State Machine Editors User Manual
for the HDL Designer Series

Software Version 2010.3

June, 2011

© 2003-2011 Mentor Graphics Corporation
All rights reserved.

This document contains information that is proprietary to Mentor Graphics Corporation. The original recipient of this
document may duplicate this document in whole or in part for internal business purposes only, provided that this entire
notice appears in all copies. In duplicating any part of this document, the recipient agrees to make every reasonable
effort to prevent the unauthorized use and distribution of the proprietary information.

This document is for information and instruction purposes. Mentor Graphics reserves the right to make
changes in specifications and other information contained in this publication without prior notice, and the
reader should, in all cases, consult Mentor Graphics to determine whether any changes have been
made.

The terms and conditions governing the sale and licensing of Mentor Graphics products are set forth in
written agreements between Mentor Graphics and its customers. No representation or other affirmation
of fact contained in this publication shall be deemed to be a warranty or give rise to any liability of Mentor
Graphics whatsoever.

MENTOR GRAPHICS MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE.

MENTOR GRAPHICS SHALL NOT BE LIABLE FOR ANY INCIDENTAL, INDIRECT, SPECIAL, OR
CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING BUT NOT LIMITED TO LOST PROFITS)
ARISING OUT OF OR RELATED TO THIS PUBLICATION OR THE INFORMATION CONTAINED IN IT,
EVEN IF MENTOR GRAPHICS CORPORATION HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

RESTRICTED RIGHTS LEGEND 03/97

U.S. Government Restricted Rights. The SOFTWARE and documentation have been developed entirely
at private expense and are commercial computer software provided with restricted rights. Use,
duplication or disclosure by the U.S. Government or a U.S. Government subcontractor is subject to the
restrictions set forth in the license agreement provided with the software pursuant to DFARS 227.7202-
3(a) or as set forth in subparagraph (c)(1) and (2) of the Commercial Computer Software - Restricted
Rights clause at FAR 52.227-19, as applicable.

Contractor/manufacturer is:
Mentor Graphics Corporation
8005 S.W. Boeckman Road, Wilsonville, Oregon 97070-7777.
Telephone: 503.685.7000
Toll-Free Telephone: 800.592.2210
Website: www.mentor.com
SupportNet: supportnet.mentor.com/
Send Feedback on Documentation: supportnet.mentor.com/user/feedback_form.cfm

TRADEMARKS: The trademarks, logos and service marks ("Marks") used herein are the property of
Mentor Graphics Corporation or other third parties. No one is permitted to use these Marks without the
prior written consent of Mentor Graphics or the respective third-party owner. The use herein of a third-
party Mark is not an attempt to indicate Mentor Graphics as a source of a product, but is intended to
indicate a product from, or associated with, a particular third party. A current list of Mentor Graphics’
trademarks may be viewed at: www.mentor.com/terms_conditions/trademarks.cfm.

http://www.mentor.com
http://supportnet.mentor.com/
http://supportnet.mentor.com/user/feedback_form.cfm
http://www.mentor.com/terms_conditions/trademarks.cfm

Table of Contents

Chapter 1
State MaChingS e 7
INErOdUCHION . . .o 8
StAlE DIagraIMS. . . o o ettt e e e 8
Mealy BEhaVIor.o 8
MOOre BEhaVIOr 9
Combined Mealy and Moore Behavior.t 11
State Variable Definition 12
State Diagram Example 13
Algorithmic State Machines 14
ASM Chart EXample. 15
SYNMEAX NOLES . . . o 16
Building aHDL EXPreSSiONottt e e e ettt 16
CoNditioN SYNtaXt 21
Examples of Condition Syntax. 22
ACHON SYNEAX . .« ettt e e e e e e e e e 22
Examplesof ACiON Syntaxo e 23
DeClaration SYNtaXottt 24
Examplesof Declaration Syntaxco i 24
Concurrent State Machines oo 26
Adding aConcurrent StateMachine. 26
Opening aConcurrent State Machine. e 27
Renaming a Concurrent StateMachine i 27
Deleting aConcurrent StateMachine. e 27
Usingthe Diagram BroWSer.ot e et et e 28

Chapter 2
State Diagram Editor 29
State Diagram NOtatioNt 30
State Diagram Toolbar. 32
State Machine Initialization. 33
Adding ObjectsonaState Diagram.ottt 33
AddingaClock POINt 34
AddingaReset POINt 34
Adding aRecovery State Point. 36
Addingan Enable Point i 36
Adding aState.o 37
Copying SEAE ACHIONS oottt et e e 38
Adding aTranSitiont 39
Transition Priority e 40
Changing the Directionof aTransition 40
Copying Transition Conditionsand ACLIONSttt 40
State Machine Editors User Manual, V2010.3 3

June, 2011

Table of Contents

Addingan Interrupt POINtot 40
EXECULION PriOr Y . .. oo 41
Addingalink. 42
Adding adunClion. e 43
Hierarchical State Diagrams. oo oot e 44
Addingor Removing Hierarchy e 46
Addingan Entry POINt 47
Addingan EXit POINt e 47
Changing ObjectsonaStateDiagram it e 47
Adding Other ObjectsonaState Diagramt 438
Editing State Diagram Object Properties. 438
Editing Clock Object Properties.o 49
Editing Reset Object Properties 50
Editing Enable Object Properties e 51
Editing State Object Properties. 52
Editing Transition Object Properties e 54
Editing Link Object Properties. 56
Settingthe Recovery Stateo 57
Editing Junction Object Properties.t 58
USINgWail StatleSot 58
VHDL Wait State EXample e e e 60
VerilogWait State Example. 62
Decode Optionsfor CASE Transitions.ot e 63
Example of VHDL CASEDECOUE.ot e e e 65
Example of Verilog CASEDECOTEo oo 66
Setting State Machine Properties.t e e e 67
Setting State Diagram Generation Properties.t 68
Advanced State Diagram Generation Properties 70
Setting State Encoding Properties.o 73
Setting Statement Blocks 73
Setting Declaration BIocks oo 75
Editing Pre/Post User Declarationsovi i e e 77
Setting State Diagram Internal Signal Names i 78
Setting State Machine Preferences. o 78
Chapter 3
ASM Chart Eitor 85
ASM Chart NOtaLIONo e e e e 86
ASM Chart TOOIDaro 88
ASM INItializationo 89
Adding Objectsonan ASM Chart. 89
Addingan Interrupt Point. 91
AddingaReset POINt 92
Adding aRecovery State Point. 93
Addingan Enable Point 93
Adding an ACtION BOXot 9
AddiNg aState BOX.ot 95
Addingalink. 96
4 State Machine Editors User Manual, V2010.3

June, 2011

Table of Contents

Adding aDeCiSION BOX. oot 96
AddiNg aCase BoOXot 97
Addingan If DeCOde BOXot 98
Adding aFlow. e 99
Hierarchical ASM Charts.o e e 100
AddingaStart PoINt. e 101
Addingan End Point 101
Editing ASM Object Properties. oo 101
Editing Clock Object Properties.t e e 102
Editing Reset Object Properties 103
Editing Enable Object Properties 104
Editing State Object Properties. 104
Editing Action Box Object Properties 105
Editing Decision Box Object Properties.t 106
Editing If Decode Box Object Properties.t 108
Editing Case Box Object Properties. e 109
Editing Interrupt Object Properties. 111
Setting ASM Chart Properties. e 112
Setting ASM Chart Generation Properties. e 113
Advanced Generation Properties 114
Setting State Encoding Properties. 115
Setting Statement BIOCKS 116
Setting Declaration BIOCKSo 118
Setting ASM Chart Internal Signal Names. 120
Running Design RUle Checks 120
Setting ASM Chart Preferences.o e e 121
Chapter 4
SignalsTable. 127
Displayingthe SignalsTable. i 127
SignalsTable Notation. e 128
Signal Declaration ColUMNS.o 128
Signal StAtUS COIUMINS oo e e e 129
SignalsTable TooIbars 130
Adding Port or Local Signal Declarations.t 131
Adding Commentsto a Port or Local Signal Declaration 132
ReSIZING COlUMNSo e e e e 133
Hiding ColUMNS. o e e 134
Filtering ColuMNSo 134
Grouping SIgnal ROWS.o 134
SOrting Signal ROWS oot e e 135
Editing Signal Status Cells i 136
Appendix A
State MachineHDL Generationt e 137
HDL Generation Properties.ot e e et e 137
Synchronous and Asynchronous StateMachines., 138
HD L Style. . .ot 138
State Machine Editors User Manual, V2010.3 5

June, 2011

Table of Contents

Output ENCOEd o 140
State Variable 143
Generate Interrupts as Overrides 143
Register State Actionson Next Statet e 144
VHDL Default State ASSIgNMENt oot 144
Verilog ASSIgNMENt TYPE. . . oottt e e e e 145
Verilog State VEeCtor Pragmas.ot 145
Verilog Full/Parallel CasePragmas e e 145
State Signal NamES.o e 146
Verilog Current State Assignment Delay i 146
St ENCOAING oo 146
Encoding AlQorithms o 149
VHDL Attribute ENCOTINg oo oo e e 150
Verilog PragmaEncoding.t 150
SIgNAlS StaUS. oo 150
Defaultand Reset ValUes oo 151
Combinatorial Output or Local Signalst 151
Clocked Local SIgnals 152
Registered OUtput SIgNalsS.o 152
Clocked OULPUL SIgNalS oot e e e 153
SUMIMI Y . . ettt e e e e 154
Glossary
Index

End-User License Agreement

6 State Machine Editors User Manual, V2010.3
June, 2011

Chapter 1
State Machines

This chapter is an introduction to the graphical state diagram and algorithmic state machine
(ASM) views supported by the HDL Designer Series.

INErOdUCTION e e 8
State DIagrAMS. . . oot 8
Mealy BENaVIOr.ot 8
MOOrEe BEhaVIOr 9
Combined Mealy and MooreBehavior. 11
State Variable Definition 12
State Diagram Example 13
Algorithmic State MachingeS i e e e et e 14
ASM Chart Example. 15
SYNEAX NOLES. . . 16
Building @aHDL EXPreSSiONo vttt e e ettt e 16
CoNditioN SYNtaXt 21
ACHON SYNEAX . .« ottt et e e e e e e e 22
DeClaralion SYNtaXottt 24
Concurrent State Machingest 26
Adding aConcurrent StateMachine. 26
Opening aConcurrent State Machine. e 27
Renaming aConcurrent StateMachine i, 27
Deleting aConcurrent State Machine. i 27
Usingthe Diagram BrowWsert et et e 28
State Machine Editors User Manual, V2010.3 7

June, 2011

State Machines
Introduction

Introduction

A state machine represents the control requirements of part or al of asystem. Typically, any
primitive block or component in adesign hierarchy which represents control behavior can be
represented by agraphical state machine view.

A state machine view describes how the parent block or component responds to input conditions
and the actions taken in response to these conditions. Synthesizable HDL can be generated
automatically from the state machine view.

The HDL Designer Series supports state machines drawn as state diagrams or as algorithmic
state machine (ASM) charts.

State Diagrams

A classic finite state machine (FSM) represents a system in terms of a number of states and the
transitions between them. The output behavior can be described using a Mealy notation or
Moor e notation state machine model.

The state diagram editor supports state machines with synchronous or asynchronous actions.
Y ou can specify ssmple combinatorial output signals or specify registered and clocked outputs
and use a choice of state encoding schemes. The way you use these features determines the
performance of a state machine design.

Mealy Behavior

The outputs of aMealy state machine are afunction of its current state and inputs. Changing the
input has a corresponding affect on the outputs. When an input condition is satisfied, aMealy
state machine performs specified actions, such as changing the values of outputs and the
transitions from one state to another.

Combinational I Clock l
Next Current
state stat
Input e Output Outputs
i Formin
.y Forming m— [Fon o
Logic o ogic — i~
Inputs
‘ Combinational
8 State Machine Editors User Manual, V2010.3

June, 2011

State Machines
State Diagrams

The following example shows a state diagram for a stepper motor controller drawn using ssmple

states connected by transitions with transition actions.

g.c':flf
cofll<s="1"
calids="10"

coill<="("
colid<o="0"

gﬂ:fﬂf

Degl coillc="0;
cafllde="p0 .

gc':flf GR gc':fﬂf
cafll<s="0";
coflds="0";

gc':flf
calill<="0"
caoilds="

oy

Deg270

The output actions in this state machine are executed when the conditions associated with the

transitions between states are satisfied.

Transitions depend on the conditions that exist on an active clock edge and any input changes

that occur between active clock edges cannot cause a change of state.

Moore Behavior

The outputs of a Moore state machine are afunction of its state only, therefore the outputs only
changeif the state changes. However, if aMoore state contains an assignment to an input signal,

State Machine Editors User Manual, V2010.3
June, 2011

State Machines
State Diagrams

the state machine has an input dependency and its outputs are afunction of both the state and the
inputs, that isit will have Mealy behavior.

CI) Clock
Combinational I Combinational
Mext Current
Inputs state state
’ Lnnrrurrtling E';‘:E’:‘:IQ Outputs
™| | ogic - T ™ Logic -

A

Thefollowing example shows a state diagram for a stepper motor controller drawn using ssmple
states containing state actions and connected by transitions without actions is shown below.

w o
EPEN

w
EPEN

The output actions in this state machine are executed when a state is entered.
Transitions depend on the conditions between the states being satisfied.

Any output changes due to asynchronous inputs occur on an active clock edge and any input
changes that occur between active clock edges do not change the outputs.

10 State Machine Editors User Manual, V2010.3
June, 2011

State Machines
State Diagrams

Combined Mealy and Moore Behavior

The following picture summarizes the behavior of a combined Mealy and Moore state machine:

| > > Mealy
Mext-State & Outputs
Mealy Output
neuts ——> -ogic > Moore
Moore Output >
> Logi Outputs
State gl
Clock » Registers
Reset =
Enable =

The HDL Designer Series allows you to define a state diagram using strictly Mealy notation
(with transition actions between states), M oore notation (with state actions on entry into a state)
or to combine the use of transition and state actions. A state diagram may contain any
combination of state actions and transition actions.

The following example shows a state diagram for a stepper motor controller drawn using a
combination of state actions and transition actions:

Moo= 71
o= pr
g.c':f ﬂf
coills="0";
coilds="0";
g.c':f ﬂf
) collls="0" : s
coill calid<="0"; P oo= 1%
coilld o= 717
g.c':f ﬂf
f <= “0°;
= "1

The step operations in this state machine are handled as state actions.

However, the “return to zero” operation is handled by transition actions which ensure an
immediate return when the condition go="0’ is satisfied.

State Machine Editors User Manual, V2010.3 11
June, 2011

State Machines
State Diagrams

State Variable Definition

The state variable is a signal which describes the current state of the state machine.

Constants are defined for the name of each state in this simple stepper motor controller. The
state variable can be assigned to an output signal which is set to the bit pattern that corresponds

to the current state.

The state variable allows each state to be assigned a unique binary code which can be used to

explicitly control the bit pattern for synthesis.

When using VHDL, the state variable istypically an enumerated type definition (defined in a

VHDL package) or constants can be used to map state names to values.

For example:
SUBTYPE state_variable type IS std_| ogic_vector(1 DOMNTO 0);
CONSTANT DegO : state_variable type := "00";
CONSTANT Deg90 : state_variable_type := "10";
CONSTANT Degl80 : state variable type := "11";
CONSTANT Deg270 : state variable type := "01";

12 State Machine Editors User Manual, V2010.3

June, 2011

State Machines
State Diagrams

State Diagram Example

The following picture shows an example of asimple state diagram with both state and transition
actions. This example uses CA SE transition decoding between the sO and s2 transitions but IF

decoding for all other transitions.

Package List
LIBRARY ieee;
UZE ieee . std_logic_1164 all,
UZE ieee std_logic_arith.all,

Concurrent Statements
Architecture Declarations

SIGRAL | integer RAMGE 0 T 10;

Recovery State Settings
Mext State: =0
etrar =="1",

State Register Statements

Process Declarations

j==i+

Signals Status

SIGMAL SCOPE DEFAULT RESET
EXror ouT ‘g’

X ouT ‘g’

¥ QT K

= ouT ‘g’

| LOCAL 0O u}

intrp ="1"

z_cld =="0",

z_cld =="1",
j==1;

STATUS
COME
COME
COME
CLED
RE:

> s0

Refer to “ State Diagram Notation” on page 30 for more information about the objects that can

be used on a state diagram.

State Machine Editors User Manual, V2010.3
June, 2011

13

State Machines
Algorithmic State Machines

Algorithmic State Machines

An algorithmic state machine (ASM) describes the behavior of a system in terms of a defined
sequence of operations which produce the required output from the given input data. These
sequential operations can be represented using flow chart style notation as an ASM chart.

States are represented by state boxes, conditions by decision or decode boxes and assignments
and actions by action boxes.

One state box and any number of decision and action boxes constitute an ASM bl ock:

e e

: State 51
EBD}{ ya="1"
P ¥
tDecision T
=Box <1U
: F
: ¥
= Action o
s Box =i+
¢ ¥

An ASM block describes the state of the system during one clock pulseinterval. It has one entry
flow and any number of exit flows. The operations defined in the ASM block are executed
during the clock edge transition and the next state is entered as the clock advances.

The ASM chart editor extends this flow between ASM blocks by allowing hierarchical action
boxes, hierarchical state boxes and connector objects.

Hierarchical action boxes can be used to represent action logic on achild ASM chart. However,
no state boxes can be added to these charts. Decision boxes or decode boxes used on these
charts describe the action logic and do not effect the state encoding for the ASM.

A decision box or decode box can be used to decode the next state or for decoding action logic.
If al flow branches below a decision or decode box meet, the same state would be reached and
the conditions apply only to the action logic.

Hierarchical state boxes can be used to break alarge ASM chart into any number of hierarchical
ASM charts.

14 State Machine Editors User Manual, V2010.3
June, 2011

State Machines
Algorithmic State Machines

ASM Chart Example

The following picture shows the “ State Diagram Example” on page 13 represented by an ASM
chart:

Crat

- Edutomatic =
AL

st

- ok [E T2KEVENT AMD clk ="' |
enatle [E T fenabe =0 |

Giabal Actions

Package List e o
LERARY iees; z_cld =="0" etraor =="1",
UISE ieee std_logic_1164.al L L

USE isee sto_logic_srithal, | |
Sanalstaius g

SICGHMAL SCOPE DEFAULT RESET STATUS

Srror - OOT - Gm o ot Comm - - L

w - - . QOUT - Q' - - - - - - COMEB - - - s0 .

- ouUT . '0' COME . . . - :

E . oot . . ‘o' CLED

1 esL oo 0 RER

Concurrent Statements
conc_stmt_kilk,

;Ar@:hi:tet:rtu:re:Dfécléra:tiu:ns:

State Register Statements
—_— z_cll =="1"
Process Declarations
Clocked Process: L et
Output Process: [¥ e ¥
s (= ||| 2 || =
L T
< j=10 }
| F T
¥ . .
4 - F-
j==j+; c="" =0
T

Refer to “ASM Chart Notation” on page 86 for more information about the objects that can be
used on an ASM chart.

State Machine Editors User Manual, V2010.3 15
June, 2011

State Machines
Syntax Notes

Syntax Notes

The syntax used to define conditions, actions, architecture declarations, module declarations,
process declarations and other HDL statements on a state diagram or ASM chart must comply
with the language syntax for the HDL being used.

Please refer to aVVHDL or Verilog language reference manual for full information about HDL
syntax.

Conditions, actions, declarations and other statements can be entered as free-format text directly
on the diagram or using adialog box. The syntax isnormally checked on entry although you can
ignore the syntax warnings or unset the syntax checking preference to allow entry without
checking.

Y ou can use an expression builder dialog box to insert ports, signals, values and operatorsin the
correct syntax for the current hardware description language.

A condition is a boolean expression which forms part of an |F or Case statement in the
generated HDL. An action or declaration is interpreted as a complete HDL statement and must
be terminated by a semi-colon.

Building a HDL Expression

Y ou can display the expression builder dialog box for your active language by using the
button or by choosing Expression Builder from the Edit menu in a state diagram, ASMI chart
or flow chart.

The expression builder can be used whenever an input expression (condition) or an output
assertion (action) is being edited whether by direct text editing or in a dialog box.

The expression builder provides a palette listing the available ports and locally defined signals
together with template values in the syntax required by the active diagram. It also provides
buttons which can be used to insert appropriate operators for the active language. (The
assignment operators are not shown when editing a condition).

When you are editing a condition, the Ports/Locals list includes all input, bidirectional, clocked
output and locally defined signals. When editing actions, it also includes all output and buffer
(for VHDL only) signals.

The Valueslist includes examples of typical values including:

e '0,'7,"00" 11", (others=>‘0") and (others =>*1") (when using VHDL)
* 0,1, 2b00 and 4 b0000 (when using Verilog)

16 State Machine Editors User Manual, V2010.3
June, 2011

State Machines
Syntax Notes

When you are editing actionsthe Valueslist also includes al the assignable signals shown in the
Ports/Locals list.

H} YHDL Expression Builder Ed H[} Verilog Expression Builder
Paortzdlocalz: — Operators FortsfLocals: — Operators

clr
as3
Id_4_B
[d_z1m

|Jpdate |

anp | oR | xoR |

NEITlE.-'-‘-.Tl
cl o] |

_ea |)
i | e

clr
inz
Id_s&_B

Id_szum

Update |

snp | oR | xoR |

Values: GT | GTE | Values: EQ | NEu|
i 0
oy LT | LTE |
:-:IDD:: = I = | | 12:|:||:||:| e
[;t-flmrs BT e Moo —l—l
[others = '0Y reset
clock, 5= | | |
resek - | . | T |
[Do not dizplay automatically [T Do not dizplay automaticall
Clear | Dligmizs | Diigrnizs Help |

Help | Clear
g p

Y ou can build an expression by selecting a signal name in the Ports/Locals list, clicking on an
operator button and then selecting a value from the Values list followed by any other required
arguments. For example, select the clr signal, click the <= assignment operator, select the ‘O’
value and then click the ; operator to enter the action statement:

clr <= "1'; (VHDL)
clr <= 1; (Verilog)

Complex statements can also be built using the equality and boolean operators. For example, the
condition statements:

clr ='1" ANDinc /="0" (VHDL)
clr ==1 &inc !'=0 (Verilog)
State Machine Editors User Manual, V2010.3 17

June, 2011

State Machines
Syntax Notes

Y ou can use the Ctrl modifier key to rapidly enter multiple similar expressions such as the
following list of signal and variable assignment actions:

out2 <="
out3 <="
out4 <="
outs <= *
varQ : ="
varl : ="
var3 .=

QeaoRrkRR

Use the following procedure:

1. Select adefault value (which will be used in the assignment statements) from the Values
list while holding down the Ctrl key. For example: '1' or '0'.

2. Then use Ctrl+L eft mouse click to select each required each entry in the Ports/Locals
list.

This procedure generates multiple assignment statements using the default operator,
automatically inserting terminating semi-colons and new lines. Y ou can use Ctrl+L eft mouse
click again at any time to change the assigned value or assignment type.

Y ou can use the Update button to update the list of ports and local signals with any signals
added since the expression builder was displayed.

Y ou can use the Clear button to clear all text from the field being edited or the Dismiss button
to hide the expression builder dialog box.

Note
D VHDL operators are entered using uppercase if the style option to Use upper case VHDL

keywordsis set in your preferences or in lowercase if this option is unset.

Note that the expression builder is available when you are editing anon-modal dialog box
such as the Object Properties but is not available in amodal dialog box such as Recovery
State or CASE Settings.

The expression builder dialog box is normally displayed automatically unless you set the Do
not display automatically preference in the dialog box. In automatic mode, the expression
builder is automatically displayed when a HDL expression is being edited and automatically
hidden when the edit is completed

The buttons on the Verilog Expression Builder insert the following operators:

Table 1-1. Verilog Expression Builder

Button Description Operator
AND Bitwise AND operator. a&b
18 State Machine Editors User Manual, V2010.3

June, 2011

State Machines
Syntax Notes

Table 1-1. Verilog Expression Builder (cont.)

Button Description Operator
i| Bitwise OR operator. alb
ﬂl Bitwise XOR (exclusive OR) operator. a™b
LAND Logical AND operator. a&&b
ﬂl Logical OR operator. allb
NOT Bitwise negation (NOT) operator. ~a
ﬂl Concatenation or aggregate operator. {ab}
_[l Left parenthesis for grouping. (ab)
Ll Paired parentheses for grouping around the selected text. (ab)
_]l Right parenthesis for grouping. (ab)
_[l Inserts left bracket for element or dlice. [m:n]
Ll Paired bracket for element or dlice around the selected text. [m:n]
_]l Right bracket for element or slice. [m:n]
i| Equality operator. a==
NED Not equal operator. al=b
Ll L ess than operator. a<b
LTE L ess than or equal to operator. a<=b
Ll Greater than operator. a>b
GTE Greater than or equal to operator. a>=hb
Non-blocking signal assignment operator. a<=b
Blocking signal assignment operator. a=b

B e

Semi-colon character.

State Machine Editors User Manual, V2010.3

June, 2011

19

State Machines

Syntax Notes

Table 1-1. Verilog Expression Builder (cont.)

Button Description Operator
L| Deletes the previous character.
L| Space character.
Ll New line.
The buttons on the VHDL Expression Builder insert the following operators:
Table 1-2. VHDL Expression Builder

Button Description Operator
M Logical or bitwise AND operator. aANDDb
i| Logical or bitwise OR operator. aORDb

wOR Logical or bitwise XOR (exclusive OR) operator. aXORDb
ﬂl Logical or bitwise negation (NOT) operator. NOT a
ﬂl Concatenation operator. a&b
_[l L eft parenthesis for grouping, aggregate, element or slice. (ab)
Ll Paired parentheses for grouping, aggregate, element or slice. (ab)
_]l Right parenthesis for grouping, aggregate, element or dlice. (ab)
i| Equality operator. a=b

NED Not equal operator. al=b
Ll L ess than operator. a<b

LTE L ess than or equal to operator. a<=b
i| Greater than operator. a>b
ﬂ| Greater than or equal to operator. a>=b

- Signal assignment operator. a<=b
;l Variable assignment operator. a=>b

20

State Machine Editors User Manual, V2010.3
June, 2011

State Machines
Syntax Notes

Table 1-2. VHDL Expression Builder (cont.)
Button Description Operator

Semi-colon character. :

Deletes the previous character.

Space character.

New line.

e

Condition Syntax

A condition isan event (such asasigna changing its value) that may cause a change of state in
a state machine.

A condition can be any valid boolean HDL expression and typically has the form:
signal relational operator val ue

where signal is an expression containing the name of an input signal to the block representing
the state machine on the parent block diagram or IBD view or alocally declared signal in the
state machine. When using VHDL, this signal must have atype defined in a VHDL package.

Therelational _operator can be any valid operator for the current hardware description
language including the following simple operators:

VHDL Verilog
= == Qr === equa|
/= I=or!== not equal

valueistypically an integer, real, character, enumerated value (VHDL only), constant (or
locally declared constant in a state machine) or any expression which evaluates to one of the
above.

When using VHDL, the following values must be specified in a VHDL package for the
associated net type:

integer must be within the bounds constraint of the net type. This
value can be a positive or negative number with one or
more digitsin the range 0 to 9.

real must be within the bounds of the net type. This value can
be a positive or negative number with one or more digits
in the range 0 to 9 and a decimal part between 0to 9.

State Machine Editors User Manual, V2010.3 21
June, 2011

State Machines
Syntax Notes

enumerated value must be an enumerator of the associated net type.
character must be a printable character.
constant must be a non-deferred constant defined in a package or a

locally declared constant.

VHDL If conditions are boolean expressions and must result in atrue or false value. Typically,
thiswill have the form <name> = <true or false value>. For example: a = ‘0’ generates an
expression |IFa= ‘0" THEN

Verilog If conditions are ssmply expressions and can be entered directly. For example a
generates the code IF a and !'a generates the code IF 'a

Examples of Condition Syntax

The following are examples of some typical VHDL conditions:

~n

a
a .0
al/=red
(a =1) AND (c = 0)

The following are examples of some typical Verilog conditions:

la

a == 1bi

a!=red

(a == 1"bl) && (c == 1'b0)

If flow aisaVHDL array:

a(l1) =0
a(x) =0
a=1(10,3)

a(ltob5) = (3 =>5, others => 0)
If flow b isaVHDL record (with membersx, y, 2):

=0
(0,0, 1)

b
b
b (x => 0, others => 1)

I x

A condition entering or leaving ajunction on a state diagram is apartia condition. If there are
more than one partial conditions between two states, they are combined by performing alogical
AND to complete the transition between the states.

Action Syntax

An action assigns avaueto asignal or variable. Actions can be specified for a state or
transition in a state diagram or for an action box or state box in an ASM chart.

22 State Machine Editors User Manual, V2010.3
June, 2011

State Machines
Syntax Notes

An action can be any valid HDL assignment. Every action isacomplete HDL statement and
must be terminated by the semi-colon ; character.

When you are using VHDL, atypical action has the format:

signal <= val ue; (signal assignnent)
variable := value; (variable assignnent)

Note that the assignment operators are represented by two characters (<= or :=) which must not
be separated by a space.

When you are using Verilog, atypical action has the format:
signal = val ue;

There are two signal assignment operatorsin Verilog. The example above shows a blocking
assignment (using the = operator). Y ou can also specify a non-blocking assignment (using the
<= operator) when two or more actions need to be executed concurrently.

signal and value have the same syntax as defined for conditions, with the exception that signal

must be the name of an output signal from the block or component which represents the view on

the parent block diagram or IBD view (or the name of alocally declared output signal).
Examples of Action Syntax

The following examples show some typical VHDL action assignments:

X <="1";
a <= "xyz":
X <= X+1;

The following examples show some typical Verilog action assignments:

1.

X ;
10' bO;

a

If flow aisaVHDL array:

a(l) <= 0;

a(x) <= 0;

a <= (1, 0 3);

a(l tob5) <= (3 =>15, others => 0);

If flow b isaVHDL record (with membersx, y, z):
b.x <= 0;

b <= (0, 0, 1);
b <= (x == 0, others => 1);

State Machine Editors User Manual, V2010.3 23
June, 2011

State Machines
Syntax Notes

Declaration Syntax

Signal declarations, constants, variables, comments, procedures, functions or type definitions
can beincluded in an architecture or module declaration. A process declaration may include any
of these constructs except for signa declarations.

Typicaly aVHDL declaration, comprises a keyword (signal, constant or variable) followed by
aname, type and value. The specified type must be one of the standard predefined types or a
type defined in aVHDL package. Aninitial valueis required when the declaration is a constant
but is optional when you declare asignal or variable.

A typical Verilog declaration, comprises a keyword followed by appropriate parameters as

given below:
Table 1-3. Verilog Declarations
Keyword Parameters
'define name value
parameter name value
reg range (optional)! name array (optional)
integer name array (optional)
real name
time name array (optional)
wire range (optional) name array (optional)

1. Verilog range and array parameters should be entered in the format [m:n].

Examples of Declaration Syntax

The following examples show some typical VHDL declarations:

SIGNAL busb : std_logic_vector (2 DOANTO 0) := "000";
SIGNAL siga : std_logic;

CONSTANT prd : tinme := 100 ns;

CONSTANT zero : std_|ogic_vector := "0000000000";
VARI ABLE z: std_l ogic;

The following examples show some typical Verilog declarations:

reg [7:0] busb;

W re siga;

wire [2:0] busc;
paraneter prd = 100;
paraneter zero = 10' bO;

24

State Machine Editors User Manual, V2010.3
June, 2011

State Machines
Syntax Notes

Note
D VHDL keywords are usually shown in upper case (for example CONSTANT) but Verilog

keywords in lower case (for example par anet er).

State Machine Editors User Manual, V2010.3 25
June, 2011

State Machines
Concurrent State Machines

Concurrent State Machines

Any number of concurrent state machines with the same interface can be created from within a
state diagram or ASM chart.

The package list and any concurrent statements are shared by the concurrent state machines but
global actions can be set separately. If there are any other user declarations (interpreted as
architecture declarationsin VHDL or as module declarations in Verilog) these are also shared
by the concurrent state machines.

HDL generation and state encoding characteristics can be set separately for each concurrent
state machine.

Each concurrent state machine is given a unique name by adding an integer to the default name
(for example, machine0, machinel, machine2..) and identified in the title bar by appending this
name and its position in the set of concurrent state machines to the leaf state machine name.

For example, if you create three concurrent state machines for the leaf state machine
DES GNS\ConcSMI\fsm the resulting set state machines would be identified as follows:
DES GNS\ConcSVI\fsm ['machineQ’ 1 of 4]
DES GNS ConcSM\fsm ['machinel’ 2 of 4]
DES GNS\ConcSMI\fsm ['machine2' 3 of 4]
DES GNS\.ConcSVI\fsm ['machine3' 4 of 4]

A set of concurrent state machinesistreated as asingle design object and all the concurrent state
machines (including any hierarchical diagrams) are saved when any state diagram is saved.

When HDL is generated for concurrent state machines, separate VHDL processes (or "aways"
blocksin Verilog) are generated for each machine.

Note
State names must be unique within the set of concurrent state machines.
Y ou cannot create links between concurrent state machines.

Adding a Concurrent State Machine

Y ou can create a concurrent state machine from a state diagram using the Ctr [+F2 shortcut keys
or by choosing Concurrent State M achine from the Add menu.

Y ou can create a concurrent state machine from an ASM chart by choosing Concurrent ASM
from the Add menu.

A new state diagram or ASM chart is created as a new view in the existing window with the
same interface as the current diagram.

26 State Machine Editors User Manual, V2010.3
June, 2011

State Machines
Concurrent State Machines

The package list and any concurrent statements, or status signals list are shared by the
concurrent state machines but global actions can be set separately. If there are any other user
declarations (which are interpreted as architecture declarationsin VHDL or as module
declarations in Verilog) these are also shared by the concurrent state machines.

Opening a Concurrent State Machine

Y ou can open an existing concurrent state machine from within a state diagram by choosing
Open M achine from the Diagram menu and selecting from the list of concurrent state machine
names.

Y ou can open an existing concurrent state machine from within an ASM chart by choosing
Open ASM from the Diagram menu and selecting from the list of concurrent state machine
names.

Y ou can aso open a concurrent state machine by selecting it in the diagram browser.

Renaming a Concurrent State Machine

Y ou can change the name of the active concurrent state machine by choosing Rename
Concurrent Machine from the Diagram menu to display a Rename dialog box.

Y ou can also rename the active concurrent state machine in the State M achine page of the SM
Properties dialog box or in the ASM Diagram page of the ASM Properties dialog box.
Alternatively, you can choose Rename from the popup menu when the concurrent state
machine name is selected in the diagram browser to directly edit the state machine name.

This nameis used to uniquely identify concurrent state machines in the generated HDL but can
also be specified when there are no concurrent state machines defined. If not specified, the name
defaults to the value set in the state machine preferences.

Deleting a Concurrent State Machine

Y ou can delete a concurrent state machine from a set of concurrent state machines by choosing
Delete Machine or Delete ASM from the Diagram menu and selecting from the list of
concurrent state machine names.

Y ou are prompted for confirmation that the state machine should be deleted. If you delete an
open diagram, itswindow is closed. Thetitlesfor all other diagramsin the set of concurrent
state machines are updated. However, the design explorer view is not updated until you have
saved the state machine. Note that you can not delete the last concurrent state machine in the
Set.

State Machine Editors User Manual, V2010.3 27
June, 2011

State Machines
Using the Diagram Browser

Using the Diagram Browser

Y ou can browse the structure and content of a state machine including any concurrent or
hierarchical views and the signals table in the diagram browser that is optionally displayed to
the left of the main diagram view.

For example, the following picture shows the structure of the ASM chart view for the
xmit_rcv_control state machine in the UART example design:

Structure EBR

= E'é, wnik_roy_control -

EE Signals [rov)
= B& Concurent Diagrams

E|§§m

The following picture shows the content of the rcv concurrent state machine which is selected in
the Structure pane shown above:

[Mame | Concurent Diagram |

=l BT [ltems: 2]

check_lock irow

waiting To
B [ltems 1]
U [Items: 1]

+

+

+

= [ltems: 1]

+

& (ltems 1]

Refer to “ The Diagram Browser” in the Graphical Editors User Manual for more detailed
information about browsing the structure and content of a diagram.

28 State Machine Editors User Manual, V2010.3
June, 2011

Chapter 2
State Diagram Editor

This chapter describes the state diagram editor.

State Diagram NOtatioN.t e e 30
StateDiagram Toolbar i e 32
State Machinelnitialization 33
Adding ObjectsonaStateDiagram.t e e 33
AddingaClock Point 34
AddingaReset POINt 34
Adding aRecovery State Point. 36
Addingan Enable Point 36
AddingaState.o 37
Adding aTranSition 39
Addingan Interrupt POINt o 40
EXECULION PriOrtY . . . oo 41
Adding alink. e 42
AddiNg aJUNCLION 43
Hierarchical State Diagrams.ot e e et 44
Changing ObjectsonaStateDiagramt e e 47
Adding Other ObjectsonaState Diagramt e s 48
Editing State Diagram Object Properties. ..., 48
Editing Clock Object Properties. e e e 49
Editing Reset Object Propertiest e 50
Editing Enable Object Properties 51
Editing State Object Properties. 52
Editing Transition Object Properties e 54
Editing Link Object Properties.o 56
Editing Junction Object Properties.t 58
USiNgWalt StaleSo 58
Decode Optionsfor CASE Transitions.ot e 63
Setting State Machine Properties. 67
Setting State Diagram Generation Properties. 68
Setting State Encoding Properties. 73
Setting Statement Blocks 73
Setting Declaration BIOCKSo 75
Setting State Diagram Internal SignalNames i 78
Setting StateMachinePreferences. i i 78
State Machine Editors User Manual, V2010.3 29

June, 2011

State Diagram Editor
State Diagram Notation

State Diagram Notation

The notation used for objects on a state diagram is shown below:

olk[E T [oKEWENT AND clkc="1'

enable m enable =00

ret = '0F
r=t

y

< Augtomatic ¥

A clock point displays the clock signal name and
clock condition in a synchronous state machine.
There must be one clock point on a synchronous
diagram or none on an asynchronous diagram.

An enable point displays an enable signal name and
enable condition in a synchronous state machine.
There can be one optional enable point on a
synchronous diagram or none on an asynchronous
diagram.

A reset point displays areset signal name, actions,
mode and condition in a synchronous state machine.
There can be any number of reset points on a
synchronous diagram or none on an asynchronous
diagram. A priority is shown if there are more than
one reset points with the same mode on the diagram.
Each reset point must be connected to alink or state.

A recovery state point can be connected to indicate
the transition to arecovery state. Recovery actions
can be shown on the associated transition.

Aninterrupt point isan implicit connection to all
states on the diagram. It has an associated interrupt
transition which may have a priority if there are more
than one interrupt points on the diagram. The
interrupt transition condition has priority over all
other conditions.

A simple state represents observable status that the
state machine can exhibit at a point in time. Encoding
information is shown if manual encoding is enabled
and there may be associated state actions.

A wait state introduces adelay in a synchronous state
machine. The delay is specified by an integer or
expression that evaluates to a number of clock cycles.
Encoding information is shown if manual encoding is
enabled and there may be associated state actions.

A hierarchical state represents a child state diagram
within a hierarchical state machine. A hierarchical
state has no associated state actions.

30

State Machine Editors User Manual, V2010.3
June, 2011

State Diagram Editor
State Diagram Notation

T Link

Pre and Post Global Actions

Concurrent Statements
Architecture or Module Declarations
Signals Status

State Register Statements

Process Declarations

Note

A transition isthe change of state that occurswhen an
associated condition is satisfied. Transitions may
have transition actions. A transition priority is shown
if more than one transition leaves the same state.

A junction represents a connection to transitions
which are common to more than one state.

The entry point and exit point are the connectionsin a
child state diagram to the parent hierarchical state.

A named link represents a direct transition to the
named state or junction.

A statement block listing global actions that are
always performed at the beginning of the output
processfor combinatorial signalsor after the clock for
registered signals.

A statement block containing alist of concurrent
statements that are included in the generated HDL..

A list of user defined VHDL architecture
declarations or Verilog module declarations.

A table showing the signals status of output and
locally declared signals.

A statement block containing alist of statements
which are included in the generated HDL as state
register statements.

Separate lists of VHDL process declarations which
are included in the clocked and output processes.

Y ou cannot add a clock point, reset point, enable point or wait state in an asynchronous

state machine.

olk[E T [oKEWENT AND clkc="1'

A clock point displays the clock signal hame and
clock condition in a synchronous state machine.
There must be one clock point on a synchronous
diagram or none on an asynchronous diagram.

State Machine Editors User Manual, V2010.3
June, 2011

31

State Diagram Editor
State Diagram Toolbar

An enable point displays an enable signal name and

enable [£enable ='0'| enable condition in a synchronous state machine.
There can be one optional enable point on a
synchronous diagram or none on an asynchronous
diagram.

State Diagram Toolbar
The following commands are available from the State Diagram Tools toolbar:

Table 2-1. State Diagram Toolbar

™
c
—
—+
o
=]

Description

-
4

Select text or objects

Select text only
Select objects only
Add or modify comment text

ol
o
1

Pan the window

Add aclock point
Add areset point
Add arecovery state point

Add an enable point
Add a state
Add atransition

Add an interrupt point (not available in child hierarchical diagrams)
Add alink

Add ajunction

Add ahierarchical state

Add await state

Add an entry point (available only in child hierarchical diagrams)

Add an exit point (available only in child hierarchical diagrams)
Add a panel

|EEE@@BIEEK"'”EEEEEEEE

Refer to the HDL Designer Series User Manual for general information about toolbars and the
HDL Designer Series user interface.

32 State Machine Editors User Manual, V2010.3
June, 2011

State Diagram Editor
State Machine Initialization

Refer to the Graphical Editors User Manual for information about selecting objects, adding
comment text, panning the window, adding a panel and additional toolbars which are common
to the other graphic editors.

State Machine Initialization

A new state diagramisinitialized with a default clock point, recovery state point, reset point
and simple state as shown below:

ck [T 4ok EVENT AND ck="1' |

@ =

rzt="0

= aromatc -

There must be asingle clock point on a synchronous state diagram although it can be deleted if
you want to make the state diagram asynchronous. The clock point is always shown
unconnected and the clock signal is used for all state transitions in the state diagram.

The recovery state point and reset point are connected by transitions to links which reference
the simple state.

There can be only one recovery state point although it can be deleted if not required. If thereis
no transition connected to arecovery state point on asynchronous state diagram, the state that is
connected to the primary reset is the default recovery state.

Y ou can add one enable point and any number of reset points on a synchronous state diagram.

Adding Objects on a State Diagram

Y ou can add objects on a state diagram using the Add menu or one of the buttonsin the State
Diagram Tools toolbar. Some objects can also be added using a shortcut or mnemonic key.
Refer to the Quick Reference I ndex which can be accessed from the Help and Manual's tab of
the HDS InfoHub for alist of supported Graphical Editor Shortcut Keys. To open the InfoHub,
select Help and M anuals from the Help menu.

The cursor changesto a cross-hair which allows you to add the object by clicking at the required
location on the diagram.

After adding an object, the command normally repeats until you use the Esc key (or Right
mouse button) to terminate the command. However, you can set a preference for the command

State Machine Editors User Manual, V2010.3 33
June, 2011

State Diagram Editor
Adding Objects on a State Diagram

to remain active or activate only once and you can toggle this mode for the current command by
using the Ctrl key.

Adding a Clock Point

Y ou can add a clock point in a synchronous state machine when there is no existing clock point
by using the button or by choosing Clock Point from the Add menu.

Note

D There can be only one clock point in a synchronous state machine which must be on the
top level hierarchical diagram. Y ou can not add a clock point on an asynchronous state
machine.

The clock point is added with the default clock signal name clk, default rising edge and default
condition (clk' EVENT and clk = *1’ for VHDL or posedge clk for Verilog).

olk[o> [GKEVENT AND cllc='1'|

Tip: Note that the clock edge isindicated by arising or falling edge on the clock point
icon.

Y ou can change the clock signal name (and the condition when a user-specified condition has
been entered) by clicking to select the signal name text and clicking again to edit the text in-line.

Alternatively, you can double-click on the clock point, use the button or choose Obj ect
Properties from the Edit menu, to display the Clock page of the SM Object Properties dialog
box as described in “Editing Clock Object Properties’ on page 49.

Adding a Reset Point

Y ou can add areset point in a synchronous state machine by using the button or by
choosing Reset Point from the Add menu.

Note
D There can be any number of reset pointsin a synchronous state machine or nonein an

asynchronous state machine. Reset points can only be added on the top level diagram of a

hierarchical state diagram and must be connected (directly or using alink) to a state.

34 State Machine Editors User Manual, V2010.3
June, 2011

State Diagram Editor
Adding Objects on a State Diagram

The reset point is added with the default reset signal namerst (or rstN if reset points already
exist on the diagram), low reset level (rst = ‘0’ for VHDL or !rst for Verilog) and automatic
reset signal actions.

st [T

< Agtomatic >

The reset condition and actions are automatically assigned to the transition when the reset is
connected to alink or a state.

rst = 'If
ot T ————— [

< Agtomatic

Y ou can change the reset signal name by clicking to select the signal name text and clicking
again to edit the text in-line.

Alternatively, you can double-click on areset point (or the transition attached to a reset point),
usethe button or choose Obj ect Propertiesfrom the Edit menu, to display the Resets page
of the SM Object Properties dialog box as described in “ Editing Reset Object Properties’ on

page 50.

Y ou can change the reset mode in the dialog box or by choosing Synchronous or
Asynchronous from the Reset M ode cascade in the popup menu.

Where more than one reset with the same mode is defined on the diagram, their evaluation order
is determined by the priority. However asynchronous resets take priority over all synchronous
resets. For example, the following picture shows two asynchronous resets (rst and rstl) and two
synchronous resets (rst2 and rst2):

rst =

>

ot {1 | —
< Agtomatic ¥
r=t1 ='0"
STTHE | S
< Agtomatic
stz =0’
AT ——— |
< Mtomatic > =2
rst3="0"
et 2 s

< Apomatic

State Machine Editors User Manual, V2010.3 35
June, 2011

State Diagram Editor
Adding Objects on a State Diagram

0 Tip: Note that the reset signal level and mode are indicated on the reset point icon.

The reset actions are automatically derived by default from the reset signal status but can be
edited directly when specified actions are set in the Object Properties dialog box. The actions
syntax is automatically checked for the current hardware description language on entry.

Adding a Recovery State Point

Y ou can add arecovery state point to a synchronous state machine using the button or by
choosing Recovery State Point from the Add menu.

Note
D There can only be one recovery state point and this command is not available if a
recovery state point already exists on the diagram. A recovery state point can only be
added on the top level diagram of ahierarchical state diagram. However a separate
recovery point can be used for each diagram in a set of concurrent state machines.

The recovery state point should be connected by an unconditional transition to a state (or link
that references a state) which is entered when no other valid state is recognized in the next state
process or always code. The recovery state transition can optionally include recovery actions.
Thesewould typically be assignmentsto signals or variables and Verilog system tasks or VHDL
assert and report statements.

& =3
ermor <=1,

If thereis no recovery state point, the recovery state isthe state connected to the highest priority
reset state.

Adding an Enable Point

Y ou can add an enable point to a synchronous state diagram using the button or by
choosing Enable Point from the Add menu.

enable [= L Henable =0 |

Note

D There can only be one enable point and this command is not available if an enable point
aready exists on the diagram. An enable point can only be added on thetop level diagram
of ahierarchical state diagram.

36 State Machine Editors User Manual, V2010.3
June, 2011

State Diagram Editor
Adding Objects on a State Diagram

The enable signal and condition appliesto the entire ASM chart and does not connect to any
other objects on the diagram.

Y ou can change the enable signal name (and the condition when a user-specified condition has
been entered) by clicking to select the signal name and clicking again to edit the text in-line.

Alternatively, you can double-click on the enable point, use the button or choose Object
Properties from the Edit menu, to display the Enable page in the ASM Object Properties
dialog box as described in “Editing Enable Object Properties’ on page 51.

Adding a State

Y ou can add a simple state using the button, F3 or S shortcut key or by choosing State
from the Add menu.

Y ou can add await state to a state diagram using the button, F8 or W shortcut keys or by
choosing Wait State from the Add menu.

Note
D Wait states require a clock signal and cannot be added in an asynchronous state machine.

You can add a hierarchical state to a state diagram using the [@)] button, Shift+F2 or H
shortcut keys or by choosing Hierar chical State from the Add menu.

For example, the following picture shows asimple state (s1), wait state (s2) and a hierarchical

state (s3):
wait 2
52

A state can have the shape of acircle, ellipse or double circle.

Y ou can change the shape of asimple or wait state by choosing autoshapes from the state popup
cascade menu to display the choose shape dialog.

Alternatively, you can double-click on the state, use the button or choose Object
Properties from the Edit menu, to display the States page of the SM Object Properties dialog
box as described in “ Editing State Object Properties’ on page 52.

Y ou can change the name of a state (and the state actions or the wait statement for await state)
by clicking to select the text and clicking again to edit the text in-line.

State Machine Editors User Manual, V2010.3 37
June, 2011

State Diagram Editor
Adding Objects on a State Diagram

Alternatively, you can double-click on the state, use the |Er| button or choose Obj ect
Properties from the Edit menu, to display the States page of the SM Object Properties dialog
box as described in “Editing State Object Properties’ on page 52.

If you do not change the name of a state, each new state is given a unique name by adding an
integer to the default name (for example, SO, s1, s2..). The default base names for new states,
default actions and default size can be changed by setting preferences.

If the state name would overlap the outline, the state is auto-sized to fit the state name.

If default state actions are defined in your preferences, these actions are placed below the state
name and may overlap the state outline but can be independently moved away from (or into) the
state. If you want to contain all your state actions inside the state outline, it may be necessary to
resize the object.

Exit and entry actions can be defined in your preferences. These actions are also placed below
the state and each of the three types of actionsis outlined by a blue border.

start_wmit <= '1";
start_ymit <= '2";
start_zmit <= '1";

If Manual state encoding mode is enabled in the Encoding page of the State Machine
Properties dialog box, the default value <encoding> iswritten below the state name. Thisvalue
can be edited by direct text editing or by using the States page of the SM Object Properties
dialog box. For example, the following state has encoding enabled and state actions:

statel

Zencoding=
o

Copying State Actions

Y ou can copy an individual action by using the normal Copy and Paste commands.

Y ou can also copy all the actions associated with a state by selecting a state and using the Copy
(or Cut) option to copy the actionsinto the paste buffer.

Then select a destination state (or states) and choose the Paste State Actions option from the
Paste Special popup menu.

38 State Machine Editors User Manual, V2010.3
June, 2011

State Diagram Editor
Adding Objects on a State Diagram

Adding a Transition

Y ou can add transitions using the button, F7 or T shortcut keys or by choosing Transition
from the Add menu.

The cursor changes to a cross-hair which allows you to add atransition arc by clicking the L eft
mouse over a source and destination plus any number of route points. The source can be any
state, junction, interrupt point, reset point, recovery state point or entry point and the
destination can be any state, junction, link or exit point. Note that the arrow head is hidden when
atransition arc is attached to alink or exit point.

A loopback transition can be drawn by starting and ending the transition on the same state.
(Click twiceinside the state to create aloop back without route points or you can specify two or
more route points outside the state.)

New transitions are usually added with the default condition string condition but no actions.
However, preferences can be set for the default condition and actions strings. By default,
transition arcs are drawn as curved splines but the default can be changed to orthogonal
polylines by setting a preference.

If the origin of atransition is on await state, the transition condition defaults to the value
TIMEOUT AND (condition).

The following example shows aloopback transition on sO and atransition to the wait statel with
adefault TIMEOUT condition on the return transition:

condition

condition wait 2

TIMEQUT AND (condition)

Y ou can change an existing transition condition by clicking on the condition to select the text
and clicking again to edit the text. Similarly, you can change the transition actions by clicking
on the actions text.

Alternatively, you can double-click on the transition, use the button or choose Obj ect
Properties from the Edit menu, to display the Transitions page in the SM Object Properties
dialog box as described in “Editing Transition Object Properties” on page 54.

Y ou can remove route points from transitions by right-clicking atransition and choosing
Remove Route or Remove All Routes options. Alternatively, you can choose Add a Route to
add aroute point to the transition.

State Machine Editors User Manual, V2010.3 39
June, 2011

State Diagram Editor
Adding Objects on a State Diagram

Transition Priority

A transition priority is assigned to each transition when there are more than one transitions
leaving a state. However, no priority is shown when there is only one transition from a state.

If atransition exists with the condition (others), it is always evaluated last and no transition
priority is displayed. In the following example, the condition a="'0' is evaluated before the
conditionsa="1" or a="2'.

Theinitial priority isdetermined by the order in which you add the transitions but can be edited
using the Object Properties dialog box or by direct editing on the diagram.

Changing the Direction of a Transition

Y ou can change the direction of one or more selected transitions by choosing Rever se
Direction from the Diagram or popup menu.

Copying Transition Conditions and Actions

Y ou can copy transition conditions or actions by selecting an individual condition, an action
block or the blue box enclosing both the condition and actions and then using the normal Copy
(or Cut) and Paste commands.

Y ou can also copy al the conditions and actions associated with atransition by selecting the
transition and using the Copy (or Cut) option to copy the condition and actions into the paste
buffer. Then select the destination transition arc (or arcs) and choose Paste Transition
Condition/Actions from the Paste Special popup menu.

Adding an Interrupt Point

Y ou can add interrupt points using the EI button or | shortcut keys or by choosing I nterrupt
Point from the Add menu.

40 State Machine Editors User Manual, V2010.3
June, 2011

State Diagram Editor
Adding Objects on a State Diagram

A transition from an Interrupt point isaglobal interrupt which appliesto the whole diagram and
has priority over al other transitions. In the following example, there are two interrupt
conditions from the interrupt point with transition actions which are executed if either of the

conditionsis satisfied.
[a1
EEEER
(1) il d
a=i I]i a=i 3!
x o= R x o= 1Y
a=i 2!
Interrupt ¥ = 0
Mode
intl="1' | — [State?
int2="1
1 [State0

x <= 4 J_.'

Where more than one interrupt is defined on the same diagram, their evaluation order is
determined by the transition priority.

Interrupt masking can be achieved by an AND expression combining the condition with a mask
signal. Thismask signal may control asingle interrupt or act as an enable mask for a number of
interrupts.

Note
D Interrupt points can only be added on the top level diagram of a hierarchical state

diagram.

Execution Priority

When there are conflicting actions defined, the following execution priority is observed:

Interrupt transition actions
Normal transition actions
State actions

Global actions

o &~ N

Default values

State Machine Editors User Manual, V2010.3 41
June, 2011

State Diagram Editor
Adding Objects on a State Diagram

In the following example, if aisnot equal to'0" or '1', yisset to '1' by the Statel actions. If a
changesto '0', y is set to '2' by the transition actions.

Global Actions
y o= 17

a="0" OR a="1"

a="'1
mr_:}‘ Statel]

When aclock edge occurs, y is set to '3’ by the Sate2 actions (or revertsto '1' if achangesto any
value other than '0" or '1' before the clock edge occurs).

However, if a changesto'1’, theinterrupt transition takes priority and y is set to ‘0" (and the state
changes to Sate0 at the next clock edge).

If no conditions are satisfied, the global actions ensure that y is set to a known value (‘1) at the

clock edge. Explicit default values can also be set for registered output (and locally declared)
signals.

Refer to “ Setting Statement Blocks’ on page 73 for information about setting global actionsand

“ Setting State Diagram Internal Signal Names® on page 78 for information about setting default
values.

Adding a Link

A link can be used as a connector to a state or ajunction with the specified name on the same

diagram (or another diagram in the same hierarchical state diagram) to avoid long transition
arcs.

For example, links are used for the transition conditions shown in the example on the previous
page.

Y ou can add links to a state diagram using the El button, F4 or L shortcut keys or by choosing
Link from the Add menu.

42 State Machine Editors User Manual, V2010.3
June, 2011

State Diagram Editor
Adding Objects on a State Diagram

Note
Y ou can rotate alink clockwise by choosing 90, 80, or 270 from the Rotate cascade in
the popup menu.

Y ou can change the target of alink by clicking on the current link target to select the text and
clicking again to edit the text.

Alternatively, you can double-click on thelink, use the button or choose Obj ect Properties
from the Edit or popup menu, to display the Links page in the SM Object Properties dialog box
as described in “Editing Link Object Properties” on page 56.

Adding a Junction

A junction can be used to factor out conditions (or partial conditions) or actions which are
common to more than one transitions.

The transitions are replaced by a ssmpler set of partial transitions between the same states.
These partial transitions are expanded (using alogical AND, IF or CASE) when HDL is
generated for the diagram.

Y ou can add junctions using the \ZI button or J shortcut key or by choosing Junction from the
Add menu.

Junctions have no default name although you can set a default name by setting a preference.
Y ou can change the name of ajunction by clicking on an existing name to select the text and
clicking again to edit the text.

Alternatively, you can double-click on the junction, use the button or choose Obj ect
Properties from the Edit or popup menu to display the Junctions page in the SM Object
Properties dialog box as described in “Editing Junction Object Properties’ on page 58.

State Machine Editors User Manual, V2010.3 43
June, 2011

State Diagram Editor
Adding Objects on a State Diagram

In the following example, the condition (x="3") which applies to the transitions to both Statel
and Sate2 is connected using ajunction J1.

x= i3i

b o= 0

T = 9 —
é@yc—’”: ; @ z="1+H>n
2

true

c <= "32;

State? z =& [Statel

T o= 71];

Links are used to show the return connections to J1 and Sate0.

Hierarchical State Diagrams

A state diagram may have a number of hierarchical state diagrams. Each child state diagram is
represented by a hierarchical state in its parent diagram.

Y ou can open down into a child state diagram by double-clicking on a hierarchical state or by
choosing Open Down from the Open cascade of the File menu (or popup menu).

The child state diagram is opened in the existing window. A new child state diagram comprises
an entry point, asingle state and an exit point connected by transitions.

Y ou can edit ahierarchical state diagram in the same way as any other state diagram including
more hierarchical states aswell as any other state diagram objects (with the exception of

interrupt points). Named links can be used between any state (or junction) in the hierarchical
state diagram.

Note
Although links may be used in hierarchical states, exits points should be used to exit from
hierarchical states. A hierarchical state should have at |east one exit point.

An interrupt point can be added on the top level diagram and istreated as a global interrupt for
the whole state diagram.

Y ou can choose Open Up from the File menu or select the name of the parent diagram in the
diagram browser to open the parent of the currently active state diagram.

44 State Machine Editors User Manual, V2010.3
June, 2011

State Diagram Editor
Adding Objects on a State Diagram

Child state diagrams are saved as part of the parent state diagram and named after the parent
hierarchical state by adding the parent hierarchical state name to the name of the state diagram.

For example, the parent state diagram in the following picture is named csm and the child is
named csnVReadPkt:

Hla SCRATCH_LIB/Control/fsm [csm] [State Diagram] =] 3
File Edit “iew HDL Diagram Tasks Add Simulation Animation Option: window OLE Help

[

E— interrupt="1" —— =Stated

Statel

cind=read

read_done="1"

-
1 | 3

|Design "SCRATCH_LIBAControl/fem'' zaved successfully. g

The child diagram is entered when the entire condition on a transition connected to the
hierarchical stateis satisfied (cmd=read in this example).

Hla SCRATCH_LIB/Control/fzm [cem/RBeadPkt] [State Diagram] =] 3
File Edit “iew HDL Diagram Tasks Add Simulation Animation Options window OLE Help

=
ReadHdr
"y
a ReadHdr1
4

5="0"
hdr_read="1"

ReadHdr2 p="1'

ReadData |2 — p="10'— > Stated

hdr_read="1"

g o

Dezign "SCRATCH_LIB/Contral/fem' zaved successfully,

State Machine Editors User Manual, V2010.3 45
June, 2011

State Diagram Editor
Adding Objects on a State Diagram

Adding or Removing Hierarchy

Y ou can re-level a state diagram by choosing the Add Hierarchy or Remove Hierarchy
command from the Re-level cascade in the Diagram or popup menu in a state diagram.

Adding hierarchy replaces the selected states by anew hierarchical state and moves the selected
states into the child hierarchical state diagram.

There can be no more than a single state in the selection with transitions entering from the rest
of the diagram and there can be no more than a single state with transitions leaving to the rest of
the diagram. These connections are represented by transitions to the single entry point and exit
point in the child diagram.

Removing hierarchy deletes the selected hierarchical state and replacesit by the objectsin the
child hierarchical state diagram. For example, the following picture shows the child diagram on
the previous page merged into its parent diagram:

Hla SCRATCH_LIB/Control/fsm [csm] [State Diagram] =] 3
File Edit “iew HDL Diagram Tasks Add Simulation Animation Options window OLE Help
E=—— interrupt="1'" ——{ = State0 2
Stated
cmd=read
read_done=""'
ReadHdr “
g="1"
a ReadHdr1
5="0"
CheckSum [
hdr_read="1"
ReadHdr2 p="1"'
1
ReadData [2 p="0' —{ > ReadHdr
hdr_read="1"
‘ | _>I_I
Dezign "SCRATCH_LIB/Contral/fem' zaved successfully, g
46 State Machine Editors User Manual, V2010.3

June, 2011

State Diagram Editor
Adding Objects on a State Diagram

The relative placement of the new objects is preserved and centered on the original position of
the hierarchical state. They may therefore overlap existing objects on the parent diagram and it
may be necessary to re-arrange objects on the diagram.

If the child diagram included other hierarchical states, their hierarchy is retained but can be
removed by another re-level operation.

There can be no more than one entry point on the child diagram with no more than one
connected transition. This transition must not have any conditions or actions.

There can be no more than one exit point on the child diagram with no more than one connected
transition. This transition must not have any conditions or actions.

The entry and exit transitions are each represented by a single connections on the parent
diagram.
Adding an Entry Point

An entry point isautomatically created when you create a child state diagram (by opening down
from its parent hierarchical state) but adding multiple entry points can help reduce diagram
complexity.

Y ou can add an entry point to achild state diagram in ahierarchical state machine using the EI
button, F6 or E shortcut keys or by choosing Entry Point from the Add menu.
Adding an Exit Point

An exit point is automatically created when you create a child state diagram by opening down
from its parent hierarchical state but adding multiple entry points can help reduce diagram
complexity.

Y ou can add exit pointsto a child state diagram in a hierarchical state machine using the El
button, Shift+F6 or X shortcut keys or by choosing Exit Point from the Add menu.

Each exit point connects to the parent hierarchical state but you can also exit from a diagram

using named links that connect to a other state or junction at any level in the hierarchical state
machine.

Changing Objects on a State Diagram

Y ou can change an object on a state diagram to another object type by selecting the object (or
objects) and using one of the Change T o options from the Diagram menu.

Object ChangeTo

State Machine Editors User Manual, V2010.3 47
June, 2011

State Diagram Editor
Editing State Diagram Object Properties

state hierarchical state, junction, interrupt point, entry point, link, exit
point

hierarchical state state, junction, interrupt point, link

junction state, hierarchical state, interrupt point, entry point, link, exit point

interrupt point state, hierarchical state, junction, link

entry point state, hierarchical state, junction, link, exit point

link state, hierarchical state, junction, interrupt point, entry point, exit
point

exit point state, hierarchical state, junction, entry point, link

Y ou cannot change an object if any connected transitions would need to be changed. For
example, you cannot change an object which is the source of atransition into an exit point, or a
destination object into an entry point.

Y ou cannot change any object to an entry or exit point on atop level state diagram or any object
to an interrupt point on achild hierarchical state diagram.

If you change a state which has associated actions to any other object, the state actions are
discarded. However, if the new object isahierarchical state, the state actions are associated with
the new default state in the child state diagram.

If you change a hierarchical state, the child state diagram (if it exists) and all its contents are
discarded.

The state type (simple state, hierarchical state, start state or wait state) can also be changed
using the States page of the SM Object Properties dialog box.

Adding Other Objects on a State Diagram

Y ou can also add other objects such as atitle block, comment text, comment graphics and
panels on a state diagram.

Refer to the Graphical Editors User Manual for information about adding these objects and
general editing procedures which apply to all the graphical editors.

Editing State Diagram Object Properties

Y ou can edit many properties (including condition expressions and actions) directly on the
diagram by clicking to select the text and clicking again to edit the text object.

An expression builder dialog box is automatically displayed when you begin to enter a
condition expression or action statement. Refer to “Building aHDL Expression” on page 16 for
more information about the expression builder.

48 State Machine Editors User Manual, V2010.3
June, 2011

State Diagram Editor
Editing State Diagram Object Properties

The HDL syntax for expressions and actions is automatically checked for the language of the

diagram you are using (VHDL or Verilog) although the syntax checking can be disabled by
unsetting a preference.

Note

D Note that you must include a terminating semi-colon after action statements although line
breaks and indents can be used to improve legibility.

Y ou can also edit the properties for an object on a state diagram by double-clicking on the

object, using the button or choosing Object Propertiesfrom the Edit menu or popup menu
to display an Object Properties dialog box.

The dialog box has separate pages for Clock, Resets, Enable, States, Transitions, Junctions,
Linksand Text objects. The editable objects are shown in the |eft pane of the dialog box.

Objects which exist in the current selection set are highlighted in yellow. Objects that are not
available in the current selection are shown in dimmed font.

Editing Clock Object Properties

The Clock page of the SM Object Properties dialog box allows you to specify the clock signal
and set the clock edge sensitivity.

Hla 5M Object Properties - Clock Point B3
> m M ame: |,3|k j
o Fesets : —

. Edge: IFhsmg j

& States [Earditiar ¥ isble

\EN T t

0 ranstians CKEVENT AND ck = T o]

=

Text

k. Cancel Apply Help |

g

Y ou can choose the clock signal name from adropdown list of available input signals. Note that
any signals starting with clk or clock take precedence in thelist. For a Verilog view, you can
choose Rising or Falling representing posedge or negedge sensitivity. For aVHDL view, you

State Machine Editors User Manual, V2010.3 49
June, 2011

State Diagram Editor

Editing State Diagram Object Properties

can choose Rising, Falling, Rising Last, Falling Last, Rising Edge or Falling Edge. These
options generate the following VHDL expressions:

Rising ClkEVENT AND clk ="1'

Falling CclkEVENT AND clk ='0'

Rising Last clkEVENT AND clk ='1' AND clk'LAST_VALUE="0'
Falling Last CclkEVENT AND clk ='0" AND clk'LAST_VALUE ="1'
Rising Edge rising_edge(clk)

Falling Edge falling_edge(clk)

Tip: Note that the clock edge isindicated by arising or falling waveform on the clock

point icon.

Alternatively for either language, you can choose Specify to enter any other valid edge

condition.

Editing Reset Object Properties

The Resets page of the SM Object Properties dialog box allows you to specify a synchronous or
asynchronous mode reset and specify the reset signal.

Hla SM Object Properties - Rezet Points B3

E Clock

Mo @+P

Mumber of selected resets: 1

ResetModet = Synchrorous & Asynchronous

0K

Reset narne: IrSt j
Reset Level: I S pecified j
Pricrity: |-| ﬂ
Condition;
I!rst ::ll
Senzitivity:
I =
=
— Reset Actions
% Atomatic [use reset assignments from Signals Table]
= Specified [use instead of values fram Signals T able]
< Automnatic > ;I
[
Cancel Apply Help

e

Y ou can choose the reset signal name from adropdown list of available input or locally declared

signals. Note that any signals starting with rst or reset take precedence in the list.

50

State Machine Editors User Manual, V2010.3

June, 2011

State Diagram Editor
Editing State Diagram Object Properties

Y ou can specify whether the reset signal is active low, high or when a specified condition is
evaluated.

0 Tip: Note that the signal level and mode are indicated on the reset point icon.

If multiple resets with the same mode are defined on the diagram you also can set the reset
priority. However, asynchronous resets take priority over all synchronous resets.

Y ou can optionally specify reset actions. If set to <Automatic>, the reset actions are
automatically derived from the reset values specified in the signals status table. Refer to
“Signals Table” on page 127 for information about setting reset values in the signals status.

If you have specified a Verilog reset condition, you must also specify any additional signals
required in the sensitivity list. (Multiple signals should be separated by an OR operator.)

Editing Enable Object Properties

The Enable page of the SM Object Properties dialog box allows you to specify an enable signal
and set the enable signal level.

H[3 SM Obiject Properties - Enable Point | x|
. Enable narne: Ienal:ule j
-
= Enable Level: i =
& [, ISpeclfled J
\{:}} ¥ Place enable befare synchronous resets
& Conditian: ¥ Wizsible
=

enable = '0 -
-
k. Cancel Apply Help |
g

Y ou can choose the enable signal name from a dropdown list of available input signals. Note
that any signals starting with en or enable take precedence in the list.

The enable signal can be active low, high or when a specified condition is evaluated.

0 Tip: Note that the signal level and mode are indicated on the enable point icon.

State Machine Editors User Manual, V2010.3 51
June, 2011

State Diagram Editor
Editing State Diagram Object Properties

Y ou can also specify whether the enable should be placed before any synchronous reset signals
in the generated HDL.. When this option is set, the enable signal is used as a global common
condition which holds the state machinein its last state.

Editing State Object Properties

The States page of the SM Object Properties dialog box alows you to edit properties for a
selected state (or states).

H[} SM Dbject Properties - States
E Clock Murmber of selected states: 1
oo Fesets M ame: ||:Iearing_flags

State Type: |Simple State ﬂ Shape...

Cutgoing tranzitions for thiz state

Stuyle: f* |[F 1 CASE Settings...

[+ Implicit loopback

Exit Actions | [v Wisible

-

Enty Actionz | State Actions

[~
k. | Cancel Apply | Help |

The dialog box allows you to change the state name. The state name must be unique and can
only be applied to asingle selected state. If you change the name of a state, any linksto the state
or the recovery state specified in the generation properties are automatically updated if they
match the name of the state.

Y ou can change one or more selected states to be a simple state, hierarchical state or wait state
by choosing from a pulldown list of state types.

If you change ahierarchical stateto anon-hierarchical state, the child state diagram (if it exists)
and its contents are discarded. However, you can undo this change to recover the hierarchical
state and its child state diagram.

52 State Machine Editors User Manual, V2010.3
June, 2011

State Diagram Editor
Editing State Diagram Object Properties

If you change a simple state to a hierarchical state, any existing actions are transferred to a
default state in the child state diagram.

If asimple state is selected, the Shape button is available and you can change the state shape to
acircle, double-circle or elipse. This can be useful if you want to visually identify a state asfor
example, the reset state in the state machine or to enclose along state name within the state.

Note
If you change the shapeto an ellipseit isinitially drawn asacircular ellipse but can be re-

shaped by dragging the selection handles when the state is selected on the diagram.

If await state is selected, you can enter the number of clock cyclesto wait when the wait stateis
exited using the TIMEOUT condition. The number of clock cycles can be an integer with a
value of 2 or greater.

Alternatively, you can enter an expression defined using alocal variable, VHDL generic or
Verilog parameter. When an expression is entered, a Settings button is displayed which can be
used to display the Wait State Settings dialog box.

Refer to “Using Wait States’ on page 58 for more information about wait states.

If manual state encoding mode is enabled in the Encoding page of the State Machine Properties
dialog box, an Encoding entry field is disclosed which allows you to enter a binary or decimal
constant encoding or enumerated attribute on the state.

Refer to “ Setting State Encoding Properties’ on page 73 for information about setting state
encoding options.

Y ou can choose | F or CASE style for outgoing transitions leaving the selected simple states.

When CASE styleis selected, an additional field is available for you to specify the CASE
selector expression used by transitions leaving the state and a Settings button is available to set
additional decode options.

Refer to “ Decode Options for CASE Transitions’” on page 63 for information about decoding
CASE transitions.

Y ou can also specify whether implicit loopback is enabled. When implicit loopback is enabled,
afinal ELSE or default (when others) branch is automatically included in the generated HDL.

Y ou can add or edit actions defined on the state.
Y ou can aso choose whether the actions are visible or hidden on the diagram.

When you enter actions, the HDL syntax is automatically checked for the language of the
diagram you are using (VHDL or Verilog).

State Machine Editors User Manual, V2010.3 53
June, 2011

State Diagram Editor
Editing State Diagram Object Properties

Note

D Note that you must include a terminating semi-colon for each statement although line

breaks and indents can be used to improve legibility. State machine syntax checking can
be disabled by unsetting a preference.

Editing Transition Object Properties

The Transitions page of the SM Object Properties dialog box alows you to edit the properties
of aselected transition (or transitions).

Hla 5M Object Properties - Tranzitions
& Clock Mumber of selected tranzitions: 1
Do Resets IF Canditian
Be W todify W Wizible W Usze TIMEOUT pre-condition
L .
\Eu Trangitionz sigh="1 il
¢ [
= J
Prorty: [l :I I visible
|zer Properties
—Achans
W todify W Wisible
we="1" ;I
P
k. Cancel Apply Help
A

The dialog box allows you to change the IF condition or CASE branch expression and the
actions text for atransition.

Note

D Thetransition style (IF or CASE) is set as an object property of the outgoing state and this

determines whether you can enter an |IF condition or CASE branch expression in the
dialog box.

When any IF style transition is selected, you can enter a condition expression. For example:
sigA='0"in VHDL or ~sigAin Verilog.

If the origin of an IF transition is on await state, you can choose to enable asimple TIMEOUT
condition. If thisoption is set, the timeout pre-condition is appended to the specified regular

54 State Machine Editors User Manual, V2010.3

June, 2011

State Diagram Editor
Editing State Diagram Object Properties

condition (if specified). For example: TIMEOUT AND (sigA = '0") in VHDL or TIMEOUT & &
(~sigA) in Verilog.

Refer to “Using Wait States’ on page 58 for more information about wait states.

Y ou can also set priority for IF style transitions by specifying the transition priority for asingle
selected transition. Any other transitions connected to the same origin state are automatically
adjusted when you change a transition priority. Y ou can choose whether the priority isvisible
on the diagram using the adjacent check box.

Note
D If no priority isused for aVHDL IF style transition, simple IF..THEN..END decoding is

used instead of the default IF..THEN..ELSE decoding.

If more than onetransition is selected, you can use the Modify check box to choose whether the
condition is applied to all the selected transitions. A check box determines whether the
conditions are visible or hidden on the diagram.

When a CASE style transition is selected, you can enter a CA SE branch expression. For
example: “ 000" |” 100" .

Hla 5M Object Properties - Tranzitions
E Clock, Mumber of selected tranzitions: 1
Do Resets CASE Branch Expression
2
g W todify W Wisible
\EN Tranzitions 0007100 il
N [
= J
Qrder: |1 :I I~ visble
|zer Properties _ .
—Actionz
W todify W Wisible
we="1" ;I
P
k. Cancel Apply Help
A

Note that an empty CASE expression is generated as WHEN OTHERSin VHDL or asthe
default choice in Verilog.

Y ou can set the generation order for CASE style transitions by specifying the order for asingle
selected transition. Any other transitions connected to the same origin state are automatically

State Machine Editors User Manual, V2010.3 55
June, 2011

State Diagram Editor
Editing State Diagram Object Properties

adjusted when you change the generation order. Y ou can choose whether the order isvisible on
the diagram using the adjacent check box.

For VHDL, all CASE style transitions must be mutually exclusive and the transition order has
no effect on behavior. However for Verilog, CASE constructs may not be mutually exclusive
and the order is significant since the first match in the generated Verilog will be used.

Y ou can add or edit actions defined on an IF or CASE Style transition. Transition actions must
be entered using the correct HDL syntax for the language you are using (VHDL or Verilog)
including aterminating semi-colon for each statement. However, line breaks and indents can be
used to improve legibility on the diagram.

When more than one transition is selected, you can use the Modify check boxes to choose
whether the conditions and actions are applied to all the selected transitions. A Visible check
box selects whether the actions are displayed or hidden on the diagram.

Note
D When you enter an IF condition, CASE branch expression or actions text, the syntax is

automatically checked for the hardware description language of the active diagram.
However, state machine syntax checking can be disabled by unsetting a preference.

Editing Link Object Properties

The Links page in the SM Object Properties dialog box allows you to edit properties for a
selected link (or links).

H[} SM Dbject Properties - Links B3

= Mumber of selected links: 1

-

[1

& v Maodify

@ Link. target:

- S0 [
']

& The link target can refer bo a State, Hierarchical State or Junction within thiz

concurment state machine.

k. Cancel Apply Help

%

The link target should be changed to the name of a state, junction or hierarchical state that you
want to be the destination of the link. Note that the default target name for anew link can be set
by a preference.

56 State Machine Editors User Manual, V2010.3
June, 2011

State Diagram Editor
Editing State Diagram Object Properties

Setting the Recovery State

If the link is connected to arecovery state point, the drop down list for the link target in the
Links page of the SM Object Properties dialog box includes al the state namesin the active
state machine plus the special string <current_state>. Alternatively, you can enter an explicit
state value such as al X or al Z or any other expression.

Caution
D Thisfeature is supported to support state machines which allow state variable values that

are not explicitly decoded. However, the state variable must never be allowed to take
unknown values for simulation since the only assignments are made in finite state
machine code which has a defined set of values. The recovery behavior will either be
ignored for synthesis or the synthesis will produce excessive decoding circuitry to work
out if the state machineisin any of the many undecoded state values.

A recovery state can be set for If or Case style state machines but is not required for One-Hot
style.

The recovery state assignment is generated in the recovery branch (When Othersin VHDL or
the default branch in Verilog for CASE style and in the final Else for IF style) of the state
decode for the next_state process or always code.

If there are no assignments in the action text (for example just comments or non-assignment
action fragments such as assert or display statements) then these are inserted in the recovery
branch for the next_state process or always code.

Recovery actions are effectively state actions. If there are any recovery state actions and the
actionsinclude assignment statements then the actions are treated in the same way as any other
state actions with the appropriate code being placed in the clocked or output process as
necessary.

Note that the IF style applies to the next_state process or always code only, the state action
decoding aways uses CASE.

Note
D If no recovery state is set when you have set enumerated encoding in the Encoding page

of the State Machine Properties dialog box and also unset the Default State Assignment

generation option, awarning is issued and a default recovery state is automatically set.

Therecovery state applies only to state decoding. A "when others' condition can be specified by
using atransition with no condition to specify the default branch.

State Machine Editors User Manual, V2010.3 57
June, 2011

State Diagram Editor
Editing State Diagram Object Properties

Editing Junction Object Properties

The Junctions page in the SM Object Properties dialog box allows you to edit the properties of
a selected junction (or junctions).

HIaSM Object Properties - Junctions

Mumber of selected junctions: 1

M ame: |J1

Cukgoing tranzitions for thiz junction

Shle @ aND CIF (" CASE
) Junctors|

k. | Cancel Apply Help

The dialog box allows you to change the name of the selected junction which cannot be the
same as an existing junction or state on the diagram.

Y ou can choose IF, CASE or AND style for outgoing transitions leaving the selected junction.

When CASE styleis selected, an additional field is available for you to specify the CASE
selector expression used by transitions leaving the state and a Settings button is available to set
additiona decode options.

Refer to “ Decode Options for CASE Transitions’” on page 63 for information about decoding
CASE transitions.

When IF styleis selected a Settings button is available to set the if statement style used

Using Wait States

A wait state can be used to implement a multi-cycle wait in a synchronous state machine.

The number of clock cyclesto wait for is specified in the state object properties and is applied
when the TIMEOUT pre-condition is used for atransition exiting the wait state.

Note

D A wait state can have multiple exit transitions. If the TIMEOUT pre-condition is unset for
any of these transitions, the state may be exited viathis transition before the timeout has
expired.

The TIMEOUT pre-condition can be used on its own to implement asimple delay or if enabled
when aregular condition is entered, it is combined with the condition using alogical AND.

58 State Machine Editors User Manual, V2010.3
June, 2011

State Diagram Editor
Editing State Diagram Object Properties

A separate timeout signal is generated for each concurrent state machine using the form:

<concurrent _nmachi ne_nanme>_ti neout

Local counter signals which are used by all wait states in the concurrent state machines are
generated using the forms:

<concurrent _nmachi ne_nanme>_tiner
<concurrent _machi ne_nane>_next _ti mer

An entry flag is generated for each wait state using the form:

<concurrent _machi ne_nanme>_t o_<st at e_nanme>

For example, if the concurrent state machine is named csmz, the timeout, timer and next timer
signals would be csm2_timeout, csm2_timer and csm2_next_timer, and the entry flag for wait
state wsl would be csm2_to_wsl.

If all the wait statesin a concurrent state machine use integer wait values, the VHDL signal
types default to std_logic (or std_logic_vector) and have the width required for the largest wait
value. If any walit state has a parameterized (non-integer) value, the scalar type, vector type and
bounds of the timeout, counter and entry flag signals must be specified.

These settings can be specified in the VHDL Wait State Settings dialog box which is displayed
when you use the Wait State Wait State Settings button in the States page of the SM Object
Properties dialog box.

H} YHDL Wait State Settings B3

Mate: Theze zettings apply ta the whaole of thiz concurrent state machine.

Setup the preferred scalar and vector types for the local counter, entry-flag and
timeout zignalz uzed in the generated WHOL faor state machines that contain wait
statez with parametenzed [i.e. non integer] wait values.

Scalar type: Istd_h:ngil: [
Wechor lype: I std_logic_wectar j
Bounds(index): |2 IDDWNTDj |0
(] | Cancel Help I¢
State Machine Editors User Manual, V2010.3 59

June, 2011

State Diagram Editor
Editing State Diagram Object Properties

If you are using Verilog, the Verilog Wait State Settings dialog box allows you to specify the
width of the counter signal.

H[} Yerilog Wait State Settings B3

Mate: These settings apply to the whole of thiz concurent state machine.

Setup the width of the counter zsignal uzed in the generated Yerlog for state
machines that contain wait states with parametenized [i.e. non integer] wait
valies,

Counter gsignal width: [

(] | Cancel | Help Ié

The Wait State Settings dialog boxes can also be accessed from the Gener ation page of the
State Machine Properties dialog box or you can specify defaults by accessing them from the
Default Settings page of the State Machine Master Preferences dialog box.

VHDL Wait State Example
The following example shows a simple state diagram using VHDL Wait states:

a="1'

wait 3

waiting

TIMEOUT AND (b=117

TIMEOUT AND (=17

wait o

="'

counting

The wait state logic generated for this state machine is shown below:

wait_conmbo : PROCESS(FSM timer, FSMto waiting, FSM to_counting)
VARl ABLE FSM tenp_timeout : std_l ogic;

BEG N
I F (unsigned(FSM timer) = 0) THEN
FSMtenmp_timeout :="'1";
ELSE
FSMtenp tinmeout := '0";
60 State Machine Editors User Manual, V2010.3

June, 2011

State Diagram Editor
Editing State Diagram Object Properties

END | F;

IF (FSM_to_waiting = '1') THEN
FSM next _timer <= "010"; --no cycles(3)-1=2
ELSIF (FSMto_counting = "1') THEN
FSM next _timer <= "100"; --no cycles(5)-1=4
ELSE
IF (FSM_tenp_timeout = '1') THEN
FSM next _timer <= (others => '0");
ELSE
FSM next _timer <= unsigned(FSM tiner) - '1';
END | F;
END | F;

FSM timeout <= FSM tenp_tineout;

END PROCESS wait _conbo

The above example applies to a two-process or three-process FSM. The following example
shows the wait state logic generated for a single-process FSM:

wait _conbo : PROCESS(FSM tiner, FSMto waiting, FSMto counting)
VARl ABLE FSM tenp_tinmeout : std_l ogic;

BEG N
I F (unsigned(FSM timer) = 0) THEN
FSM tenmp_timeout :="'1";
ELSE
FSMtenp_ timeout :="'0";
END | F;
IF (FSMto waiting = '1') THEN
FSM next _timer <= "001"; --no cycles(3)-2=1
FSMtenmp_timeout :="'0;
ELSIF (FSMto _counting = '1') THEN
FSM next _timer <= "011"; --no cycles(5)-2=3
FSM tenmp_timeout :="'0";
ELSE
IF (FSMtenp_tinmeout = '1') THEN
FSM next _tinmer <= (others => '0");
ELSE
FSM next timer <= unsigned(FSMtiner) - '1';
END | F;
END | F;

FSM ti meout <= FSM tenp_tineout;
END PROCESS wai t _conbo

State Machine Editors User Manual, V2010.3 61

June, 2011

State Diagram Editor
Editing State Diagram Object Properties

Verilog Wait State Example

The following example shows a simple state diagram using Verilog Wait states:

TIMEQUT && (~h)

TIMEQUT && (~C)

The wait state logic generated for this state machine is shown below:

al ways @FSM timer or FSMto waiting or FSMto_counting)
begin
FSM timeout = (FSM tiner == 3'd0);
if (FSMto waiting == 1'bl) begin
FSM next _tinmer = 3 d2
end
else if (FSMto counting == 1'bl) begin
FSM next _timer = 3'd4;
end
el se begin
FSM next _timer = (FSM tinmeout)? 3'd0: (FSMtinmer - 3'dl);
end
end

The above example applies to a two-process or three-process FSM. The following example
shows the wait state logic generated for a single-process FSM:

al wvays @FSMtimer or FSMto waiting or FSMto_counting)
begin

FSM timeout = (FSM tiner == 3'd0);

if (FSMto_waiting == 1'bl) begin

FSM next _timer = 3'd2

end

else if (FSMto counting == 1'bl) begin

FSM next _timer = 3'd3;

FSM ti meout = 1'dO;

end

el se begin

FSM next _timer = (FSM timeout)? 3°d0: (FSM timer - 3'dl);
end

end

62

State Machine Editors User Manual, V2010.3
June, 2011

State Diagram Editor
Editing State Diagram Object Properties

Decode Options for CASE Transitions

A CASE styletransition typically produces afaster, parallel, multiplex-based circuit whereas an
IF style transition produces a serial, priority decoder-based circuit. Also, more efficient
decoding can often be achieved by concatenating together signals of similar type and decoding
the resulting concatenated variable rather than each signal individually.

Y ou can use CASE style transitions when the Case option is selected for the HDL stylein the
Generation page of the State Machine Properties dialog box which is described in “ Setting
State Diagram Generation Properties’ on page 68.

When CASE styleis selected in the States page of the SM Object Properties dialog box, you
can specify the CA SE selector expression used by transitions leaving the state. Y ou can then
enter expressions for each branch as object properties for the transitions leaving the state.

For example, the selector expression in a VHDL design might be siga(1 DOWNTO 0) & sigc
with branch expressions "101" and "011" | "111" on transitions leaving the state.

— Dutgoing tranzitions for thiz state

Shyle: T IF ' CASE Seftings... |

W Implicit loopback

—CASE Selector Expreszion
Context: CASE [<zelector_expreszion:] 15

Expression: Isiga[‘l DOWMNTO O] & sige W ‘isible

Y ou can choose whether the CASE selector expression is displayed or hidden on the diagram.
When visible, the selector expression is shown with the prefix CASE: under the state name on
the state diagram. This prefix must be included if you use direct text editing to edit the selector
expression.

Y ou can set additional decode options by using the Settings button on the States page of the
SM Object Properties dialog box.

State Machine Editors User Manual, V2010.3 63
June, 2011

State Diagram Editor
Editing State Diagram Object Properties

If you are using VHDL, the following CASE Settings dialog box allows you to specify a
selector expression variable:

H[} CASE Settings B3

— Selector Expression W ariable

A intermediate wariable iz required if the above zelectar
expreszion iz not locally static, e.g. if the expreszsion
containg concatenated zignals.

v Usze intermediate variable

M ame: = B tomatic

i+ Specify; I:-:mit_waiting_seleu:tu:ur

Type: Istd_lu:ugiu:_veu:tu:ur j
Constraint: @ |ndex Bange ¢ Mone
Bounds: 2 |DowNTD =] 0

k. I Cancel | Help |

%

An intermediate variable may be required if the expression is not locally static (for example, if
the expression contains concatenated signals).

Y ou can choose to hame the variable automatically or specify avariable name which must be a
VHDL identifier. If Automatic naming is set, the name is generated using the templ ate:
hds_selN where N is an integer.

A list of standard VHDL typesisavailablein apulldown list. The variable type should be
std_ulogic_vector if al the inputs are std_ulogic or std_ulogic_vector. It should be
std_logic_vector if al theinputs are scalar and of type std_logic.

Otherwise, it should be the same type as the input arrays. The bounds must be sufficient for the
size of the concatenated input expressions. Note that when scalar values are concatenated with
other scalar values or with array values, the result is always an array value.

If you are using Verilog, you can choose casex or casez instead of the default bit comparison
case style:

H[} CASE Settings B3
CASE Style
’7 & caze © casex O cases

¥ Insert Pragma: I.-".-" pragma parallel_caze ful_caze j

(] | Cancel | Help L
5

64 State Machine Editors User Manual, V2010.3
June, 2011

State Diagram Editor
Editing State Diagram Object Properties

Y ou can a'so choose to insert the following pragmas to specify full case or paralel case
statements:

full _case All possible branches have been specified, any missing
branches cannot occur and a default branch need not be
generated.
parallel_case Branches are mutually exclusive.
parallel_casefull_case All possible branches have been specified and are mutually
exclusive.
Note

Changes made in the CASE Settings dialog box are not applied to the diagram until you
confirm the Object Properties dialog box.

Example of VHDL CASE Decode

The following example shows a simple state machine in which the transitions from states sO and
s2 have been defined using CA SE selector expressions.

CEEER IR

ngAqn | g

The next state process generated for this state machine is shown below. Notice the use of
automatic selector expression variables (hds_sel0 and hds _sel1).

nextstate : PROCESS (current_state, sigA sigB, sigQC
VARI ABLE hds_sel 0 : std_logic_vector(1l DOANTO 0);
VARI ABLE hds_sel 1 : std_l ogic_vector (2 DOANTO 0);

BEG N
CASE current _state IS
WHEN s0 =>

hds_sel 0 := sigA & sigB,.
CASE hds_sel0 IS

WHEN " 10" =>
next _state <= s2;
WHEN "01" | "11" =>

next _state <= sl;
WHEN OTHERS =>
next _state <= sO0;

State Machine Editors User Manual, V2010.3 65
June, 2011

State Diagram Editor
Editing State Diagram Object Properties

END CASE;
WHEN s1 =>
next _state <= sO0;
WHEN s2 =>
hds_sel 1l := sigB & sigC(2 DOMNTO 1) ;
CASE hds_sell1 IS
WHEN "011" | "111" =>
next _state <= sO0;
WHEN " 101" =>
next _state <= sl;
WHEN OTHERS =>
next _state <= s2;
END CASE;
WHEN OTHERS =>
next _state <= sO0;
END CASE;
END PROCESS next st at e;

Example of Verilog CASE Decode

The following example shows a simple state machine in which the transitions from states sO and
s2 have been defined using CA SE selector expressions.

(3'd0 < sigh & sigh < 3'dd)

2'b0, 2'b11

(sigl == 3'd)

The next state code generated for this state machine is shown below. Notice how the CASE
statement is used to match true conditions by setting the selector expression for state s2 to 1'b1.

al ways @current_state or sigA or sigB or sigQ

begin
case (current_state)
sO:
case({sigA sigB})
2' bl0:
next _state = s2;
2' b0, 2' b11:
next _state = s1i,
def aul t:
next _state = sO;
endcase
sl:
66 State Machine Editors User Manual, V2010.3

June, 2011

State Diagram Editor
Setting State Machine Properties

next _state = sO;
S2:
case(1' bl)
(3'd0 < sigC && sigC < 3'd4):
next state = sO;
(sigC == 3'd4)
next _state = sl
def aul t:
next _state = s2
endcase
defaul t: begin
next _state = sO;
end
endcase
end

Setting State Machine Properties

Y ou can set state machine propertiesfor astate diagram by choosing State M achine Properties
from the Diagram or popup menu to display the State Machine Properties dialog box.

Hla State Machine Propetties ﬂ
m Concurrent Machine M ame: Iu:ntrl_clp

= Generation

‘o Advanced

----- Encoding

----- Staternent Blocks

EI Declaration Blocks

: L Pre/Post User Declarations
" Internal Signals

KX i

k. I Cancel Apply Help

7

The main page of the State Machine Properties dialog box allows you to edit the diagram name
of the active concurrent state machine.

Y ou can select additional pages and sub-pages from the left pane in the dialog box:

* The Generation page allows you to set basic properties for HDL generation. A separate
sub-page can be used to set Advanced generation properties.

» The Encoding page can be used to specify state machine encoding.

» The Statement Blocks page allows you to specify concurrent statements, state register
statements and global actions.

» The Declaration Blocks page allows you to specify architecture, module or process
declarations.

State Machine Editors User Manual, V2010.3 67
June, 2011

State Diagram Editor
Setting State Machine Properties

» Thelnterna Signas page allows you to set the prefix or suffix used for internal
registered or clocked signals.

The statements, declaration, global actions and signal status are displayed as text objects on the
diagram and the dialog can be opened directly by double-clicking over one of these objects.

The generation properties and state machine encoding information are not displayed on the state
diagram.

Setting State Diagram Generation Properties

Y ou can set the HDL generation properties for a state diagram in the Gener ation, Advanced
and Control pages of the State Machine Properties dialog box.

Note
D Note that separate generation properties can be specified for each diagram in a set of
concurrent state machines.

The Generation page alows you to choose a synchronous or asynchronous state machine, set
the HDL style, specify the number of Verilog always blocks or VHDL processes, set the state
encoding type to output encoded and choose whether to register state actions on the next state.

If you set the encoding type to output encoded you can no longer apply any other encoding
options on the encoding page of the state machine properties dialog. Also, on setting the output
encoded option, you can choose whether you wish to use local signalsin encoding or not.

Refer to “ Synchronous and Asynchronous State Machines’ on page 138 and “HDL Style” on
page 138 for more information about state machine types and coding styles.

68 State Machine Editors User Manual, V2010.3
June, 2011

State Diagram Editor

Setting State Machine Properties

When you are using Verilog, you can set the assignment type (mixed, blocking or non-blocking)
and choose full or parallel case pragmas. Y ou can also set the default state assignment option:

H[} state Machine Properties - Basic {rcy) x|

= State Machine
=W [cneration

Advanced

----- Encoding

----- Statement Blocks

El Declaration Blocks

: ‘o Pre/Post User Declarations

... Internal Signals

TS *

— Machine

% Sunchronous

[~ Output Encoded

" Aspnchronous Frop Delay: I
— Generation Style
1 Always Block L
2 Always Blocks " One-Hat
' 3 Always Blocks i Caze Cage j

I Usze Local signalz in encoding

[~ Register state actions on nest state

[T Default State Assignment

[~ Full/Parallel Caze Pragmas I.-".-" pragma full_case

Azsignment tope;

o]

i

I Maon Blocking

[Use blocking assighments in wait process

Cancel

Apply

-

| Help |

7

Refer to “Verilog Assignment Type” on page 145 and “Verilog Full/Parallel Case Pragmas’ on

page 145 for more information.

State Machine Editors User Manual, V2010.3

June, 2011

69

State Diagram Editor
Setting State Machine Properties

When you are using VHDL and you have selected the Case HDL style, you can aso set the
default state assignment as described in “VHDL Default State Assignment” on page 144.

HIaSI:atE Machine Properties - Basic {cntrl_op)

[l State Machine
(=8 Gcneration
e Advanced
- Encoding
- Statement Blocks
= Declaration Blacks

. Internal Signals

Lo PrefPost User Declarations

X
— Machine
* Sunchronous
" Asunchronous Frop Delay: I
— Eeneration Style
" 1 Process CF
% 2 Processes ! OneHaot
" 3Processes * Caze
[T Output Encoded
[T Wze Local signals in encoding
[Fegister state actionz on next state
[Default State Assignment
ITI Cancel | Apply Help
G

Advanced State Diagram Generation Properties

The Advanced page of the State Machine Properties dialog box allows you to set additional

generation options.

70

State Machine Editors User Manual, V2010.3

June, 2011

State Diagram Editor
Setting State Machine Properties

The following picture shows the Advanced page when you are using Verilog

HQStatE Machine Properties - Advanced (csm) il

= State kachine — State Signal Mames
= Generation Current State Mame: I
o i vanced
- Encoding Mext State Mame: I
- Statement Blocks
El Dieclaration Blocks ~ State Yariable
o Pre/Post User Declarations | ¢~ Agsign value to output port I j

‘o Internal Signalz

™ Instrument HOL for animation
¥ Generate intermupts az overndes

[T Add Feset Pragma

[T Use delay for current state assign: IU

“WWiait State Settings... |

4] | ol
| k. I Cancel | Apply | Help

These include options to specify alternative names for the reserved state signal names
current_state and next_state used for the state variable in the generated HDL..

Y ou can assign the state variabl e to the value of an output port selected from adropdown list of
the available ports. When you are using VHDL, you can choose to automatically generate atype
or you can specify a discrete type for the state variable.

Y ou can choose to instrument the HDL for animation. When this option is enabled, extracodeis
included in the generated HDL which provides activity information during state diagram
animation. The additional code is enclosed between trandation control pragmas which ensure
that it isignored by downstream synthesis tools.

Y ou can choose to generate the HDL for state diagram interrupts as overrides instead of as
exclusive if-then-el se statements. Refer to “ Generate Interrupts as Overrides’ on page 143 for
more information.

Y ou can optionally set pragmas (sync_set_reset _local or async_set_reset_local) which identify
the name of the currently specified synchronous or asynchronous reset signal. Make sure that
the“ATTRIBUTES’ package unit in the protected library “synopsys’ isincluded in the
package list for the generated code to compile successfully since these are Synopsys attributes
which are declared in the package synopsys. ATTRIBUTES (shipped with HDS).

Y ou can choose to use a specified delay for the current state assignment.

State Machine Editors User Manual, V2010.3 71
June, 2011

State Diagram Editor
Setting State Machine Properties

Y ou can also specify default wait state settings by using the Wait State Settings... | button
to display the Wait State Settings dialog box as described in “Using Wait States’ on page 58.

The following picture shows the Advanced page when you are using VHDL :

x
B S_tate tachine — State Signal Mames
= Generatian Current State Mame: I
B i dvanced
- Encading Mext State Name: I
----- Statemnent Blocks
= Declaration Blocks — State Variable

Lo PredPost User Declarations

: . % Auto Generate Type
o Internal Signalz

" Specify Type: I

™ Asgsign value to output pork: j

[~ Instrument HOL for animation
¥ Generate intermpts as overides

[T Add Reset Pragma

Wialt State Settings... |

KN i
k. I Cancel | Apply Help

Note

If you choose to assign the state variable to a specified output port value (in the Advanced page
of the SM Object Properties dialog box), and at the same time set the state encoding as Auto (in
the Encoding page), the following occurs on VHDL generation:

» The state encoding values will be represented in the generated code as constant
declarations, and the type of state variable(s) (the current and next state signals) will be
the same as the type of the output port (for example “std logic_vector”).

Thisis because eventually the state signal will be assigned to the value of the output
port, and hence they have to be compatiblein type.

» The state encoding will follow the encoding style you have defined in the Encoding
page. However, it should be noted that if you have the state encoding set as Auto without
specifying an attribute, then the encoding style will be assumed to be “ Sequential”.

72 State Machine Editors User Manual, V2010.3
June, 2011

State Diagram Editor
Setting State Machine Properties

Setting State Encoding Properties

Y ou can set state encoding in the HDL generated for a state diagram in the Encoding page of
the State Machine Properties dialog box.

Y ou can explicitly specify the state encoding or use an automatic scheme to select the required
VHDL attributes or Verilog pragmas. If you are using Verilog, you can also choose whether to
use the range in the declaration of the state encoding parameter. Y ou can also add verilog state
vector and syn_preserve pragmas (refer to “Verilog State Vector Pragmas’ on page 145) or
VHDL state vector and syn_preserve attributes.

For example, the following dialog box is displayed if you are using Verilog:

Hﬂﬁtate Machine Properties - Encoding {csm) EI

= State Machine — Scheme
- Generation " Specified
{ e Advanced
- ' Auto
----- Staternent Blocks | P
- Declaration Blocks
. Pre/Post User Declarations ISyn_encnding j
o |nbernal Signalz

[+ Parameter Declaration Bange
[+ &dd state vector pragma
[Add syn_preserve pragma
ol >
k. I Cancel | Apply | Help |

g

When a specified encoding scheme is selected for either language, the encoding values can be
entered by direct text editing on the state or by using the Encoding field in the States page of the
State Machine Object Properties dialog box as described in “ Editing State Object Properties’ on

page 52.

Refer to “ State Encoding” on page 146 for information about the HDL generated and the use of
VHDL attributes or Verilog pragmas and encoding algorithms in automatic or specified
encoding schemes.

Setting Statement Blocks

Y ou can edit concurrent statements, state register statements and global actionsin the
Statement Blocks page of the State Machine Properties dialog box.

State Machine Editors User Manual, V2010.3 73
June, 2011

State Diagram Editor
Setting State Machine Properties

Separate free-format entry boxes are provided for you to add or edit concurrent statements, state
register statements and pre- or post- global actions. The edited statements are added to the
diagram when you confirm the dialog box.

The syntax is automatically checked on entry for the hardware description language (Verilog or
VHDL) of the active diagram. However, state machine syntax checking can be disabled by
unsetting a state machine preference.

Y ou can also choose whether the statements are visible or hidden on the diagram (or on the top
level state diagram when you are editing a hierarchical state machine).

Hlaﬁl:ate Machine Properties - sStatement Blocks {cntrl_op) 5[
=1 State Machine Concurrent Statements: ™ ‘isible El
El Generation
: o Bdvaniced il
i Encoding
Statement Blocks LI .
&=l Declaration Blocks State Reqister Statements: ”
. Pre/Post User Declarations [Visible @
" Intemnal Signals]
— Global Actions I
Pre &ctiors: [wisible @
Post Actions: @

ak. I Cancel Apply | Help |

%

Concurrent statements are included in the generated HDL at the end of the VHDL architecture
or Verilog module and are applied to all diagramsin a set of concurrent state machines. These
statements are executed concurrently with all of the processes (or always blocks) in the state
machine and are typically used for datapath operations, special clocking or assigning individual
elements of the state vector to an output.

Note
D If you use an output signal in a concurrent statement, you may need to remove the default
value assigned to the signal in the signals status table.

State register statements are included in the generated HDL before the state decoding statements
in the clock process (or always code). These statements are inserted instead of the default

74 State Machine Editors User Manual, V2010.3
June, 2011

State Diagram Editor
Setting State Machine Properties

assignment to the next state and are typically used to determine when a counter should be
incremented or reset and whether to update the state.

Global actions can be used to assign complex actions that are executed on every clock or state
change. Note however, that you should use the signals status table to assign default values to
signals.

Pre Actions are included in the generated HDL just after any default values specified at the
beginning of the output process (combinatorial signals). Post Actions are included after the
clock condition in the clocked process (registered signals) and are executed before any
conditional actions.

State register statements and global actions can be specified separately for each diagram in a set
of concurrent state machines.

Note
D If your default text editor is set to DesignPad, a @l button is available which allows you

to edit the statement block in DesignPad. Y ou can aso edit the statements directly on the
diagram by clicking on the action to select the text and clicking again to edit the text.

Setting Declaration Blocks

Y ou can edit module declarations (when using Verilog) or architecture declarations and
process declarations (when using VHDL) in the Declar ation Blocks page of the State Machine
Properties dialog box.

The dialog box allows you to enter any valid HDL statements for the current hardware
description language in afree-format entry box. Signals, constants or variables can be declared
and comments, procedures, functions or type definitions can also be included.

Refer to “ Declaration Syntax” on page 24 for information about the syntax used for
declarations.

The syntax is checked on entry and the declarations are added as a text object on the state
diagram (or the top level state diagram when you are editing a hierarchical state machine) when
you confirm the dialog box.

State Machine Editors User Manual, V2010.3 75
June, 2011

State Diagram Editor
Setting State Machine Properties

If you are using Verilog, asingle entry box is provided for editing module declarations:

HBStatE Machine Properties - Declaration Blocks

[=]- State Machine
El Gereration
o hlvanced
----- Encoding
----- Staternent Blocks
El Declaration Blocks

Lo Internal Signalz

‘oo PredPaost User Declarations

*

X

Module Declarations: v “isible @
parameter NOUGHTS = 100; =]
k. I Cancel | Apply | Help |

ps

If you are using VHDL, the dialog box provides separate free-format entry boxes for you to add
or edit architecture declarations, clocked process declarations and output process declarations:

Hlaﬁl:ate Machine Properties - Declaration Blocks {cntrl_op)

[=]- State Machine
El Generation
: o Advanced
----- Encoding
----- Statement Blocks
El Declaration Blocks

‘o Internal Signalz

4|

‘oo PredPost User Declarations

i

X
Architecture Declarations: ™ “isible El
— Proceszs Declarations I
Clocked Process Declarations: [~ izible El
Dutput Procezs Declarations: El
k. I Cancel Apply | Help L
&

The module or architecture declarations are inserted at the beginning of the VHDL architecture
or Verilog module in the generated HDL in the order they arelisted and apply to all diagramsin
aset of concurrent state machines.

Architecture declarations or module declarations cannot be set when a state diagram is used to
define an embedded view in a block diagram or IBD view. However, any declarations required
by the embedded view can be set on the parent view.

The process declarations which are placed immediately before the BEGIN statement in the
generated VHDL for both the clocked and output processes. Separate process declarations can

be specified for each diagram in a set of concurrent state machines.

76

State Machine Editors User Manual, V2010.3

June, 2011

State Diagram Editor
Setting State Machine Properties

Y ou can choose whether the declarations are visible or hidden on the diagram.

[

Note
If your default text editor is set to DesignPad, a @ button is available which allows you

to edit the declaration block in DesignPad. Y ou can also edit the declarations directly on
the diagram by clicking to select the text and clicking again to edit the text.

Editing Pre/Post User Declarations

The Pre/Post User Declaration page of the State Machine Properties dialog box allows you to
add or edit pre/post user-defined declarations for a state machine view. Y ou can enter free-
format declarations before or after the signal and state type declarations.

Hla 5tate Machine Properties - Pre/Post User Declarations x|

— Uzer Declaration

Fre User Entered Declarations:
Theze declarations will be ingerted in the generated HDL before

El- S_tate M achine
EI Generation

L Advanced
Encoding
Staternent Blocks

EI [_fleclaraticun Blocks

B Pre/Post Uszer Declarations

Internal Signals

the automatically generated declarationz for zignals on the diagram.

=]
< o

Faozt Lzer Entered Declarations:
Theze declarations will be inserted in the generated HODL after
the automatically generated declarationz for zignals on the diagram.

-
1 F

Apply | Help

x|

Cancel

g

Pre user declarations can be referenced by signal declarations or by post user declarations. For
example, you could use a pre user declaration for a bus width constant which is referenced by a
graphically defined signal declaration.

Similarly apost user declaration can reference asignal declared in the graphically defined or pre
user declarations.

The syntax is automatically checked when you confirm the dialog box. However, syntax
checking can be disabled by unsetting a state machine preference.

State Machine Editors User Manual, V2010.3

June, 2011

77

State Diagram Editor
Setting State Machine Preferences

Setting State Diagram Internal Signal Names

Y ou can set the status for output or locally declared signalsin a state diagram using the “ Signals
Table” which is described in Chapter 4.

Y ou can set the prefixes and suffixes used to identify registered or clocked internal signalsin
the Internal Signals page of the SM Properties dialog box.

Hﬂﬁtate Machine Properties - Internal Signals {cntrl_op) El

El- S_tate k achine

Staterment Blocks

— Internal Signal Prefis £ Suffis

= Generation Affix bo be used az
| Advanced " Prefix (% Suffix
----- Encoding

Reqgiztersd Affis: it E.q. ¥_int

EI Declaratinn Blocksz
‘o Pre/Post User Declarations

Clocked Affis: cld E.q =_cid

|nternal Signals

The affis strings are added to the internal zignalz reprezenting
reqiztered and clocked signals as a Prefix or Suffis.

Cancel | Apply Help

7

Y ou can set preferences for the internal registered and clocked signal namesin the Default
Settings page of the State Machine Preferences dialog box.

Y ou can set preferences in the Header s tabs of the VHDL and Verilog Options dialog boxes to
include the generation properties and the contents of the signals status table as comment text in
the generated HDL. Refer to “ Setting View Headers” in the HDL Designer Series User Manual
for information about setting VHDL and Verilog header preferences.

Setting State Machine Preferences

Y ou can set state machine preferences by choosing State M achine from the M aster
Pr efer ences cascade of the Options menu in the design manager.

The State Machine Preferences dialog box has separate pages for General, Default Settings,
Object Visibility, Appear ance and Background preferences.

[

Note
The General, Default and Object Visibility settings take effect on the next state diagram

that you create and can only be edited when the dialog box is displayed from the M aster
Pr efer ences cascade in the design manager Options menu. These pages are not available
when you choose Diagram Preferencesin a graphic editor window.

78 State Machine Editors User Manual, V2010.3
June, 2011

State Diagram Editor

Setting State Machine Preferences

The General page allows you to set other state machine options:

These optionsinclude the default radius of states, hierarchical states and transition priorities, the

visibility of text objects, the transition style, syntax checking, the default save name for state

diagrams, whether to register state actions on the next state and the default transition decoding

style.

HIaSI:aI:E Diagram Master Preferences

General

Default Settings
Contral Signalz
WHDL “wfait States
Yerilog Wait States
Signal Statuz
Default Properties

Object Yigibility

Appearance

Backaround

General

Status radivz: EO00
Hierarchical state radius: 000

Tranzition priority padding: 100

Tranzition style: |Spline ﬂ
[+ Transition route points move when attached node moves

[Shirink state bubble b fit narme
[v Check syntax on entoy

Default zave name: fzrm

[Reqister state actions on nest state

Default tranzition decoding style: & IF CASE

ak | Cancel |

Help

State Machine Editors User Manual, V2010.3

June, 2011

79

State Diagram Editor
Setting State Machine Preferences

The Default Settings page allows you to set the default names for state diagram objects,
transition conditions, transitions actions and state actions:

"BStatE Diagram Master Preferences
General Default Settings
B [1efault Settings
Contral Signals State name: |$EI Transition condition:
WHDL W ait States condition

Yerilng Wait States Hier. stafe name: |SEI

Signal Status Junction Mame: | — _
Default Properties Transition actions:
Object Visibility Lirk. narme: |Link
Appearance
Background Concurrent ztate

rachine nane: ||:$m

State type suffi: |state_t_l,lpe State actions:

k. | Cancel Help

The Control Signals sub-page enables you to set the clock edge and clock condition, the reset
mode, reset level, and reset condition, as well as the enable level and enable condition.

HIaSI:aI:E Diagram Master Preferences
General Contral Sighnals
= Default Settings
Control Signals Clock,
WHDL wait States | Edger [piging ﬂ |
Yerilog Wait States
Signal Statuz Feseat
Default Properties | Mode: ' Synchronous % Asynchronous
Object Yigibility
Appearance e ||-':'W ﬂ |
Backaround
Enable
Lewvel: |L|:|w ﬂ |

[+ Place enable before synchronous reset

k. | Cancel Help

Separate VHDL Wait States and Verilog Wait States sub-pages can be used to set default
options for wait states.

80 State Machine Editors User Manual, V2010.3
June, 2011

State Diagram Editor
Setting State Machine Preferences

The following picture shows the VHDL sub-page:

Hlaﬁtal:e Diagram Master Preferences

General

Default Settings
Contral Signalz
WHDL “wfait States

Yerilog Wait States

Signal Statuz

Default Properties
Object Yigibility
Appearance
Backaround

WHOL Y ait States

Mate: Theze settings apply ta the whole of thiz concurrent state machine.

Setup the preferred scalar and vector types for the local counter, entry-flag and
timeout zignalz uzed in the generated WHOL faor state machines that contain wait
statez with parametenzed [i.e. non integer] wait values.

Scalar bope: ztd logic ﬂ
Wechar lype: | std_logic_wectar ﬂ
Bounds(lndesx]: |2 | DOWMTO ﬂ |':'

The VHDL sub-page allows you to set the default scalar and vector type of the local counter,

entry flag and timeout signals for a non-integer value wait state.

The following picture shows the Verilog sub-page which alows you to set the width of the

counter signal for await state with a non-integer value:

HIaSI:aI:E Diagram Master Preferences

General
= Default Settings
Contral Signalz
WHDL “wfait States

Werilog YW ait States

Mate: Theze settings apply ta the whole of thiz concurrent state machine.

Setup the width of the counter zignal used in the generated
Yerilog for state machines that contain wait states with parametenized

Yerilog

Signal Status [i.e. non integer] wait values.
Default Properties
Object Yigibility
Appearance Counter Signal width: [
Backaround

Cancel

o]

Help

Refer to “Using Wait States’ on page 58 for more information about wait states.

State Machine Editors User Manual, V2010.3
June, 2011

State Diagram Editor
Setting State Machine Preferences

A separate Signal Status Default Options sub-page allows you to set default options for signal

status.

Hlaﬁtal:e Diagram Master Preferences m
. Do [oesEmpmey]
=l Default Settings

- Control Signals Outout i :
put gignal default status:
- VHDL Wait States | COMBINATORIAL

- Verilog Wait States Local zignal default status: IELDEKED

L Lo

Signal Statuz . . .
= Reqistered zignal affis: i
- Default Properties . ? I‘mt
Object Wisibility Clocked signal affix I_.3|.;|

Appearance
----- Backaround

Gated clock signal affis I_gated

(] I Cancel | Help |

Y ou can also specify the default suffix or prefix used for registered, clocked and gated clock

signal names.

Y ou can use the Default Proper ties sub-page to define default user properties for state diagram

views:

HIaSI:aI:E Diagram Master Preferences E
. o premeeees]
=l Default Settings

----- Contral Signalz
o WHDL Wwait States

_____ Werilog Walt States Specify default properties in the table below

----- Signal Statuz

Default Properties Class Mame Walue

- Object Visibilty

----- Appearance
‘o Background

k. I Cancel | Help

Refer to the HDL Designer Series User Manual for information about “Using View Property

Variables’.

82 State Machine Editors User Manual, V2010.3

June, 2011

State Diagram Editor
Setting State Machine Preferences

The Object Visibility page alows you to set the default object visibility for multi-line text
objects on the diagram.

Hlaﬁtal:e Diagram Master Preferences
General Object Wigibility
= Default Settings
Contral Signals Architecture Declarations MWHDL)

WHDL 'wait States Compiler Directives [Werlog)
V?"":'Q Wit States Concurrent Statements
Signal Status Global Actions

Default Properties todule Declarations [Verlog)
Object Wisibility

Package List YHDL)
Process Declarations [WHOL)
Signal Statuz

State Reaister Statements

Appearance
Backaround

k. | Cancel Help

Refer to “Changing Text Visibility” in the Graphical Editors User Manual for more
information.

The Appear ance page allows you to set default visual attributes for individual state diagram
objects.

The attributes include the foreground and background colors, line color and style, fill style, line
width and the text font. Some attributes may not always be available. For example, line style,
width and color attributes are not available for atext object.

Refer to “ Setting Visua Attributes’ in the Graphical Editors User Manual for more
information.

This page can aso be edited by choosing Diagram Prefer ences from the Options menuin a
state diagram. When you edit preferences for the active diagram, the dialog box allows you to
choose whether the preferences are applied to new objects or to both new and existing objectsin
the state machine (including concurrent or hierarchical diagrams).

Y ou can save the appearance preferences set on the active diagram as master preferences by
choosing Update from Diagram in the Master Prefer ences cascade of the Options menu or
you can apply the master preferences to the active diagram by choosing Apply to New Objects
or Apply to New and Existing Objects.

State Machine Editors User Manual, V2010.3 83
June, 2011

State Diagram Editor
Setting State Machine Preferences

Hla State Machine Preferencesz - Untitled [cem] Ei

Appearance

- B ackground

Comment Box
Comment Text
Entry Paint

E =it Paint

Hier. State

Hier. State Mame
Interrupt Paint
Junction

Junction Label
Junction Mame
Lirk.

Link Marme

Fanel Box

Panel Text

Start State

Start State Actions
Start State Mame
State

State Actions

State Caze Selector
State Encoding
State Mame
Tranzition
Tranzition Actions
Tranzition Block.
Tranzition Block Line
T ran=itinn Condiinn

I

The master preferences can be accezsed from the Deszign Browser

— Caolar — Syl
Foreground I—j Fill Style Iij
B ackaround I—j Line Style I:j
Line Color -j Line Width I:j
— Font
Set...

Apply Chanoges to
% Mew Objects ¢~ Mew and E xisting Objects

Changez apply to objects in thiz diagram only

o |

Help |

Cancel |
o

The Background page allows you to control the diagram background color and grid attributes

used by the state diagram editor.

HIaSI:aI:E Diagram Master Preferences E

- General
=l Default Settings

----- Contral Signals -~ Gind

- WHDL Wait States | [~ Ghow Grid
- Werilog W ait States

----- Signal Statuz Color

: “o Diefault Properties
- Object Wisibility
- Appearance

Background

Digplay horizontal grid even

Dizplay vertical and ewvery

[Shap to Grid

|-| pirik
|-| pirik

— Diagram

B ackaground colar

I"-.-'v"hite = I

o]

Cancel | Help

)

Information about “ Setting Background Preferences’ is given in the Graphical Editors User

Manual.

84

State Machine Editors User Manual, V2010.3
June, 2011

Chapter 3
ASM Chart Editor

This chapter describes the algorithmic state machine (ASM) editor.

ASM Chart Notationo e 86
ASM Chart Toolbar. 88
ASM INitialization 89
Adding Objectsonan ASM Chart. i e 89
Adding an Interrupt POINt o 91
AddingaReset POINt 92
Adding aRecovery State Point. 93
Addingan Enable Point 93
Adding an ACtioON BOXottt 9
Adding aState BOX. . ..o it 95
Adding aLlink. 96
Adding aDeCiISION BOX.ttt 96
Adding aCase BoXot 97
Adding an If DeCOde BOX oot 98
Adding aFlow. 99
Hierarchical ASM Charts.o e 100
Editing ASM Object Properties. e e e e e 101
Editing Clock Object Properties.o 102
Editing Reset Object Properties e e 103
Editing Enable Object Properties 104
Editing State Object Properties. 104
Editing Action Box Object Properties e 105
Editing Decision Box Object Properties. 106
Editing Case Box Object Properties. 109
Editing If Decode Box Object Properties. 108
Editing Interrupt Object Properties. 111
Setting ASM Chart Properties. e e e e 112
Setting ASM Chart Generation Properties. 113
Setting State Encoding Properties. 115
Setting Statement BIOCKSo 116
Setting Declaration BIocks 118
Setting ASM Chart Internal Signal Names. i 120
Running Design RUIE CheCKSo e e 120
Setting ASM Chart Preferences. e e 121
State Machine Editors User Manual, V2010.3 85

June, 2011

ASM Chart Editor
ASM Chart Notation

ASM Chart Notation

The notation used for the graphical and text objects on an ASM chart is shown below:

Table 3-1. ASM Chart Notation

ASM Object

Description

olfE T [oEVENT AND clk="1'|

A clock point displays the clock signal name and clock
condition. There must be one clock point on the diagram.

enatve. ET>{zrnable =0

An enable point displays the enable signal name and enable
condition.

1t

E = AEmats -
et='m]

A reset point displays the reset signal name, actions, mode and
condition. It may have a priority if there are multiple reset
points with the same mode on the diagram. Each reset point
must be connected to a state box.

Aninterrupt point isan implicit connection to all states on the
diagram. It has an associated interrupt condition and may have
apriority if there are more than one interrupt points on the
diagram. Interrupts have priority over all other conditions.

A recovery state point can be connected to indicate the flow to
arecovery state.

An action box contains HDL statements which are executed
when the box is entered from a flow. There must be one input
flow and one output flow.

~F

i - A state box represents observabl e status that the ASM can

: bty _actions| | exhibit at a point in time. Encoding information is shown if

s0 state_actions;| | manual encoding is enabled and there may be associated entry,
7 < esdft_actions, state and exit actions.

A hierarchical action box represents a child ASVI chart
describing action logic. A hierarchical action box has no
associated state actions.

A hierarchical state box represents a child ASM chart
describing state transitions within a hierarchical ASM. A
hierarchical state box has no associated state actions.

A decision box represents if-then-el se statements and has two
outputs: A True flow which isfollowed when its condition is
satisfied or a False flow otherwise.

86

State Machine Editors User Manual, V2010.3
June, 2011

ASM Chart Editor
ASM Chart Notation

Table 3-1. ASM Chart Notation

ASM Object

Description

S link

A link represents a direct transition to the named state box.

A case box represents a CA SE statement and has one or more
outputs determined by the evaluation of a CASE expression.
When used for decoding action logic below a hierarchical
action box, each Case has an associated End Case object. Any
number of other objects can be included in the flow between
the Case and End Case.

An if decode box represents an | F statement and has one or
more outputs determined by the evaluation of a conditional
expression.

When used for decoding action logic below a hierarchical
action box, each If has an associated End If object. Any
number of other objects can be included in the flow between
the If and End If.

A start point isrequired on achild ASM chart below a
hierarchical action box or hierarchical state box. There can
only be one start point which is always named Sart.

A end point isrequired on achild ASM chart below a
hierarchical action box or hierarchical state box. There must
be at least one end point.

Pre and Post Global
Actions

A statement block listing global actions that are always
performed at the beginning of the output process for
combinatorial signals or after the clock for registered signals.

Concurrent Statements

A statement block listing concurrent statements that are
included in the generated HDL.

Architecture or Module

A list of user defined VHDL architecture declarations or

Process Declarations

Declarations Verilog module declarations.

Signals Status A table showing the signals status of output and locally
declared signals.

State Register Statements | A statement block listing statements which are included in the
generated HDL as state register statements.

Clocked and Output Separate lists of VHDL process declarations which are

included in the clocked and output processes.

The ¥ icon on ASM chart objects indicates ports where flows can be connected. An %7 icon
on adecision box, case box or if decode box indicates an implicit loopback flow.

State Machine Editors User Manual, V2010.3 87

June, 2011

ASM Chart Editor
ASM Chart Toolbar

ASM Chart Toolbar

The following commands are available from the ASM Tools toolbar in the ASM chart editor:

Table 3-2. ASM Chart Toolbar

u9)
[
-
—
o
>

Description

-
4

Select text or objects

ol
o
1

Select text only

Select objects only

Add or modify comment text

Pan the window

Add an interrupt point

Add areset point

Add arecovery state point

Add an enable point

Add an action box

Add a state box

Add a hierarchical action box

Add ahierarchical state box

Add a decision box

Add alink

Add a start point

Add an end point

Add a case box

Add an if decode box

Add acaseor if choice

Add aflow

BEEEE D EE = EE R

Add a panel

Refer to the HDL Designer Series User Manual for general information about toolbars and the
HDL Designer Series user interface.

Refer to the Graphical Editors User Manual for information about selecting objects, adding
comment text, panning the window, adding a panel and additional toolbars which are common
to the other graphic editors.

88

State Machine Editors User Manual, V2010.3
June, 2011

ASM Chart Editor
ASM Initialization

ASM Initialization

A new ASM chart isinitialized with a default clock point, reset point, recovery state point and
state box as shown below:

rst

@d Altormatic =

rSt:E

Clk E T eIKEVENT AND clik="1"

s0

W

The clock point is always shown unconnected although the clock signal is used for al state
transitionsin the ASM chart.

The reset point and recovery state point are connected by flows to the state box.
There must be asingle clock point on an ASM chart which cannot be deleted.

There can be only one recovery state point although it can be deleted if not required. If thereis
no flow connected to a recovery state point, the state box that is connected to the primary reset
isthe default recovery state.

Any number of reset points, state boxes or other objects can be added on the diagram.

Adding Objects on an ASM Chart

Y ou can add objects on an ASM chart using the Add menu or one of the buttons in the ASM
Chart Tools toolbar.

Some objects can aso be added using a shortcut key. Refer to the Quick Reference Index,
which can be accessed from the Help and Manuals tab of the HDS InfoHub, for alist of
supported Graphical Editor Shortcut Keys. To open the InfoHub, select Help and Manuals
from the Help menu.

The cursor changesto across-hair which alows you to add the object by clicking at the required
location on the diagram.

State Machine Editors User Manual, V2010.3 89
June, 2011

ASM Chart Editor
Adding Objects on an ASM Chart

When you add any object (except an interrupt point, reset point, recovery state point or start
point), aflow is automatically connected to the nearest unconnected port on an existing object.
The ghosting shows which port the object will connect to. If there are several available ports,
the ghost flow snaps between them as you move the cursor.

I:-antry_actiuns;
s0 -gtate_actions;
S 4 exit_sctions,

.....................

This automatic connection mode can be set or unset by choosing AutoConnect from the
Diagram menu. The current setting is saved as a preference.

After adding an object, the command normally repesats until you use the Esc key (or Right
mouse button) to terminate the command. However, you can set a preference for the command
to remain active or activate only once and you can toggle this mode for the current command by
using the Ctrl key.

If you move the cursor over an existing flow while you are adding an object, the cursor changes
to =+ and the object isinserted into the flow between the existing objects.

The following example shows a decision box being inserted into the flow between a state box
and an action box:

l}antry_au:tiu:uns;

s0 -gtate_actions; |- - -

4 exit_sctions,
<. R = >
R ¥
aCtIEII'IS,

If the new object istoo close to the object above it, it will automatically snap to apositionin
free space below the object. Any existing objects bel ow the new object are automatically moved
down to make space.

90 State Machine Editors User Manual, V2010.3
June, 2011

ASM Chart Editor
Adding Objects on an ASM Chart

This automatic insertion mode can be set or unset by choosing Autol nsert from the Diagram
menu. The current setting is saved as a preference.

Note
D Automatic insert mode works only for vertical downward flows.

If an object isresized so that it overlaps the next object in aflow, the next object is
automatically moved down to make space.

Adding an Interrupt Point

Y ou can add an interrupt point to an ASM chart using the \II button or by choosing I nterrupt
Point from the Add menu.

Y ou can change the interrupt condition or priority by clicking to select the text and clicking
again to edit the text in-line. The condition syntax is automatically checked for the current
hardware description language.

Alternatively, you can double-click on the interrupt point, use the button or choose Obj ect
Properties from the Edit menu, to display the I nterrupts page in the ASM Object Properties
dialog box as described in “Editing Interrupt Object Properties’ on page 111.

A transition from an Interrupt point isaglobal interrupt which appliesto the whole diagram and
has priority over all other transitions.

Where more than one interrupt is defined on the same diagram, their evaluation order is
determined by the priority.

intrpt = '0° AND msk = "1 I : |ir'|trpt ="' AMD msk = "1

Note
D Interrupt points can only be added on the top level diagram of a hierarchical ASM chart.

State Machine Editors User Manual, V2010.3 91
June, 2011

ASM Chart Editor
Adding Objects on an ASM Chart

Adding a Reset Point

Y ou can add areset point to an ASM chart using the button or by choosing Reset Point
from the Add menu.

Note
Reset points can only be added on the top level diagram of a hierarchical ASM chart and

must be connected (directly or using alink) to a state box.

Y ou can change the reset signal name, condition or priority by clicking to select the text and
clicking again to edit the text in-line. The condition syntax is automatically checked for the

current hardware description language.

Alternatively, you can double-click on the reset point, use the |Er| button or choose Obj ect
Propertiesfrom the Edit menu, to display the Resets pagein the ASM Object Propertiesdiaog
box as described in “Editing Reset Object Properties’ on page 103.

Y ou can change the reset mode in the dialog box or by choosing Synchronous or
Asynchronous from the Reset M ode cascade in the popup menu.

Where more than one reset with the same mode is defined on the diagram, their evaluation order
is determined by the priority. However asynchronous resets take priority over all synchronous
resets. For example, the following picture shows two asynchronous resets (rst and rstl) and two

synchronous resets (rst2 and rst2):

Crst o reMc o cretdc ot reta

< Altormatic = -« Altomatic = - -« Altomatic = -« Altormatic =

st =0 |

0 Tip: Note that the reset signal level and mode are indicated on the reset point icon.

The reset actions are automatically derived by default from the reset signal status but can be
edited directly when specified actions are set in the Object Properties dialog box. The actions
syntax is automatically checked for the current hardware description language on entry.

92 State Machine Editors User Manual, V2010.3
June, 2011

ASM Chart Editor
Adding Objects on an ASM Chart

Adding a Recovery State Point

Y ou can add arecovery state point to an ASM chart using the button or by choosing
Recovery State Point from the Add menu.

Note

D There can only be one recovery state point and this command is not availableif a
recovery state point already exists on the diagram. A recovery state point can only be
added on the top level diagram of ahierarchical ASM chart.

The recovery state point should be connected by aflow to the state box to be entered when no
other valid state is recognized in the next state process or always code. The flow can optionally
include an action box defining recovery actions.

If there is no recovery state point, the recovery state is the state box connected to the highest
priority reset stete.

Adding an Enable Point

Y ou can add an enable point to an ASM chart using the button or by choosing Enable
Point from the Add menu.

Note
_Iﬁ There can only be one enable point and this command is not available if an enable point

already existson the diagram. An enable point can only be added on the top level diagram
of ahierarchical ASM chart.

The enable signal and condition appliesto the entire ASM chart and does not connect to any
other objects on the diagram.

Y ou can change the enable signal name by clicking to select the signal name and clicking again
to edit the text in-line.

State Machine Editors User Manual, V2010.3 93
June, 2011

ASM Chart Editor
Adding Objects on an ASM Chart

Alternatively, you can double-click on the enable point, use the |Er'| button or choose Obj ect
Properties from the Edit menu, to display the Enable page in the ASM Object Properties
dialog box as described in *Editing Enable Object Properties’ on page 104.

Adding an Action Box

Y ou can add an action box to an ASM chart using the button or by choosing Action Box
from the Add menu.

z_cld =="1",
je="1t

Y ou can add a hierarchical action box to an ASM chart using the \EI button,Shift+F2 shortcut
key or by choosing Hierar chical Action Box from the Add menu.

Y ou can change the enclosed actions (or the name of a hierarchical action box) by clicking to
select the text and clicking again to edit the text in-line. The actions syntax is automatically
checked for the current hardware description language.

Note
Note that an action box on an ASM chart is automatically resized to contain the enclosed

actions or hierarchical action box name.

Alternatively, you can double-click on the action box, use the button or choose Object
Properties from the Edit menu, to display the Action Boxes page in the ASM Object
Properties dialog box as described in “Editing Action Box Object Properties” on page 105.

If you do not change the name of a hierarchical action box, each new hierarchical action box is
given a unique name by adding an integer to the default name (for example, ha0, hal, ha2..).

Complex actions can be described graphically using multiple action boxes, decision, case and if
decode boxes. These can be on the same diagram or are typically grouped together in a
hierarchical ASM chart below a hierarchical action box. A child ASM chart below a
hierarchical action box always describes action logic and cannot contain state boxes.

94 State Machine Editors User Manual, V2010.3
June, 2011

ASM Chart Editor
Adding Objects on an ASM Chart

Child diagrams are saved as part of the parent ASM chart and are named after their parent
hierarchical action box. However, only the hierarchical ASM charts below state boxes are
displayed in the design explorer.

Adding a State Box

Y ou can add an state box to an ASM chart using the button, F3 shortcut key or by choosing
State Box from the Add menu.

rentry_actions; |
s0 - gtate_actions; |- -

Aexit_actions;

You can add a hierarchical state box to an ASM chart using the button,Shift+F3 shortcut
key or by choosing Hierar chical State Box from the Add menu.

Y ou can change the name of the state box and the entry, state or exit actions for a non-
hierarchical state box by clicking to select the text and clicking again to edit the text in-line. The
actions syntax is automatically checked for the current hardware description language.

Note
D Note that a state box or state actions text box is automatically resized to contain the

enclosed name or actions. The default entry, state and exit actions specified in your
preferences are displayed but can be edited or deleted if not required.

Alternatively, you can double-click on the state box, use the button or choose Obj ect
Propertiesfrom the Edit menu, to display the States page in the ASM Object Properties dialog
box as described in “Editing State Object Properties” on page 104.

If you do not change the name of a state box or hierarchical state box, each new state box is
given a unique name by adding an integer to the default name (for example, 0, s1, s2.. or hs0,
hsl, hs2..).

If manual state encoding isenabled in the Encoding page of the ASM Properties dialog box, the
default value <encoding> is written below the state name. This value can be edited by direct
text editing or by using the States page of the ASM Object Properties dialog box.

State Machine Editors User Manual, V2010.3 95
June, 2011

ASM Chart Editor
Adding Objects on an ASM Chart

Child diagrams are saved as part of the parent ASM chart and are named after their parent
hierarchical state box. These hierarchical ASM charts are displayed in the design explorer.

Adding a Link

A link can be used as a connector to a state box with the specified name on the same diagram (or
another diagram in the same hierarchical ASM).

You can add alink to an ASM chart using the [=] button, Shift+F5 shortcut key or by choosing
Link from the Add menu.

S link

If there is only one existing state box on the diagram the link target defaults to that state. Y ou
can change the link target by clicking to select the text and clicking again to edit the text in-line.

Adding a Decision Box

A decision box can be used decode the next state (when the true and fal se flows end on different
states) or for action logic (when both branches end on the same state).

Y ou can add a decision box to an ASM chart using the button, F4 shortcut key or by
choosing Decision Box from the Add menu.

Y ou can change the condition by clicking to select the text and clicking again to edit the text in-
line. The decision box is automatically resized to contain the enclosed condition. The syntax is
automatically checked for the current hardware description language.

Note

D An unconnected False port (shown by an unfilled %7 icon) is assumed to be an implicit
loopback connection to the input flow for the previous state. However, you cannot have a
loopback flow in an ASM chart used for decoding action logic below ahierarchical action
box and both flows must be connected.

Alternatively, you can double-click on the decision box, use the button or choose Obj ect
Properties from the Edit menu, to display the Decision Boxes page in the ASM Object
Properties dialog box as described in “Editing Decision Box Object Properties” on page 106.

96 State Machine Editors User Manual, V2010.3
June, 2011

ASM Chart Editor
Adding Objects on an ASM Chart

Y ou can move the True and False ports from a decision box to an alternative vertex by dragging
them with the L eft mouse button or by choosing Swap True and False from the Diagram or
popup menu when a decision box is selected.

Any number of decision boxes can be nested to support If...Then...Elselogic. However, multiple
conditions can also be implemented by using an if decode box box as described in “ Adding an If
Decode Box” on page 98.

Adding a Case Box

A case box can be used decode the next state (when the branches end on different states) or for
action logic (when al branches end on the same state).

Y ou can add a case box to an ASM chart using the button, Shift+F4 shortcut key or by
choosing Case Box from the Add menu.

The start case box is added at the cursor location and an associated end case object with the
same name is automatically added vertically below.

Cans
BIPMEEE 0N

ugluel - - - - - - - . .. @qmug‘] \-"rmHEE.g .

Any combination of other ASM chart objects (including other case boxes) can be added
between the start and end case objects.

The end case is not required for state decoding and can be hidden by choosing Hide from the
popup menu. However, the end case is required to determine the end points for all possible
branches when used for action logic. The end case can be displayed by choosing Show End
Case from the popup menu for the start case box.

Y ou can add additional ports to the case box by using the button or F6 shortcut key or by
choosing Port from the Add menu or Add Port from the popup menu when the case box is
selected or smply by adding flows with their origin over the start case object.

Y ou can delete aport on acase box by using the Del key or by choosing Delete from the Edit or
popup menu while the port is selected.

State Machine Editors User Manual, V2010.3 97
June, 2011

ASM Chart Editor
Adding Objects on an ASM Chart

Note
D An unconnected OTHERS port (VHDL) or default port (Verilog) shown by an unfilled =7

icon is assumed to be an implicit loopback connection to the input flow for the previous
state. However, you cannot have a loopback flow in an ASM chart used for decoding
action logic below a hierarchical action box.

Y ou can change the condition expression or port values by clicking on the expression or value
to select the text and clicking again to edit the text. The syntax is automatically checked for the
current hardware description language.

Alternatively, you can double-click on the case box, use the button or choose Object
Properties from the Edit menu, to display the Case Boxes page in the ASM Object Properties
dialog box as described in “Editing Case Box Object Properties” on page 109.

The expression is normally placed inside the start case object but can be moved independently
away from (or into) the object. If you want to contain the whole of the expression inside the case
box or add ports, it may be necessary to resize the object.

Adding an If Decode Box

A if decode box can be used in asimilar way to a case box to decode the next state (when the
branches end on different states) or for action logic (when all branches end on the same state).
Theif decode box is equivalent to nesting multiple decision boxes with much less clutter on the
diagram.

Y ou can add an if decode box to an ASM chart using the button, Ctrl+F4 shortcut key or by
choosing If Decode Box from the Add menu.

The start if decode box is added at the cursor location and an associated end if object with the
same name is automatically added vertically below.

Any combination of other ASM chart objects (including other decode boxes) can be added
between the start and end if objects.

98 State Machine Editors User Manual, V2010.3
June, 2011

ASM Chart Editor
Adding Objects on an ASM Chart

The end if isnot required for state decoding and can be hidden by choosing Hide from the
popup menu. However, the end case is required to determine the end points for all possible
branches when used for action logic. The end if can be displayed by choosing Show End I f
from the popup menu for the start if decode box.

Y ou can add additional portsto theif decode box by using the button or F6 shortcut key or
by choosing Port from the Add menu or Add Port from the popup menu when the case box is
selected or simply by adding flows with their origin over the start if decode object.

Y ou can delete a port on an if decode box by using the Del key or by choosing Delete from the
Edit or popup menu while the port is selected. However, an if decode box must have a
minimum of three output condition ports.

An unconnected else port (shown by an unfilled %7 icon) isassumed to be an implicit loopback
connection to the input flow for the previous state. However, you cannot have aloopback flow
inan ASM chart used for decoding action logic below a hierarchical action box.

Y ou can change the port expressions by clicking on the expression to select the text and clicking
again to edit the text. The syntax is automatically checked for the current hardware description
language.

Alternatively, you can double-click on the if decode box, use the button or choose Obj ect
Properties from the Edit menu, to display the I f Decode Boxes page in the ASM Object
Properties dialog box as described in “Editing If Decode Box Object Properties’ on page 108.

Adding a Flow

You can add aflow to a ASM chart using the button or F7 shortcut key or by choosing
Flow from the Add menu.

The cursor changes to a cross-hair which allows you to add a flow by clicking the L eft mouse
button with the cursor over a source and destination plus any number of route points.

Flows can only be connected between the connect ports shown by % on each ASM chart
object. However, you can move the True and False flows from a decision box to an alternative
vertex.

Note
Y ou can dynamically create a port on a case box or an if decode box by adding a flow

with its origin over the start case or start if object.

A flow cannot originate on another flow but can be terminated on a flow (creating aflow join).

Note that if you delete an object (such as an action box) which has one input flow and one
output flow, aflow is automatically connected between the objects immediately above and
below the deleted object.

State Machine Editors User Manual, V2010.3 99
June, 2011

ASM Chart Editor
Adding Objects on an ASM Chart

Hierarchical ASM Charts

Y ou can open down to create a child hierarchical ASM chart by selecting a hierarchical state
box or ahierarchical action box and double-clicking or Open Down from the Open cascade of
the File menu (or popup menu).

Y ou can open down by double-clicking on ahierarchical state box or by choosing Open Down
from the Open cascade of the File menu (or popup menu).

The child diagram is opened in the existing window. A new child ASM chart comprises a start
point, asingle state box or action box and an end point connected by flows.

Y ou can edit a hierarchical diagram in the same way as any other ASM chart including action
boxes, decision boxes, case box and if decode boxes. However a state box or link can only be
added in the hierarchical diagram below a state box. Named links can be used to access any
state box with the specified namein the hierarchical ASM chart.

Y ou can choose Open Up from the File menu or select the name of the parent diagram in the
diagram browser to open the parent of the currently active ASM chart.

Child diagrams are saved as part of the parent ASM chart and named after the parent
hierarchical state box or hierarchical action box by adding its name to the ASM chart name.

For example, the following child ASM chart is created when you open down from ahierarchical
state box named rcv_cntrl in the ASM chart named receive_transmit:

Hla SCRATCH_LIB/Control/azm [receive_transmit/recy_cntrl] = [ASH]

File Edit “iew HDL Diagram Tasks Add Options “Window OLE Help

I:-antr!.r_a-::ti-:-ns;

-gtate_actions;[- - - - - - . o o o

+exit_actions;

100 State Machine Editors User Manual, V2010.3
June, 2011

ASM Chart Editor
Editing ASM Object Properties

Adding a Start Point

An start point is automatically created when you create a child ASM chart (by opening down
from its parent hierarchical state box or hierarchical action box). Only one start point is alowed
on adiagram athough it can be deleted.

Y ou can add an start point to achild ASM chart using the [#8] button or Shift+F8 shortcut key
or by choosing Start Point from the Add menu.

Adding an End Point

An end point is automatically created when you create a child ASM chart by opening down
from its parent hierarchical state or hierarchical action box but adding multiple entry points can
help reduce diagram complexity.

Y ou can add end pointsto achild ASM chart using the EI button or F8 shortcut keys or by
choosing End Point from the Add menu.

Each exit point connects to the parent hierarchical state box or action box but you can also exit
from a child diagram below a hierarchical state box using named links that connect to the
specified state at any level in the hierarchical ASM chart.

Editing ASM Object Properties

Y ou can edit many object properties (including condition expressions and actions) directly on
the diagram by clicking to select the text and clicking again to edit the text object.

An expression builder dialog box is automatically displayed when you begin to enter a
condition expression or action statement. Refer to “Building aHDL Expression” on page 16 for
more information about the expression builder.

The HDL syntax for expressions and actions is automatically checked for the language of the
diagram you are using (VHDL or Verilog) although the syntax checking can be disabled by
unsetting a preference.

Note
D Note that you must include a terminating semi-colon after action statements although line

breaks and indents can be used to improve legibility.

Y ou can also edit the properties for an object on an ASM chart by double-clicking on an object,
using the button or by choosing Object Properties from the Edit menu or popup menu to
display an Object Properties dialog box.

The dialog box has separate pages for Clock, Resets, Enable, States, Action Boxes, Decision
Boxes, If Decode Boxes, Case Boxes, Interrupts and Text objects.

State Machine Editors User Manual, V2010.3 101
June, 2011

ASM Chart Editor
Editing ASM Object Properties

The editable objects are shown in the left pane of the dialog box. Objects which exist in the
current selection set are highlighted in yellow. Objects that are not available in the current
selection are shown in dimmed font.

Editing Clock Object Properties

The Clock page of the ASM Object Properties dialog box allows you to specify the clock signal
and set the clock edge sensitivity.

HBASM Object Properties - Clock Point E3
B> m Clack narne: |,3|k j
Q Reszets
2= Enable Clock Edge: IHising =]
* States [Eamdition;
Action Boxes ckEVENT AND clk ="1']
< Decizion Boxes
3 |f Decods Boxes
{3 Case Bowes
¥ Intenmupts
Text
(] Cancel Apply Help |
g

Y ou can choose the clock signal name from adropdown list of available input signals. Note that
any signals starting with clk or clock take precedence in thelist. For a Verilog view, you can
choose Rising or Falling representing posedge or negedge sensitivity. For aVHDL view, you
can choose Rising, Falling, Rising Last, Falling Last, Rising Edge or Falling Edge. These
options generate the following VHDL expressions:

Rising clkEVENT AND clk ="1'

Falling clkEVENT AND clk ='0'

Rising Last clkkEVENT AND clk ='1' AND clk'LAST_VALUE="0'
Falling Last clkEVENT AND clk ='0' AND clk'LAST_VALUE="1'
Rising Edge rising_edge(clk)

Falling Edge falling_edge(clk)

Tip: Note that the clock edgeisindicated by arising or falling waveform on the clock
point icon.

Alternatively for either language, you can choose Specify to enter any other valid edge
condition.

102 State Machine Editors User Manual, V2010.3
June, 2011

ASM Chart Editor
Editing ASM Object Properties

Editing Reset Object Properties

The Resets page of the ASM Object Properties dialog box allows you to specify a synchronous
or asynchronous mode reset and specify the reset signal.

HBASM Object Properties - Reset Points E

E Clock

g

== Enable

Bl States

Action Boxes
< Decizion Boxes
{1 If Decode Boses
[¥1 Caze Bowes

¥ Intenmupts

Tent

Mumber of selected resets: 1

Reset Mode: ¢ Synchronous @ Asynchronous

0K

Reset narne: IrSt j
Reset Level: I S pecified j
Pricrity: |-| ﬂ
Condition;
I!rst ::ll
Sensitivity:
I =
=

— Reset Actions

% Atomatic [use reset assignments from Signals Table]

= Specified [use instead of values fram Signals T able]

< Automnatic > -

[
Cancel Apply Help

Y ou can choose the reset signal name from a dropdown list of available input signals. Note that
any signals starting with rst or reset take precedence in the list.

Y ou can specify whether the reset signal is active low, high or when a specified condition is

evaluated. If multiple resets with the same mode are defined on the diagram you al so can set the
reset priority. However, asynchronous resets take priority over all synchronous resets.

Y ou can optionally specify reset actions. If set to <Automatic>, the reset actions are

automatically derived from the reset values specified in the signalstable. Refer to “ Signals
Table” on page 127 for information about setting reset values in the signals status.

If you have specified a Verilog reset condition, you must also specify any additional signals
required in the sensitivity list. (Multiple signals should be separated by an OR operator.)

State Machine Editors User Manual, V2010.3

June, 2011

103

ASM Chart Editor
Editing ASM Object Properties

Editing Enable Object Properties

The Enable page of the ASM Object Properties dialog box allows you to specify an enable
signal and set the enable signal level.

HBASM Object Properties - Enable Point E3

= Clock Enable name: Ienal:ule j
U Ressts

= Enable Enable Level | pecified =]
Bl States

Action Boxes ¥ Place enable before synchronous resets

< Decizion Boxes

Condition:
¢ If Decode Boxes

lenable ;I
(%1 Caze Boxes
¥ Intenmupts
Text

(] Cancel Apply Help |
%

Y ou can choose the enable signal name from a dropdown list of available input signals. Note
that any signals starting with en or enable take precedence in the list.

The enable signal can be active low, high or when a specified condition is evaluated.
Y ou can also specify whether the enable should be placed before any synchronous reset signals
in the generated HDL..

Editing State Object Properties

The States page of the ASM Object Properties dialog box allows you to specify the properties
for the selected state box (or state boxes).

The state name must be unique and can only be applied to a single selected state.

Y ou can change one or more selected states to be a simple state or hierarchical state by
choosing from a pulldown list of state types.

If you change a hierarchical state to a non-hierarchical state, the child ASM chart (if it exists)
and its contents are discarded. However, you can undo this change to recover the hierarchical
state and its child ASM chart. If you change a simple state box to a hierarchical state, any
existing actions are transferred to a default state box in the child ASM chart.

104 State Machine Editors User Manual, V2010.3
June, 2011

ASM Chart Editor
Editing ASM Object Properties

If manual state encoding mode is enabled in the Encoding page of the ASM Properties dialog
box, an Encoding entry field is disclosed which allows you to enter abinary or decimal constant
encoding or enumerated attribute on the state box.

Refer to “ Setting ASM Chart Generation Properties’ on page 113 for information about setting
state encoding options.

H[} ASM Object Properties - States

mEr Clock Mumber of selected states: 1

State name: |$EI

Bl States state bypel simple State |

Erncoding: |<enu:u:u:|ing>

Entry Actions | State Actions | Exit Actions

[Perform entry actionz via implicit loopback,

we="T" J

[~
k. | Cancel Apply | Help |

Y ou can add or edit entry, state and exit actions defined in the state box. Entry actions are
performed on all incoming transitions. However, you can choose whether the entry actions are
performed on implicit loopback transitions. Exit actions are performed on all outgoing
transitions except implicit loopbacks but are performed for explicit |oopbacks (when the
loopback connection is made by aflow on the diagram).

If more than one state box is selected, the actionsin the dialog box are applied to all the selected

state boxes.

Editing Action Box Object Properties

The Action Boxes page of the ASM Object Properties dialog box allows you to specify the
name for a hierarchical action box or the action statements for a non-hierarchical action box.

The name must be unique and can only be applied to a single selected hierarchical action box.
However, the actions are applied to all selected action boxes.

Y ou can also change the action box hierarchy. If you change a hierarchical action box to a non-
hierarchical action box, the child ASM chart (if it exists) and its contents are discarded.

State Machine Editors User Manual, V2010.3 105
June, 2011

ASM Chart Editor

Editing ASM Object Properties

However, you can undo this change to recover the hierarchical action box and its child ASM

chart.

HBASM Object Properties - Action Boxes
B Clock Mumber of selected action boxes: 1
U Ressts |
== Enable
Bl States [Hierarchy
- Actiong
< Decision Boxes T
erar <="1";
| £ If Decode Boxes
{3 Case Bowes
U Intenmupts
Text
k. Cancel Apply Help

If you change an action box to a hierarchical action box, any existing actions are transferred to a
default action box in the child ASM chart.

Editing Decision Box Object Properties
The Decision Boxes page of the ASM Object Properties dialog box allows you to specify the

properties for a decision box.

HBASM Object Properties - Decision Boxes

E Clock
Q Reszets
== Enable

Bl States

Action Boxes

{1 If Decode Boses
[¥1 Caze Bowes

B Intenmupts

Tent

Mumber of selected decizion boxes: 1
[+ Optirmized

[v Generate ELSIF [as appropriate)

— Caonditian
=10

0K

Cancel Apply Help

106

State Machine Editors User Manual, V2010.3
June, 2011

ASM Chart Editor
Editing ASM Object Properties

When the Optimized option is set and both branches meet, the condition is assumed to be used
for action logic and no state transition is generated in the HDL. However, you can unset the
optimize option to generate atransition for each branch. This option isignored and a transition
is generated when the decision branches do not meet. However, the optimize option cannot be
unset and aHDL generation error isissued if the branches do not meet when used below a
hierarchical action box.

By default if your ASM chart uses nested decision boxes, combined ELSF (VHDL) or elseif
(Verilog) statements are generated for the false branch if the decision box is the first and only
statement on the false branch of another decision box. For example, c2 and c3 in the following

example:

actions;

VHDL:

IF c1 THEN
actioni;
ELSI F c2 THEN
action2;
ELSIF c¢c3 THEN
action3;
END | F;

Verilog:

if (cl) begin
actioni;

end

else if (c2) begin
actionz;

end

else if (c3) begin
action3;

end

If your downstream tool does not support combined else and if, you can unset this option in the
dialog box.

Y ou can add or edit the condition defined in the decision box. |If more than one decision box is
selected, the condition is applied to all the selected boxes.

State Machine Editors User Manual, V2010.3 107
June, 2011

ASM Chart Editor
Editing ASM Object Properties

Editing If Decode Box Object Properties

The If Decode Boxes page of the ASM Object Properties dialog box allows you to specify the
properties for an if decode box.

HBASM Object Properties - If Decode Boxes E3

B Clock Mumber of selected If Decode boxes: 1
g Resels IFStyle: it Then Elsif =]
== Enable
Bl States [+ Optirmized
Action Boxes Condii
< Decizion Boxes onditions:

[Decode Boxes cond(
aiw] |[[ecode Boves cond]
{3 Case Bowes elze
¥ Intenmupts
Teut

(] Cancel Apply Help

%

Y ou can choose whether to use If Then Else, If Then Elsif or If Then statements for nested if
decode boxes.

When the Optimized option is set and all branches meet, the conditions are assumed to be used
for action logic and no state transitions are generated in the HDL. However, you can unset the
optimize option to generate atransition for each branch. This option isignored and atransition
is generated when the branches do not meet. However, the optimize option cannot be unset and
aHDL generation error isissued if the branches do not meet when used below a hierarchical
action box. Note that all branches must meet if an end if is shown on the diagram.

The dialog box also lists the existing port names for each if decode condition branch. These
names should be conditional expressions and can be edited by clicking over the existing namein
the dialog box to display a Rename dialog box.

Mew [f Decode Branch Mame:
[a="1"aND b ="

ak I Eancell

Two default condition ports and an el se branch are provided by default. Additional ports can be
added to the if decode box using the [#] button as described in “Adding an If Decode Box” on

page 98.

108 State Machine Editors User Manual, V2010.3
June, 2011

ASM Chart Editor
Editing ASM Object Properties

Editing Case Box Object Properties
The Case Boxes page of the ASM Object Properties dialog box allows you to specify the

properties for a case decode box.

When the Optimized option is set and all branches meet, the case box is assumed to be used for

action logic and no state transitions are generated in the HDL. However, you can unset the

optimize option to generate a transition for each branch. This option isignored and a transition
is generated when the branches do not meet. However, the optimize option cannot be unset and

aHDL generation error isissued if the branches do not meet when used below a hierarchical

action box. Note that all branches must meet if an end case is shown on the diagram.

If you are using Verilog, you can choose to use casex or casez comparison as an alternative to

the default bit comparison case style.

HBASM Object Properties - Case Boxes E
& Clock MNurmber of selected case bores: 1
9 Resets v Optimized
== Enable
* States Tupe of case: Icase
Action Boxes
& Decision Boxes [T Inzert Pragma: I.-".-" pragma parallel_caze full_casze j
™ If Decode Boxes Expressior:
f_’*:f_j Casze Boxes .
EMpression -
¥ Intenmupts P —I
Text LI
Walues:
wvaluel
wvaluel
default
(] Cancel Apply Help

%

Y ou can aso insert the following pragmas to specify full case or parallel case Verilog

statements:

full_case All possible branches have been specified, any missing
branches cannot occur and a default branch need not be
generated.

parallel_case Branches are mutually exclusive.

paralel_casefull case
exclusive.

All possible branches have been specified and are mutually

State Machine Editors User Manual, V2010.3
June, 2011

109

ASM Chart Editor
Editing ASM Object Properties

Y ou can specify acase expression which can comprise any valid HDL statementsfor the current
hardware description language (using multiple linesif required).

The dialog box lists the existing port names for each case decode branch which should
correspond to the possible values for the evaluated expression. These values can be edited by
clicking over the existing name in the dialog box to display a Rename dialog box.

Mew Caze Branch Mame:

[1

ak I Eancell

Two default values and a default (if you are using Verilog) or OTHERS (if you are using
VHDL) branch are provided by default. Additional ports can be added to the case box using the
button as described in “ Adding a Case Box” on page 97.

If you are using VHDL, you can specify an intermediate selector expression variable.

HBASM Object Properties - Case Boxes E

Mumber of selected case boxes: 1

E Clock
U Ressts ¥ Optimized
= Enable E xpreszion;
Bl States :
Action Boxes EHpIEEIon =
< Decizion Boxes =
¢ If Decode Boxes — Selector Expression W ariable
] Caze Boxes ¥ Usze intermediate variable
P Interupts
Test p Mame: & Automatic
= Specify; I

Tope: Istd_lu:ugiu:_veu:tu:ur j

Cansztraint: = |ndex " Fange * Maone

Bounds: I IDDWNTD j I

Walues:

wvaluel

wvaluel

OTHERS

(] Cancel Apply Help
g
110 State Machine Editors User Manual, V2010.3

June, 2011

ASM Chart Editor
Editing ASM Object Properties

An intermediate variable may be required if the expression isnot locally static (for example, if
the expression contains concatenated signals).

Y ou can choose to name the variable automatically or specify a variable name which must be a
VHDL identifier. If Automatic naming is set, the name is generated using the template:
hds_selN where N is an integer.

A list of standard VHDL typesisavailable in a pulldown list. The variable type should be
std_ulogic_vector if al the inputs are std_ulogic or std_ulogic_vector. It should be
std_logic_vector if all theinputs are scalar and of type std_logic.

Otherwise, it should be the same type as the input arrays. The bounds must be sufficient for the
size of the concatenated input expressions. Note that when scalar values are concatenated with
other scalar values or with array values, the result is always an array value.

Editing Interrupt Object Properties

The Interrupts page of the ASM Object Properties dialog box allows you to specify the
properties for an interrupt point.

H[3 ASM Dbject Properties - Interrupt Points Ed
= Clock Mumber of selected Interrupt Points; 1
U Fesets Priority: |-| ﬂ
== Enable -
Condition;
Bl States
Action Boxes cond ;I

< Decision Boxes
{1 If Decode Boses
[¥1 Caze Bowes
'l [ntermupts
Text

e

(] Cancel Apply Help |
g

Y ou can change the priority if there are multiple interrupt points on the diagram and specify the
interrupt condition which must be unique.

Interrupt masking can be achieved by an AND expression combining the condition with a mask
signal. For example, intrpt = ‘0" AND msk = *1'. Thismask signal may control asingle
interrupt or act as an enable mask for a number of interrupts.

State Machine Editors User Manual, V2010.3 111
June, 2011

ASM Chart Editor
Setting ASM Chart Properties

Setting ASM Chart Properties

Y ou can set the properties for an ASM chart by choosing ASM Pr operties from the Diagram
or popup menu to display the ASM Properties dialog box.

H ASM Properties >

= Generation
e Advanced
----- Encoding
----- Statement Blocks

----- Declaration Blocks
i |nternal Signals

k. Cancel Apply Help

%

The main page of the ASM Properties dialog box allows you to edit the diagram name of the
active concurrent state machine.

Y ou can select additional pages and sub-pages from the left pane in the dialog box:

» The Generation page allows you to set basic properties for HDL generation. A separate
sub-page can be used to set Advanced generation properties.

» The Encoding page can be used to specify state machine encoding.

» The Statement Blocks page allows you to specify concurrent statements, state register
statements and global actions.

» The Declaration Blocks page allows you to specify architecture, module or process
declarations.

* Thelnternal Signals page alows you to set the prefix or suffix used for internal
registered or clocked signals.

The statements, declaration, global actions and signal status are displayed as text objects on the
diagram and the dialog can be opened directly by double-clicking over one of these objects.

The generation properties and state machine encoding information are not displayed on the
ASM chart.

112 State Machine Editors User Manual, V2010.3
June, 2011

ASM Chart Editor
Setting ASM Chart Properties

Setting ASM Chart Generation Properties

Y ou can set generation propertiesin the Generation and Advanced pages of the ASM
Properties dialog box.

The Generation page alows you to set the HDL style, specify the number of Verilog always
blocks or VHDL processes and set the state encoding type to output encoded.

When you are using Verilog, this page also allows you to set the assignment type, choose to
register state actions on the next state and set full/parallel case pragmas:

HBASM Properties - Basic Generation {casm)
= &5 Diagram Shyle
=B Generation ~ Orne-Hat {* Caze |Cage ﬂ
Advanced
Encoding e 3 Always Blocks " 2 Always Blocks 1 Always Block

Statement Blocks
Declaration Blocks
Internal Signals

Assignment e | fiwed ﬂ
[Output Encoded

[Reaister state actions on nest state

Full/Parallel Caze
[Inzert Pragma: | J

k. | Cancel Apply | Help |

When you are using VHDL, you can choose to register state actions on the next state and set the
default state assignment.

HBASM Properties - Basic Generation {casm)
= A5k Diagram Style
=g Generation i * LCaze
Advanced
Encoding {* 3 Processes {~ 2 Processes ™ 1 Process

Statement Blocks
Declaration Blocks

Internal Signals [Output Encoded

[Reaister state actions on nest state

[Default State Azzignment

k. | Cancel Apply Help

Note
D Default state assignment is only available for the Case HDL style.

State Machine Editors User Manual, V2010.3 113
June, 2011

ASM Chart Editor
Setting ASM Chart Properties

Advanced Generation Properties
The Advanced page alows you to set additional generation properties.

These include the names used for the current state and next state variables. Y ou can also assign
the state variable to the value of an output port which can be selected from a dropdown list of
the available ports.

When you are using Verilog, you can specify adelay for the current state assignment.

H ASM Properties N
= ASM Diagram — State Signal Mamesz
E| Generation Current State M arme: I,:State
- """""""E"-"::E'j Mext State Marne: htate
- Encading
- Statement Blocks — State Yariable
- Declaration Blocks | ™ Assign value to output port
Lo |nternal Signals I J
-
¥ Usze delay for current state assign I':I
ok, Cancel | Apply | Help
7

When you are using VHDL, you can choose to automatically generate atype or you can specify
adiscrete type for the state variable:

H ASM Properties B3

E ASK Diagram — State Signal Mamesz
E| Generation Current State M ame: Icstate
N . . ahced

Encoding
Statement Blocks
Declaration Blocks
Internal Signals

Mest State Mame: Ingtate

— State Variable
% Ao Generate Type

= Speciy Type I

" Azsign value to output pork

| d

Apply Help

(] Cancel |

Refer to Appendix A for more information about the effect of setting HDL Generation
Properties on HDL generation.

State Machine Editors User Manual, V2010.3
June, 2011

114

ASM Chart Editor
Setting ASM Chart Properties

Note

If you choose to assign the state variable to a specified output port value (in the Advanced page
of the ASM Object Properties dialog box), and at the same time set the state encoding as Auto
(in the Encoding page), the following occurs on VHDL generation:

» The state encoding values will be represented in the generated code as constant
declarations, and the type of state variable(s) (the current and next state signals) will be
the same as the type of the output port (for example “std logic_vector”).

This is because eventually the state signal will be assigned to the value of the output
port, and hence they have to be compatiblein type.

» The state encoding will follow the encoding style you have defined in the Encoding
page. However, it should be noted that if you have the state encoding set as Auto without
specifying an attribute, then the encoding style will be assumed to be “ Sequential”.

Setting State Encoding Properties

Y ou can set state machine encoding properties in the Encoding page of the ASM Properties
dialog box.

The dialog box alowsyou to explicitly specify the state encoding or use an automatic schemeto
select the required VHDL attributes or Verilog pragmas. If you are using Verilog, you can also
choose whether to use the range in the declaration of the state encoding parameter. Y ou can also
add verilog state vector and syn_preserve pragmas or VHDL state vector and syn_preserve
attributes.

For example, the following dialog box is displayed if you are using Verilog:

HBASM Properties - Encoding (casm)
= A5k Diagram Scheme
—|-- Generation " Specified
Advanced
© i

Statement Blocks
Declaration Blocks

Internal Signals | J

[Pragma

[Parameter Declaration Fange
[Add state vector pragma

[Add zun_preserve pragma

k. | Cancel Apply Help

State Machine Editors User Manual, V2010.3 115
June, 2011

ASM Chart Editor
Setting ASM Chart Properties

When a specified encoding scheme is selected for either language, the encoding values can be
entered by direct text editing on the state or by using the Encoding field in the States page of the
ASM Object Properties dialog box as described in “Editing State Object Properties’ on

page 104.

Refer to “ State Encoding” on page 146 for information about the HDL generated and the use of
VHDL attributes or Verilog pragmas and encoding algorithms in automatic or specified
encoding schemes.

Setting Statement Blocks

Y ou can set concurrent statements, state register statements and global actionsin the
Statement Blocks page of the ASM Properties dialog box.

The dialog box provides separate free-format entry boxes for you to add or edit the concurrent
statements, state register statements and for pre and post global actions. The edited statements
are added to the diagram when you confirm the dialog box.

The syntax is automatically checked on entry for the hardware description language (Verilog or
VHDL) of the active diagram. However, syntax checking can be disabled by unsetting an ASM
chart preference.

116 State Machine Editors User Manual, V2010.3
June, 2011

ASM Chart Editor
Setting ASM Chart Properties

Y ou can also choose whether the statements are visible or hidden on the diagram (or on the top
level ASM chart when you are editing a hierarchical state machine).

tatement Blocks

HBASH Propertiez - Statement Blocks [cazm] x|
= &5 Diagram Concurent Statements: ¥ Visible El
=} Generation =

L Bdvanced _I

----- Encodin LI

..... Declaration Blocks State Register Statements: ¥ Wizsible El
‘e Intemnal Signals LI
— Global Actionz :
Pre Actions: v Wizible El
Pozt Actions: El
k. Cancel | Apply | Help

Concurrent statements are included in the generated HDL at the end of the VHDL architecture
or Verilog module and are applied to all diagramsin a set of concurrent state machines. These
statements are executed concurrently with all of the processes (or always blocks) in the state
machine and are typically used for datapath operations, special clocking or assigning individual
elements of the state vector to an output.

Note
D If you use an output signal in a concurrent statement, you may need to remove the default
value assigned to the signal in the signals status table.

State register statements are included in the generated HDL before the state decoding statements
in the clock process (or always code). These statements are inserted instead of the default
assignment to the next state and are typically used to determine when a counter should be
incremented or reset and whether to update the state.

Global actions can be used be used to assign complex actions that are executed on every clock
or state change. Note however, that you should use the signals status table to assign default
valuesto signals.

State Machine Editors User Manual, V2010.3 117
June, 2011

ASM Chart Editor
Setting ASM Chart Properties

Pre Actions are included in the generated HDL just after any default values specified at the
beginning of the output process (combinatorial signals). Post Actions are included after the
clock condition in the clocked process (registered signals) and are executed before any
conditional actions.

State register statements and global actions can be specified separately for each diagram in a set
of concurrent state machines.

Note

D If your default text editor is set to DesignPad, a @l button is available which allows you
to edit the statement block in DesignPad. Y ou can also edit the statements directly on the
diagram by clicking to select the text and clicking again to edit the text.

Setting Declaration Blocks

Y ou can set architecture declarations (VHDL only) or module declarations (Verilog only) and
process declarations (VHDL only) in the Declar ation Blocks page of the ASM Properties
dialog box.

The dialog box allows you to enter any valid HDL statements for the current hardware
description language in a free-format entry box. Signals, constants or variables can be declared
and comments, procedures, functions or type definitions can also be included.

The syntax is automatically checked on entry for the hardware description language (Verilog or
VHDL) of the active diagram. However, syntax checking can be disabled by unsetting an ASM
chart preference.

Refer to “Declaration Syntax” on page 24 for information about the syntax used for
declarations.

If you are using Verilog, asingle entry box is provided for editing module declarations:

HBASH Propertiez - Declaration Blocks [cazm] B3
= ASM Diagram Module Declarations: ¥ “isible El
=1 Generation - — -
T reg [2:0] umit_bit_cnt; -
: e Bidvanced Q[2:0] amit_bit_ _I
----- Encoding
----- Statement Blocks
Declaration Blocks
‘e Internal Signals
k. Cancel Apply Help |
g
118 State Machine Editors User Manual, V2010.3

June, 2011

ASM Chart Editor

Setting ASM Chart Properties

If you areusing VHDL, the dialog box provides separate free-format entry boxes for you to add
or edit architecture declarations, clocked process declarations and output process declarations.

HBASH Propertiez - Declaration Blocks [cazm] B3
= ASM Diagram Architecture Declarations: ¥ “isible El
El Generation LI
: Lo fydvanced
----- Encoding
L Statement Blocks =
----- Declaration Blocks _I ,
‘o Internal Signals — Process Declarations
Clocked Process Declarations: v “isible El
Output Proceszs Declarations: El
k. Cancel Apply | Help
&

Y ou can a'so choose whether the declarations are visible or hidden on the diagram (or on the top
level ASM chart when you are editing a hierarchical state machine).

The architecture declarations or module declarations are inserted at the top of the VHDL
architecture or Verilog module in the generated HDL and apply to all diagramsin a set of
concurrent state machines.

Architecture declarations or module declarations cannot be set when an ASM chart is used to
define an embedded view in a block diagram or IBD view. However, any declarations required
by the embedded view can be set on the parent view.

The clocked and output process declarations are placed immediately before the BEGIN
statement in the generated VHDL for the clocked and output processes.

Separate process declarations can be specified for each diagram in a set of concurrent state
machines.

Note

[

If your default text editor is set to DesignPad, a @ button is available which allows you
to edit the declaration block in DesignPad. Y ou can also edit the declarations directly on

the diagram by clicking to select the text and clicking again to edit the text.

State Machine Editors User Manual, V2010.3

June, 2011

119

ASM Chart Editor
Running Design Rule Checks

Setting ASM Chart Internal Signal Names

Y ou can set the status for output or locally declared signalsin an ASM chart using the “ Signals
Table” which is described in Chapter 4.

Y ou can set the prefixes and suffixes used to identify registered or clocked internal signalsin
the Internal Signals page of the ASM Properties dialog box.

HBASH Propertiez - Internal Signals B3
= ASM Diagram — Internal Signal Prefis # Suffis
£l Generation Affiw bo be uzed as
C i Advanced " Prefix & Suffi
..... Encoding Regiztered Affix: int E.g. ¥_int

Lo Statement Blocks

----- Declaration Blocks Clocked Affix: _cid E.g »_cid

|nternal Signals

The affix strings are added to the internal zignals representing regiztered and
clocked zignals az a Prefis or Suffis.

k. Cancel | Apply Help

Y ou can set preferences for the internal registered and clocked signal namesin the
Miscellaneous tab of the ASM Preferences dialog box.

Running Design Rule Checks

Y ou can run design rule checks on the active ASM chart by using the button in the HDL
Tools toolbar.

The following checks are performed:

» All decision or case branches under hierarchical actions must be connected

» Thetrue branch of al decision boxes must be connected. (The false branch can be
unconnected which meansit is an implicit loopback.)

» All statesmust have input and output flows. (This means that you cannot have only links
pointing to a state with the input flow unconnected.)

* A reset flow must end on astate, link or hierarchical state.

» All synchronous or asynchronous reset conditions must be unique. (However, it is
possible to have the same condition on resets of different modes.)

* Anif decode box with “If Then” style cannot have an "else" port. (Sincethisisthe
paralle if style and there should be no elsif or else statements.)

Any error messages are reported in the Log window.

120 State Machine Editors User Manual, V2010.3
June, 2011

ASM Chart Editor
Setting ASM Chart Preferences

Setting ASM Chart Preferences

Y ou can set ASM chart preferences by choosing ASM from the M aster Pr efer ences cascade of
the Options menu in the design manager.

The ASM Preferences dialog box has separate pages for Appear ance, Default Settings, Object
Visibility, Background and General preferences.

Note
D The general preferences, default settings, and object visibility preferences take effect on

the next ASM chart that you open and can only be edited when the dialog box is
displayed from the M aster Prefer ences cascade in the design manager Options menu.
These pages are not available when you choose Diagram Prefer encesin agraphic editor
window.

The Appearance page of the ASM Preferences dialog box, which can also be edited by
choosing Diagram Pr efer ences from the Options menu in a state diagram, alows you to set
default visual attributes for individual ASM chart objects:

Hla ASM Preferencesz - Untitled [casm] B3
|
Action Box Actions | | Color — Style
Branch Port F d [| Filsy -
Branch Port Label e J e IiJ
Caze
Caze Expression Background I +|| | Lirne Style -
Caze Label g J 4 IZJ
Clock,
Clock Mame Line Color = Line width =
Comment Box -J IZJ
Comment Tesxt _
Contral Condition Font
Contral Condition Label Set..
Decizion Box
Decizion Box Condition
Decizion Box True ¢ Falze Label —Apply Changes to
Enable Mame . _ .
Enable Paint — || & MewObjects © Mew and Existing Dbjects
End Caze . o
End Case Lahel Changes apply to objectz in thiz diagram only
End If Decode
End If Decode Label LI
The master preferences can be accessed from the Design Browser Ok Cancel Help 1,
A

The attributes include the foreground and background colors, line color and style, fill style, line
width and the text font. Some attributes may not always be available. For example, line style,
width and color attributes are not available for atext object.

State Machine Editors User Manual, V2010.3 121
June, 2011

ASM Chart Editor
Setting ASM Chart Preferences

Refer to “ Setting Visual Attributes” in the Graphical Editors User Manual for more
information.

When you edit preferences for the active diagram, the dialog box allows you to choose whether

the preferences are applied to new objects or to both new and existing objects in the state
machine (including concurrent or hierarchical diagrams).

Y ou can save the appearance preferences set on the active diagram as master preferences by
choosing Update from Diagram in the Master Prefer ences cascade of the Options menu or

you can apply the master preferences to the active diagram by choosing Apply to New Objects

or Apply to New and Existing Objects.

The Gener al page allows you to set miscellaneous ASM chart optionsincluding whether syntax

checking is enabled on entry and the default save name for an algorithmic state machine:

Hla ASM Master Preferences

General
= Default Settings

Cantral Signals General Info

Signal Status [v Check syntax on entoy
Default Properties

Object Yigibility

Appearance

Background Default zave name: |gzm

Cancel Help

o]

The Default Settings page allows you to set ASM chart default values including the default
name for a state box and the entry, state and exit actions for a state:

Hla ASM Master Preferences

General Drefault Settings
=g [efault Settings
Cantral Signals Crefault [nfa
Signal Status State Marne: |$EI
Default Properties ;
Object Visibilit Drefault Entry Action: |
Appearance Default State Sction: |
Backaround

Drefault E =it Action: |

State Tope Suffis: |$tate_t_l,lpe

o]

Cancel Help

122

State Machine Editors User Manual, V2010.3
June, 2011

ASM Chart Editor
Setting ASM Chart Preferences

The Control Signals sub-page enables you to set the clock edge and clock condition, the reset
mode, reset level, and reset condition, as well as the enable level and enable condition.

Hla ASM Master Preferences
General Contral Signals
= Default Settings
Cantral Eiigr'|.5||:5: Clock
Signal Status Edge: Rizing ﬂ |
Default Properties
Object Wisibility Fesat
Appearance Mode: © Synchromous ™ Aspnchronous
Backaround
Lesvel: |L|:|w ﬂ |
Enable
Lesvel: |L|:|w ﬂ |

[+ Place enable before synchronous reset

k. | Cancel | Help |

A separate Signal Status sub-page allows you to set default options for signal status:

Hla ASM Master Preferences
General Signal Statuz Default Options
= Default Settings
Cantral Signals Default Optionz
Signal Statuz Output Signal Default Status; |EDMBIN.~’-‘-.TDF|I.-’-‘-.L ﬂ
Default Properties ;
Obiject Visibiliy Local Signal Default Status |ELEIEKED ﬂ
Appearance Reqistered Signal Affix: | ik
Backaround -

Clacked Signal Affis: |_,3|,:|

Affix To Be Used As:
G BE e A ~ Eleril (= 5L

k. | Cancel | Help |

Y ou can also specify the default suffix or prefix used for registered and clocked signal names.

State Machine Editors User Manual, V2010.3 123
June, 2011

ASM Chart Editor
Setting ASM Chart Preferences

Y ou can use the Default Properties sub-page to define default user properties for ASM chart
views:

Hla ASM Master Preferences

General Default Properties
= Default Settings

Contral Signalz
Signal Statuz Class MHarme Yalue

Specify default properties in the table below

Default Properties
Object Yigibility
Appearance
Backaround

k. | Cancel | Help |

Refer to the HDL Designer Series User Manual for information about “Using View Property
Variables’.

The Object Visibility sub-page allows you to set the default object visibility for multi-line text
objects on the ASM chart.

Hla ASM Master Preferences
General Ohiject Yisibility
= Default Settings
Control Signals Architecture Declarations

Signal Status _ Compiler Directives [Werlog)
Default Properties Concurrent Statements

Object Visibility Global Actions

. .
PREArance Module Declarations

Background

Package List YHDL)
Process Declarations
Signal Statuz

State Reaister Statements

k. | Cancel Help

Refer to “ Changing Text Visibility” in the Graphical Editors User Manual for more
information.

124 State Machine Editors User Manual, V2010.3
June, 2011

ASM Chart Editor
Setting ASM Chart Preferences

The Background page allows you to set grid attributes and the background color used in the
ASM chart editor.

Hla ASM Master Preferences E
. o e
=l Default Settings

----- Contral Signalz - Girid

----- Signal Status ¥ Show Grid
" Default Properties

- Dbiect Visibily Color |

- Appearance
W C - cfround Dizplap harizontal grid ewvery |-| pirik
Dizplay vertical and ewvery |-| puoirt

— Diagram

B ackaground colar I'W'hite - I
k. I Cancel | Help

)

Information about “ Setting Background Preferences’ is given in the Graphical Editors User
Manual.

State Machine Editors User Manual, V2010.3 125
June, 2011

ASM Chart Editor
Setting ASM Chart Preferences

126 State Machine Editors User Manual, V2010.3
June, 2011

Chapter 4
Signals Table

This chapter describes the signals table which can be used to view and edit the status of signals
used in the state diagram or ASM chart editor.

DisplayingtheSignalsTable. 127
SignalsTable Notation. 128

Signal Declaration COlUMNS.ot e e e e 128

Signal StatuS ColUMINSo 129
SignalsTable Toolbars ... e e e e e 130
Adding Port or Local Signal Declarations.t 131

Adding Commentsto aPort or Local Signal Declaration 132
ReSiZINg COlUMNS.o 133
Grouping Signal ROWS.o 134
Sorting Signal ROWS.t 135
Hiding Columns. o 134
Filtering ColUMNS e 134
Editing Signal Status Cells 136

Displaying the Signals Table

The signal declarations and status associated with each concurrent state diagram or ASM chart
can be displayed by double-clicking on the Signals Status on the diagram or by selecting the
Signals page in the diagram browser. Refer to “ The Diagram Browser” in the Graphical
Editors User Manual for information about browsing diagram structure and content.

The table is synchronized to show only the signals for the active concurrent view including any
ports which have been added to the symbol (if it exists). Any redundant ports are removed and
the type, bounds and other properties updated from the symbol.

If you have edited the signalstable, the state diagram or ASM chart is synchronized with the
signal status. For example, if you clear the enable category for a port, the graphical enable
object is removed when you re-display the diagram.

Y ou can display the signals table for any other concurrent state machine by choosing from a
drop down list of concurrent state machine names using the [=| button or in the Table for
M achine cascade of the View menu.

State Machine Editors User Manual, V2010.3 127
June, 2011

Signals Table
Signals Table Notation

The table has a separate row for each signal defined in theinterface plus additional rowsfor any
locally defined signals.

The following example shows the signals table for a concurrent FSM diagram view of the
control design unit in the Sequencer_vig example design.

Hla Sequencer_vlg/control/fsm * {Signals for machine0)
File Edit M“iew HDL Table Tasks Add Options ‘Window Help

2 v 4= == B« o
B0 L BETETEY | -M- 48L&
A E Z C E F 3 H I] K L | é
@ Group | Mame | Mode Type Bounds Delay Zategoryissign Im Expression | Scheme Default | Reset | Comment E
1 clr output req Data | =auto:= Camb] g
= 2 inc output regq Cata | =auto= Camb i} =
3 Id_A_E | output req Data | =auto:= Camb] E
4 Id_surn | output req Data | =auto:= Camb] E;
c clock input wire ok, [Risir wozedge clock
E reset inpuat wire [Swnc S reset ,a]
7
Ready

Signals Table Notation

Vertical and horizontal scroll bars are available if the signals table does not fit in the current
window. However, the header row and the Group, Name and Mode columns are non-scrolling
and are always shown.

Refer to “ Grouping Signal Rows’ on page 134 for information about using the Group column.

Read-only cells displaying information have a grey background. Editable cells have awhite
background.

Note
D Note that you can select an entire row by clicking the row number or an entire column by

clicking the column letter. Y ou can aso select the entire table by clicking on cell Al.

Y ou can resize any cell by dragging the sashes between the columns.

Signal Declaration Columns

The signal declarations for interface ports are displayed in the Name, Mode, Type, Bounds,
Delay or Initial and Comment columns.

128 State Machine Editors User Manual, V2010.3
June, 2011

Signals Table
Signals Table Notation

New signal declarations can be added using an empty row at the bottom of the table.

Name
Mode
Type
Bounds
Delay
Initial
Comment

Port or locally declared signal name.

Signal mode: input, output, bi-directional, buffer (VHDL only) or local.
VHDL type definition or Verilog net type.

Range of the specified type (may use short or long format for VHDL).
Delay valuefor aVerilog signal.

Initial value of aVHDL signal.

Comment appended to asignal declaration.

Refer to the “ Component Interface Views’ chapter in the Graphical Editors User Manual for
more information about port signal declarations.

Signal Status Columns
Signal statusis shown using the Category, Assign In, Expression, Scheme, Default and Reset

columns.

Category

Assignin

Expression
Scheme

Default

Input and local signals can be used to specify the clock and enable or any
number of resets. Output, bidirectional and buffer ports are read-only and are
always set to Data.

The concurrent state machinein which an output signal is assigned. Defaults
to <auto>. (Hidden if there is only one concurrent machine.)

The expression for a clock, enable or reset; or state variable.

The clocking scheme used for output and locally declared signals. Output
signals can be Registered, Combinatorial or Clocked. Local signals can be
Combinatorial or Clocked.
Clocking scheme editing is disabled in the following cases:
* Input ports.
* INOUT/BUFFER control signal (clk/rst/enable) must always be COMB
and nothing elseis allowed
» Signalswith a<none> in the Assignin cell
» Signalsassigned in a 1-process concurrent state machine (csm) are
always clocked
» Output encoded machine with a port of mode out, inout or buffer

The default values for output and local signals. Combinatorial signals used
in actions must have default values. However, signals used in concurrent
statements do not require default values. If not specified, the value defaults
to avalue appropriate to the width of the signal (for example, all O, all 1 or
al X).

State Machine Editors User Manual, V2010.3 129

June, 2011

Signals Table
Signals Table Toolbars

Reset

combinatorial and clocked signal clocking schemes.

Note

The value assigned to aflip-flop on primary reset. A reset valueis required
for al registered or clocked signals but is not available for combinatorial

signals. If not specified, the value defaults to a val ue appropriate to the width
of the signal (for example, al 0, al 1 or all X).

Refer to “ Signals Status” on page 150 for information about the effects of registered,

[

On setting the VHDL generation style as* 3 Processes” in the State Machine Properties

dialog box, you get three processes describing the next state, output and clocked logic. It
isimportant to note that if the output process to be generated has no value other than the
Default value assignment, the output processis not generated. As code optimization, the
default assignment is rather generated as a concurrent assignment.

However, this does not mean that concurrent assignments can be directly placed as
default assignments; thisis not a recommended practice as it may result in syntax errors.
In case you need to define concurrent assignments, it is recommended to explicitly add

them in the Statement Blocks page of the State Machine Properties dialog box.

Signals Table Toolbars

The following commands are available from the SM Signals Tools or ASM Signals Tools
toolbar in the signals table:

Table 4-1. Signals Table Toolbar

Description

Add an input port

Add an output port

Add abidirectional (inout) port

Add abuffer port (VHDL only)

Add alocal signal

Group the selected rows or add a group (in hierarchical mode)

Ungroup

EEEEREE &

Expand al groups

Collapse dl groups

Toggle Filter

View the signalstable for a specified machine

=

Fit the call width to the contents of the selected cell

130

State Machine Editors User Manual, V2010.3

June, 2011

Signals Table
Adding Port or Local Signal Declarations

Table 4-1. Signals Table Toolbar

Button Description

Sort in ascending order

Sort in descending order

=) Toggle between grouped and ungrouped mode

The Standard, HDL Tools and Tasks toolbars are also available in the signals table window.
Refer to “Toolbars’ in the Graphical Editors User Manual for information about the Standard
graphical editorstoolbar. Refer to “Toolbars’ inthe HDL Designer Series User Manual for
information about the HDL Tools and Tasks toolbars.

Adding Port or Local Signal Declarations

Y ou can add ports to acomponent interface using the Add menu or the following buttonsin the
tabular 10 view:

Table 4-2. Adding Port or Local Signal Declarations

Button Function Key Description
F8 Add an input port
F9 Add an output port
[¢] F11 Add abidirectional (inout) port
[¢] F12 Add abuffer port (VHDL only)

The port is added in the next available row with default name, type and bounds.

Alternatively, you can add ports by entering a declaration directly into the next row of Name,
Mode, Type and Bounds cells. The mode defaults to the last mode used or you can choose from
alist of available modes:. input, output, bidirectional (inout) or buffer (VHDL only).

If you do not change the name of a port, each new port name is made unique by adding an
integer to the default name. (For example: In, In1, In2...).

If you add a port whose name suggests it might be a clock, reset, or enable, the port type, mode
and category columns are populated with the signal default values. Refer to “ Adding Objects on
a State Diagram” on page 33.

Y ou can add a declaration for alocal signal by using the button or choosing L ocal Signal
from the Add menu. A new declaration is added at the bottom of the table with the default name
Local or LocalN (where N is automatically incremented if it exists).

State Machine Editors User Manual, V2010.3 131
June, 2011

Signals Table
Adding Port or Local Signal Declarations

Note
D Local signals cannot be declared when a state machine is used to define an embedded

view in ablock diagram or IBD view. However, any local signals required by the
embedded view can be declared on the parent view.

You can aso add alocal signal declaration by entering the new signal name directly in the
Name column of the empty row at the bottom of the signals table.

The port or local signal type defaults to the last type used or you can choose from a dropdown
list of available typesin the Type column. The bounds defaults to the last range used or you can
choose from a dropdown list of recently entered ranges in the Bounds column.

A VHDL bounds can be entered in long or short format. The display format can be set by setting
or unsetting the Short Form option in the Table menu.

If you enter a port or signal name followed by avalid bounds constraint, for example, myport(7
DOWNTO 0), the constraint is automatically moved to the Bounds column.

0 Tip: You can automatically complete arow with default properties by using the | + |
key after entering a port name to move to the name cell in the next row.

Y ou can optionally enter avaluein the Initial (VHDL) or Delay (Verilog) and Comment
columns. The delay or initial value can be chosen from a dropdown list of recently entered
values.

If you enter characters that match characters in an existing entry of the same column, the
remaining characters are entered automatically.

If you have changed port declarations to the signal table, the interface is automatically
synchronized when you save the state machine view and any new ports added to the parent
view.

Local signals defined in the Architecture/M odul e declarations in the state machine are shown as
read-only rows in the signals table. Refer to “ Setting Declaration Blocks™ on page 75.

Adding Comments to a Port or Local Signal Declaration

Y ou can add comments to a port or local signal declaration by choosing Comments from the
popup menu when the declaration row is selected.

132 State Machine Editors User Manual, V2010.3
June, 2011

Signals Table
Resizing Columns

A free-format entry Comments dialog box is displayed which alows you to add asingleline
comment at the end of the declaration or you can enter a multi-line comment to be included
before or after the declaration.

& gingle line comment can be added at the end of the declaration line.
tultiple-line comments can be added beforeafter the declaration.
Comment characters will be added when appropriate.

E nd-of-line [zingle ling comment]:

Before [multi-line comment]: v Add comment characters
-
-
< E
After [rmulti-ine comment]: v &dd comment characters
-
-
< E

(] I Cancel | Help |

%

Comment characters for the current hardware description language (VHDL or Verilog) are
automatically inserted if the Add comment character s check box is set.

When this option is unset, the comments must be valid HDL statements and are automatically
syntax checked if checking is enabled.

If adeclaration is deleted, the corresponding comments are also del eted.

Although multi-line comments can be added using the dialog box, these comments are not
displayed in the table. However, end-of-line comments can be edited directly in the Comment
column for the local signal declaration row.

Resizing Columns

Y ou can automatically fit a column (or columns) to the width of the text contained in the
selected cell (or cells) by using the button or by choosing Autofit from the Table or popup
menu. If no cells are selected, then all columnsin the table are re-sized.

State Machine Editors User Manual, V2010.3 133
June, 2011

Signals Table
Hiding Columns

Hiding Columns

Y ou can hide and show columnsin the signals table by choosing Hide Column from the popup
menu or the Columns cascade of the Table or menu.

If one or more columns are hidden, you can display a dialog box listing the hidden columns by
choosing Show Columns from the popup or Table menu.

Refer to “Hiding Columns” in the Graphical Editors User Manual for more information.

Filtering Columns

Y ou can filter the content of columnsin the signals table by using the button or setting the
Filter option in the Table menu. When this option is set, an additional row is added in the non-
scrolling area and a dropdown filter menu is available in each column.

Y ou can apply filters to more than one column or set options to match case, match whole words
or useregular expressions by choosing Filter Settingsfrom the Table or popup menu to display
the Filter Controls dialog box.

Refer to “Filtering Columns’ in the Graphical Editors User Manual for more information.

Grouping Signal Rows

Y ou can group rows in the signals table by selecting arow or rows and using the \il button or
choosing Group from the Add menu.

The selected rows are added to a new group with the default name SmGroupN or AsmGroupN
(where N isautomatically incremented if it already exists).

Y ou can also add agroup or create anew group by entering a name in the Group column for the
ports you want to group.

Note
Y ou can choose from a dropdown list of existing groups. If you type a partial string that
matches the name of an existing group the name is automatically completed.

Y ou can remove a group name by selecting arow (or rows) and using the EI button or by
deleting the name from the Group cell.

If you rename or remove an existing group cell and the group is no longer referenced, you are
prompted to delete the old group name.

When the signals table includes one or more groups, you can use the button or set Show
Grouped in the Table menu to toggle between grouped and ungrouped mode.

134 State Machine Editors User Manual, V2010.3
June, 2011

Signals Table
Sorting Signal Rows

All rows are displayed normally in flat mode but rows in the same group are shown asasingle
(but expandable) group in hierarchy mode.

Y ou can expand all the group rows by using the button or choosing Expand All Groups
from the Ports cascade in the Table menu. Alternatively, you can expand an individual group
by clicking onthe icon.

Y ou can collapse al the group rows by using the button or choosing Collapse All Groups
from the Ports cascade in the Table menu.

When grouped modeis set, you can enter acomment in the group row as shown for the Inputs
and Outputs groupsin the example below. The Outputs group is shown expanded but the Inputs
group is shown collapsed:

Hla Sequencer_vlg/control/fsm * {Signals for machine0)
File Edit M“iew HDL Table Tasks Add Options ‘Window Help

2 - 4= (== B o o
B0 L BETETEY | E-M 48L&
ﬂ E Z C E F 3 H I] K L | é
@ Mame | Mode Type Bounds Delay Zategoryissign Im Expression | Scheme Default | Reset | Comment E
j Cukputs This group contains the output signals g
= 2 clr output req Data | =auto:= Camb] =
3 inc output regq Cata | =auto= Camb i} E
4 Id_A_E | output req Data | =auto:= Camb] E;
c Id_surn | output req Data | =auto:= Camb]
£+ Inputs This group contains the input signals .
7

SL-A-B-A s B I U

Ready

Note
Groups added in the signal s table may be discarded and replaced by the groups defined in
the tabular 10 view when the table is synchronized with an updated symbol view.

If you delete a group which contains local signals only, they are deleted. If you delete a group
which includes ports, only the local signals in the group are del eted.

Sorting Signal Rows

Y ou can sort the rows in a selected column of the signal s table in ascending alphanumeric order
of the cell data by using the button or choosing Sort Ascending from the popup menu or
the Columns cascade of the Table menu.

State Machine Editors User Manual, V2010.3 135
June, 2011

Signals Table
Editing Signal Status Cells

Alternatively, you can sort the data in descending order by using the button or by choosing
Sort Descending from the popup menu or the Columns cascade of the Table menu.

Editing Signal Status Cells

Y ou can enter data directly by clicking in editable signal status cells or by choosing from a
dropdown list of available values.

When an input or local signal is selected, the dropdown list for the Category column includes
options for each of the supported clock, reset and enable signals. These options include:

Clock Rising
Falling
Specify
Risinglast (VHDL only)
Risingedge (VHDL only)
Fallinglast (VHDL only)
Fallingedge (VHDL only)

Reset Async Low
Async High
Async Specify
Sync Low
Sync High
Sync Specify
Enable Low
High
Specify

If you choose one of the Specify options, the Expression column can be used to enter an
expression which defines the required clock, reset or enable signal.

Note
Note that only one clock and one enable signal can be specified in each concurrent state

machine but you can set any number of reset signals.

When an output or local signal is selected, you can choose which concurrent state machine the
signal isassigned in.

If the <auto> option is set the concurrent state machine is automatically determined when HDL
is generated for the diagram.

If the <none> option is set, the clocking scheme, default and reset values cannot be specified.

136 State Machine Editors User Manual, V2010.3
June, 2011

Appendix A
State Machine HDL Generation

This section describes properties that control how HDL is generated from a graphical state
diagram or ASM chart.

HDL Generation Propertiest e 137
Synchronous and Asynchronous State Machines. 138
HD L Style. . .t 138
Output ENCOdedo 140
State Variable 143
Generate INterrupts as OVEITIdES . .. oo e e 143
Register State Actionson Next Statet 144
VHDL Default State ASSIgNMENt oot e 144
Verilog ASSIgNMENt TYPE. . ..ottt 145
Verilog State VeCtor Pragmas.o o 145
Verilog Full/Parallel CasePragmast e 145
State Signal NameS. o 146
Verilog Current State AssignmentDelay 146

StAtE ENCOOING . . . o .ot 146
Encoding AlQorithms 149
VHDL Attribute Encoding 150
Verilog PragmaENncoding.ot 150

SIgNAIS SEAtUS . . . oot e 150
Default and Reset ValUeS oo e 151
Combinatorial Output or Local Signals e 151
Clocked Local SIgnals 152
Registered OULPUL SIgNalS. oot 152
Clocked OULPUL SIgNalSo e e e 153
SUMIMEIY . . .ottt e e e e e e e e e e e e 154

HDL Generation Properties

The HDL generation properties for a state diagram can be set using the Generation, Advanced
and Control pages of the State Machine Properties dialog box which is described in “ Setting
State Diagram Generation Properties’ on page 68.

The HDL generation properties for an ASM chart can be set using the Gener ation and
Advanced pages of the ASM Properties dialog box which is described in “ Setting ASM Chart
Generation Properties’ on page 113.

State Machine Editors User Manual, V2010.3 137
June, 2011

State Machine HDL Generation
HDL Generation Properties

Synchronous and Asynchronous State Machines

In a synchronous state machine, state transitions occur on an active clock edge which must
always be specified. An optional reset signal returns the state diagram to the start state and
assigns any specified reset values. A separate enable signal can also be specified. A
synchronous state machine should normally be synthesizable.

In an asynchronous state machine, transitions are independent of any clock signal and no clock
logic is generated. For an asynchronous state machine, a propagation delay must be specified.
The propagation delay is required to avoid a race condition which would prevent the simulator
from reaching a stable state and should typically correspond to the minimum resolution time for
the ssimulator. For example, the default minimum simulator resolution for ModelSmis 1 ns
when using VHDL or 1 time unit when using Verilog.

The HDL Designer Series supports synchronous and asynchronous state diagrams but all ASM
charts are synchronous.

HDL Style

VHDL can be generated as three processes describing the next state, output and clocked logic,
two processes which combine the next state and clocked logic or as a single process containing
al the assignments. Verilog can be generated as three always code blocks describing the next
state, output and clocked logic, two always blocks which combine the next state and clocked
logic or as asingle always block containing all the assignments.

Single process/block generation style

Choosing asingle Process/Block generation style will affect the clocking scheme and state
variable declarations.

The combination of the next state and output logic will affect the clocking scheme definition as
follows:

» The scheme column in the signal s table will be hidden as only one clocking scheme is
allowed.The Default and Reset columns are enabled for editing. Refer to “ Signal Status
Columns’ on page 129.

» Thedefault assignment typein case of aVerilog design will be Non-blocking if the FSM
Is synchronous and Blocking if the FSM is asynchronous. Refer to “ Setting Declaration
Blocks™ on page 75.

» Theclocked affix will not be assigned to output and internal signals on the state
diagram. Refer to “ Setting State Diagram Internal Signal Names’ on page 78.

» Theexistence of only one state variable will cancel the option of a default state
assignment in VHDL and the next state to the current state assignment in both VHDL

138 State Machine Editors User Manual, V2010.3
June, 2011

State Machine HDL Generation
HDL Generation Properties

and Verilog. It will also cancel the option of the next_state state variable naming. Refer
to page “ State Variable” on page 143.

H[} State Machine Properties - Basic {csm) x|

[=- State Machine
EI Generation
e Advanced
----- Encaoding
----- Statement Blocks
EI Declaration Blocks

i Pre/Post User Declarations

— Machine

" Sunchronous

£ Aspnchronous

Frop [elam

—

— Generation Style

1 Alwaps Block i |f

"o Intemal Signals

2 Always Blocks i~ One-Hat

I caze =7 I

3 Always Blocks % Caze
[T Output Encoded

™| Uze Local zignalz in encoding

[Reqister state actions on next state

[Default State Azsignment

[Full/Parallel Case Pragmas I.-".-" pragma full_case j
Agzignment type: IMi:-:Ed j
4 | 10|
()% I Cancel | Apply | Help |
p

The HDL style chosen determines whether the next state logic is generated using If, One-Hot or
Case styles.

When you are using VHDL, the If styleuses|F...THEN....EL SIF constructs. The | F statement
isthe logical AND of the state vector value and the transition condition.

For example:

I F current_state_name = state0 AND (condition) THEN
next _state_nanme <= stateN;
ELSIF. ..

When you are using Verilog, the If style usesif...elsif constructs. Theif statement isthe logical
AND of the state vector value and the transition condition. For example:

if current_state_nanme == stateO && (condition)
next _state_nanme <= stateN;
else if...

One-Hot styleisonly available when using VHDL and hard state machine encoding is selected.
The One-Hot style defines a constant index for each state and defines a vector type of the same

State Machine Editors User Manual, V2010.3 139
June, 2011

State Machine HDL Generation
HDL Generation Properties

width as the number of states. The next state logic tests only one bit to determine the current
state and sets one bit to change states.

For example:

IF current _state_nane(state0) = ‘1" THEN
I F(condi tion) THEN
next state name(stateN) <= ‘1';
ELSIF. ..

When you are using the One-Hot style in Verilog, the next state logic uses a case statement to
test the bit which determines the current state and an if statement to test the condition, then sets
one hit to change states.

For example:

case (1'bl)
current _state_nane [stateO]:
if (condition)
next _state_name[stateN) = 1’ bl,
else if...

The Case style uses a CASE statement to decode the state vector. Y ou can use | F or CASE
statements for the transitions.

For example, when using | F style transitionsin VHDL.:

CASE current_state_name | S
WHEN st ateO0 =>
I F (condition) THEN
next _state <= stateN,
ELSIF. ..

Similar code is generated for Verilog, using case and if statements.
For example, when using if style transitions:

case current_state_name
st at e0:
if (condition)
next _state = stateN;
else if

When you are using Verilog in manual state encoding mode, you can also choose to use casex
or casez comparisons as an aternative to bit comparison (case).

Output Encoded

The output encoding algorithm uses the outputs and assigned local signals of the state machine
to make up the state register. It can be applied to only pure Moore State machines. The
algorithm is language independent and can be used with all HDL generation styles.

140 State Machine Editors User Manual, V2010.3
June, 2011

State Machine HDL Generation
HDL Generation Properties

Thefol

lowing restrictions apply to allow this type of encoding:

The State machine must be pure Moore style where the outputs/local assignments
depend only on the state register and NOT the inputs of the state machine. Therefore
outputs/locals must only be assigned in state actions. Mealy transition actionswill not be
allowed for output assignments. Note that this restriction needs to also apply to local
signals which use this encoding scheme.

Assignment statements used to assign output signals in state actions should be signal
assignmentsin VHDL and blocking assignmentsin Verilog.

For Verilog the outputs must only be assigned single bit values (‘0’, *1’, or don’t care
‘X") or strings containing these values.

Tip: Assigned Verilog values should not contain size or basei.e 2'b00 outO = 2'b00 is not
supported.

Thefol

Output/local signal assignments containing expressions or other signals are not allowed.
eg outl <= in1 AND in2

Signal status clocking scheme is not relevant since the outputs and locals are inherently
registered since they are derived directly from the state register. Y ou can use this
property to control which Outputs/Locals are directly encoded.

Global Actions for outputs are not supported.
All encoded outputs/signals must be of the same type.

lowing example shows the state diagram for a ssimple traffic light controller.

The default values for all outputsisO

S1 and S2 are the road sensors in each direction

State Machine Editors User Manual, V2010.3 141

June, 2011

State Machine HDL Generation
HDL Generation Properties

* All outputs are scalar except data that is a vector

T redi <=1

red] ="

vellow? 4=""
data =="011";

red! ="}
Foreen? «=""
data e="111";

s2=51 5TH
araent = 1" greant == "
red? 4="1" red? =='1}
dala =="000" data == "000";

S1="0"AND 52="1"

51="1"AND 52 =

T

greant <=4

red? ="':
data =="101",

s1="1"AND 52="0"

qraan =" rpc == 1 g
oy ' vallow] ==""

data == "100" grean2 -:=‘1'i rad2 2=""
data =="1 DO, data =="011"

Thisis how the states are encoded in VHDL code

-- Automatic Qut put Encodi ng

CONSTANT STO STATE_TYPE : = "0001100000" ;
CONSTANT ST1 : STATE_TYPE := "1001100000" ;
CONSTANT ST2 : STATE_TYPE := "0001100101" ;
CONSTANT ST3 : STATE_TYPE := "0010100011" ;
CONSTANT ST4 : STATE_TYPE := "0100001100" ;
CONSTANT ST5 : STATE_TYPE := "1100001100" ;
CONSTANT ST6 : STATE_TYPE := "0100001111" ;
CONSTANT ST7 : STATE_TYPE := "0100010011" ;

Thisis how the states are encoded in Verilog code

/] State encoding

paraneter [/ pragna enum current _state_code
STO = 10' b0001100000
ST1 = 10' b1001100000
ST2 = 10' b0001100101
ST3 = 10' b0010100011
ST4 = 10' b0100001100
ST5 = 10' b1100001100
ST6 = 10' b0100001111
ST7 = 10' b0100010011

142

State Machine Editors User Manual, V2010.3
June, 2011

State Machine HDL Generation
HDL Generation Properties

State Variable

Y ou can choose to assign the state variable which describes the current state of the state
machine to the value of an output signal port.

If you are using VHDL, you can choose to automatically generate a type. This option generates
an enumerated type or if an encoding scheme is set the default type for the currently selected
encoding scheme.

If an enumerated type is specified, it must be defined in a VHDL package referenced on the
diagram. Alternatively, you can specify a discrete type for the state variable.

Hard encoding should be enabled if you want to assign the state variable to an output port or
specify atype for the state variable.

Note

If you choose to assign the state variable to a specified output port value (in the Advanced page
of the SM Object Properties dialog box), and at the same time set the state encoding as Auto (in
the Encoding page), the following occurs on VHDL generation:

» The state encoding values will be represented in the generated code as constant
declarations, and the type of state variable(s) (the current and next state signals) will be
the same as the type of the output port (for example “std logic_vector”).

Thisis because eventually the state signal will be assigned to the value of the output
port, and hence they have to be compatiblein type.

» The state encoding will follow the encoding style you have defined in the Encoding
page. However, it should be noted that if you have the state encoding set as Auto without
specifying an attribute, then the encoding style will be assumed to be “ Sequential”.

Generate Interrupts as Overrides

Y ou can choose to generate the HDL for state diagram interrupts as overrides or as exclusive if-
then-else statements.

The following example shows the Verilog generated when interrupts are generated as overrides:

al ways @Rcv_current _state or sanple or sin)
begi n

case (Rcv_current _state)
wai ti ng:
if (~sin)
Rcv_next _state <= check_| ock;
el se

State Machine Editors User Manual, V2010.3 143
June, 2011

State Machine HDL Generation
HDL Generation Properties

default: begin
Rcv_next _state <= waiting;
end
endcase

/[l Interrupts
if (IntA) Rcv_next_state <= finish_rcv; -- Interrupt point

The following example shows the Verilog generated when interrupts are generated using an
explicit if then else statement:

al ways @Rcv_current_state or sanple or sin)
begin

if (IntA) Rcv_next _state <= finish_rcv;
el se
case (Rev_current _state)
wai ting:
if (~sin)
Rcv_next state <= check_| ock;
el se

defaul t: begin
Rcv_next _state <= waiting;
end
endcase
end

Register State Actions on Next State

Y ou can choose to register (or clock) state actions on the next state instead of the current state
transition. Decoding on the current state adds a one clock cycle delay to the final output which
iseliminated if you choose to decode on the next state.

Note
Thisoption is currently only available for a state diagram. It is not supported in the ASM

chart properties.

VHDL Default State Assignment

Some synthesis tools require that the next state signal is assigned before the process is entered
when you are using VHDL Case HDL style. This can be achieved by setting default state
assignment so that a next_state <= current-state; statement isinserted at the start of the next
state process.

144 State Machine Editors User Manual, V2010.3
June, 2011

State Machine HDL Generation
HDL Generation Properties

Verilog Assignment Type

Y ou can choose whether blocking assignments (specified by the = operator) or non-blocking
assignments (specified by the <= operator) are used in the generated Verilog.

Alternatively, the default option mixes non-blocking assignmentsin the clocked code with
blocking assignments in the next state and output code.

Verilog State Vector Pragmas

Y ou can specify whether pragmas are added around the state vector in aVerilog state machine.

When this option is set, a pragmas are inserted to identify the name and enumeration of the
parameter which defines the state variable.

For example:
paraneter [2:0] // pragna enum current_state_code
wai ting = 3'do ,
reading_fromreg = 3'd1 ,
clearing fl ags = 3d2 ,
witing to reg = 3'd3 ,
xmtting = 3'd4 ;

reg [2:0] /* pragma enumcurrent_state_code */ current_state, next_state ;
/1 pragma state_vector current_state

Verilog Full/Parallel Case Pragmas

Most synthesis tools can detect full and parallel case decoding automatically. However when
you are using Verilog, you can choose to add pragmas which explicitly set full, paralel or both
full and paralel case transitions:

full_case All possible branches have been specified, any missing
branches cannot occur and a default branch need not be
generated.

parallel _case Branches are mutually exclusive.

parallel_casefull_case All possible branches have been specified and are mutually
exclusive.

For example afull_case pragma can be useful when not all the possible branches have been
specified but you know that the unspecified branches cannot occur and you want to prevent the
generation of redundant code. Alternatively, aparallel_case pragma may be useful to enforce
mutually exclusive branches when the synthesis tool is unable to determine this condition.

Either or both pragmas are added at the end of the line containing the case statement. For
example:

State Machine Editors User Manual, V2010.3 145
June, 2011

State Machine HDL Generation
State Encoding

case (current_state) //pragma parallel _case full_case

State Signal Names

Y ou can specify alternative state signal names for the reserved names current_state and
next_state which are normally used for the state variable in the generated HDL..

Verilog Current State Assignment Delay

If you are using Verilog, you can specify adelay (in time units) between the assignment of the
next state (or reset state) to the current state in the clocked always block for a synchronous state
machine. This option inserts a statement of the following form:

i f(reset_condition) begin
current _state_name <= #del ay reset_state_nane;
end

el se begin
current _state_name <= #del ay next _state_ nane;

Note
D A state machine which uses this assignment delay is not synthesizable.

State Encoding

The state encoding for a state diagram can be set by selecting the Encoding page of the State
Machine Properties dialog box as described in “ Setting State Encoding Properties’ on page 73.

The state encoding for an ASM chart can be set selecting the Encoding page of the ASM
Properties dialog box as described in “ Setting State Encoding Properties” on page 115.

Either of these dialog boxes provide options to set a specified or automatic encoding scheme.

If a specified encoding scheme is selected, the One-Hot HDL style is available when you set
generation properties. The One-Hot HDL style can be useful if your synthesis tools do not
support automatic state encoding. However, One-Hot HDL style is not recommended for
synthesis tools which can perform efficient automatic encoding. Refer to “HDL Style” on
page 138 for more information about One-Hot style.

When a specified encoding schemeis selected, you can select from the following encoding style
options. Sequential, 1-Hot, 2-Hot, Gray, Johnson or Manual. The coding for each stateis
displayed as atable in the dialog box.

146 State Machine Editors User Manual, V2010.3
June, 2011

State Machine HDL Generation
State Encoding

For example, the following dialog box is displayed for the Sequential stylein aVHDL state

diagram:

"'la State Machine Properties - Encoding {cntrl_op} ﬂ
= State Machine ~ Scheme ~ Encoding
EI Generation " ‘S pecified State Mame Sequential
i e Advanced :
_____ Ao 5 ctates 3 bhits
----- Statement Blocks | Attibute idle Qoo
- E]E'zlpa’ai';” B'EDkSD i J reading_from_reo oo
T resFost Uzer Declarahons = di -
: ywr_encoding :
‘.. Internal Signals I clearing_flags 010
~Siyle wtiting_to_reg 011
f* Sequential 1-Hot ¥mitting 100
" 2Hat " Gray
" Johnzon Manual
[v Add state vector athibute
[T Add syn_preserve attibute
KN i
] I Cancel Apply | Help |

If you choose Manual, an empty table allows you to enter any required encoding values.
Alternatively, the manual encoding can be directly entered on the states in the state diagram or
ASM chart.

The states are listed in the table in ascending a phanumeric order and new states are added at the
bottom of the column. However, you can re-order the states in descending order by clicking in
the State Name cell header. Each subsequent click reverses the sort order. You can also click in
the encoding cell header to sort the table in ascending or descending numeric encoding order.

Note that you can change the state associated with each encoding by dragging the state cell with
the mouse.

If manual styleis selected, you can enter the required encoding for each state directly in the
table. Y ou can also copy and paste one or more encoding cells using the CtrI+C and the Ctrl+V
keyboard shortcuts.

If you want to explicitly set encoding for some states but allow others to be encoded during
synthesis, this can be achieved by using manual encoding with “don’t care” values.

When an automatic scheme is selected, you can set attribute (if you areusing VHDL) or pragma
(if you are using Verilog) encoding and choose from a dropdown list of VHDL attributes or

State Machine Editors User Manual, V2010.3
June, 2011

147

State Machine HDL Generation
State Encoding

Verilog pragmas. For example, the following dialog box shows the enum pragma and Random
encoding algorithm selected in a Verilog state diagram:

Hlaﬁtate Machine Properties - Encoding {csm) El
= S_tate M achine — Scheme
= Generation " Specified
© L Advanced
- & Auto

----- Statement Blocks

: v Pragma
= Declaratiu:un Blocks I 2
: ‘o PredPost User Declarations Ienum j
" |nternal Signals
— Style
£ Binary £ 1-Hat
= 2Hat = Gray
" R andom

£ Other Ii

[v Parameter Declaration B ange

v A&dd state vectar pragma

[T Add syn_preserve pragma
| 2l
(] 4 I Cancel Apply Help

7

If the scheme is set to automatic and the attribute or pragma option is not set, no specific
encoding information isincluded in the generated HDL. This option can be used if you want all
specific encoding to be performed during synthesis.

For VHDL, an enumerated typeis created for the state variable which contains one enumeration
for each state.

For Verilog, a sequential binary parameter value is created which increments by one for each
state. This scheme resultsin the shortest state register length and hence the minimum area. Note
however, that binary encoding is not the most efficient scheme for Verilog FPGA designs since
FPGA devicestypically contain many registers.

148 State Machine Editors User Manual, V2010.3
June, 2011

State Machine HDL Generation
State Encoding

Encoding Algorithms

The following table shows examples of the encoding algorithms for each supported stylein a
state machine with eight states:

Table A-1. Examples of Encoding Algorithms

StateName | Binary | 1-Hot 2-Hot Gray Johnson | Random
8 states 3 bits 8 bits 5 bits 3 bits 4 hits 3 bits
waiting 000 00000001 | 00011 000 0000 000
check _locked | 001 00000010 | 00101 001 1000 101
rcv_locked 010 00000100 | 01001 011 1100 001
read_data 011 00001000 | 10001 010 1110 100
incr_count 100 00010000 | 00110 110 1111 010
done_read 101 00100000 | 01010 111 0111 011
read_stop_bit | 110 01000000 | 10010 101 0011 110
finish_rcv 111 10000000 | 01100 100 0001 111

Binary or Sequential: Each state is assigned a sequentia binary value, incrementing for each
state. This algorithm results in the shortest state register length and hence the minimum area.
Note however, that binary encoding is not the most efficient scheme for Verilog FPGA designs
since FPGA devices typically contain many registers.

1-Hot: The width of the state register is equal to the number of statesin the state machine with
each bit representing a specific state. Thistypically resultsin afast design although consuming
more registers and is commonly used in FPGA designs.

2-Hot: Thisencoding provides a compromise between area and speed by reducing the number
of registers required to represent the state vector. In this case, two bits at atime are used to
represent a given state.

Gray: Gray codes aretypically used for glitch-free sequential counters since each consecutive
code block only requires asingle bit change. In general, state machine transitions are more
arbitrary resulting in more than one bit change. However, for predominantly sequential state
machines, Gray coding should be applied starting with the longest sequential paths first.

Johnson: Johnson encoding typically starts with all zeros and progressively sets each adjacent
bit starting with the most significant bit. This continues until all bits are ones. Then the process
starts all over again replacing ones with zeros.

Random: Random encoding is a binary code where the values are assigned randomly rather
than sequentially. This algorithm resultsin a minimum state vector width similar to that

State Machine Editors User Manual, V2010.3 149
June, 2011

State Machine HDL Generation
Signals Status

achieved with Binary encoding. It is not typically recommended but can be used when the other
algorithmsfail to give satisfactory results.

VHDL Attribute Encoding

If you are using L eonardoSpectrum or Precision Synthesis, you can enable automatic encoding
using atype_encoding_style or type _encoding attribute.

If you are using Synopsys synthesis tools, you can enable automatic encoding using an
enum_encoding attribute.

The type_encoding_style attribute supports Binary, 1-Hot, 2-Hot, Gray, Random or any other
specified algorithm.

The type_encoding and enum_encoding attributes support Sequential, 1-Hot, 2-Hot, Gray and
Johnson algorithms or you can choose to manually edit the encoding in the dialog box table (or
directly on the statesin a state diagram or ASM chart).

If you are using the Synplify synthesis tool, you can enable automatic encoding using a
syn_encoding attribute which supports Sequential, 1-Hot, Gray or any other specified algorithm
(optionally including the safe keyword).

The type_encoding, type _encoding_style, enum_encoding or syn_encoding attributes must be
declared in areferenced package. Declarations for the LeonardoSpectrum and Precision
Synthesis attributes are provided in the exemplar package library. The enum_encoding and
syn_encoding attributes should be declared by referencing the appropriate Synopsys or Synplify
package.

Verilog Pragma Encoding

If you are using Precision Synthesis, you can enable automatic encoding using a Sequential, 1-
Hot, 2-Hot, Gray, Random or other specified enum pragma.

If you are using the Synplify synthesis tool, you can enable automatic encoding using a
Sequential, 1-Hot, Gray or other specified syn_encoding pragma (optionally including the safe
keyword).

Y ou can also choose whether to use the range in the declaration of the state encoding parameter.

Signals Status

Y ou can set combinatorial, registered or clocked clocking scheme for output signals and
combinatorial or clocked schemes for locally declared signals.

150 State Machine Editors User Manual, V2010.3
June, 2011

State Machine HDL Generation
Signals Status

The signals status for a state diagram or ASM chart can be set using the signals table as
described in “ Signals Table” on page 127.

When asignal set to be registered or clocked, an internal signal is generated by adding a user-
specified prefix or suffix to the signal name.

Y ou can set default names for these signalsin a state diagram using the State Machine
Properties dialog box as described in “ Setting State Diagram Internal Signal Names’ on page 78
or default names for an ASM chart in the ASM Properties dialog box as described in “ Setting
ASM Chart Internal Signal Names’ on page 120.

Default and Reset Values

Y ou can optionally set default values and areset valueis required for registered or clocked
signals.

Default values ensure that combinatorial signals (and the internal signals generated for
registered outputs) are always assigned values to avoid implied latches when the state machine
IS synthesized.

Thereset valueis applied to the internal signal for aregistered signal or to the actual signal for
clocked signals.

Combinatorial Output or Local Signals

When Combinatorial statusis set, the original output or locally declared signal is assigned its
value in the output code (process or always block).

current_state

inputs
{Mealy)

Since there are no registersinvolved in the output of acombinatorial signal, no reset valueis
required.

State Machine Editors User Manual, V2010.3 151
June, 2011

State Machine HDL Generation
Signals Status

Clocked Local Signals

When Clocked status is set for alocally declared signal, the signal is assigned its value in the
clocked code. A reset value must be specified and is applied to the original signal.

current_state clocked
e —» Clk_locall
- Clk_local?
Inputs
{Mealy)

JT

Since the signal is clocked there is no need for a default value when the design is synthesized
although a default can be specified for use in behavioral simulation.

Registered Output Signals

When Registered statusis set for an output signal, assignment is made to an internal signal
using the prefix or suffix specified in the dialog box. For example, x is replaced by x_int.

All occurrences of the signal are replaced by thisinternal version on the diagram. Thissignal is
combinatorial (assigned in the output code) and hence requires a default value to avoid latches
in synthesis.

The original output signal (for example, x) is assigned the value of the internal signal (for
example, x_int) in the clocked code hence the reset is applied to thisoriginal signal.

Y ou can only access the combinatorial internal signal (for example, x_int) within the state
machine. There is no internal access to the original signal.

current_state clocked <
—»
—p ¥
Inputs
{Mealy) T T
clk T rst

Registered signals should not be used if you intend to use downstream data with the Synopsys
FSM compiler.

152 State Machine Editors User Manual, V2010.3
June, 2011

State Machine HDL Generation
Signals Status

The FSM compiler processes the core state machine and if registered outputs are required this
should be done outside the state machine description.

Clocked Output Signals

When Clocked status is set for an output signal, assignment is made to an internal signal using
the prefix or suffix specified in the dialog box.

All occurrences of the signal are replaced by thisinternal version on the diagram. For example,
xisreplaced by x _cld. Thissignal isassigned in the clocked code and hence the reset is applied
to thisinternal signal.

x_cld
&
cutrent_state clocked
» X
—
Inputs
{Mealy)

Ft
clk rst y_cld

The original output signal (for example, X) is assigned the value of the internal signal (for
example, x_int) in aconcurrent assignment.

There is no need for a default value when the design is synthesized although a default can be
specified for use in behavioral ssimulation. If adefault value is specified, it is applied to the
internal signal. If no default is specified, the previous value is retained.

Y ou can only access the clocked signal (for example, x_cld) within the state machine. Thereis
no internal access to the original signal but both always have the same value.

State Machine Editors User Manual, V2010.3 153
June, 2011

State Machine HDL Generation

Signals Status

Summary

The following table shows the effect of setting the signal status of output or locally declared
signals to combinatorial, registered (for outputs only) or clocked.

Thetable al'so showsif any reset is applied to the actual signal or the internal version of the

signal.

Scope
Output

Output

Output

Output

Output

Output

Local
Local
Local

Local

Status
Combinatorial

Combinatorial

Registered

Registered

Clocked

Clocked

Combinatorid
Combinatorid
Clocked

Clocked

Default
No

Yes

No

Yes

No

Yes

No
Yes
No

Yes

Reset
No

No

Actud

Actual

Internal

Internal

No
No
Actual

Actud

Notes

Retainsvaluefor simulation. Implied latch
in synthesis.

Active during assignment state or clock
cycle before state transition, otherwise
default value.

Retains value for simulation. The state
actions are delayed if registered on current
state. Implied latch for internal signal in
synthesis.

Active during assignment state or one
clock cyclefor transition, otherwise
default value. The state actions are
delayed if registered on current state.

Retains value for simulation. The state
actions are delayed if clocked on current
state.

Active during assignment state or one
clock cyclefor transition, otherwise
default value. The state actions are
delayed if clocked on current state.

Retains value for simulation. The state
actions are delayed if clocked on current
state.

Active during assignment state or one
clock cyclefor transition, otherwise
default value. The state actions are
delayed if clocked on current state.

Combinatorial outputs (and the internal versions of registered output signals) must be assigned
in every possible branch of the state decoding or have default assignments in every branch.
Otherwise latches are inferred in synthesis.

154

State Machine Editors User Manual, V2010.3
June, 2011

State Machine HDL Generation
Signals Status

Combinatorial outputs are appropriate when the signal does not need retiming or to be
registered.

Registered outputs are basically combinatorial with aflip-flop (register) just before the output.
These outputs behave like combinatorial signals and the registered signal is not available within
the state machine. This type of output can be useful for pipelining when you want to use
combinatorial versions of the signalsinside the sate machine and just want to retime the outputs.

Clocked outputs are assigned in the clocked process (by definition they are the outputs of flip-
flops) and do not need default values to avoid inferring latches. Hence, clocked outputs are
more tolerant of missing default values or not being assigned in transitions. Clocked outputs are
useful when you want to use combinatorial versions of the signals inside the sate machine as a
counter or flag. Clocked outputs are the fail-safe option since they are always clocked and hold
their values.

State Machine Editors User Manual, V2010.3 155
June, 2011

State Machine HDL Generation
Signals Status

156 State Machine Editors User Manual, V2010.3
June, 2011

ABCDEFGHI JKLMNOPQRSTUVWXY Z

HDL Designer Series Glossary

This glossary defines the standard terminology used in the HDL Designer Seriestools.
— A —

action box
A named object on aflow chart or ASM chart containing actions which are executed when the
box is entered by aflow. Each action box must have one input flow and one output flow. See adso
case box, decision box and wait box.

action
An operation performed by a state machine, flow chart or truth table which modifies its output
signals. In astate diagram, there can be transition actions executed when an associated
condition occurs or state actions executed when a state is entered. In aflow chart, the actions are
executed when a flow entering the action box is followed. In atruth table, actions are generated
from the values assigned to a variable in an output column or can be explicitly entered as
additional actionsin an unnamed output column. See also global actions.

activity trail
A summary of simulation activity (states visited and transitions taken) displayed on an animated
state diagram.

anchor
An anchor attaches atext element to its parent object. For example, the name and type of asignal
in ablock diagram or the transition text and its transition arc in a state diagram. An anchor is
also used to attach a simulation probe to its associated signal.

architecture declarations
User-specified VHDL statements which can be entered in a state diagram, flow chart or truth
table and are declared for the corresponding VHDL architecture in the generated HDL.
Architecture declarations are typically used to define local signals or constants. See also entity
declarations and process declarations.

ASIC
ASIC stands for Application Specific Integrated Circuit.

ASM
An algorithmic state machine describes the behavior of a system in terms of a defined sequence
of operations which produce the required output from the given input data. These sequential
operations can be represented using flow chart stye notation as an ASMI chart.

State Machine Editors User Manual, V2010.3 157
June, 2011

ABCDEFGHI JKLMNOPQRSTUVWXY Z

ASM chart
A graphical representation of an algorithmic state machine which uses flow chart style objectsto
represent states, conditions and actions.

asynchronous
An asynchronous process is activated as soon as any of its inputs have any activity on them
rather than only being activated on a clock edge. See also clocking.

— B —

black box
A view which has HDL trandlation pragmas set so that it is not analyzed or optimized for
synthesis. See also don’t touch.

black box instance
An instance of acomponent on ablock diagram or IBD view which has no corresponding design
unit. A black box instance may exist in a partial design which instantiates a view which has not
been defined.

block
The representation of afunctional object on ablock diagram or IBD view. Also the design unit
that contains the object definition. A block has a dynamic interface defined by the signals
connected to it on the diagram and istypically defined by a child block diagram, IBD view, state
diagram, flow chart, truth table or HDL text view. See also embedded block and component.

block diagram
A diagram editor view which defines a design unit view in terms of lower level blocks and
components connected by signals. See also IBD view.

bottom-up design
The process of designing a system starting from the primitive or leaf-level views and progressing
up through parent views until the design is completed. See also top-down design.

bounds
The range of possible values for asignal with integer, floating, enumeration or physical type.
Also used to specify the index constraint for an array type. A VHDL range is normally shownin
theformat (15 DOANTO 0) or (0O to 7).A Verilograngeisshown intheformat [15: 0]
or[0:7].

breakpoint
A breakpoint can be used to interrupt the progress of asimulation at a specific point in the
generated HDL. For example, you could set a breakpoint on asignal to interrupt the ssmulation
when the signal changes value or on a state to interrupt the simulation when the state is entered.

bundle
A group of signals and/or buses with different types drawn as a composite line on a block
diagram.

158 State Machine Editors User Manual, V2010.3
June, 2011

ABCDEFGHI JKLMNOPQRSTUVWXY Z

bus
A named vector signal with atype and bounds drawn as a composite line on a block diagram.
See also net and bundle.

_C—

case box
A named object which represents a CA SE statement on a flow chart or ASM chart. When used
for decoding action logic each Case has an associated End Case object. A case box has one input
flow and one or more output flows corresponding to the possible values for an evaluated CASE
expression. See also action box, decision box, if decode box and wait box.

child
A view instantiated below its parent in the design hierarchy. A component or block on a block
diagramor IBD view typically has achild design unit view which may be another block diagram,
IBD view, state diagram, flow chart, truth table or aHDL text view. Also used for the embedded
view representing a hierarchical state or “hierarchical state box” on page 166 in a hierarchical
state machine or a hierarchical action box in a hierarchical flow chart or ASMI chart.

clocked signal
A signal in a state machine whose value is assigned to an internal signal by the clocked process.
Thisinternal signal is continuously assigned to the real output signal. No default value need be
specified. Typically used for an internal counter whose value is also required as an output. See
also combinatorial signal and registered signal.

clocking
The timing aspects of behavior can be asynchronous or synchronous (explicitly clocked).

clock point
An object on an ASM chart which displays the clock signal name and condition. See also enable
point and reset point.

clone window
A duplicate view of agraphical editor window. All select, highlighting and edit operations are
made in both windows. However, you can display different parts of the diagram or table in each
window.

combinatorial signal
A signal in a state machine whose value is directly assigned to the output port. See also clocked
signal and registered signal.

comment graphics
Annotation graphics which can be used for illustration on a block diagram, state diagram, flow
chart or symbol.

State Machine Editors User Manual, V2010.3 159
June, 2011

ABCDEFGHI JKLMNOPQRSTUVWXY Z

comment text
Annotation text on a block diagram, state diagram, flow chart or symbol which can optionally be
attached to an object and included as comments or HDL code in the generated HDL for the
diagram.

compiled library
A repository within alibrary containing downstream compiled objects usually created by
compiling the HDL filesin adesign data library.

compiler directive
An instruction to the Verilog compiler. Typically used to define library cells or define a macro
which controls conditional compilation. Also used to include specified Verilog file or define the
simulation time units. The directive is effective from the place it appearsin the Verilog code
until it is superseded or reset.

complete transition path
The sequence of one or more partial transitions going from one state to another state (or itself)
in astate machine. The conditionsin the transition path are the collection of al the conditionson
theindividual transitions. The action in the transition path are the collection of all the actions on
the individual transitions plus the actions of the origin state. When tracing the transition path,
links are resolved to the referenced start state, state or junction. See also partial transition.

component
A design unit that contains a re-usable functional object definition or the instantiation of this
object on ablock diagram or IBD view. A component has a fixed interface and may be defined
by achild block diagram, IBD view, state diagram, flow chart, truth table, ModuleéWare, HDL
text, external HDL or foreign view. See also embedded block, block and port map frame.

component browser
The component browser is a separate floating window which can be used to browse for
components available in the current library mapping. Components can be instantiated in an
editor view by copy and paste or drag and drop.

concurrent events
Occurrence of two or more events in the same clock cycle.

concurrent statements
Statements which can be entered in a state diagram, flow chart or truth table and areincluded in
the generated HDL at the end of the VHDL architecture or Verilog module. Concurrent
statements are applied to all diagramsin a set of concurrent state machines.

condition
A condition in astate machine is a boolean input expression which conformsto HDL syntax, and
when it evaluates to TRUE, causes atransition to occur. The expression usually consists of a
signal name, arelational operator and avalue. In aflow chart, conditions are used in adecision
box to determine which output flow is followed. In atruth table, conditions are generated from

160 State Machine Editors User Manual, V2010.3
June, 2011

ABCDEFGHI JKLMNOPQRSTUVWXY Z

the values assigned to a variable in an input column or can be explicitly entered as additional
conditions in an unnamed input column. See also transition priority.

configuration
A definition of the design unit views that collectively describe a design by listing the included
VHDL entities and architectures. A configuration may also include specification of the values
for VHDL generics associated with components in the design. See also VHDL configuration.

connectable item
A nodein ablock diagram, flow chart or state diagram that can be the source or destination of a
signal, flow or transition.

current view
The design unit view of ablock or component that is currently used. Thiswill be the default view
unless aloaded configuration specifies otherwise.

—D—

decision box
A named object on aflow chart or ASM chart containing a condition. Each decision box has one
input flow and two output flows (corresponding to the TRUE and FAL SE conditions for an IF
statement). See also action box, case box and wait box.

default view
The design unit view used in hierarchical operations, open commands and HDL generation
(unless a loaded configuration specifies otherwise). See also current view.

design data library
A repository within alibrary containing source design data objects. There are usually different
library mappings for graphical editor or HDL text source views. See also compiled library.

design explorer
The source browser design explorer windows can be used to browse the content and hierarchy of
the source design data using user-defined viewpoints displayed in tree or list format.

design manager
Themain HDL Designer Serieswindow which isused for library management, data exploration,
design flow and version control. The design manager includes a shortcut bar, project manager,
design explorer, side data browser, downstream browser, task manager and template manager.

design unit
A subdirectory within a design data library which is represented by an icon in the design
explorer. Design units may be blocks, components or unknown design units.

design unit view
A description of a design unit. Multiple views of block or component design units can describe
alternative implementations. These can include block diagram, IBD view, state diagram, flow
chart, truth table or HDL text views.

State Machine Editors User Manual, V2010.3 161
June, 2011

ABCDEFGHI JKLMNOPQRSTUVWXY Z

DesignPad
The built-in VHDL and Verilog sensitive editor and viewer for HDL text views.

destination
The connectable item at the end of asignal, transition or flow. See also source.

diagram browser
The diagram browser is an optional sub-window which displays the structure and content of the
active diagram editor view.

diagram editor
An editable block diagram, state diagram, flow chart or symbol window which represents a
design unit view using graphical objects. See also graphical editor and table editor.

don’t touch
A control placed on adesign unit or design unit view which disables specified downstream
operations. See aso black box.

downstream browser
The downstream browser displays the contents of the compiled library for the design data
library currently open in the active design explorer. See also source browser, side data browser
and resource browser.

downstream only library
A library which has library mappings defined only for downstream compiled data.

— E—

embedded block
The representation of an embedded view on a block diagram or 1BD view which has a dynamic
interface defined by the signals connected to it but unlike a block or component does not add
hierarchy to the design.

embedded view
An embedded view describes concurrent HDL statements on ablock diagramor IBD view and is
represented by an embedded block which can be defined by a state diagram, flow chart, truth
table or HDL text.

enable point
An object on an ASM chart which displays an enable signal name and condition. See also clock
point and reset point.

end point
A flow chart must have at least one end point which is always named end. See also start point.

162 State Machine Editors User Manual, V2010.3
June, 2011

ABCDEFGHI JKLMNOPQRSTUVWXY Z

entity declarations
User-specified VHDL statements which can be entered as propertiesin a symbol and are added to
the corresponding VHDL entity declarations in the generated HDL . See also architecture
declarations and process declarations.

entry point
A connector on achild state diagram which connects to a source in the parent state diagram. See
also exit point.

exit point
A connector on a child state diagram which connectsto a destination in the parent state diagram.
See also entry point.

explicit clock
A net on ablock diagramor IBD view which isused asaclock signal by the instantiated views of
blocks, embedded blocks or components. See also clocking.

external HDL
A HDL description which was not created by a HDL Designer Seriestool (for example, user-
written VHDL or Verilog, gate-level HDL models created by synthesis, Inventra, FPGA or 3Soft
core models). A port interface must exist for the referenced model asaVVHDL entity or Verilog
module. See also HDL view and foreign view.

— F—

flow
An orthogonal line connecting objects on aflow chart. A flow can end on another flow (by
creating aflow join) but cannot start from a flow.

flow chart
A diagram editor view which represents a process in terms of action boxes, case boxes, decision
boxes, wait boxes and |oops connected by flows. A flow chart must also contain one start point
and one or more end points.

flow join
A connection between flows shown as a solid dot where the flows mest.

foreign view
A non-HDL description (for example, a C or C++ view) with aregistered file type which
requires an external HDL generator. See also external HDL.

formal
A signal or bus associated with a port on a component. Typically, aformal port is connected to
an actual signal or bus on the parent view which has the same properties but may have a different
name. Formal ports and actual signals with different properties can be connected using a port
map frame.

State Machine Editors User Manual, V2010.3 163
June, 2011

ABCDEFGHI JKLMNOPQRSTUVWXY Z

FPGA
FPGA stands for Field Programmable Gate Array.

functional primitive
A block or component that is not further decomposed but fully defined by its own views.
However, there may be both a block diagram or IBD view which describes its behavior in terms
of lower level blocks or components and, for example, aHDL text view which fully definesits
behavior. In this case, the current view determines whether the block or component isa
functional primitive.

— G —

generate frame
An optional outline which can be used to replicate structure using a FOR frame or conditionally
include structure using an IF frame (and EL SE frame in Verilog). Also used in VHDL to cluster
concurrent objectsusing aBLOCK frame.

global actions
Explicit action in a state diagram or truth table which are always performed. In a state machine,
global actions are executed on registered signals at an active clock edge or concurrently at a
transition event on unregistered signals and are used to ensure that default output values are
assigned for transitions with no explicit actions defined. See also state actions and transition
actions.

global connector
Any signal, bus, or bundle connected to a global connector is considered to be connected (as an
input) to every block in the block diagram or IBD view. It istypically used to connect clock or
reset signals.

global net
A global net isasignal which can be used on ablock diagramor IBD view but is declared
externally in a VHDL package or Verilog include file. A global net can not be connected to a
block, external port or global connector.

graphical editor
An editable window which displays a diagram editor or table editor view of adesign unit. See
block diagram, 1BD view, state diagram, flow chart, symboal, truth table and tabular 10.

— H—

HDL
HDL stands for Hardware Description Language and is used in the documentation as a generic
term for the VHDL or Verilog languages. It may also refer to any other language (for example, C)
which is being used to describe the behavior of hardware.

HDL2Graphics
HDL 2Graphicsisautility program used by HDL Designer Seriestoolsto create graphical block
diagram, state diagram, flow chart or IBD view from source VHDL or Verilog code.

164 State Machine Editors User Manual, V2010.3
June, 2011

ABCDEFGHI JKLMNOPQRSTUVWXY Z

HDL Author
HDL Author is an advanced environment for HDL design which supports design management,
HDL text editing using the integrated DesignPad text editor, re-usable ModuleWare library,
version management, and downstream tool interfaces. HDL Author includes graphical editors
for maintaining the structure of adesign as graphical block diagram or I1BD views and a symbol
or tabular 10 editor for editing design unit interfaces. It also includes editors for state diagram,
flow chart, truth table, symbol and tabular 1O views which allow an entire design to be
represented graphically. A simulation analyzer interface supports error cross-referencing and
animation facilities to assist with design de-bug operations.

HDL Designer
The HDL Designer tool includes all the facilities provided by the HDL Author tool plus
HDL2Graphics import which can automatically create editable diagrams from imported HDL
code. HDL Designer supports the creation of block diagram, state diagram, flow chart and IBD
views.

HDL Designer Series

The HDL Designer Series (HDS) is afamily of tools for electronic system design using the
VHDL and Verilog hardware description languages. See also HDL Detective, HDL Author and
HDL Designer .

HDL Detective
HDL Detective isthe HDL Designer Series visualization tool which allows you to import any
complete or partial HDL text based design and convert the design into a hierarchy of graphical
views. The design structure can be represented as graphical block diagrams or IBD views.
Primitive leaf-level views can be viewed as block diagram, state diagram, flow chart or HDL
text views. A design manager can be used to explore the relationship between individual design
units.

HDL text
A textual HDL description of a design object. A HDL text design unit view may contain
structural HDL or define the behavior of aleaf-level block or component design unit. HDL text
may also be used by an embedded view on a block diagram or IBD view to contain concurrent
HDL statements which are included in the generated structural code. See also HDL view.

HDL text editor
The tool used to edit or view HDL text views. The HDL Designer Seriestools areinitially
configured to use the built-in DesignPad editor but can be set to use many other popular editors.

HDL view
A design unit view defined by structural or behavioral HDL text. See Verilog module, VHDL
entity and VHDL architecture. Also the VHDL package header and VHDL package body views
of aVHDL package.

State Machine Editors User Manual, V2010.3 165
June, 2011

ABCDEFGHI JKLMNOPQRSTUVWXY Z

HDM
The Hierarchical Data Model isthe internal representation of design data used by the HDL
Designer Series which allows design objects to be located anywhere in the hierarchy below a
physical directory specified in the library mapping.

hierarchical action box
The representation on aflow chart or ASMI chart of an embedded child diagram which describes
action logic. See also action box.

hierarchical state
The representation on a state diagram of an embedded child diagram which describes state
transitions. See also simple state.

hierarchical state box
The representation on an ASM chart of an embedded child diagram which describes state
transitions. See also state box.

IBD view
A design unit view described using Interface-Based Design which represents the interfaces
between instantiated blocks, embedded blocks and components as one or more inter connect
tables showing the signal connections between them. See also block diagram.

if decode box
A named object which represents an I F statement on an ASM chart. When used for decoding
action logic each If has an associated End If object. An if decode box has one input flow and one
or more output flows each corresponding to an evaluated conditional expression. See also action
box, case box,decision box and wait box.

interconnect cell
A cell at the intersection of arow and a columnin an IBD view. The interconnect cells specify
ports connecting signals or buses (defined by the rows) and blocks, embedded blocks,
components, external HDL or ModuleWar e instances (defined by the columns).

interconnect table
A table editor view which represents the connections between one or more blocks, embedded
blocks, components or ModuleéWare instances in an IBD view. May be abbreviated as ICT.

Interface-Based Design
A methodology which defines the structure of adesign in terms of the interfaces between lower
level blocks and components. See also IBD view.

interrupt condition
A condition associated with atransition from an interrupt point which appliesto every statein
the state diagram and has a higher transition priority than any other transitions.

166 State Machine Editors User Manual, V2010.3
June, 2011

ABCDEFGHI JKLMNOPQRSTUVWXY Z

interrupt point
A node on a state diagram or ASM chart that isimplicitly connected to all states on the same
diagram. Any transition from an interrupt point is treated as an interrupt condition from every
other state in the diagram. A transition from an interrupt point in the top level diagram istreated
as global interrupt condition and appliesto all statesin a hierarchical state machine. See also
junction and entry point.

S,

junction
A connector on a state diagram that enables a set of transitions between states to be replaced by
asimpler set of partial transitions between the same states. See also interrupt point and entry
point. Also used for a net connector joining two nets with the same properties on a block
diagram.

— K —

No entries
— L —

leaf view

An undefined view of a block which has been added on a block diagram or I1BD view but has not
been defined by a design unit view.

library
A repository for source design data and compiled objects that has been assigned alogical name.
See also library mapping, regular library, protected library and downstream only library.

library mapping
The mapping of alogical library nameto physical locations. There are typically different
mappings for the design data library containing graphical editor and HDL text source views and
the compiled library containing downstream objects.

link
A connector used on a state diagram or ASM chart (or between child diagramsin the same
hierarchy) to avoid long transition arcs or flows. A link isimplicitly connected to the state or
junction(on a state diagram) or to the state box (on an ASM chart) with the specified name. See
also exit point.

local declarations
User-specified Verilog statements which can be entered as properties for a flow chart or truth
table. These statements are declared at the top of the always code in the generated HDL for a
truth table. When concurrent flow charts are defined, these declarations are local to each of the
individual concurrent flow charts and you can choose whether they are inserted in the initial or
always code. See also module declarations.

State Machine Editors User Manual, V2010.3 167
June, 2011

ABCDEFGHI JKLMNOPQRSTUVWXY Z

loop
A loop on aflow chart is defined by a start loop and stop loop object connected by aflow. A loop
isused to repeat a set of sequential statements and can have Repeat, For, While or Unconditional
control properties.

LPM
A library of parameterizable modules which can be instantiated as components. to implement
common gate, arithmetic, storage or pad functions.

M —

Mealy notation
A Mealy notation state machine is defined as a sequential network whose output is a function of
both the present state and the inputs to the network (conditions). In Mealy notation, outputs
(action) are associated with the transitions between states. See also Moor e notation and
transition actions.

module declarations
Locally defined Verilog statements which can be entered as propertiesin a state diagram, flow
chart, truth table or symbol and are declared for the corresponding Verilog module in the
generated HDL. Module declarations are typically used for 'define, parameter, reg, integer, real,
time or wire declarations. See also local declarations.

ModuleWare

A library of technology-independent, synthesis-optimized HDL generators which can be used to
implement many common logic, constant, combinatorial, bit manipulation, arithmetic, register,
sequential, memory or primitive functions as instantiated VHDL or Verilog models.

Moore notation
A Moore notation state machine is defined as a sequential network whose outputs (action) are a
function of the present state only. In Moore notation, actions are associated with the states. See
also Mealy notation and state actions.

— N —

net
A set of signals or buses which have the same name and type. The net represents connections
between objects in the design structure and has a value determined by the net's drivers. See also
wire.

netlist
An ASCII representation of acircuit that lists all of the content of a design and shows how they
are interconnected. Typically used for agate level description asthe input to asimulator or place
and route tool.

net connector
A net connector can be used on a block diagram to join nets which have the same properties. It
can also be used as an implicit on-page connector between nets with the same properties on the

168 State Machine Editors User Manual, V2010.3
June, 2011

ABCDEFGHI JKLMNOPQRSTUVWXY Z

same diagram or as a dangling connector to terminate nets which are left deliberately
unconnected. See also global connector, junction and ripper.

node
A connectable item on ablock diagram, state diagram, ASM chart or flow chart. On a block
diagram, it can be a block, embedded block, component, port map frame, global connector, port,
ripper or net connector. On a state diagram, it can be a state, start state, hierarchical state,
junction, interrupt point, link and an entry point or exit point in achild hierarchical state diagram.
On aflow chart, it can be a start point, action box, loop, decision box, case box, wait box or end
point.

— 00—

object
A general term used for a selectable item or selectable group of closely related items.

object tip
A popup window which displays information about the object under the cursor.

— P —

package list
A list of VHDL packages referenced by adesign unit view. The package list isdisplayed as atext
object on a block diagram, state diagram, flow chart or symbol.

panel
A defined and named area on a block diagram, flow chart, state diagram or symbol which
facilitates viewing or printing the area.

parent
The view immediately above its child in the design hierarchy. A design unit view appears as a
block or component on its parent block diagram or I1BD view. Also used for the view containing
the hierarchical state or hierarchical action box or hierarchical state box representing a
hierarchical state diagram, ASM chart or flow chart.

partial condition
The condition associated with a partial transition.

partial transition

Any transition arriving at or leaving ajunction or interrupt point on a state diagram. Also the
transitions connected to an entry point or exit point in achild hierarchical state diagram. See also
complete transition path.

polyline
A series of connected straight lines joining one or more points. Polylines may be orthogonal
(horizontal and vertical lines only) or may include diagonals. See also spline.

State Machine Editors User Manual, V2010.3 169
June, 2011

ABCDEFGHI JKLMNOPQRSTUVWXY Z

port
The external connectionsfor adesign unit and their representation on asymbol, tabular 10, block
diagramor IBD view. Also the connections to an instantiated block, embedded block or
component on a block diagram or IBD view. The signals connected to ports may be inputs,
outputs or bidirectional or (for VHDL) buffered. The connection points on objects in an ASVI
chart or flow chart are also described as ports.

port map frame
An optional outline around a component on a block diagram which allows mapping between
actual signals on a block diagram and formal ports which have different properties.

probe
A probeis atext object which can be used to monitor the simulation activity of asignal on a
block diagram. Although a probe can be moved independently, it is permanently attached to its
associated signal by an anchor.

process declarations
User-specified VHDL statements which can be entered on aflow chart, state machine or truth
table and are included at the beginning of the corresponding processin the generated HDL .
When concurrent flow charts are defined, these declarations are local to each of the individual
concurrent flow charts. See also entity declarations and architecture declarations.

project
The collection of library mapping information that the HDL Designer Series uses to locate and
manage your designs.

project manager
The source browser project manager window can be used to set up a project and to define, load
and configure the library mapping for your designs.

protected library
A library containing re-usable objects (such as standard VHDL type definitions or shared
components) which cannot be edited, generated or compiled.

properties
A mechanism for storing additional information in the data model.

PSL
PSL is a Property Specification Language for the verification of VHDL or Verilog RTL designs.

Q

No entries
—R —

range
The maximum and minimum bounds for an integer, floating, physical or enumeration type.

170 State Machine Editors User Manual, V2010.3
June, 2011

ABCDEFGHI JKLMNOPQRSTUVWXY Z

recovery state point
A node on an ASMI chart that indicates the flow to the recovery state used when there is no other
valid state assignment.

registered signal
A signal in astate machine whose valueisheld asan internal signal whichisthen assigned to the
output port by the clocked process. A default value should be specified to avoid creating latches
during synthesis. See also combinatorial signal and clocked signal.

regular expression
A regular expression is a pattern to be matched against a text string. When found, a string which
matches the expression can optionally be replaced by another text string.

regular library
A library used for design creation which has library mappings for graphical and HDL text
source design objects.

re-level
An operation available in the state diagram editor to add or remove hierarchy by moving states
into or from a child diagram which is represented by a hierarchical state on the parent diagram.

requirement traceability
The process of tracking a requirement through a design to ensure that it is satisfied.

reset point
A node on an ASM chart that displays the reset signal name and condition. See also clock point
and enable point.

resource browser
The resource browser provides atask manager for configuring and invoking tasks and atemplate
manager for maintaining templates. See also source browser, side data browser and downstream
browser.

ripper
A ripper can be used on a block diagramto split or combine nets which have the same name and

bounds but represent a different slice or element. It can also be used to add or remove nets from
abundle. See also net connector.

route point
One of aseries of points specifying the path of anet in ablock diagram (or atransitionarcina
state diagram). Route points can be connected using polylines or splines.

S

selection set
A set of selected objects which are acted on by subsequent operations.

State Machine Editors User Manual, V2010.3 171
June, 2011

ABCDEFGHI JKLMNOPQRSTUVWXY Z

sensitivity list
A list of signalswhich can be entered in aflow chart or truth table and are used as the sensitivity
list in the generated HDL. The signals defined in the sensitivity list cause the corresponding
process to execute when any of the signals changes.

shortcut bar
A customizable control panel which provides shortcuts to viewpoints, tasks and ModuleWare
components.

shortcut key
A keyboard key or key combination that invokes a particular command (also referred to as an
accelerator key. See also toolbar.

side data
Supplementary source design data (such as EDIF, SDF and document header files) or user data
(such as design documents or text files) which is saved with a design unit view and can be
viewed using the side data browser.

side data browser
The side data browser displays an expandable indented list showing design and user data
associated with the design unit view selected in the design explorer. See also source browser,
resource browser and downstream browser.

signal
A connection or transfer of information between blocks or components which is represented as a
polyline or spline (with a name and type) on ablock diagram. A set of signals with the same
nameis called anet. See also bus.

signals status
A list of the output and locally declared signalsin a state machine or ASMI chart which shows the
type (VHDL only), scope (output or local), default value, reset value and status (combinatorial,
registered or clocked).

simple state
The representation on a state diagram of a state which has no child state diagram. See aso
hierarchical state and wait state.

slice
A dliceis used to access a set of contiguous elements within an array type (such as
std_logic_vector). Theleft and right limits of the slice must be consistent with the bounds of the
object.

source
Source design data contained in alibrary as graphical editor or HDL text views. Also the
connectable item at the start of asignal, bus, transition or flow on a diagram editor view. See
also destination.

172 State Machine Editors User Manual, V2010.3
June, 2011

ABCDEFGHI JKLMNOPQRSTUVWXY Z

source browser
The source browser provides a project manager window and any number of design explorersfor
browsing source design objects. See also side data browser, resource browser and downstream
browser.

spline
A curved line connecting two or more points. See also polyline.

start point
There is one and only one start point in aflow chart which is always named start. See al'so end
point.

start state
Theinitial state of a state machine. The start state represents the status of the state machine
before any transitions occur.

Sstate
A state isaresting mode of a state machine. Also the representation of astate on a state diagram.
Encoding information is shown if manual encoding is enabled and the state may have associated
actions. See also hierarchical state, smple state, start state, wait state, transition and condition.

State actions
The actions associated with a state on a state diagram which are executed when the state is
entered. See also transition actions and global actions.

state box
A state box isthe representation of a state on an ASM chart. A state box may have associated
entry, state and exit actions. See also hierarchical state.

state diagram
A diagram editor representation of a state machine. A state diagram typically consists of a
number of states, junctions, interrupt points or links connected by transitions. The diagram may
also include text blocks containing global actions, concurrent statements, local declarations and
comment text. A hierarchical state machine may also include hierarchical states, entry pointsand
exit points.

state machine
A design unit view of ablock or component which definesits behavior in terms of afinite state
machine (FSM). Thisis amathematical model of a system. The system is represented by afinite
number of states with afinite number of associated transitions between pairs of states. The state
machine is represented graphically as a state diagram. State machines drawn using Mealy
notation and Moore notation or a mixture of Mealy and Moore notation are supported.

state register statements
User entered statements which can be entered in a state diagram and are included in the
generated HDL to replace the default state assignment for the state machine before the state
decode statements at the beginning of a VHDL process or Verilog always code.

State Machine Editors User Manual, V2010.3 173
June, 2011

ABCDEFGHI JKLMNOPQRSTUVWXY Z

state variable
The name of a signal whose value that defines the current state of a state machine.

status bar
An area at the bottom of the design manager, HDL text editor or graphical editor window that
displays information about the current command.

Ssubtree
All objects directly or indirectly below a given object in the design hierarchy.

symbol
A diagrameditor view which uses graphical objectsto definethe signal interface of a component
and its representation when the component is instantiated on a block diagram. See also tabular
0.

synchronous
A synchronous process is activated on the next explicit clock edge rather than being activated
only if any of itsinputs are changed. See also clocking.

synthesis
The automatic generation of ASIC, FPGA or CPLD designs (circuits) from HDL descriptions.

system
Something that performs a specific function or set of functions with defined inputs and outputs.
Typically, a self-contained electronic subsystem.

T —

table editor
An editable truth table, IBD view or tabular 10 window which represents a design unit view
using atabular matrix of cells. See also diagram editor and graphical editor.

tabular 10
An aternative table editor view showing the interface of a symbol.

task
A customizable downstream tool or design flow which can be configured and invoked using the
task manager.

task manager
The task manager window can be used to create, modify or run atask.

template manager
The template manager window can be used to create and modify the templates used for new
graphical editor or HDL text views.

test bench
A test harness which alows a standard set of stimuli to be applied to a design.

174 State Machine Editors User Manual, V2010.3
June, 2011

ABCDEFGHI JKLMNOPQRSTUVWXY Z

toolbar
A group of buttons which provide shortcuts to commonly used commands. The HDL Designer
Series design manager and graphical editor windows typically have several undockable toolbars
each supporting a set of related commands. See also shortcut key.

tooltip
A small pop-up window that provides descriptive text for atoolbar button.

top-down design
The process of designing a system by identifying its mgjor parts, decomposing them into lower
level blocks and repeating the process until the desired level of detail is achieved. In electronic
design automation, this processis applied to the top-down design of ASIC, FPGA and CPLD
circuits using a hardware description language such as VHDL or Verilog. See also bottom-up
design.

transition
A change of state within a state machine. The transition occurs when an associated condition is
satisfied. A transition may have associated transition actions which are executed when the
transition takes place. A transition is represented by atransition arc with associated transition
text in a state diagram. See also transition priority.

transition actions
The action associated with atransition in a state machine which are executed when the transition
occurs. A transition action is the consequence of a condition. See also state actions.

transition arc
A polyline or spline representing part of atransition between states on a state diagram. The
direction of the transition is normally shown by an arrow head at its destination and the
transition text is attached to the arc by an anchor.

transition order
The order in which CASE style transitions leaving a state are generated. CASE style transitions
in VHDL are mutually exclusive and the order isignored but the order is significant in Verilog
since the first match in the generated code is taken.

transition priority
When there are more than one IF style transitions leaving a state, the associated conditions are
evaluated in the order of their priority. The transition priority is shown by an integer on the
transition arc adjacent to the source state. However, atransition with the condition OTHERS is
always evaluated last.

transition text
The condition text (in a Moore notation transition) or the condition and action text (in aMealy
notation transition) which is attached to the transition arc by an anchor.

truth table
A table editor view which represents one or more output signals by the logical state of one or
more input signals.

State Machine Editors User Manual, V2010.3 175
June, 2011

ABCDEFGHI JKLMNOPQRSTUVWXY Z

type
Specifies the characteristics and allowed values of anet. In VHDL, all signals, buses, variables
and constants have a specific VHDL type definition which is defined in a package list. In
Verilog, anet may havewire, tri, wor, trior, wand, triand, tri0, tril, supplyO, supplyl, reg, trireg,
real, integer, time or realtime type. The values for a bus may also be limited by a bounds
constraint.

—U—

universe
Thetotal area available for adiagram.

unknown design unit
A design unit which is not defined as a block, component or package list.

unknown design unit view
A design unit view representing data that is not defined as a graphical editor, HDL text or other
registered view. Typically contains atext description and is treated as atext view for open, print
or other file operations.

user directory
On UNIX, thisisthe home directory used when you login which contains your startup files and
isnormally located by the HOME environment variable. On a PC, an application data directory
is created when you use atool for the first time. On Windows NT, thisis created in the profiles
directory. For example:
C:\Winnt\Profiles\< user>\Application Data\HDL Designer Series\
On aWindows XP machine, the application data directory is located below the Documents and
Settings directory. For example:
C:\Documents and Settings\< user>\Application Data\HDL Designer Series\ Typically, the user
directory will contain your preferences and library mapping files unless you have explicitly
saved these filesin alternative locations.

—V —

Verilog
A hardware description language (compliant with |EEE standard 1364-1995) that can be used to
design, model and simulate electronic circuits. Verilog is aregistered trademark of Cadence
Design Systems Inc. See also HDL and VHDL.

Verilog include
A Verilog file containing global declarations or other Verilog code which can be included by
reference using the “include compiler directive.

Verilog module
A design unit view of ablock or component which defines its behavior using Verilog source
code.

176 State Machine Editors User Manual, V2010.3
June, 2011

ABCDEFGHI JKLMNOPQRSTUVWXY Z

Verilog module body
Describes the boundaries and content of a Verilog logic block in structural, dataflow and
behavioral constructs.

Verilog parameter
A Verilog parameter is a constant value used to parameterize a Verilog design description.
Verilog parameters are used in asimilar way to VHDL generics.

VHDL
VHDL standsfor VHSIC (Very High Speed Integrated Circuit) Hardware Description
Language. VHDL is adesign and modelling language (compliant with |EEE standards 1076-
1987, 1076-1993 and 1076-2002) which was specifically created to describe (in machine and
human-readable form) the organization and function of digital hardware systems and circuit
boards. See a'so HDL and Verilog.

VHDL architecture
A design unit view of a block or component which defines its behavior using VHDL source code.

VHDL architecture body
Declaresthe items available inside aVVHDL design entity and specifies the relationships between
inputs and outputs. An architecture body describes the organization and operations performed
inside the design entity. Y ou can choose to store the VHDL architecture body in the samefile or
in a separate file from the VHDL entity.

VHDL configuration
A declaration which specifies the VHDL architecture body used to define a VHDL design entity.
See also configuration.

VHDL design entity
A VHDL design entity isthe primary abstraction level of a VHDL hardware model which
typically represents a cell, chip, board or subsystem. A VHDL design entity comprisesaVHDL
entity declaration and a VHDL architecture body.

VHDL entity
Declares the interface between a VHDL design entity and its external environment. An entity
declaration contains definitions of inputs to and outputs from the VHDL design entity. VHDL
entity declarations can optionally be stored in the same file or a separate file from the associated
VHDL architecture body.

VHDL generic
A VHDL generic is aconstant value used to parameterize a VHDL design description. VHDL
generics are used in asimilar way to Verilog parameters.

VHDL package
A VHDL object that contains procedural definitions and declarations used by design unit views
of blocks or components. Typically contains type and subtype definitions. Usually comprises a
separate VHDL package header containing declarations and a VHDL package body containing
any functions or procedures declared in the package header.

State Machine Editors User Manual, V2010.3 177
June, 2011

ABCDEFGHI JKLMNOPQRSTUVWXY Z

VHDL package body
The part of a VHDL package which defines the implementation of objectsin the package. It
contains data used when the design is evaluated. The package body typically contains constant
definitions and function bodies.

VHDL package header
The part of a VHDL package which declares the objects defined in the package. It is referenced
by block and component views.

viewpoint
A set of user-defined rules which examine particular aspects of adesign.

VITAL
VITAL standsfor the VHDL Initiative Towards ASIC Libraries which is an |EEE standard
(IEEE1076.4) for ASC library design.

W —

wait box
A named object on aflow chart containing a conditional wait statement which controls the delay
before an event occurs on asignal in the sensitivity list. See also action box, case box and
decision box.

wait state
A wait state has similar properties to a simple state but introduces a delay of two or more clock
cycles.

whisker
A line that extends between a port on the boundary of a customized block or component symbol
and the body of the block or component symbol.

wire
A segment of anet on a VHDL or Verilog block diagram. A wire may have signal or bus style
and scalar or vector type and should not be confused with the Verilog wire type.

working directory
On UNI X, the directory from which you invoked the application. On a PC, the working directory
defaults to the user directory or can be set using the Start 1 n option when you define the
properties for a short cut to your application. Do not set aworking directory using the Start In
shortcut option if you want to use object linking and embedding (OLE) to import objectsinto a
documentation tool as the application will not be able to access library mapping information
from this location.

workspace
A working environment which allows common design data to be shared between multiple users.
Typically, aproject comprises one or more shared workspaces and a private workspace (often
described as a sandbox) for each engineer working on the project.

178 State Machine Editors User Manual, V2010.3
June, 2011

ABCDEFGHI JKLMNOPQRSTUVWXY Z

— X —

Xdefaults
A set of resources which can be used to set the default display characteristics on X server
window systems.

— Y —

No entries

7

No entries

State Machine Editors User Manual, V2010.3 179
June, 2011

ABCDEFGHI JKLMNOPQRSTUVWXY Z

180 State Machine Editors User Manual, V2010.3
June, 2011

ABCDEFGHI JKLMNOPQRSTUVWXY Z

Index
end of line, 133
—A— Condition
Action _box syntax, 21
adding on an ASM chart, 94
object properties, 105 — D —
Actions Decision box
global, 41 adding on an ASM chart, 96
interrupt transition, 41 implicit loopback, 96
state, 10, 38, 41, 53, 105 object properties, 106
syntax, 22 Declaration
trangition, 9, 41 syntax, 24
ASM chart Design rule checks
adding aflow, 99 running, 120
adding objects, 89 Dialog box
automatic connection mode, 90 ASM Object Properties
automatic insertion mode, 91 Action Boxes, 105
hierarchical, 100 Case Boxes, 109
notation, 86 Clock, 102
properties Decision Boxes, 106
architecture declarations, 118 Enable, 104
generation, 113 If Decode, 108
global actions, 116 Interrupts, 111
internal signal names, 120 Resets, 103
module declarations, 118 States, 104
process declarations, 118 ASM Preferences, 121
state encoding, 115 Appearance, 121
state register statements, 116 Background, 125
Default Values, 122
—C— Default Properties, 124
Case bo_x Signal Status, 123
gddl ng onan ASM chart, 97 Miscellaneous
mplicit loopback, 98 Object Visibility, 124
object properties, 109 ASM Properties, 112
Clock , Declaration Blocks, 118
obj ect properties, 49, 102 Encoding, 115, 146
Clock point | Generation, 113, 137
adding on a state diagram, 34 Internal Signals, 120
Comment text Statement Blocks, 116
after object, 133 CASE Settings, 64
before object, 133 Comments, 133
State Machine Editors User Manual, V2010.3 181

June, 2011

ABCDEFGHI JKLMNOPQRSTUVWXY Z

Encoding, 73
Expression Builder, 16
Rename, 27
Show Columns, 134
SM Object Properties
Clock, 49
Enable, 51
Junctions, 58
Links, 56
Resets, 50
States, 52
Transitions, 54
SM Properties
Internal Signals, 78
State Machine Preferences, 78
Appearance, 83
Background, 84
Default Settings, 80
Default Properties, 82

Signal Status Default Options, 82

Verilog Wait States, 80
VHDL Wait States, 80
Miscellaneous
Object Visibility, 83
State Machine Properties, 67
Declaration Blocks, 75
Encoding, 146
Generation, 68, 137
Advanced, 70
Statement Blocks, 73
Verilog Wait State Settings, 60
VHDL Wait State Settings, 59

— E—
Enable point

adding on a state diagram, 36

adding on an ASM chart, 93

object properties, 51, 104
End point

adding on an ASM chart, 101
Entry point

adding on a state diagram, 47
Execution priority, 41
Exit point

adding on a state diagram, 47
Expression builder

displaying, 16

fast entry, 18

using, 17

Verilog operators, 18
VHDL operators, 20

— G —
Global actions, 41
— | —
If decode box
adding on an ASM chart, 98
implicit loopback, 99
object properties, 108
Interrupt
masking, 41, 111
transition, 41, 91
Interrupt point
adding on a state diagram, 40
adding on an ASM chart, 91
object properties, 111

—J—
Junction
adding on a state diagram, 43
object properties, 58

— L —
Link
adding on a state diagram, 42
adding on an ASM chart, 96
object properties, 56
referencing arecovery state, 57
rotating, 43

— M —

Meay
style, 8

Moore
style, 9

— N —
Notation

action box, 86

ASM chart, 86

case box, 87

clock point, 30, 31, 86

182

State Machine Editors User Manual, V2010.3

June, 2011

ABCDEFGHI JKLMNOPQRSTUVWXY Z

decision box, 86

enable point, 30, 32, 86
end point, 87

entry point, 31

exit point, 31
hierarchical action box, 86
hierarchical state, 30
hierarchical state box, 86
if decode box, 87
interrupt point, 30, 86
junction, 31

link, 31, 87

recovery state point, 30, 86
reset point, 30, 86
simple state, 30

start point, 87

state, 30

state box, 86

state diagram, 30
transition, 31

wait state, 30

— 00—
Object properties
action box, 105
case box, 109
clock, 49, 102
decision box, 106
enable point, 51, 104
if decode box, 108
interrupt point, 111
junction, 58
link, 56
reset point, 50, 103
state, 52
state box, 104
transition, 54, 55, 56

—P—
Popup

Rotate, 43
Port

adding in the signalstable, 131
Pragma

full _case, 65, 145

parallel _case, 65, 145

Preferences
diagram background color, 84
grid, 84

— R —
Recovery state point
adding on a state diagram, 36
adding on an ASM chart, 93
Re-level
state diagram, 46
removing hierarchy, 46
Reset point
adding on a state diagram, 34
adding on an ASM chart, 92
object properties, 50, 103
Reverse Direction, 40
Row
sorting in the signalstable, 135

— S —
Signal
adding in the signals table, 132
assignment, 145
Verilog, 23
VHDL, 23
blocking assignment, 23, 145
non-blocking assignment, 23, 145
Signalstable
displaying, 127
filtering, 134
grouping, 134
notation, 128
Start point
adding on an ASM chart, 101
State
actions, 10, 41, 53, 105
syntax, 53
adding on a state diagram, 37
changing shape, 53
copying actions, 38
encoding, 53, 105
hierarchical, 37
implicit loopback, 53
object properties, 52
simple, 37
wait, 37

State Machine Editors User Manual, V2010.3
June, 2011

183

ABCDEFGHI JKLMNOPQRSTUVWXY Z

State box

adding on an ASM chart, 95
object properties, 104

State diagram

adding hierarchy, 46
hierarchical, 44
notation, 30

state encoding, 73

State machine

Mealy style, 8
Moore style, 9
properties

architecture declarations, 31, 75
assignment type, 145
asynchronous, 68, 138
blocking assignment, 145

case comparison, 140

Case style, 139

casex comparison, 140

casez comparision, 140
concurrent statements, 31, 73
default state assignment, 144
delay for current state assignment, 146
generateinterruptsasoverrides, 71, 143
generation characteristics, 68
global actions, 31, 73

If style, 139

instrument for animation, 71
internal signal names, 78
module declarations, 31, 75
non-blocking assignment, 145
One-Hot style, 139

process declarations, 31, 75
propagation delay, 138

register state actions, 144
signals status, 31

single always block, 138

single process, 138

state encoding, 73

state register statements, 31, 73
state signal names, 71, 146
state variable, 143

state vector pragmas, 145
statement blocks, 31
synchronous, 68, 138

three always blocks, 138
three processes, 138
two always blocks, 138
two processes, 138
state encoding algorithms, 149
State variable
definition, 12
Syntax

action, 22

checking, 49, 53, 56, 74, 75, 101, 116, 118

condition, 21
declaration, 24

— T —
Table
sorting rows, 135
Toolbar
ASM Signals Tools, 130
ASM Tools, 88
HDL Tools, 120
SM Signals Tools, 130
State Diagram Tools, 32
Transition
actions, 9, 41, 56
syntax, 56
adding on a state diagram, 39
CASE branch expression, 54, 55
CASE decode, 63
CASE style, 53, 58
changing the direction, 40
copying actions, 40
copying conditions, 40
factoring, 43
IF condition, 54
IF style, 53, 58
interrupt, 41, 91
object properties, 54
priority, 40, 55
TIMEOUT, 39
timeout condition, 54

— W —
Wait state
generation properties, 72

184

State Machine Editors User Manual, V2010.3

June, 2011

End-User License Agreement

The latest version of the End-User License Agreement is available on-line at:
www.mentor.com/eula

IMPORTANT INFORMATION

USE OF ALL SOFTWARE IS SUBJECT TO LICENSE RESTRICTIONS. CAREFULLY READ THIS
LICENSE AGREEMENT BEFORE USING THE PRODUCTS. USE OF SOFTWARE INDICATES
CUSTOMER’S COMPLETE AND UNCONDITIONAL ACCEPTANCE OF THE TERMS AND
CONDITIONS SET FORTH IN THIS AGREEMENT. ANY ADDITIONAL OR DIFFERENT PURCHASE
ORDER TERMS AND CONDITIONS SHALL NOT APPLY.

END-USER LICENSE AGREEMENT (*Agreement”)

Thisis a legal agreement concerning the use of Software (as defined in Section 2) and hardwar e (collectively
“Products’) between the company acquiring the Products (“ Customer”), and the Mentor Graphics entity that
issued the corresponding quotation or, if no quotation was issued, the applicable local Mentor Graphics entity
(“Mentor Graphics’). Except for license agreementsrelated to the subject matter of this license agreement which
are physically signed by Customer and an authorized representative of Mentor Graphics, this Agreement and the
applicable quotation contain the parties entire understanding relating to the subject matter and super sede all
prior or contemporaneous agreements. |f Customer does not agreeto thesetermsand conditions, promptly return
or, in the case of Software received electronically, certify destruction of Software and all accompanying items
within five days after receipt of Software and receive a full refund of any license fee paid.

ORDERS, FEESAND PAYMENT.

1.1. To the extent Customer (or if agreed by Mentor Graphics, Customer’'s appointed third party buying agent) places and
Mentor Graphics accepts purchase orders pursuant to this Agreement (“Order(s)”), each Order will constitute a contract
between Customer and Mentor Graphics, which shall be governed solely and exclusively by the terms and conditions of this
Agreement, any applicable addenda and the applicable quotation, whether or not these documents are referenced on the
Order. Any additional or conflicting terms and conditions appearing on an Order will not be effective unless agreed in
writing by an authorized representative of Customer and Mentor Graphics.

1.2. Amounts invoiced will be paid, in the currency specified on the applicable invoice, within 30 days from the date of such
invoice. Any past due invoices will be subject to the imposition of interest charges in the amount of one and one-half
percent per month or the applicable legal rate currently in effect, whichever is lower. Prices do not include freight,
insurance, customs duties, taxes or other similar charges, which Mentor Graphics will state separately in the applicable
invoice(s). Unlesstimely provided with avalid certificate of exemption or other evidence that items are not taxable, Mentor
Graphics will invoice Customer for all applicable taxes including, but not limited to, VAT, GST, sales tax and service tax.
Customer will make all payments free and clear of, and without reduction for, any withholding or other taxes; any such
taxes imposed on payments by Customer hereunder will be Customer’s sole responsibility. If Customer appoints a third
party to place purchase orders and/or make payments on Customer’s behalf, Customer shall be liable for payment under
Orders placed by such third party in the event of default.

1.3. All Products are delivered FCA factory (Incoterms 2000), freight prepaid and invoiced to Customer, except Software
delivered electronically, which shall be deemed delivered when made available to Customer for download. Mentor
Graphics retains a security interest in all Products delivered under this Agreement, to secure payment of the purchase price
of such Products, and Customer agrees to sign any documents that Mentor Graphics determines to be necessary or
convenient for usein filing or perfecting such security interest. Mentor Graphics' delivery of Software by electronic means
is subject to Customer’s provision of both a primary and an alternate e-mail address.

GRANT OF LICENSE. The software installed, downloaded, or otherwise acquired by Customer under this Agreement,
including any updates, modifications, revisions, copies, documentation and design data (“ Software”) are copyrighted, trade
secret and confidential information of Mentor Graphics or its licensors, who maintain exclusive title to all Software and retain
all rights not expressly granted by this Agreement. Mentor Graphics grants to Customer, subject to payment of applicable
license fees, a nontransferable, nonexclusive license to use Software solely: (@) in machine-readable, object-code form (except
as provided in Subsection 5.2); (b) for Customer’s internal business purposes; (c) for the term of the license; and (d) on the
computer hardware and at the site authorized by Mentor Graphics. A site is restricted to a one-half mile (800 meter) radius.
Customer may have Software temporarily used by an employee for telecommuting purposes from locations other than a
Customer office, such as the employee's residence, an airport or hotel, provided that such employee's primary place of
employment is the site where the Software is authorized for use. Mentor Graphics' standard policies and programs, which vary
depending on Software, license fees paid or services purchased, apply to the following: (a) relocation of Software; (b) use of
Software, which may be limited, for example, to execution of a single session by a single user on the authorized hardware or for
arestricted period of time (such limitations may be technically implemented through the use of authorization codes or similar
devices); and (c) support services provided, including eligibility to receive telephone support, updates, modifications, and
revisions. For the avoidance of doubt, if Customer requests any change or enhancement to Software, whether in the course of

http://www.mentor.com/eula

receiving support or consulting services, evaluating Software, performing beta testing or otherwise, any inventions, product
improvements, modifications or developments made by Mentor Graphics (at Mentor Graphics' sole discretion) will be the
exclusive property of Mentor Graphics.

ESC SOFTWARE. If Customer purchases a license to use development or prototyping tools of Mentor Graphics' Embedded
Software Channel (“ESC”), Mentor Graphics grants to Customer a nontransferable, nonexclusive license to reproduce and
distribute executable files created using ESC compilers, including the ESC run-time libraries distributed with ESC C and C++
compiler Software that are linked into a composite program as an integral part of Customer’s compiled computer program,
provided that Customer distributes these files only in conjunction with Customer’s compiled computer program. Mentor
Graphics does NOT grant Customer any right to duplicate, incorporate or embed copies of Mentor Graphics' real-time operating
systems or other embedded software products into Customer’s products or applications without first signing or otherwise
agreeing to a separate agreement with Mentor Graphics for such purpose.

BETA CODE.

4.1. Portions or all of certain Software may contain code for experimental testing and evaluation (“Beta Code’), which may not
be used without Mentor Graphics’ explicit authorization. Upon Mentor Graphics' authorization, Mentor Graphics grants to
Customer a temporary, nontransferable, nonexclusive license for experimental use to test and evaluate the Beta Code
without charge for alimited period of time specified by Mentor Graphics. This grant and Customer’s use of the Beta Code
shall not be construed as marketing or offering to sell alicense to the Beta Code, which Mentor Graphics may choose not to
release commercialy in any form.

4.2. If Mentor Graphics authorizes Customer to use the Beta Code, Customer agrees to evaluate and test the Beta Code under
normal conditions as directed by Mentor Graphics. Customer will contact Mentor Graphics periodically during Customer’s
use of the Beta Code to discuss any malfunctions or suggested improvements. Upon completion of Customer’s evaluation
and testing, Customer will send to Mentor Graphics a written evaluation of the Beta Code, including its strengths,
weaknesses and recommended improvements.

4.3. Customer agrees to maintain Beta Code in confidence and shall restrict access to the Beta Code, including the methods and
concepts utilized therein, solely to those employees and Customer location(s) authorized by Mentor Graphics to perform
beta testing. Customer agrees that any written evaluations and all inventions, product improvements, modifications or
developments that Mentor Graphics conceived or made during or subsequent to this Agreement, including those based
partly or wholly on Customer’s feedback, will be the exclusive property of Mentor Graphics. Mentor Graphics will have
exclusiverights, title and interest in al such property. The provisions of this Subsection 4.3 shall survive termination of this
Agreement.

RESTRICTIONS ON USE.

5.1. Customer may copy Software only as reasonably necessary to support the authorized use. Each copy must include all
notices and legends embedded in Software and affixed to its medium and container as received from Mentor Graphics. All
copies shall remain the property of Mentor Graphics or its licensors. Customer shall maintain a record of the number and
primary location of all copies of Software, including copies merged with other software, and shall make those records
available to Mentor Graphics upon request. Customer shall not make Products available in any form to any person other
than Customer’s employees and on-site contractors, excluding Mentor Graphics competitors, whose job performance
requires access and who are under obligations of confidentiality. Customer shall take appropriate action to protect the
confidentiality of Products and ensure that any person permitted access does not disclose or use it except as permitted by
this Agreement. Customer shall give Mentor Graphics written notice of any unauthorized disclosure or use of the Products
as soon as Customer learns or becomes aware of such unauthorized disclosure or use. Except as otherwise permitted for
purposes of interoperability as specified by applicable and mandatory local law, Customer shall not reverse-assemble,
reverse-compile, reverse-engineer or in any way derive any source code from Software. Log files, datafiles, rule files and
script files generated by or for the Software (collectively “Files’), including without limitation files containing Standard
Verification Rule Format (“SVRF") and Tcl Verification Format (“ TVF") which are Mentor Graphics' proprietary syntaxes
for expressing process rules, constitute or include confidential information of Mentor Graphics. Customer may share Files
with third parties, excluding Mentor Graphics competitors, provided that the confidentiality of such Filesis protected by
written agreement at least as well as Customer protects other information of a similar nature or importance, but in any case
with at least reasonable care. Customer may use Files containing SVRF or TVF only with Mentor Graphics products. Under
no circumstances shall Customer use Software or Files or allow their use for the purpose of developing, enhancing or
marketing any product that is in any way competitive with Software, or disclose to any third party the results of, or
information pertaining to, any benchmark.

5.2. If any Software or portions thereof are provided in source code form, Customer will use the source code only to correct
software errors and enhance or modify the Software for the authorized use. Customer shall not disclose or permit disclosure
of source code, in whole or in part, including any of its methods or concepts, to anyone except Customer’s employees or
contractors, excluding Mentor Graphics competitors, with a need to know. Customer shall not copy or compile source code
in any manner except to support this authorized use.

5.3. Customer may not assign this Agreement or the rights and duties under it, or relocate, sublicense or otherwise transfer the
Products, whether by operation of law or otherwise (“ Attempted Transfer”), without Mentor Graphics’ prior written
consent and payment of Mentor Graphics' then-current applicable relocation and/or transfer fees. Any Attempted Transfer
without Mentor Graphics' prior written consent shall be a materia breach of this Agreement and may, at Mentor Graphics
option, result in the immediate termination of the Agreement and/or the licenses granted under this Agreement. The terms

10.

11.

12.

of this Agreement, including without limitation the licensing and assignment provisions, shall be binding upon Customer’s
permitted successors in interest and assigns.

5.4. The provisions of this Section 5 shall survive the termination of this Agreement.
SUPPORT SERVICES. To the extent Customer purchases support services, Mentor Graphics will provide Customer updates

and technical support for the Products, at the Customer site(s) for which support is purchased, in accordance with Mentor
Graphics' then current End-User Support Terms located at http://supportnet.mentor.com/about/legal/.

AUTOMATIC CHECK FOR UPDATES; PRIVACY. Technological measures in Software may communicate with servers
of Mentor Graphics or its contractors for the purpose of checking for and notifying the user of updates and to ensure that the
Software in useislicensed in compliance with this Agreement. Mentor Graphics will not collect any personally identifiable data
in this process and will not disclose any data collected to any third party without the prior written consent of Customer, except to
Mentor Graphics' outside attorneys or as may be required by a court of competent jurisdiction.

LIMITED WARRANTY.

8.1. Mentor Graphics warrants that during the warranty period its standard, generally supported Products, when properly
installed, will substantially conform to the functional specifications set forth in the applicable user manual. Mentor
Graphics does not warrant that Products will meet Customer’s requirements or that operation of Products will be
uninterrupted or error free. The warranty period is 90 days starting on the 15th day after delivery or upon installation,
whichever first occurs. Customer must notify Mentor Graphics in writing of any nonconformity within the warranty period.
For the avoidance of doubt, this warranty applies only to the initial shipment of Software under an Order and does not
renew or reset, for example, with the delivery of (a) Software updates or (b) authorization codes or aternate Software under
a transaction involving Software re-mix. This warranty shall not be valid if Products have been subject to misuse,
unauthorized modification or improper installation. MENTOR GRAPHICS ENTIRE LIABILITY AND CUSTOMER'S
EXCLUSIVE REMEDY SHALL BE, AT MENTOR GRAPHICS OPTION, EITHER (A) REFUND OF THE PRICE
PAID UPON RETURN OF THE PRODUCTS TO MENTOR GRAPHICS OR (B) MODIFICATION OR
REPLACEMENT OF THE PRODUCTS THAT DO NOT MEET THIS LIMITED WARRANTY, PROVIDED
CUSTOMER HAS OTHERWISE COMPLIED WITH THIS AGREEMENT. MENTOR GRAPHICS MAKES NO
WARRANTIES WITH RESPECT TO: (A) SERVICES; (B) PRODUCTS PROVIDED AT NO CHARGE; OR (C) BETA
CODE; ALL OF WHICH ARE PROVIDED “ASIS.”

8.2. THE WARRANTIES SET FORTH IN THIS SECTION 8 ARE EXCLUSIVE. NEITHER MENTOR GRAPHICS NOR
ITSLICENSORS MAKE ANY OTHER WARRANTIES EXPRESS, IMPLIED OR STATUTORY, WITH RESPECT TO
PRODUCTS PROVIDED UNDER THIS AGREEMENT. MENTOR GRAPHICS AND ITS LICENSORS
SPECIFICALLY DISCLAIM ALL IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NON-INFRINGEMENT OF INTELLECTUAL PROPERTY .

LIMITATION OF LIABILITY. EXCEPT WHERE THIS EXCLUSION OR RESTRICTION OF LIABILITY WOULD BE
VOID OR INEFFECTIVE UNDER APPLICABLE LAW, IN NO EVENT SHALL MENTOR GRAPHICS OR ITS
LICENSORS BE LIABLE FOR INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES (INCLUDING
LOST PROFITS OR SAVINGS) WHETHER BASED ON CONTRACT, TORT OR ANY OTHER LEGAL THEORY, EVEN
IFMENTOR GRAPHICSOR ITS LICENSORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. IN
NO EVENT SHALL MENTOR GRAPHICS OR ITSLICENSORS' LIABILITY UNDER THIS AGREEMENT EXCEED
THE AMOUNT RECEIVED FROM CUSTOMER FOR THE HARDWARE, SOFTWARE LICENSE OR SERVICE GIVING
RISE TO THE CLAIM. IN THE CASE WHERE NO AMOUNT WAS PAID, MENTOR GRAPHICS AND ITS LICENSORS
SHALL HAVENOLIABILITY FOR ANY DAMAGES WHATSOEVER. THE PROVISIONS OF THISSECTION 9 SHALL
SURVIVE THE TERMINATION OF THIS AGREEMENT.

HAZARDOUS APPLICATIONS. CUSTOMER ACKNOWLEDGES IT IS SOLELY RESPONSIBLE FOR TESTING ITS
PRODUCTS USED IN APPLICATIONS WHERE THE FAILURE OR INACCURACY OF ITS PRODUCTS MIGHT
RESULT IN DEATH OR PERSONAL INJURY (“HAZARDOUS APPLICATIONS"). NEITHER MENTOR GRAPHICS
NOR ITS LICENSORS SHALL BE LIABLE FOR ANY DAMAGES RESULTING FROM OR IN CONNECTION WITH
THE USE OF MENTOR GRAPHICS PRODUCTS IN OR FOR HAZARDOUS APPLICATIONS. THE PROVISIONS OF
THIS SECTION 10 SHALL SURVIVE THE TERMINATION OF THIS AGREEMENT.

INDEMNIFICATION. CUSTOMER AGREES TO INDEMNIFY AND HOLD HARMLESS MENTOR GRAPHICS AND
ITS LICENSORS FROM ANY CLAIMS, LOSS, COST, DAMAGE, EXPENSE OR LIABILITY, INCLUDING
ATTORNEYS FEES, ARISING OUT OF OR IN CONNECTION WITH THE USE OF PRODUCTS AS DESCRIBED IN
SECTION 10. THE PROVISIONS OF THIS SECTION 11 SHALL SURVIVE THE TERMINATION OF THIS
AGREEMENT.

INFRINGEMENT.

12.1. Mentor Graphics will defend or settle, at its option and expense, any action brought against Customer in the United States,
Canada, Japan, or member state of the European Union which alleges that any standard, generally supported Product
acquired by Customer hereunder infringes a patent or copyright or misappropriates a trade secret in such jurisdiction.
Mentor Graphicswill pay costs and damages finally awarded against Customer that are attributable to the action. Customer
understands and agrees that as conditions to Mentor Graphics' obligations under this section Customer must: (a) notify
Mentor Graphics promptly in writing of the action; (b) provide Mentor Graphics all reasonable information and assistance

http://supportnet.mentor.com/about/legal/

13.

14.

15.

16.

17.

18.

to settle or defend the action; and (c) grant Mentor Graphics sole authority and control of the defense or settlement of the
action.

12.2. If aclaimismade under Subsection 12.1 Mentor Graphics may, at its option and expense, (a) replace or modify the Product
so that it becomes noninfringing; (b) procure for Customer the right to continue using the Product; or (c) require the return
of the Product and refund to Customer any purchase price or license fee paid, less a reasonable allowance for use.

12.3. Mentor Graphics has no liability to Customer if the action is based upon: (&) the combination of Software or hardware with
any product not furnished by Mentor Graphics; (b) the modification of the Product other than by Mentor Graphics; (c) the
use of other than a current unaltered release of Software; (d) the use of the Product as part of an infringing process; (€) a
product that Customer makes, uses, or sells; (f) any Beta Code or Product provided at no charge; (g) any software provided
by Mentor Graphics' licensors who do not provide such indemnification to Mentor Graphics' customers; or
(h) infringement by Customer that is deemed willful. In the case of (h), Customer shall reimburse Mentor Graphics for its
reasonabl e attorney fees and other costs related to the action.

12.4. THIS SECTION 12 IS SUBJECT TO SECTION 9 ABOVE AND STATES THE ENTIRE LIABILITY OF MENTOR
GRAPHICS AND ITS LICENSORS FOR DEFENSE, SETTLEMENT AND DAMAGES, AND CUSTOMER’S SOLE
AND EXCLUSIVE REMEDY, WITH RESPECT TO ANY ALLEGED PATENT OR COPYRIGHT INFRINGEMENT
OR TRADE SECRET MISAPPROPRIATION BY ANY PRODUCT PROVIDED UNDER THIS AGREEMENT.

TERMINATION AND EFFECT OF TERMINATION. If a Software license was provided for limited term use, such license
will automatically terminate at the end of the authorized term.

13.1. Mentor Graphics may terminate this Agreement and/or any license granted under this Agreement immediately upon written
notice if Customer: (a) exceeds the scope of the license or otherwise fails to comply with the licensing or confidentiality
provisions of this Agreement, or (b) becomes insolvent, files a bankruptcy petition, institutes proceedings for liquidation or
winding up or entersinto an agreement to assign its assets for the benefit of creditors. For any other material breach of any
provision of this Agreement, Mentor Graphics may terminate this Agreement and/or any license granted under this
Agreement upon 30 days written notice if Customer fails to cure the breach within the 30 day notice period. Termination of
this Agreement or any license granted hereunder will not affect Customer’s obligation to pay for Products shipped or
licenses granted prior to the termination, which amounts shall be payable immediately upon the date of termination.

13.2. Upon termination of this Agreement, the rights and obligations of the parties shall cease except as expressly set forth in this
Agreement. Upon termination, Customer shall ensure that all use of the affected Products ceases, and shall return hardware
and either return to Mentor Graphics or destroy Software in Customer’s possession, including all copies and
documentation, and certify in writing to Mentor Graphics within ten business days of the termination date that Customer no
longer possesses any of the affected Products or copies of Software in any form.

EXPORT. The Products provided hereunder are subject to regulation by local laws and United States government agencies,
which prohibit export or diversion of certain products and information about the products to certain countries and certain
persons. Customer agrees that it will not export Products in any manner without first obtaining al necessary approval from
appropriate local and United States government agencies.

U.S. GOVERNMENT LICENSE RIGHTS. Software was developed entirely at private expense. All Software is commercial
computer software within the meaning of the applicable acquisition regulations. Accordingly, pursuant to US FAR 48 CFR
12.212 and DFAR 48 CFR 227.7202, use, duplication and disclosure of the Software by or for the U.S. Government or aU.S.
Government subcontractor is subject solely to the terms and conditions set forth in this Agreement, except for provisions which
are contrary to applicable mandatory federal laws.

THIRD PARTY BENEFICIARY. Mentor Graphics Corporation, Mentor Graphics (Ireland) Limited, Microsoft Corporation
and other licensors may be third party beneficiaries of this Agreement with the right to enforce the obligations set forth herein.

REVIEW OF LICENSE USAGE. Customer will monitor the access to and use of Software. With prior written notice and
during Customer’s normal business hours, Mentor Graphics may engage an internationally recognized accounting firm to
review Customer’s software monitoring system and records deemed relevant by the internationally recognized accounting firm
to confirm Customer’ s compliance with the terms of this Agreement or U.S. or other local export laws. Such review may include
FLEXIm or FLEXnet (or successor product) report log files that Customer shall capture and provide at Mentor Graphics'
request. Customer shall make records available in electronic format and shall fully cooperate with data gathering to support the
license review. Mentor Graphics shall bear the expense of any such review unless a material non-complianceisrevealed. Mentor
Graphics shall treat as confidential information all information gained as a result of any request or review and shall only use or
disclose such information as required by law or to enforce its rights under this Agreement. The provisions of this Section 17
shall survive the termination of this Agreement.

CONTROLLING LAW, JURISDICTION AND DISPUTE RESOLUTION. The owners of certain Mentor Graphics
intellectual property licensed under this Agreement are located in Ireland and the United States. To promote consistency around
the world, disputes shall be resolved as follows: excluding conflict of laws rules, this Agreement shall be governed by and
construed under the laws of the State of Oregon, USA, if Customer islocated in North or South America, and the laws of Ireland
if Customer is located outside of North or South America. All disputes arising out of or in relation to this Agreement shall be
submitted to the exclusive jurisdiction of the courts of Portland, Oregon when the laws of Oregon apply, or Dublin, Ireland when
the laws of Ireland apply. Notwithstanding the foregoing, all disputesin Asiaarising out of or in relation to this Agreement shall
be resolved by arbitration in Singapore before a single arbitrator to be appointed by the chairman of the Singapore International

19.

20.

Arbitration Centre (“SIAC”) to be conducted in the English language, in accordance with the Arbitration Rules of the SIAC in
effect at the time of the dispute, which rules are deemed to be incorporated by reference in this section. This section shall not
restrict Mentor Graphics' right to bring an action against Customer in the jurisdiction where Customer’s place of businessis
located. The United Nations Convention on Contracts for the International Sale of Goods does not apply to this Agreement.

SEVERABILITY. If any provision of this Agreement is held by a court of competent jurisdiction to be void, invalid,
unenforceable or illegal, such provision shall be severed from this Agreement and the remaining provisions will remain in full
force and effect.

MISCELLANEOUS. This Agreement containsthe parties’ entire understanding relating to its subject matter and supersedes all
prior or contemporaneous agreements, including but not limited to any purchase order terms and conditions. Some Software
may contain code distributed under a third party license agreement that may provide additional rights to Customer. Please see
the applicable Software documentation for details. This Agreement may only be modified in writing by authorized
representatives of the parties. Waiver of terms or excuse of breach must be in writing and shall not constitute subsequent
consent, waiver or excuse.

Rev. 100615, Part No. 246066

	Table of Contents
	Chapter 1 State Machines
	Introduction
	State Diagrams
	Mealy Behavior
	Moore Behavior
	Combined Mealy and Moore Behavior
	State Variable Definition
	State Diagram Example

	Algorithmic State Machines
	ASM Chart Example

	Syntax Notes
	Building a HDL Expression
	Condition Syntax
	Examples of Condition Syntax

	Action Syntax
	Examples of Action Syntax

	Declaration Syntax
	Examples of Declaration Syntax

	Concurrent State Machines
	Adding a Concurrent State Machine
	Opening a Concurrent State Machine
	Renaming a Concurrent State Machine
	Deleting a Concurrent State Machine

	Using the Diagram Browser

	Chapter 2 State Diagram Editor
	State Diagram Notation
	State Diagram Toolbar
	State Machine Initialization
	Adding Objects on a State Diagram
	Adding a Clock Point
	Adding a Reset Point
	Adding a Recovery State Point
	Adding an Enable Point
	Adding a State
	Copying State Actions

	Adding a Transition
	Transition Priority
	Changing the Direction of a Transition
	Copying Transition Conditions and Actions

	Adding an Interrupt Point
	Execution Priority
	Adding a Link
	Adding a Junction
	Hierarchical State Diagrams
	Adding or Removing Hierarchy
	Adding an Entry Point
	Adding an Exit Point

	Changing Objects on a State Diagram
	Adding Other Objects on a State Diagram

	Editing State Diagram Object Properties
	Editing Clock Object Properties
	Editing Reset Object Properties
	Editing Enable Object Properties
	Editing State Object Properties
	Editing Transition Object Properties
	Editing Link Object Properties
	Setting the Recovery State

	Editing Junction Object Properties
	Using Wait States
	VHDL Wait State Example
	Verilog Wait State Example

	Decode Options for CASE Transitions
	Example of VHDL CASE Decode
	Example of Verilog CASE Decode

	Setting State Machine Properties
	Setting State Diagram Generation Properties
	Advanced State Diagram Generation Properties

	Setting State Encoding Properties
	Setting Statement Blocks
	Setting Declaration Blocks
	Editing Pre/Post User Declarations

	Setting State Diagram Internal Signal Names

	Setting State Machine Preferences

	Chapter 3 ASM Chart Editor
	ASM Chart Notation
	ASM Chart Toolbar
	ASM Initialization
	Adding Objects on an ASM Chart
	Adding an Interrupt Point
	Adding a Reset Point
	Adding a Recovery State Point
	Adding an Enable Point
	Adding an Action Box
	Adding a State Box
	Adding a Link
	Adding a Decision Box
	Adding a Case Box
	Adding an If Decode Box
	Adding a Flow
	Hierarchical ASM Charts
	Adding a Start Point
	Adding an End Point

	Editing ASM Object Properties
	Editing Clock Object Properties
	Editing Reset Object Properties
	Editing Enable Object Properties
	Editing State Object Properties
	Editing Action Box Object Properties
	Editing Decision Box Object Properties
	Editing If Decode Box Object Properties
	Editing Case Box Object Properties
	Editing Interrupt Object Properties

	Setting ASM Chart Properties
	Setting ASM Chart Generation Properties
	Advanced Generation Properties

	Setting State Encoding Properties
	Setting Statement Blocks
	Setting Declaration Blocks
	Setting ASM Chart Internal Signal Names

	Running Design Rule Checks
	Setting ASM Chart Preferences

	Chapter 4 Signals Table
	Displaying the Signals Table
	Signals Table Notation
	Signal Declaration Columns
	Signal Status Columns

	Signals Table Toolbars
	Adding Port or Local Signal Declarations
	Adding Comments to a Port or Local Signal Declaration

	Resizing Columns
	Hiding Columns
	Filtering Columns
	Grouping Signal Rows
	Sorting Signal Rows
	Editing Signal Status Cells

	Appendix A State Machine HDL Generation
	HDL Generation Properties
	Synchronous and Asynchronous State Machines
	HDL Style
	Output Encoded
	State Variable
	Generate Interrupts as Overrides
	Register State Actions on Next State
	VHDL Default State Assignment
	Verilog Assignment Type
	Verilog State Vector Pragmas
	Verilog Full/Parallel Case Pragmas
	State Signal Names
	Verilog Current State Assignment Delay

	State Encoding
	Encoding Algorithms
	VHDL Attribute Encoding
	Verilog Pragma Encoding

	Signals Status
	Default and Reset Values
	Combinatorial Output or Local Signals
	Clocked Local Signals
	Registered Output Signals
	Clocked Output Signals
	Summary

	HDL Designer Series Glossary
	Index
	End-User License Agreement
	Documentation Feedback

