001”

S2 = “010”

S3 = “011”

S4 = “100”

Since there are 5 possible values, these can be represented in a minimum of 3 bits and hence the
signal x is assumed to be 3-bit wide.

Reset/Preset detection for enum type registers
Consider the following snippet of code:

type myenum is (S0, S1, S2, S3, S4);
signal x,y : myenum;

process (clk, areset)
begin

Further Understanding Design Checking Rule Behavior
Miscellaneous

DesignChecker User Guide, V2010.3 133
June, 2011

 if(areset = ‘1’) then
 x <= S1;
 elsif (clk’event and clk = ‘1’) then
 x <= y;
 end if;
end process;

Assuming the encoding as mentioned above, the code would be interpreted as:

if(areset = ‘1’) then
 x(2 downto 0) <= “001”;

This means that areset serves as an asynchronous reset for x(2 downto 1) and an asynchronous
preset for x(0). This can lead to unintuitive violations for reset-related design-wide rules like
“Mixed Clocks-Resets” and “Reset Logic Function”. This situation will typically occur
whenever the reset value is not the first enum literal. (i.e. all zeros)

Ignored Code
Synthesis rules do not consider unreachable code while performing design checking.
Unreachable code includes the following:

• Blocks that are unreachable due to impossible conditions governing their activation.
Such code is flagged by the “Unreachable Blocks” rule.

• Code under synthesis pragmas like “translate_off/on” and “synthesis_off/on”.

• Initial blocks

Unreachable code in the design may lead to seemingly incorrect violations. Consider the
following snippet of code:

input in1;

always @(in1)
begin
 if (in1 == 3’b000)
 done = 1’b1;
 else if (in1 == 3’b101)
 waiting = 1’b1;
 else
 busy = 1’b1;

Since in1 is single-bit wide, hence the possible values it can take are 0 and 1, which have been
already covered by the first two conditions. As a result, the final “else” is unreachable and hence
even though it appears from the source code, that signal “busy” is driven, DesignChecker will
not see it as driven.

DesignChecker User Guide, V2010.3134

Further Understanding Design Checking Rule Behavior
Miscellaneous

June, 2011

Tristates and Enables
Tristate buffers have an enable signal, which when asserted, causes it to act as a buffer.
Combinatorial logic which enables the tristate buffer will not be considered for reporting
purposes. For example

always @(sel1, sel2, in1)
begin
 if (sel1 || sel2)
 out1 = in1;
 else
 out1 = 1’bz;

In the above case, sel1/sel2 will not be detected as tristate enables, since neither of these are
enables in their own right.

Design-wide (Hierarchical) Rules
A design-wide check from a synthesis rule perspective is one which can extend across design
units and hence depends on the design context. Hence the violations for design-wide rules
produced in a design unit may change depending upon the selection of the design root. Consider
the following design hierarchy.

As seen in the above figure, if “top” is selected as the design root, then the “Clock Used as
Data” violation will be reported. However, if “Middle1” or “Bottom1” or any other design unit
is selected as the design root, this violation will not be detected. Hence this is a design-wide
check.

Further Understanding Design Checking Rule Behavior
Miscellaneous

DesignChecker User Guide, V2010.3 135
June, 2011

On the other hand, consider the following design hierarchy:

The figure above represents a multiple driver scenario wherein a net is driven by 2 registers. In
this case, the “Multiple Drivers” violation will be reported independent of whether “top” or
“Middle1” or “Bottom1” is selected as the design top. In other words, this rule is independent of
the design context and consequently is not a design-wide check.

Unused Combinational/Sequential Logic and design-wide rules
Design units may have unused combinational logic or unused sequential logic (registers/latches
which do not impact the primary output of the design). DesignChecker optimizes any unused
combinational logic while performing design-wide rules. However, unused sequential logic is
preserved by DesignChecker. The reason for this is that typically sequential logic forms
“preserve-points” for the design and hence DesignChecker does not optimize them even if they
do not contribute to the primary outputs of the design. As a result, design-wide rules which deal
with combinational logic, like “Combinational Feedback Loops” will not report violations if the
combinational logic involved in the violation is unused. On the other hand, design-wide rules
which deal with sequential logic, like “Internally Generated Clocks” would report violations
even if the sequential element involved in the violation is unused.

Constant Propagation across design hierarchy for design-wide
rules

For DesignChecker, module boundaries are sacrosanct, and no optimizations or constant
propagation is done across module boundaries. Hence if some logic inside a module can be

DesignChecker User Guide, V2010.3136

Further Understanding Design Checking Rule Behavior
Miscellaneous

June, 2011

optimized based on the inputs connected to an instance of that module, such logic will not be
optimized. Please consider the figure below

As can be seen from the figure above, since the input in1 of the instance inst1 is grounded,
hence the output out1 will always be 0, which in turn means that the reset of the register FF1 is
tied low. However, since DesignChecker does not perform any optimizations across module
boundaries, hence it will not be able to determine that the output out1 will be tied low, and
hence the fact that FF1 is tied low will not be detected. Please note that if the complete logic
were in a single module, then this would be detected.

137

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

DesignChecker User Guide, V2010.3
June, 2011

Index

— B —
Base rule parameters

help about, 46
Base rules

help about, 25
viewing, 22

Base rules - definition, 11

— C —
Column

attributes
align horizontal, 77
align vertical, 77

changing the display order, 78
default display order, 77
displaying, 76
group by column, 79

Columns
available fields, 76

— D —
Design manager

invoking from, 14
Design views

opening, 72
Dialog box

Export Results, 93
Parameters, 45

— E —
Essentials Ruleset, 41
Exit

from the application, 16

— I —
Icons

notation
results tab, 70
setup tab, 21

Invoking

DesignChecker task, 15

— N —
Notation

results tab, 70
setup tab, 21

— P —
Pane

results summary, 85
Policy

creating, 54
cross-referencing from the results, 72
definition, 12
saving, 57
setting as default, 56
viewing, 54

Preferences
user, 57

— R —
Rename

Policy, 54
Rule, 45
Ruleset, 44

Results
expanding and collapsing, 71
exporting, 93
opening design views, 72

Reuse Methodology Manual, 43
viewing ruleset, 40

RMM, 43
Row

sort ascending, 78
sort descending, 78

Rule
configuring, 45
cross-referencing from the results, 72
enabling and disabling, 54, 83
searching, 26

Rule categories, 12

Index

138
June, 2011

DesignChecker User Guide, V2010.3

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

Ruleset
creating, 43
cross-referencing from the results, 72
enabling and disabling, 54, 83
RMM, 43
viewing, 40

Rulesets, 11
saving, 57

— S —
Search bar

finding a rule, 26
Shortcut bar

adding a viewpoint, 82
Summary Pane, 85

— T —
Tab

results, 68
setup, 21

Task
DesignChecker Flow, 15
running DesignChecker, 15

— V —
Viewpoint

creating, 75
deleting, 75
displaying columns, 76
filtering, 81
grouping, 79
renaming, 75
resizing columns, 78
set as active, 75, 82
shortcuts, 82

End-User License Agreement
The latest version of the End-User License Agreement is available on-line at:

www.mentor.com/eula

END-USER LICENSE AGREEMENT (“Agreement”)

This is a legal agreement concerning the use of Software (as defined in Section 2) and hardware (collectively
“Products”) between the company acquiring the Products (“Customer”), and the Mentor Graphics entity that
issued the corresponding quotation or, if no quotation was issued, the applicable local Mentor Graphics entity
(“Mentor Graphics”). Except for license agreements related to the subject matter of this license agreement which
are physically signed by Customer and an authorized representative of Mentor Graphics, this Agreement and the
applicable quotation contain the parties' entire understanding relating to the subject matter and supersede all
prior or contemporaneous agreements. If Customer does not agree to these terms and conditions, promptly return
or, in the case of Software received electronically, certify destruction of Software and all accompanying items
within five days after receipt of Software and receive a full refund of any license fee paid.

1. ORDERS, FEES AND PAYMENT.

1.1. To the extent Customer (or if agreed by Mentor Graphics, Customer’s appointed third party buying agent) places and
Mentor Graphics accepts purchase orders pursuant to this Agreement (“Order(s)”), each Order will constitute a contract
between Customer and Mentor Graphics, which shall be governed solely and exclusively by the terms and conditions of this
Agreement, any applicable addenda and the applicable quotation, whether or not these documents are referenced on the
Order. Any additional or conflicting terms and conditions appearing on an Order will not be effective unless agreed in
writing by an authorized representative of Customer and Mentor Graphics.

1.2. Amounts invoiced will be paid, in the currency specified on the applicable invoice, within 30 days from the date of such
invoice. Any past due invoices will be subject to the imposition of interest charges in the amount of one and one-half
percent per month or the applicable legal rate currently in effect, whichever is lower. Prices do not include freight,
insurance, customs duties, taxes or other similar charges, which Mentor Graphics will state separately in the applicable
invoice(s). Unless timely provided with a valid certificate of exemption or other evidence that items are not taxable, Mentor
Graphics will invoice Customer for all applicable taxes including, but not limited to, VAT, GST, sales tax and service tax.
Customer will make all payments free and clear of, and without reduction for, any withholding or other taxes; any such
taxes imposed on payments by Customer hereunder will be Customer’s sole responsibility. If Customer appoints a third
party to place purchase orders and/or make payments on Customer’s behalf, Customer shall be liable for payment under
Orders placed by such third party in the event of default.

1.3. All Products are delivered FCA factory (Incoterms 2000), freight prepaid and invoiced to Customer, except Software
delivered electronically, which shall be deemed delivered when made available to Customer for download. Mentor
Graphics retains a security interest in all Products delivered under this Agreement, to secure payment of the purchase price
of such Products, and Customer agrees to sign any documents that Mentor Graphics determines to be necessary or
convenient for use in filing or perfecting such security interest. Mentor Graphics’ delivery of Software by electronic means
is subject to Customer’s provision of both a primary and an alternate e-mail address.

2. GRANT OF LICENSE. The software installed, downloaded, or otherwise acquired by Customer under this Agreement,
including any updates, modifications, revisions, copies, documentation and design data (“Software”) are copyrighted, trade
secret and confidential information of Mentor Graphics or its licensors, who maintain exclusive title to all Software and retain
all rights not expressly granted by this Agreement. Mentor Graphics grants to Customer, subject to payment of applicable
license fees, a nontransferable, nonexclusive license to use Software solely: (a) in machine-readable, object-code form (except
as provided in Subsection 5.2); (b) for Customer’s internal business purposes; (c) for the term of the license; and (d) on the
computer hardware and at the site authorized by Mentor Graphics. A site is restricted to a one-half mile (800 meter) radius.
Customer may have Software temporarily used by an employee for telecommuting purposes from locations other than a
Customer office, such as the employee's residence, an airport or hotel, provided that such employee's primary place of
employment is the site where the Software is authorized for use. Mentor Graphics’ standard policies and programs, which vary
depending on Software, license fees paid or services purchased, apply to the following: (a) relocation of Software; (b) use of
Software, which may be limited, for example, to execution of a single session by a single user on the authorized hardware or for
a restricted period of time (such limitations may be technically implemented through the use of authorization codes or similar
devices); and (c) support services provided, including eligibility to receive telephone support, updates, modifications, and
revisions. For the avoidance of doubt, if Customer requests any change or enhancement to Software, whether in the course of

 IMPORTANT INFORMATION

USE OF ALL SOFTWARE IS SUBJECT TO LICENSE RESTRICTIONS. CAREFULLY READ THIS
LICENSE AGREEMENT BEFORE USING THE PRODUCTS. USE OF SOFTWARE INDICATES

CUSTOMER’S COMPLETE AND UNCONDITIONAL ACCEPTANCE OF THE TERMS AND
CONDITIONS SET FORTH IN THIS AGREEMENT. ANY ADDITIONAL OR DIFFERENT PURCHASE

ORDER TERMS AND CONDITIONS SHALL NOT APPLY.

http://www.mentor.com/eula

receiving support or consulting services, evaluating Software, performing beta testing or otherwise, any inventions, product
improvements, modifications or developments made by Mentor Graphics (at Mentor Graphics’ sole discretion) will be the
exclusive property of Mentor Graphics.

3. ESC SOFTWARE. If Customer purchases a license to use development or prototyping tools of Mentor Graphics’ Embedded
Software Channel (“ESC”), Mentor Graphics grants to Customer a nontransferable, nonexclusive license to reproduce and
distribute executable files created using ESC compilers, including the ESC run-time libraries distributed with ESC C and C++
compiler Software that are linked into a composite program as an integral part of Customer’s compiled computer program,
provided that Customer distributes these files only in conjunction with Customer’s compiled computer program. Mentor
Graphics does NOT grant Customer any right to duplicate, incorporate or embed copies of Mentor Graphics’ real-time operating
systems or other embedded software products into Customer’s products or applications without first signing or otherwise
agreeing to a separate agreement with Mentor Graphics for such purpose.

4. BETA CODE.

4.1. Portions or all of certain Software may contain code for experimental testing and evaluation (“Beta Code”), which may not
be used without Mentor Graphics’ explicit authorization. Upon Mentor Graphics’ authorization, Mentor Graphics grants to
Customer a temporary, nontransferable, nonexclusive license for experimental use to test and evaluate the Beta Code
without charge for a limited period of time specified by Mentor Graphics. This grant and Customer’s use of the Beta Code
shall not be construed as marketing or offering to sell a license to the Beta Code, which Mentor Graphics may choose not to
release commercially in any form.

4.2. If Mentor Graphics authorizes Customer to use the Beta Code, Customer agrees to evaluate and test the Beta Code under
normal conditions as directed by Mentor Graphics. Customer will contact Mentor Graphics periodically during Customer’s
use of the Beta Code to discuss any malfunctions or suggested improvements. Upon completion of Customer’s evaluation
and testing, Customer will send to Mentor Graphics a written evaluation of the Beta Code, including its strengths,
weaknesses and recommended improvements.

4.3. Customer agrees to maintain Beta Code in confidence and shall restrict access to the Beta Code, including the methods and
concepts utilized therein, solely to those employees and Customer location(s) authorized by Mentor Graphics to perform
beta testing. Customer agrees that any written evaluations and all inventions, product improvements, modifications or
developments that Mentor Graphics conceived or made during or subsequent to this Agreement, including those based
partly or wholly on Customer’s feedback, will be the exclusive property of Mentor Graphics. Mentor Graphics will have
exclusive rights, title and interest in all such property. The provisions of this Subsection 4.3 shall survive termination of this
Agreement.

5. RESTRICTIONS ON USE.

5.1. Customer may copy Software only as reasonably necessary to support the authorized use. Each copy must include all
notices and legends embedded in Software and affixed to its medium and container as received from Mentor Graphics. All
copies shall remain the property of Mentor Graphics or its licensors. Customer shall maintain a record of the number and
primary location of all copies of Software, including copies merged with other software, and shall make those records
available to Mentor Graphics upon request. Customer shall not make Products available in any form to any person other
than Customer’s employees and on-site contractors, excluding Mentor Graphics competitors, whose job performance
requires access and who are under obligations of confidentiality. Customer shall take appropriate action to protect the
confidentiality of Products and ensure that any person permitted access does not disclose or use it except as permitted by
this Agreement. Customer shall give Mentor Graphics written notice of any unauthorized disclosure or use of the Products
as soon as Customer learns or becomes aware of such unauthorized disclosure or use. Except as otherwise permitted for
purposes of interoperability as specified by applicable and mandatory local law, Customer shall not reverse-assemble,
reverse-compile, reverse-engineer or in any way derive any source code from Software. Log files, data files, rule files and
script files generated by or for the Software (collectively “Files”), including without limitation files containing Standard
Verification Rule Format (“SVRF”) and Tcl Verification Format (“TVF”) which are Mentor Graphics’ proprietary syntaxes
for expressing process rules, constitute or include confidential information of Mentor Graphics. Customer may share Files
with third parties, excluding Mentor Graphics competitors, provided that the confidentiality of such Files is protected by
written agreement at least as well as Customer protects other information of a similar nature or importance, but in any case
with at least reasonable care. Customer may use Files containing SVRF or TVF only with Mentor Graphics products. Under
no circumstances shall Customer use Software or Files or allow their use for the purpose of developing, enhancing or
marketing any product that is in any way competitive with Software, or disclose to any third party the results of, or
information pertaining to, any benchmark.

5.2. If any Software or portions thereof are provided in source code form, Customer will use the source code only to correct
software errors and enhance or modify the Software for the authorized use. Customer shall not disclose or permit disclosure
of source code, in whole or in part, including any of its methods or concepts, to anyone except Customer’s employees or
contractors, excluding Mentor Graphics competitors, with a need to know. Customer shall not copy or compile source code
in any manner except to support this authorized use.

5.3. Customer may not assign this Agreement or the rights and duties under it, or relocate, sublicense or otherwise transfer the
Products, whether by operation of law or otherwise (“Attempted Transfer”), without Mentor Graphics’ prior written
consent and payment of Mentor Graphics’ then-current applicable relocation and/or transfer fees. Any Attempted Transfer
without Mentor Graphics’ prior written consent shall be a material breach of this Agreement and may, at Mentor Graphics’
option, result in the immediate termination of the Agreement and/or the licenses granted under this Agreement. The terms

of this Agreement, including without limitation the licensing and assignment provisions, shall be binding upon Customer’s
permitted successors in interest and assigns.

5.4. The provisions of this Section 5 shall survive the termination of this Agreement.

6. SUPPORT SERVICES. To the extent Customer purchases support services, Mentor Graphics will provide Customer updates
and technical support for the Products, at the Customer site(s) for which support is purchased, in accordance with Mentor
Graphics’ then current End-User Support Terms located at http://supportnet.mentor.com/about/legal/.

7. AUTOMATIC CHECK FOR UPDATES; PRIVACY. Technological measures in Software may communicate with servers
of Mentor Graphics or its contractors for the purpose of checking for and notifying the user of updates and to ensure that the
Software in use is licensed in compliance with this Agreement. Mentor Graphics will not collect any personally identifiable data
in this process and will not disclose any data collected to any third party without the prior written consent of Customer, except to
Mentor Graphics’ outside attorneys or as may be required by a court of competent jurisdiction.

8. LIMITED WARRANTY.

8.1. Mentor Graphics warrants that during the warranty period its standard, generally supported Products, when properly
installed, will substantially conform to the functional specifications set forth in the applicable user manual. Mentor
Graphics does not warrant that Products will meet Customer’s requirements or that operation of Products will be
uninterrupted or error free. The warranty period is 90 days starting on the 15th day after delivery or upon installation,
whichever first occurs. Customer must notify Mentor Graphics in writing of any nonconformity within the warranty period.
For the avoidance of doubt, this warranty applies only to the initial shipment of Software under an Order and does not
renew or reset, for example, with the delivery of (a) Software updates or (b) authorization codes or alternate Software under
a transaction involving Software re-mix. This warranty shall not be valid if Products have been subject to misuse,
unauthorized modification or improper installation. MENTOR GRAPHICS’ ENTIRE LIABILITY AND CUSTOMER’S
EXCLUSIVE REMEDY SHALL BE, AT MENTOR GRAPHICS’ OPTION, EITHER (A) REFUND OF THE PRICE
PAID UPON RETURN OF THE PRODUCTS TO MENTOR GRAPHICS OR (B) MODIFICATION OR
REPLACEMENT OF THE PRODUCTS THAT DO NOT MEET THIS LIMITED WARRANTY, PROVIDED
CUSTOMER HAS OTHERWISE COMPLIED WITH THIS AGREEMENT. MENTOR GRAPHICS MAKES NO
WARRANTIES WITH RESPECT TO: (A) SERVICES; (B) PRODUCTS PROVIDED AT NO CHARGE; OR (C) BETA
CODE; ALL OF WHICH ARE PROVIDED “AS IS.”

8.2. THE WARRANTIES SET FORTH IN THIS SECTION 8 ARE EXCLUSIVE. NEITHER MENTOR GRAPHICS NOR
ITS LICENSORS MAKE ANY OTHER WARRANTIES EXPRESS, IMPLIED OR STATUTORY, WITH RESPECT TO
PRODUCTS PROVIDED UNDER THIS AGREEMENT. MENTOR GRAPHICS AND ITS LICENSORS
SPECIFICALLY DISCLAIM ALL IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NON-INFRINGEMENT OF INTELLECTUAL PROPERTY.

9. LIMITATION OF LIABILITY. EXCEPT WHERE THIS EXCLUSION OR RESTRICTION OF LIABILITY WOULD BE
VOID OR INEFFECTIVE UNDER APPLICABLE LAW, IN NO EVENT SHALL MENTOR GRAPHICS OR ITS
LICENSORS BE LIABLE FOR INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES (INCLUDING
LOST PROFITS OR SAVINGS) WHETHER BASED ON CONTRACT, TORT OR ANY OTHER LEGAL THEORY, EVEN
IF MENTOR GRAPHICS OR ITS LICENSORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. IN
NO EVENT SHALL MENTOR GRAPHICS’ OR ITS LICENSORS’ LIABILITY UNDER THIS AGREEMENT EXCEED
THE AMOUNT RECEIVED FROM CUSTOMER FOR THE HARDWARE, SOFTWARE LICENSE OR SERVICE GIVING
RISE TO THE CLAIM. IN THE CASE WHERE NO AMOUNT WAS PAID, MENTOR GRAPHICS AND ITS LICENSORS
SHALL HAVE NO LIABILITY FOR ANY DAMAGES WHATSOEVER. THE PROVISIONS OF THIS SECTION 9 SHALL
SURVIVE THE TERMINATION OF THIS AGREEMENT.

10. HAZARDOUS APPLICATIONS. CUSTOMER ACKNOWLEDGES IT IS SOLELY RESPONSIBLE FOR TESTING ITS
PRODUCTS USED IN APPLICATIONS WHERE THE FAILURE OR INACCURACY OF ITS PRODUCTS MIGHT
RESULT IN DEATH OR PERSONAL INJURY (“HAZARDOUS APPLICATIONS”). NEITHER MENTOR GRAPHICS
NOR ITS LICENSORS SHALL BE LIABLE FOR ANY DAMAGES RESULTING FROM OR IN CONNECTION WITH
THE USE OF MENTOR GRAPHICS PRODUCTS IN OR FOR HAZARDOUS APPLICATIONS. THE PROVISIONS OF
THIS SECTION 10 SHALL SURVIVE THE TERMINATION OF THIS AGREEMENT.

11. INDEMNIFICATION. CUSTOMER AGREES TO INDEMNIFY AND HOLD HARMLESS MENTOR GRAPHICS AND
ITS LICENSORS FROM ANY CLAIMS, LOSS, COST, DAMAGE, EXPENSE OR LIABILITY, INCLUDING
ATTORNEYS’ FEES, ARISING OUT OF OR IN CONNECTION WITH THE USE OF PRODUCTS AS DESCRIBED IN
SECTION 10. THE PROVISIONS OF THIS SECTION 11 SHALL SURVIVE THE TERMINATION OF THIS
AGREEMENT.

12. INFRINGEMENT.

12.1. Mentor Graphics will defend or settle, at its option and expense, any action brought against Customer in the United States,
Canada, Japan, or member state of the European Union which alleges that any standard, generally supported Product
acquired by Customer hereunder infringes a patent or copyright or misappropriates a trade secret in such jurisdiction.
Mentor Graphics will pay costs and damages finally awarded against Customer that are attributable to the action. Customer
understands and agrees that as conditions to Mentor Graphics’ obligations under this section Customer must: (a) notify
Mentor Graphics promptly in writing of the action; (b) provide Mentor Graphics all reasonable information and assistance

http://supportnet.mentor.com/about/legal/

to settle or defend the action; and (c) grant Mentor Graphics sole authority and control of the defense or settlement of the
action.

12.2. If a claim is made under Subsection 12.1 Mentor Graphics may, at its option and expense, (a) replace or modify the Product
so that it becomes noninfringing; (b) procure for Customer the right to continue using the Product; or (c) require the return
of the Product and refund to Customer any purchase price or license fee paid, less a reasonable allowance for use.

12.3. Mentor Graphics has no liability to Customer if the action is based upon: (a) the combination of Software or hardware with
any product not furnished by Mentor Graphics; (b) the modification of the Product other than by Mentor Graphics; (c) the
use of other than a current unaltered release of Software; (d) the use of the Product as part of an infringing process; (e) a
product that Customer makes, uses, or sells; (f) any Beta Code or Product provided at no charge; (g) any software provided
by Mentor Graphics’ licensors who do not provide such indemnification to Mentor Graphics’ customers; or
(h) infringement by Customer that is deemed willful. In the case of (h), Customer shall reimburse Mentor Graphics for its
reasonable attorney fees and other costs related to the action.

12.4. THIS SECTION 12 IS SUBJECT TO SECTION 9 ABOVE AND STATES THE ENTIRE LIABILITY OF MENTOR
GRAPHICS AND ITS LICENSORS FOR DEFENSE, SETTLEMENT AND DAMAGES, AND CUSTOMER’S SOLE
AND EXCLUSIVE REMEDY, WITH RESPECT TO ANY ALLEGED PATENT OR COPYRIGHT INFRINGEMENT
OR TRADE SECRET MISAPPROPRIATION BY ANY PRODUCT PROVIDED UNDER THIS AGREEMENT.

13. TERMINATION AND EFFECT OF TERMINATION. If a Software license was provided for limited term use, such license
will automatically terminate at the end of the authorized term.

13.1. Mentor Graphics may terminate this Agreement and/or any license granted under this Agreement immediately upon written
notice if Customer: (a) exceeds the scope of the license or otherwise fails to comply with the licensing or confidentiality
provisions of this Agreement, or (b) becomes insolvent, files a bankruptcy petition, institutes proceedings for liquidation or
winding up or enters into an agreement to assign its assets for the benefit of creditors. For any other material breach of any
provision of this Agreement, Mentor Graphics may terminate this Agreement and/or any license granted under this
Agreement upon 30 days written notice if Customer fails to cure the breach within the 30 day notice period. Termination of
this Agreement or any license granted hereunder will not affect Customer’s obligation to pay for Products shipped or
licenses granted prior to the termination, which amounts shall be payable immediately upon the date of termination.

13.2. Upon termination of this Agreement, the rights and obligations of the parties shall cease except as expressly set forth in this
Agreement. Upon termination, Customer shall ensure that all use of the affected Products ceases, and shall return hardware
and either return to Mentor Graphics or destroy Software in Customer’s possession, including all copies and
documentation, and certify in writing to Mentor Graphics within ten business days of the termination date that Customer no
longer possesses any of the affected Products or copies of Software in any form.

14. EXPORT. The Products provided hereunder are subject to regulation by local laws and United States government agencies,
which prohibit export or diversion of certain products and information about the products to certain countries and certain
persons. Customer agrees that it will not export Products in any manner without first obtaining all necessary approval from
appropriate local and United States government agencies.

15. U.S. GOVERNMENT LICENSE RIGHTS. Software was developed entirely at private expense. All Software is commercial
computer software within the meaning of the applicable acquisition regulations. Accordingly, pursuant to US FAR 48 CFR
12.212 and DFAR 48 CFR 227.7202, use, duplication and disclosure of the Software by or for the U.S. Government or a U.S.
Government subcontractor is subject solely to the terms and conditions set forth in this Agreement, except for provisions which
are contrary to applicable mandatory federal laws.

16. THIRD PARTY BENEFICIARY. Mentor Graphics Corporation, Mentor Graphics (Ireland) Limited, Microsoft Corporation
and other licensors may be third party beneficiaries of this Agreement with the right to enforce the obligations set forth herein.

17. REVIEW OF LICENSE USAGE. Customer will monitor the access to and use of Software. With prior written notice and
during Customer’s normal business hours, Mentor Graphics may engage an internationally recognized accounting firm to
review Customer’s software monitoring system and records deemed relevant by the internationally recognized accounting firm
to confirm Customer’s compliance with the terms of this Agreement or U.S. or other local export laws. Such review may include
FLEXlm or FLEXnet (or successor product) report log files that Customer shall capture and provide at Mentor Graphics’
request. Customer shall make records available in electronic format and shall fully cooperate with data gathering to support the
license review. Mentor Graphics shall bear the expense of any such review unless a material non-compliance is revealed. Mentor
Graphics shall treat as confidential information all information gained as a result of any request or review and shall only use or
disclose such information as required by law or to enforce its rights under this Agreement. The provisions of this Section 17
shall survive the termination of this Agreement.

18. CONTROLLING LAW, JURISDICTION AND DISPUTE RESOLUTION. The owners of certain Mentor Graphics
intellectual property licensed under this Agreement are located in Ireland and the United States. To promote consistency around
the world, disputes shall be resolved as follows: excluding conflict of laws rules, this Agreement shall be governed by and
construed under the laws of the State of Oregon, USA, if Customer is located in North or South America, and the laws of Ireland
if Customer is located outside of North or South America. All disputes arising out of or in relation to this Agreement shall be
submitted to the exclusive jurisdiction of the courts of Portland, Oregon when the laws of Oregon apply, or Dublin, Ireland when
the laws of Ireland apply. Notwithstanding the foregoing, all disputes in Asia arising out of or in relation to this Agreement shall
be resolved by arbitration in Singapore before a single arbitrator to be appointed by the chairman of the Singapore International

Arbitration Centre (“SIAC”) to be conducted in the English language, in accordance with the Arbitration Rules of the SIAC in
effect at the time of the dispute, which rules are deemed to be incorporated by reference in this section. This section shall not
restrict Mentor Graphics’ right to bring an action against Customer in the jurisdiction where Customer’s place of business is
located. The United Nations Convention on Contracts for the International Sale of Goods does not apply to this Agreement.

19. SEVERABILITY. If any provision of this Agreement is held by a court of competent jurisdiction to be void, invalid,
unenforceable or illegal, such provision shall be severed from this Agreement and the remaining provisions will remain in full
force and effect.

20. MISCELLANEOUS. This Agreement contains the parties’ entire understanding relating to its subject matter and supersedes all
prior or contemporaneous agreements, including but not limited to any purchase order terms and conditions. Some Software
may contain code distributed under a third party license agreement that may provide additional rights to Customer. Please see
the applicable Software documentation for details. This Agreement may only be modified in writing by authorized
representatives of the parties. Waiver of terms or excuse of breach must be in writing and shall not constitute subsequent
consent, waiver or excuse.

Rev. 100615, Part No. 246066

	Table of Contents
	List of Tables
	Chapter 1 About DesignChecker
	Overview
	Related Publications
	Introduction
	Base Rules
	Rulesets
	Policies
	Rulesets and Rule Categories
	Design Checking Flow
	Checking Mixed Language Designs

	Invoking DesignChecker
	Running DesignChecker

	Exiting from DesignChecker

	Chapter 2 Configuring DesignChecker
	Introduction
	Initial Settings
	The Setup Tab
	Setup Tab Notation

	Viewing the Base Rules
	Using the Search Bar
	Using the Advanced Search
	Running an Advanced Search
	Other Methods to Run an Advanced Search
	Find In Here
	Find Where Used

	Viewing Search Results
	Running an Advanced Search with Synonyms
	Editing Synonyms
	Exporting Synonyms
	Importing Synonyms
	Restoring Default Synonyms
	Applying Advanced Searches Using Synonyms

	Working with Rulesets
	The Essentials Ruleset
	Restoring the Essentials Ruleset

	Reuse Methodology Manual (RMM) Ruleset
	Creating a Ruleset
	Configuring Rules
	Setting Object Properties
	Setting the SeveritySet Property

	Configuring Rule SeveritySets
	Creating a SeveritySet
	Copying a SeveritySet
	Deleting a SeveritySet
	Assigning a SeveritySet to a RuleSet

	Working with Policies
	Creating a Policy
	Adding Justification for Disabled Rules

	Setting the Default Policy

	Saving Rulesets, Policies and Preferences
	Exporting Rulesets
	Design Quality Metric
	Configuring Quality Scoring Settings
	Calculating Quality Scoring

	Setting Exclusions

	Chapter 3 Running DesignChecker and Working with Results
	Selecting Files/Design Items for Analysis
	The Results Tab
	Results Tab Notation
	Using the Results Tab
	Expanding and Collapsing Results
	Copying Results
	Opening Design Views from the Results Tab
	Showing the Setup Tab

	Viewing Severity Levels
	Understanding the Types of Violations
	Controlling the Display of Results
	Using Viewpoints
	Changing the Displayed Columns
	Changing the Column Display Order
	Changing the Object Row Display Order

	Grouping Design Objects
	Filtering Results
	Adding a Viewpoint Shortcut

	Disabling and Enabling Checks
	The Results Summary Pane
	Reporting Quality Scoring

	Cross-referencing Results

	The Exclusions Tab
	The Rule Details Tab
	The Checked Files/Design Units Tab
	Exporting Results
	Exporting Quality Reports

	Appendix A Supporting Synthesizable Designs
	Rules Specific to Synthesizable Code
	SystemVerilog Support

	Appendix B Further Understanding Design Checking Rule Behavior
	Design Correctness and Synthesizability
	Introduction
	Syntax Errors
	Elaboration and Elaboration Errors
	Synthesis Errors
	Synthesizability and implications for design-wide synthesis rules

	Summary

	Register and Control Signal Inference
	Introduction
	Flip-Flop Controls
	Asynchronous Controls
	Synchronous Controls
	Example 1
	Example 2
	Asynchronous control signals

	Example 3
	Example 4
	Example 5
	Synchronous control signals

	Example 6
	Example 7
	Rule 1 - If - else if structure
	Rule 2 - Single RTL Signal
	Rule 3 - Non-constant D-input

	Example 8
	Example 9
	Example 10
	Example 11
	Example 12
	Example 13
	Example 14

	Counter controls inference
	Asynchronous side
	Synchronous side
	Example 15
	Example 16

	Behavior with constant/unused flip-flops or counters
	Example 17

	‘Z’ Propagation Across Flip-Flops
	Example 18

	Finite State Machines (FSMs)
	Introduction
	Necessary Conditions for FSM inference
	State variable inference
	Constant reads and writes of state variables
	State dependent transition
	Presence of a clocked transition

	FSM-related violations
	Externally reachable states and unreachable states
	Default handling detection

	Miscellaneous
	Enum encoding in VHDL
	Reset/Preset detection for enum type registers
	Ignored Code

	Tristates and Enables
	Design-wide (Hierarchical) Rules
	Unused Combinational/Sequential Logic and design-wide rules
	Constant Propagation across design hierarchy for design-wide rules

	Index
	End-User License Agreement
	Documentation Feedback

