
Start Here Guide
for the HDL Designer SeriesTM

Software Version 2010.3

June, 2011

© 1996-2011 Mentor Graphics Corporation
All rights reserved.

This document contains information that is proprietary to Mentor Graphics Corporation. The original recipient of this
document may duplicate this document in whole or in part for internal business purposes only, provided that this entire
notice appears in all copies. In duplicating any part of this document, the recipient agrees to make every reasonable
effort to prevent the unauthorized use and distribution of the proprietary information.

This document is for information and instruction purposes. Mentor Graphics reserves the right to make
changes in specifications and other information contained in this publication without prior notice, and the
reader should, in all cases, consult Mentor Graphics to determine whether any changes have been
made.

The terms and conditions governing the sale and licensing of Mentor Graphics products are set forth in
written agreements between Mentor Graphics and its customers. No representation or other affirmation
of fact contained in this publication shall be deemed to be a warranty or give rise to any liability of Mentor
Graphics whatsoever.

MENTOR GRAPHICS MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE.

MENTOR GRAPHICS SHALL NOT BE LIABLE FOR ANY INCIDENTAL, INDIRECT, SPECIAL, OR
CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING BUT NOT LIMITED TO LOST PROFITS)
ARISING OUT OF OR RELATED TO THIS PUBLICATION OR THE INFORMATION CONTAINED IN IT,
EVEN IF MENTOR GRAPHICS CORPORATION HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

RESTRICTED RIGHTS LEGEND 03/97

U.S. Government Restricted Rights. The SOFTWARE and documentation have been developed entirely
at private expense and are commercial computer software provided with restricted rights. Use,
duplication or disclosure by the U.S. Government or a U.S. Government subcontractor is subject to the
restrictions set forth in the license agreement provided with the software pursuant to DFARS 227.7202-
3(a) or as set forth in subparagraph (c)(1) and (2) of the Commercial Computer Software - Restricted
Rights clause at FAR 52.227-19, as applicable.

Contractor/manufacturer is:
Mentor Graphics Corporation

8005 S.W. Boeckman Road, Wilsonville, Oregon 97070-7777.
Telephone: 503.685.7000

Toll-Free Telephone: 800.592.2210
Website: www.mentor.com

SupportNet: supportnet.mentor.com/
Send Feedback on Documentation: supportnet.mentor.com/user/feedback_form.cfm

TRADEMARKS: The trademarks, logos and service marks ("Marks") used herein are the property of
Mentor Graphics Corporation or other third parties. No one is permitted to use these Marks without the
prior written consent of Mentor Graphics or the respective third-party owner. The use herein of a third-
party Mark is not an attempt to indicate Mentor Graphics as a source of a product, but is intended to
indicate a product from, or associated with, a particular third party. A current list of Mentor Graphics’
trademarks may be viewed at: www.mentor.com/terms_conditions/trademarks.cfm.

http://www.mentor.com
http://supportnet.mentor.com/
http://supportnet.mentor.com/user/feedback_form.cfm
http://www.mentor.com/terms_conditions/trademarks.cfm

Start Here Guide, V2010.3 3
June, 2011

Table of Contents

Chapter 1
Introduction. 5

The HDL Designer Series . 5
HDL Author . 5
HDL Designer. 7

Documentation. 7
Help and Manuals . 9
Support and Training . 12
System Admin. 13
Searching Documentation. 13
Dialog Box Help . 15

Customer Support . 15

Chapter 2
Invoking HDL Designer Tools . 17

Invoking on Windows . 17
Invoking on UNIX or Linux . 18
Command Line Switches . 18
Team Member Mode . 19
HDS Setup Assistant Wizard . 19

Starting the Wizard . 19
Using the HDS Setup Wizard . 20

The Default Project . 28
Example Libraries. 28
Shared Libraries . 29
Using the Example Designs . 30

Appendix A
UART Example Design. 33

Overview . 33
Design Description (uart_top) . 34

UART Interface . 34
UART Structure . 35

Test Bench (uart_tb) . 40
Simulation Results . 41

UART Specification. 43
UART Registers . 43
UART Application . 43
Reading from a UART Register . 44
Writing to a UART Register . 44
Transmitting Data . 44
Receiving Data . 45

Table of Contents

4
June, 2011

Start Here Guide, V2010.3

Appendix B
Environment Variables . 47

List of Variables. 48
Setting Environment Variables . 52

Index

End-User License Agreement

Start Here Guide, V2010.3 5
June, 2011

Chapter 1
Introduction

The HDL Designer Series . 5
HDL Author . 5
HDL Designer. 7

Documentation . 7
Help and Manuals . 9
Support and Training . 12
System Admin. 13
Searching Documentation. 13
Dialog Box Help . 15

Customer Support . 15

The HDL Designer Series
The HDL Designer Series TM (HDS) is a family of tools for electronic system design which
fully support the VHDL and Verilog hardware description languages.

The HDL Designer Series design environment helps you to manage the complexity of growing
ASIC and FPGA designs by providing:

• A predictable and flexible design process

• Rapid design development

• Practical intellectual property and design reuse

• Powerful design analysis

• Automated design communications

For full information about the HDL Designer Series including brochures, datasheets and a
product feature configuration matrix visit the Web site:

http://www.mentor.com/hdldesigner/

HDL Author
The HDL Author TM tool is based on a design manager which provides an advanced
environment for HDL design creation and the management of complex hierarchical designs.

http://www.mentor.com/hdldesigner/

Start Here Guide, V2010.36

Introduction
The HDL Designer Series

June, 2011

The design manager provides design management facilities including a project manager,
multiple design explorers, version management interfaces, template and task managers.

The project manager allows you to manage the library mapping that specifies the location of
your design data. Projects can be created or modified and stored as individual user or shared
team resources.

You can open multiple design explorers to display your design data as design units, HDL files
or logical design objects. The full design hierarchy beneath any design object can be explored in
a separate hierarchy subwindow. Additional subwindows can be used to explore source design
side data and downstream data.

The version management interface supports the GNU Revision Control System (RCS), GNU
Concurrent Versions System (CVS), Rational ClearCase, Synchronicity DesignSync, Cliosoft
SoS and the Microsoft or Mainsoft Visual SourceSafe version control systems. RCS and CVS
are included in the distribution or the other systems can be selected when they are available on
your file system.

The task manager supports customizable interfaces to downstream tools and design flows.
Default tasks are provided to support the generation of HDL from graphical source views and
compilation, simulation or synthesis using a range of industry standard tools.

The default tasks include interfaces for the ModelSim®, Cadence NC-Sim and Synopsys VCS or
VCSi simulators, LeonardoSpectrumTM, Precision® Synthesis, Synopsys Design Compiler or
Synplify synthesis tools, Altera MegaWizard, Xilinx CORE generator and Atrenta SpyGlass
design rule checker. The tasks are defined using Tcl (tool control language) which can be
copied or modified to create your own custom tool or to run an external program or Tcl script.

The template manager provides default templates for HDL text views which can be edited to
support your local design standards including multiple alternative templates for each view type.

The design manager supports tasks and templates maintained by each individual user and as
shared team resources maintained by a team administrator.

The design manager includes an integrated DesignPad language sensitive text editor for the
creation and maintenance of HDL text designs or can be configured to use a range of supported
external text editors.

Graphical design is supported by tabular IO and graphical symbol interface editors. The
interconnections between design units in a hierarchical design can be maintained using a
graphical block diagram editor or in tabular format using an interface-based designTM (IBD)
view. Leaf-level views can be defined using HDL text views or using the state diagram, flow
chart and truth table editors which allow an entire design to be represented graphically.

Existing HDL designs can be imported into the HDL Designer Series data model while
preserving any file structure and design data integrity.

Introduction
Documentation

Start Here Guide, V2010.3 7
June, 2011

Any text or graphical view can be printed or (on Windows only) directly included in a
documentation tool using object linking and embedding (OLE).

A ModuleWare library provides a range of standard components which can be instantiated in a
graphical or HDL text design (when you are using the DesignPad editor).

A simulation analyzer interface provides error cross-referencing and animation facilities to
assist with design debug operations. Full debug support is provided for the ModelSim or
Cadence NC-Sim simulator tasks but invocation only for Synopsys VCS or VCSi.

HDL Designer
The HDL Designer TM tool includes the facilities provided by HDL Author. In addition, it is a
visualization and debug tool including HDL2Graphics TM which can import any complete or
partial HDL text based design and convert the design into a hierarchy of graphical or tabular
views. The design structure can be represented as graphical block diagrams or tabular IBD
views. Primitive leaf-level views can be viewed as state diagram, flow chart or HDL text views.

Non-logical changes can be made to any graphical view and they can be printed or exported as
HTML Web pages for use in design documentation. On Windows systems, graphical views can
be directly included in a documentation tool using the object linking and embedding (OLE)
feature.

Version management is available for your imported HDL text and rendered graphical views.

Design explorers can be used to explore the relationship between design units. However, design
management operations and logical edits which would modify design behavior are disabled.

Documentation
The HDL Designer Series documentation (including this guide) can be accessed through the
InfoHub, which is opened by selecting Help and Manuals from the Help menu found in any of
the application windows.

The InfoHub is the Mentor Graphics information center. From the InfoHub, you can access all
locally installed HDL Designer Series documentation, release management information, and
tutorials. The InfoHub also provides direct access to SupportNet site to check for software
updates, technical notes, and application notes.

Start Here Guide, V2010.38

Introduction
Documentation

June, 2011

Introduction
Documentation

Start Here Guide, V2010.3 9
June, 2011

The HDS InfoHub mainly comprises of the following tabs:

• Help and Manuals

• Support and Training

• System Admin

Note
The Quick Tips dropdown list on the lower left side of the InfoHub provides useful
information on the InfoHub and how to use it efficiently. For example, it includes a list of
supported browsers, essential browser settings, the method of adding custom tabs to the
InfoHub, and so on.

Help and Manuals
This tab provides all the documents covering the different editors in HDL Designer Series. To
open a document, select the required document, and then click on one of the following buttons:

• Open HTML — opens an HTML version of the document for browsing.

Start Here Guide, V2010.310

Introduction
Documentation

June, 2011

The HTML page has a navigation pane on the left hand side consisting of the Contents,
Index and Search tabs through which you can navigate through the document, in
addition to a tab titled My Topics.

o Content — this tab has a list of all the topics available in the opened document.

o Index — this tab has a number of alphabetically ordered keywords. You can view
the index of the current opened document only or all the installed documents. If you
have a Search List created, you can choose to view the indexes of all the documents
it contains.

o Search — this tab enables you to search the current opened document only, all
installed documents, or SupportNet. If you have a Search List created, you can
choose to search within its contents.

o My Topics — this tab enables you to bookmark your favorite topics. You can save
up to twenty topics from different manuals. To add a topic, make sure you open it
first then click Add Topic in the tab. To delete a topic, just click the deletion button
next to the topic title.

Note
A Search List is a user-defined list of documents that can be used as a search scope
whether when running a search from the Search tab of an HTML document or when
running a search from the InfoHub itself. Also, a Search List can be used as a scope when
viewing the index.

To create/edit a Search List from the Index or Search tabs, click Create/Edit next to the
“My Search List” option, select the required documents from Edit My Scope dialog box
and then click Save.

Also, a button bar is available in the topic pane through which you can browse the
HTML documentation.

Table 1-1. HTML Button Bar

Button Description

Displays the title page of current document.

Displays previous topic.

Displays next topic.

Changes the font size.

Opens the InfoHub help.

Opens a PDF version of the document.

Prints the current topic.

Sends feedback on documentation.

Introduction
Documentation

Start Here Guide, V2010.3 11
June, 2011

• Open PDF — opens a PDF (Adobe Acrobat portable document format) version of the
document for printing.

The documents are categorized as follows: What’s New, Quick Reference Index, Manuals,
Application Notes, and Other Documents.

What’s New
This section includes a link to a list of “What’s New” presentations covering the features that
have been introduced in various HDL Designer Series releases, starting from release 2003.1 up
to the latest release.

Quick Reference Index
This section provides a link to a list of various quick reference topics.

Manuals
The manuals listed in this section are as follows:

• The HDL Designer Series User Manual describes general user procedures for the HDL
Author and HDL Designer tools.

• The Graphical Editors User Manual describes procedures for using the graphical
symbol, tabular IO, block diagram, IBD view, flow chart and truth table editors.

• The State Machine Editors User Manual describes procedures for using the state
diagram and algorithmic state machine editors.

• The DesignPad Text Editor User Guide describes procedures for using the integrated
DesignPad HDL text editor.

• The DesignChecker User Guide describes procedures for using the integrated
DesignChecker TM static checker.

• The ModuleWare Reference Guide describes a library of HDL model generators which
can be instantiated in a design and used to implement a large range of standard logic or
arithmetic functions for VHDL or Verilog. Descriptions of each generator in the library
in a HTML version of this manual can be accessed directly from each part in the library.

• The HDL Designer Series Tcl Reference Manual describes procedures for using the
HDS library contents API and HDS Tcl API commands.

• The HDS Language Support Guide gives an overview on some of the languages
supported by HDL Designer Series.

• The Start Here Guide for the HDL Designer Series (this document) which gives you
introductory information on the HDL Designer Series tools and describes procedures for
invoking them.

Start Here Guide, V2010.312

Introduction
Documentation

June, 2011

Application Notes
The following application notes are available:

• Designing with Altera’s NIOSII Embedded Processor

• Designing with Xilinx Embedded Processor

• Predicting the Output of Finite State Machines

• PSL Flow

• Running DesignChecker in Batch Mode

Other Documents
This section includes miscellaneous documents as follows:

• Enscript Manual Pages

• GNU Utilities for Comparing and Using Files

• RCS Manual Pages

• Version Management using CVS

Support and Training
This tab provides links to support and training resources, whether locally installed or on
SupportNet. This tab comprises of the following sections:

• Technical Support and Downloads

• Tutorials

• Self-running Demos

• Contact Us

Technical Support and Downloads
This section provides a shortcut to signing-up for SupportPro Newsletter, viewing TechNotes,
and viewing AppNotes. It also provides access to the product microsite to get downloads,
product information, and patches.

Tutorials
This section provides access to locally installed tutorials which include the following:

Introduction
Documentation

Start Here Guide, V2010.3 13
June, 2011

• The Interface-Based Design Tutorial is an introduction to interface-based design (IBD)
for users of the HDL Author or HDL Designer tools which uses HDL import, tabular
IO, an IBD view and ModuleWare parts to capture a VHDL or Verilog text design.
Simulation and synthesis design flows are illustrated using the ModelSim and
LeonardoSpectrum tools.

• The Design Exploration Tutorial is an introduction to the HDL Designer tool. This
tutorial shows how this tool can be used to import an existing VHDL or Verilog text
design, visualize the design using graphical views and export these views in HTML
format.

• The DesignChecker Tutorial is an introduction to the DesignChecker tool. This tutorial
shows how to configure DesignChecker settings, analyze a design, and investigate the
analysis results.

Self-Running Demos
This section includes the following “How to” demos:

• DesignChecker Demos

• Interface-Based Design Demos

Contact Us
This section provides a shortcut to opening a service request, providing feedback on the
documentation, and providing access to the list of worldwide sales offices.

System Admin
This tab includes the Release Notes for the HDL Designer Series which includes information
about new features, the Release Notes for Licensing Mentor Graphics Software, and the
Transition Guide for the HDL Designer Series which includes information about updating from
a previous HDL Designer Series release. In addition, this tab contains other installation and
licensing references.

Searching Documentation
There are two search tools embedded in the InfoHub:

• A keyword search of locally installed HTML content.

• A comprehensive, natural language search of SupportNet that includes all
documentation, release notes, technical notes, and application notes.

The following search methods can be performed:

Start Here Guide, V2010.314

Introduction
Documentation

June, 2011

• Searching All Installed Documents — this search applies to all locally installed
HTML content. This search can be done either through the InfoHub or through the
Search tab of any opened HTML document by typing a search keyword and selecting
“All Installed Docs”, and then running the search.

• Searching a Specific Product Area Scope of Documents — this search narrows the
results to the set of documents in the specified InfoHub scope. This search can be done
either through the InfoHub or through the Search tab of any opened HTML document by
typing a search keyword and selecting “Local by Scope” (in case of the InfoHub) or
selecting the scope’s radio button (in case of the HTML document), and then running
the search.

• Searching a Custom Set of Documents — this search applies to the documents you
added within your Search List, if you have created one. This search can be done either
through the InfoHub or through the Search tab of any opened HTML document by
typing a search keyword and selecting “My Search List” option, and then running the
search.

Note
A Search List is a user-defined list of documents that can be used as a scope when
running a search or viewing the index.

To create/edit a Search List from the InfoHub, in the Choose Search dropdown list select
“My Search List”, click Edit and select the required documents from Edit My Search
Scope dialog box, and then click Save.

To create/edit a Search List from the Index or Search tabs, click Create/Edit next to the
“My Search List” option, select the required documents from Edit My Search Scope
dialog box, and then click Save.

• Searching a Single Document — this search applies to a single manual whether it is in
HTML or in PDF. In case of an HTML document, open the Search tab, type the search
keyword and run the search. In case of a PDF document, use the search method of the
Acrobat Reader.

• Searching SupportNet — the SupportNet can be searched through the InfoHub itself or
through the Search tab of an opened HTML document while setting the SupportNet
option.

The Quick Tips dropdown list on the lower left side of the InfoHub contains topics that provide
more details on the above search methods.

Introduction
Customer Support

Start Here Guide, V2010.3 15
June, 2011

Dialog Box Help
Most of the Help buttons on dialog boxes are linked to single-page mini-PDF files which
provide links to other related dialog box descriptions and a direct link to the corresponding
section in the user manual.

Customer Support
For information about customer support, please choose How to obtain support from the
Support cascade of the Help menu.

If you have a problem with the HDL Designer Series software, you can use the Generate
Support Info from the Support cascade of the Help menu to create a text file containing
information which may help customer support diagnose the problem.

Start Here Guide, V2010.316

Introduction
Customer Support

June, 2011

Start Here Guide, V2010.3 17
June, 2011

Chapter 2
Invoking HDL Designer Tools

Invoking on Windows . 17

Invoking on UNIX or Linux . 18

Command Line Switches. 18

Team Member Mode . 19

HDS Setup Assistant Wizard . 19
Starting the Wizard . 19
Using the HDS Setup Wizard . 20

The Default Project . 28
Example Libraries. 28
Shared Libraries . 29
Using the Example Designs . 30

Invoking on Windows
On Windows, the HDL Designer Series tools are normally invoked from shortcuts in the
Windows Start menu or desktop (which are created during installation):

HDL Author
HDL Designer

These shortcuts invoke the hdldesigner.exe executable with an appropriate switch for the
licensed configuration you have chosen.

You can also double-click over the executable hdldesigner.exe file in the Windows Explorer,
explicitly enter hdldesigner.exe in the Run dialog box from the Start menu or double-click on
the icon for any HDL Designer Series design object. When invoked in this way, the application
attempts to find a valid license and invokes with the configuration supported by that license.

Note
You can also invoke on Windows by double clicking on a recognized HDL Designer
Series file type in the Windows explorer. For example, by clicking on a block diagram or
IBD view file.

Start Here Guide, V2010.318

Invoking HDL Designer Tools
Invoking on UNIX or Linux

June, 2011

Invoking on UNIX or Linux
When you install HDL Designer Series products on UNIX or Linux systems, invoke scripts are
created for each tool you selected in the install program as shown in the table below. The scripts
and corresponding shortcut links are located in the bin subdirectory of your installation.

The invocation commands are summarized in the following table:

For example, you can invoke HDL Author using either of the commands:

<install_dir>/bin/hdl_author
or
<install_dir>/bin/hdla

Note
All required environment variables are automatically set within the invoke script and
need not be explicitly set if you use these scripts to invoke the tools.

Command Line Switches
Command line switches can be used with any of the invocation commands when you invoke a
HDL Designer Series tool from a shell, batch script or Windows shortcut.

Command line switches can be used to run a Tcl command file or to set invoke options. You can
display a full list of supported switches by using the -help switch or opening the Quick
Reference Index from the Help and Manuals tab of the HDS InfoHub. To open the InfoHub,
select Help and Manuals from the Help menu.

The -teamprefsfile (or -teamprefs) and -prefsfile (or -prefs) switches are supported to allow
migration of the preferences from a previous release.

Refer to “Preferences and Resource Files” in the Transition Guide for the HDL Designer Series
for information about migrating preference files.

If errors are encountered when you use a command line switch, messages are sent to standard
output on UNIX but are not reported on Windows unless you pipe the command output to a file.

Table 2-1. HDS Invocation Commands

Tool Invoke Script Shortcut

HDL Author
HDL Designer

hdl_author
hdl_designer

hdla
hds

Invoking HDL Designer Tools
Team Member Mode

Start Here Guide, V2010.3 19
June, 2011

Team Member Mode
The HDL Designer Series tools are normally invoked in single-user mode. In this mode, all
preferences, tasks and templates are stored in writable resource files as defined in the “Resource
Files” appendix in the HDL Designer Series User Manual.

Alternatively, you can invoke in team member mode by using the -team_home command line
switch or the HDS_TEAM_HOME environment variable to specify the location of a shared
hds_team resources directory.

You can also set team member mode and the location of hds_team as preferences in the
General tab of the Main Settings dialog box as described in the “User and Team Preferences”
section of the HDL Designer Series User Manual.

In team member mode, the shared team resources are read-only although users with write access
permissions can edit these resources by selecting Team Administrator mode.

The team resources include version management settings, generated HDL file naming rules,
generation properties, file registration, team tasks, team templates, remote simulation directory
location, project synthesis properties and custom code generation scripts.

HDS Setup Assistant Wizard
The HDS Setup Assistant Wizard guides you through the configuration of HDL Designer Series
tool.

Starting the Wizard
The wizard is started when you invoke a HDL Designer Series tool for the first time. If you
choose to cancel the wizard HDS starts with the default examples project, VHDL as the default
language and all the available flows and tools.

If you choose to click Finish before going through the wizard HDS starts with a new project
and library, VHDL as the default language and all the available flows and tools. You can click
Finish at any step to exit the wizard.

You can invoke the wizard at any time by choosing HDS Setup Assistant from the Help menu
in the Design Manager window.

Start Here Guide, V2010.320

Invoking HDL Designer Tools
HDS Setup Assistant Wizard

June, 2011

Using the HDS Setup Wizard

The left pane of the wizard displays a tree whose nodes represent the settings to be configured.
These include Language, Type of Design, Simulator, Synthesis, Other Flows, Project Setup,
Design Library and Version Management.

The first time the wizard is invoked you have to use the Next button to navigate through the left
pane tree nodes. On moving to a new node the previous one is enabled.

The right pane of the wizard displays a page where you can configure the settings of the
selected node.

Invoking HDL Designer Tools
HDS Setup Assistant Wizard

Start Here Guide, V2010.3 21
June, 2011

Language Page

The language page enables you to specify the most frequently used language in creating new
views. You can later change the default language used. Refer to “Main settings” in the HDL
Designer Series User Manual. You can also specify a language for each new view created.
Refer to “Design Content Creation Wizard” in the HDL Designer Series User Manual.

Design Page
You can optionally specify the type of designs you want to create as ASIC or FPGA. If you
choose FPGA you can further specify the FPGA technology libraries as Altera, Xilinx, Actel or
Lattice.

Start Here Guide, V2010.322

Invoking HDL Designer Tools
HDS Setup Assistant Wizard

June, 2011

The tasks pane is automatically updated according to the design type you specify.

 ASIC Default Task Pane FPGA Default Task Pane

Invoking HDL Designer Tools
HDS Setup Assistant Wizard

Start Here Guide, V2010.3 23
June, 2011

Simulator Page
HDS automatically detects the presence of any installed simulators. The simulator page displays
a list of the detected simulators and sets the default.

Alternatively you can specify a new simulator by clicking New Simulator.

Start Here Guide, V2010.324

Invoking HDL Designer Tools
HDS Setup Assistant Wizard

June, 2011

Synthesis Page
HDS automatically detects the presence of any installed synthesis tools. The synthesis page
displays a list of the detected synthesis tools and sets the default.

Alternatively you can specify a new synthesis tool by clicking New Synthesis Tool.

Invoking HDL Designer Tools
HDS Setup Assistant Wizard

Start Here Guide, V2010.3 25
June, 2011

Other Flows Page
The Other Flows page provides you with the option to select the flows you would like to use.
You can add flows and tasks later.

Project Setup Page
The Project Setup page gives you the option to start with a new project. You can alternatively
choose to view one or all of the designs of the examples project.

To start with a new project:

1. Select New project.

2. Do one of the following:

• Specify the Project name and location.

• Click Advanced Setup to display the Project Setup Assistant.

Start Here Guide, V2010.326

Invoking HDL Designer Tools
HDS Setup Assistant Wizard

June, 2011

To start with the examples project:

1. Select examples to view a list of the design libraries included in the project.

2. Select a design library or the whole project to view.

Design Library Page
The Design Library page is active only if you had chosen to create a new project on the Project
Setup page. It gives you the option to create a new library to save your design files.

Invoking HDL Designer Tools
HDS Setup Assistant Wizard

Start Here Guide, V2010.3 27
June, 2011

To start with a new design library:

1. Select Yes.

2. Do one of the following:

• Specify the Design library name and location. The default location is mapped to the
project location specified on the Project setup page.

• Click Advanced Setup to display the Design Library Setup Assistant.

Version Management Page
You can choose to enable version management. You can also specify the version management
tool settings.

To enable version management:

1. Select Yes to display a dropdown list of the version management interfaces.

2. Select the version management tool.

3. Specify the version management settings if any.

Start Here Guide, V2010.328

Invoking HDL Designer Tools
The Default Project

June, 2011

The Default Project
When you invoke for the first time, the default project is defined by the following two project
files:

My Project:$HDS_HOME\examples\examples.hdp
Shared Project:$HDS_TEAM_HOME\shared.hdp

Example Libraries
The following libraries are defined in the examples project:

• SCRATCH_LIB — An empty Regular library which is used as the default location for
imported designs.

• Ethernet — This Regular library contains a HDL text design example which is part of
the Ethernet IP core project and is reproduced under the terms of the GNU lesser general
public license as published by the Free Software Foundation. For more information
about the Ethernet IP project, see the web site:

http://www.opencores.org/projects/ethmac/

http://www.opencores.org/projects/ethmac/

Invoking HDL Designer Tools
The Default Project

Start Here Guide, V2010.3 29
June, 2011

The Ethernet design is defined by a mixture of VHDL and Verilog views and includes a
test bench which can be used to simulate the design.

• Sequencer_vhd and Sequencer_vlg — These Regular libraries contain VHDL and
Verilog versions of the Fibonacci sequencer design which is shown in many of
illustrations used in this manual.

The Sequencer design is also used for the procedures described in the Design
Exploration Tutorial.

• TIMER_Vhdl and TIMER_Vlog — These Regular libraries contain completed VHDL
and Verilog versions of a design which implements a timer design using block diagrams,
a re-usable component defined by a HDL text view, a hierarchical state machine and
truth table. The examples include a test bench controlled by a flow chart.

• UART_TXT, UART, UART_V and UART_V2K— These Regular libraries contain
an example of a universal asynchronous receiver transmitter design with a test bench
which can be used to verify the design if a HDL simulator is available on your system.

The UART_TXT library contains a HDL text version of the design described by a
mixture of VHDL and Verilog views and can be edited using any of the HDL Designer
Series tools.

The UART library contains a graphical version of the design described by VHDL views
using block diagrams, IBD views, state machines, truth tables, flow charts and HDL text
views.

The UART_V library contains an alternative graphical version of the design described
by Verilog.

The UART_V2K library contains an alternative graphical version of the design
described by Verilog 2005.

The UART design is described in “UART Example Design” on page 33.

• tinycache_sv_lib— This library includes a SystemVerilog design.

Shared Libraries
The following libraries are defined in the default shared project:

• exemplar — A Regular library containing VHDL packages which support the
LeonardoSpectrum synthesis tool.

• hds_package_library — A Regular library containing VHDL packages which support
automatic type conversion within the HDL Designer Series tools. This library also
contains packages which support the ModuleWare random value based waveform
generator.

Start Here Guide, V2010.330

Invoking HDL Designer Tools
The Default Project

June, 2011

• renoir_package_library — This Regular library is provided for compatibility with
older designs which used the type conversion packages. New designs should use the
conversion functions in the hds_package_library.

• moduleware — This Protected library contains HDL function generators which can be
instantiated as components in block diagram, IBD or HDL text views. The ModuleWare
models are described in the ModuleWare Reference Guide.

• std — This Protected library contains STANDARD and TEXTIO standard VHDL
packages.

• ieee — This Protected library contains the IEEE standard VHDL packages which are
recognized by most downstream simulation tools.

• std_developerskit — This Protected library contains VHDL packages which support
the development of VHDL models using the ModelSim simulation tools.

• synopsys — This Protected library contains VHDL packages to support the Synopsys
Design Compiler synthesis tool.

• verilog — This Protected library contains definitions for the standard Verilog types.

The hds_package_library (or renoir_package_library) and exemplar package libraries must be
compiled to make them available for use.

You should add downstream mapping for these libraries to a location where you have write
permission. After compiling these libraries, they should be changed to Protected libraries to
avoid accidental regeneration or recompilation.

The contents of the standard VHDL packages are described in the “VHDL Standard Libraries”
section of the HDL Designer Series User Manual.

Using the Example Designs
The example designs can be opened as read-only reference examples. Windows users typically
have write access to these designs. However, it is recommended that you copy the design to a
suitable directory for user data.

The directories for source data, generated HDL and downstream data can be anywhere on your
file system. Typically, you may use separate subdirectories within the same tree. For example,
the UART libraries are mapped to hds, hdl and work directories beneath a common uart (or
uart_v) directory.

If you want to use the GNU Concurrent Versions System (CVS), the source data must be in a
directory which exactly matches the name of the library. Refer to “Creating a Library Mapping”
in the HDL Designer Series User Manual for more information.

Use the following procedure to make a copy of the example library:

Invoking HDL Designer Tools
The Default Project

Start Here Guide, V2010.3 31
June, 2011

1. Set library mapping (including HDL HDS source, and downstream directories to which
you have write permission) for a new empty library.

2. Select the new library and the library you want to copy in the project manager. Choose
Explore Library from the File or popup menu to open both libraries in a new design
explorer window.

3. Select the top level design unit in the example library and drag it over the new library
name with the mouse button.

4. Choose Copy Special Here from the popup menu which is displayed when you release
the mouse button to display the Copy Special Options dialog box.

5. Select Copy Through Components, Copy to target library and All levels in the
dialog box.

6. Confirm the dialog box.

A complete logical copy of the origin library is made in the target library. All references in the
new library to objects in the original library are updated to reference the new library.

Note that, HDL filenames are derived from the logical names of the HDL text views. (For
example, if you copy the TIMER_Vlog library, the BCDCounter view is copied to a new file
named BCDCounter.v.)

Start Here Guide, V2010.332

Invoking HDL Designer Tools
The Default Project

June, 2011

You can also copy a library by selecting the library name in the design explorer and choosing
Copy Contents from the popup menu and then using the Paste command to make a physical
copy in the new library.

When you use these commands, all the files in the origin library are copied. (For example, if
you copy the TIMER_Vlog library, the BCDCounter view is copied to a new file named
Timer_BCDCounter.v, preserving the original file name used in the origin library.)

The new library can be browsed, edited, generated, compiled, simulated, animated or
synthesized without any impact on the original examples.

If you want to animate any flow charts and state diagrams in an example design, you should set
Instrument HDL for animation in the properties for the state machine and flow chart and then
regenerate the HDL through components.

Start Here Guide, V2010.3 33
June, 2011

Appendix A
UART Example Design

The Universal Asynchronous Receiver Transmitter (UART) design is provided as a mixed
VHDL and Verilog HDL text design and as separate graphical VHDL and Verilog versions to
illustrate the key design creation facilities provided by the HDL Designer Series products.

Overview
The design is a UART which provides serial communications between a CPU (such as an ARM
processor) and a Serial Device. The full specification for the device can be found at the end of
this document.

• Different baud rates can be set for the transmit/receive clock divider. This can be done
by writing the most significant and least significant divide values into the divmsb and
divlsb registers.

• Data is transmitted by writing the 8 bit value into the xmitdt register. The interrupt line
(int) goes high when the transmit cycle is completed. The data is placed on the serial out
line (sout) with the appropriate start and stop bits.

• Serial data is received into the recvdt register. The interrupt line (int) goes high when a
correctly constructed word has been received.

• Any internal register can also be read by the CPU.

• A Status Register contains flags to indicate when transmission or receiving is in
progress or completed.

• The status register and hence the interrupt can be cleared by reading register address 7.

Two graphical versions of the design are provided in the libraries UART (VHDL) and UART_V
(Verilog). Both of these graphical designs are partitioned as follows:

UART
uart_tb (struct - block diagram)

tester (flow - flow chart)
uart_top (struct - block diagram)

clock_divider (flow - flow chart)
cpu_interface (intconx - IBD; struct - block diagram)

data_out_mux (embedded HDL text)
control_operation (fsm - hierarchical state diagram)

serial_interface (struct - block diagram)
convert (embedded flow chart)
zeros (ModuleWare)
status_registers (spec - hand-written HDL)
ser_out_mux (ModuleWare)

Start Here Guide, V2010.334

UART Example Design
Design Description (uart_top)

June, 2011

xmit_rcv_control (fsm - concurrent state diagram)
address_decode (tt - truth table)

Note
The CPU interface is described by an IBD view but an alternative block diagram view is
also provided.

A third UART_TXT library describes the UART using a mixture of VHDL and Verilog HDL
text views without any graphical views:

UART_TXT
uart_tb (rtl - Verilog text)

tester (rtl - Verilog text)
uart_top (rtl - VHDL text)

clock_divider (rtl - Verilog view)
cpu_interface (rtl - VHDL text)

control_operation (rtl - VHDL text)
serial_interface (rtl - VHDL text)

status_registers (rtl - VHDL text))
xmit_rcv_control (rtl - VHDL text)

address_decode (rtl - VHDL text)

Design Description (uart_top)
The starting point for the design is the top-level block diagram. This diagram describes the top-
level functional blocks of the device. A component symbol can be automatically created from
the block diagram. Alternatively, the symbol can be created first, from the input/output
specification and the top-level block diagram created as an underlying description.

The CPU has the ability to reset the UART and to read to and write from the registers in the
UART. The Serial Device can either be receiving data from the UART or transmitting data to
the UART.

UART Interface
The UART interface is designed for use with an ARM processor and consists of the following
signals:

• data_in[7:0] — This is the 8-bit input data bus which carries the data which the CPU
writes to the UART registers.

• data_out[7:0] — This is the output data bus which carries the data from the selected
UART register.

• addr[2:0] — This is the address bus which is connected to the CPU. This signal
indicates which register is being written or read by the CPU.

• sin — This is the serial input signal from the external serial device. When serial data is
being read, the register rcvdt is loaded with individual bits from this signal.

UART Example Design
Design Description (uart_top)

Start Here Guide, V2010.3 35
June, 2011

• sout — This is the serial output signal to the external serial device. The contents of
xmitdt register is output one bit at a time.

• int — This signal indicates that serial data has been transmitted or received successfully
and requests an interrupt from the CPU.

• cs — This Chip Select signal is asserted low to enable transmit and receive cycles.

• nrw — notRead/Write. ’0’ indicates a Read operation, ’1’ indicates Write.

• clk — The main system clock. 50% duty cycle. Typically 100ns clock period.

• rst — Active low asynchronous reset.

UART Structure
The four top-level blocks are:

• address_decode — Uses the lowest 3 bits of the CPU address bus to determine which
register is being addressed.

• clock_divider — Provides a sampling clock for transmitting and receiving serial data.
The baud rate is determined by the two-byte divisor value (divlsb, divmsb) used to
divide down the main system clock.

• cpu_interface — This block controls whether the UART is transmitting, receiving or
clearing the status flags (and interrupt). It also provides CPU access to the internal
UART register information.

• serial_interface — Performs the actual transmission and receiving of serial data. It also
stores the status flags and generates the interrupt. This block also provides the
transmit/receive register information to the cpu_interface.

Address Decode
The address_decode block is defined as a truth table. It decodes the last 3 bits of the address bus
(addr) to provide a set of enable signals indicating which register is being addressed:

• clk_div_en — This is set if either divlsb(0) or divmsb(1) of the clock divider registers
is being addressed.

• xmitdt_en — Indicates transmit register (xmitdt) is being addressed.

• ser_if_select — Contains the last two bits of the address bus which are used to select the
register to output onto the ser_if_data bus.

Start Here Guide, V2010.336

UART Example Design
Design Description (uart_top)

June, 2011

• clr_int_en — A "pseudo register" which, when read, causes the status flags and
interrupt flag to be cleared.

Clock Divider
The clock_divider is described as a flow chart. The divider can be asynchronously reset
otherwise the divider either loads in the 2-byte divider value or counts clock edges. The
resulting output signal ‘sample’ is a 50% duty cycle divided clock. This is used as the clock for
transmission and receiving operations.

CPU Interface
The cpu_interface is described by an IBD view which performs two operations:

• control_operation — determines which mode of operation the UART is in (transmit,
receive, clearing).

• data_out_mux — places the clock divider value (div_data) or serial interface register
information (ser_if_data) onto the CPU data_out bus depending on the value of
clk_div_en.

UART Example Design
Design Description (uart_top)

Start Here Guide, V2010.3 37
June, 2011

Control Operation

The register operations of the UART are controlled by the signals nrw and the chip select flow,
cs. The control_operation component is described as a hierarchical state machine which
consists of a top-level state waiting (also the reset state) and two hierarchical states for transmit
(TX) and receive (RX).

The following states can be implied from the UART specification:

• waiting — No register read or write operations have been requested by the CPU.

• TX/writing_to_reg — Output enable_write is set. Data is being taken from the
data_out bus and is being written to the register indicated by the address bus (addr).

• TX/xmitting — Output start_xmit is set. The UART is transmitting data to the serial
output flow (sout). This occurs after the xmitdt register (4) has been written.

• RX/reading_from_reg — Data is being taken from the register indicated by the address
bus (addr) and is being written to the data_out bus.

• RX/clearing_flags — Output clear_flags is set. The UART is clearing the status
register (status) and resetting the interrupt flag (int). This occurs after register 7 has
been read.

The outputs from the control_operation component are:

• enable_write — Indicates that a register should be written; data should be taken from
the input data bus (data_in).

• start_xmit — Indicates that serial data transmission should commence.

• clear_flags — Indicates that the internal flags (associated with transmitting and
receiving) should be cleared.

Data Out Mux

• The data_out_mux is described by an embedded HDL text block. The output placed on
the CPU data_out bus is determined by the clk_div_en signal. If clk_div_en is ’1’, the
clock divider value (div_data) from the clock_divider block is output, otherwise the
serial interface information from the serial_interface block is output.

Serial Interface
The serial_interface block consists of four main functions:

• xmit_rcv_control — Controls the transmitting and receiving of serial data to/from the
external serial device.

• status_registers — Stores the transmit and receive status flags, composes the status
byte and produces the interrupt (int).

Start Here Guide, V2010.338

UART Example Design
Design Description (uart_top)

June, 2011

• convert — Loads the transmit data from data_out into the xmitdt register and
composes the receive register (recvdt) from the incoming serial data stream (sin).

• ser_out_mux — places the contents of the transmit data register (xmitdt) or the receive
register (recvdt) or the status byte (status) onto the serial interface data bus
(ser_if_data) depending on the value of ser_if_select.

The following internal signals provide communication between the blocks:

• xmitting — Indicates that data is being transmitted to the serial device and that the
appropriate status bit of the status register should be set.

• done_xmitting — Indicates that transmission to the serial device has just finished and
that the appropriate status bit of the status register should be set.

• rcving — Indicates that data is being received from the serial device and that the
appropriate status bit of the status register should be set.

• done_rcving — Indicates that data has been received from the serial device and that the
appropriate status bit of the status register should be set.

UART Example Design
Design Description (uart_top)

Start Here Guide, V2010.3 39
June, 2011

• read_bit — Indicates that one bit of data should be loaded into part of the receiving
register (recvdt).

• rcv_bit_cnt — Indicates the bit position into which the serial data should be read.

• xmitdt — Contains the data which will be transmitted to the serial device.

Xmit Rcv Control

The UART specification describes, step-by-step, how serial data is transmitted and received.
These operations are performed by two concurrent state machines, one for the transmitting of
data (Xmit), and one for the receiving of data (Rcv). Although both machines run with the
system clock (clk) the transmit and receive baud rate is determined by the divided clock
"sample".

• Transmit (Xmit)
After register 4 (xmitdt) is written, control_operation sets start_xmit which causes
serial transmission to commence. After sending an initial ’0’ start bit, the transmit clk
(sample) is enabled and the xmitting flag set.

The contents of the xmitdt register is placed on the serial line (sout) one bit at a time on
the rising edge of sample. Once all 8 bits have been transmitted, a ’1’ stop bit is sent, the
done_xmitting is flag set and the sample clock is disabled.

• Receive (Rcv)
Serial data is received when the serial input flow sin goes low (and remains low for a
specified amount of time). If lock is achieved, the receive clock (sample) is enabled and
the receiving flag set.

The signal read_bit is set/reset for the following 8 rising/falling edges of sample. The
stop bit is skipped, the done_rcving flag is set and the sample clock is disabled.

Status Registers

The status_registers block is described directly in HDL. This block registers the transmit and
receive status flags (xmitting, done_xmitting, rcving, done_rcving) and to compose the 8-bit
status byte from these flags. Once the done flags are set, they remain at ’1’ until cleared. The
interrupt signal (int) is set if the done_xmitting or done_rcving flags are set. The status flag
registers (and hence the status byte and interrupt) are cleared by either the clear_flags signal
from control_operation or by the system reset (rst).

Convert

The convert embedded block is described as a flow chart. This block loads and stores the
xmitdt and recvdt registers. Both registers are cleared by the system reset (rst) asynchronously.
On the system clock edge (clk), if xmitdt_en and enable_write are both set, the transmit
register (xmitdt) is loaded with the value from the CPU on the data_in bus. Otherwise, if

Start Here Guide, V2010.340

UART Example Design
Test Bench (uart_tb)

June, 2011

read_bit is set, then the current serial input value (sin) is loaded into the appropriate bit of the
receive register (recvdt).

Ser Out Mux

The serial output multiplexer block ser_out_mux consists of an 8-bit constant (constvec)
providing an all zero output vector and a 4-input, 8-bit multiplexer (mux4) implemented by
ModuleWare components. The output ser_if_data is assigned the value of the xmitdt, recvdt
or status registers depending on the value of the ser_if_select signal. ser_if_data is connected
to the data_out_mux in the cpu_interface for output to the CPU data_out bus.

Test Bench (uart_tb)
The design library includes a test bench component, uart_tb. This is a block diagram containing
an instance of the uart itself (uart_top) with all inputs and outputs connected to a tester block
(tester). The tester block is described using a flow chart, which is well-suited to the
procedural/sequential nature of test functions. The tester performs the following test sequence:

• Initialize inputs and perform system reset

• Test serial data transmission:

o Write "06" into clock divider LSB

o Write "00" into clock divider MSB

o Write "5A" into the transmit register (xmitdt)

o Check interrupt (int) is asserted after serial transmission

o Clear interrupt (int) by reading register 7

• Test serial data receive:

UART Example Design
Test Bench (uart_tb)

Start Here Guide, V2010.3 41
June, 2011

o Place start bit (’0’) onto serial input line (sin)

o Place serial data "CE" (11001110) onto serial input line (sin) starting with the least
significant bit

o Place stop bit (’1’) onto serial input line (sin)

o Clear interrupt (int) by reading register 7

o Read receive register (rcvdt)

o Check value in receive register is same as the serial data sent to the UART ("CE")

• Test status:

o Read status register (status)

o Check all bits are zero

The tester flow chart description also contains a clock generator in the concurrent statements
section and procedures in the process declaration section to perform the uart read and write
functions. The declarations include constants for the system clock period (100ns) and the test
transmit and receive data.

Simulation Results
The simulation results should be similar to those shown overleaf.

Start Here Guide, V2010.342

UART Example Design
Test Bench (uart_tb)

June, 2011

UART Example Design
UART Specification

Start Here Guide, V2010.3 43
June, 2011

UART Specification

UART Registers
The UART contains 6 registers, each 8 bits wide:

0 DIVLSB Contains Least Significant bits of Clock Divider
1 DIVMSB Contains Most Significant bits of Clock Divider
2 Unused
3 Unused
4 XMITDT Contains data to be transmitted
5 RECVDT Contains received data
6 STATUS Contains UART Status

bit 0 Indicates transmitting in progress
bit 1 Indicates receiving is in progress
bit 2 Indicates transmission is done
bit 3 Indicates receiving is done

7 CLRINT When read from, clears the interrupt flag as well
as receive and transmit done flags

UART Application

o Reset UART o Transmit data
o Read UART registers o Receive data
o Write UART registers

UARTCPU

cs

data_in(7:0)

addr(2:0)

nRW
int

rst

clk

SERIAL
DEVICE

sin

sout

data_out(7:0)

Start Here Guide, V2010.344

UART Example Design
UART Specification

June, 2011

Reading from a UART Register

• If cs is low and nRW is low, put the content of the UART register addressed by addr
onto the data_out bus.

• If the address was 7 (CLRINT) then clear interrupt flag and transmit and receive done
bits in status register.

Writing to a UART Register

• If cs is low and nRW is high, save data_in in the UART register addressed by addr.

• If the address was 4 (XMITDT) then start transmitting content of the xmitdt register to
the serial device.

Transmitting Data
If the last operation from the CPU was write to register number 4 (xmitdt) then start
transmitting content of xmitdt register, one bit at a time.

• Set transmitting bit in the status register to one (bit 0 of status register).

• Enable the transmit clock.

• Send start bit (a zero bit half of the duration of the transmit clock).

• Send content of register number 4 one bit at a time starting with least significant bit first.

addr(2:0)

nRW

cs

data_out

addr(2:0)

nRW

cs

data_in

UART Example Design
UART Specification

Start Here Guide, V2010.3 45
June, 2011

• Send stop bit (a one bit).

• Clear transmitting bit in the status register.

• Set done transmitting bit in the status register to one (bit 2 of status register).

• Set interrupt flag to one.

Receiving Data
• Wait for falling edge of sin.

• Wait for half of receive clock (sample) cycle.

• If sin is still low (start bit), start receiving data, otherwise abort operation and wait for
another falling edge of sin.

• Set receiving bit in the status register to one (bit 1 of status register).

• Enable the receive clock.

• Receive data, one bit at a time starting with least significant bit (including stop bit).

nRW

cs

addr

data_in

sout

xmitting

done_xmitting

start 1 1 stop

clk

int

Start Here Guide, V2010.346

UART Example Design
UART Specification

June, 2011

• Save received data in register number 5 (recvdt), strip off the stop bit.

• Clear receiving bit in the status register.

• Set done receiving bit in the status register to one (bit 3 of status register).

• Set interrupt flag to one.

clk

sin

rcving

done_rcving

start 1 1 stop

int

Start Here Guide, V2010.3 47
June, 2011

Appendix B
Environment Variables

Environment variables are used to locate the license server. There are also a number of
application environment variables which can be used to locate tasks and project files or to
enable specific features and a number of other general purpose variables are recognized if they
are set in your environment.

Licensing Variables:

HDL Designer Series Variables:

General Purpose Variables:

LM_LICENSE_FILE
MGLS_CONN_TIMEOUT
MGLS_HOME

MGLS_LICENSE_FILE
MGLS_PKGINFO_FILE

HDS_DEBUGFONTS
HDS_GENRULES_SCRIPT
HDS_HOME
HDS_INSTANCE_LIMIT
HDS_KANJI_DIALOGS
HDS_KEEPFILE
HDS_KEYS
HDS_LIB_MIGRATION
HDS_LIBS
HDS_LOG_TIMEOUT
HDS_MAX_ILOG_AREA
HDS_NEW_PROJECT_DIR

HDS_PLUGINS
HDS_PORT
HDS_PREFS
HDS_PROJECT_DIR
HDS_REPOSITORY
HDS_SIGNAL_LIMIT
HDS_TCL
HDS_TEAM_HOME
HDS_TEAM_VER
HDS_TEAMPREFS
HDS_USER_HOME
HDS_USER_VER

CDS_INST_DIR
CVE_HOME
CVSROOT
EDITOR
EXEMPLAR
LD_LIBRARY_PATH
MGC_HOME

MGC_LOCATION_MAP
MGC_WD
MODELSIM
SPYGLASS_HOME
SSDIR
TZ

Start Here Guide, V2010.348

Environment Variables
List of Variables

June, 2011

List of Variables
CDS_INST_DIR
Specifies a pathname to the location of a Cadence software tree. This variable can be used to
specify the installation directory containing the Cadence NC-Sim simulator executable.

CVE_HOME
Specifies a pathname to the location of the Seamless CVE software. This location is required for
library mapping when you instantiate a CVE model as an external HDL model in a block
diagram.

CVSROOT
Specifies the pathname of a directory used as the repository for CVS source control objects (for
example when setting up a CVS modules file outside the tool). It is set internally to the location
specified in the version management options.

EDITOR
Specifies the default editor for text files on UNIX or Linux systems. It is usually set to the name
of the editor and located using the default search path. This editor can be used for editing or
viewing HDL text views files if you set XTerm with Editor as the text editor command in your
preferences.

EXEMPLAR
Specifies a pathname to the installation directory containing the LeonardoSpectrum synthesis
tools. This variable is not required when LeonardoSpectrum is invoked from a HDL Designer
Series tool and may cause problems if set to an out-of-date location.

HDS_DEBUGFONTS
When set to any value, font mapping information is sent to standard error output.

HDS_GENRULES_SCRIPT
Specifies the pathname to a Tcl script used to expand view properties variables.

HDS_HOME
Specifies a pathname to the HDL Designer Series installation directory. This variable is used
internally to locate application resources in the installation directory.

HDS_INSTANCE_LIMIT
Specifies a default integer limit to the number of instance declarations found in a HDL file by the
HDL parser. The limit can be overidden by specifying a value in the Checks tab of the Main
Settings dialog box.

HDS_KANJI_DIALOGS
When set to a non integer value, such as ‘ON’, enables a font which allows the entry of Kanji
characters in the Comments dialog box.

Environment Variables
List of Variables

Start Here Guide, V2010.3 49
June, 2011

Note
Setting the HDS_KANJI_DIALOGS to any non-integer value prevents the text from
getting cut-off.

HDS_KEEPFILE
When set to any non zero value, the temporary list file created during HDL compilation is not
deleted when the compilation window is closed.

HDS_KEYS
Specifies a pathname to an alternative location for the hds.keys file. If not set, a keys file in the
wo is used (if it exists) or a keys file in your user directory. If not found in these locations, the
default hds.keys file in the resources/misc installation subdirectory is used. This variable is
ignored if the -keysfile command line switch is used to specify a keys file.

HDS_LIB_MIGRATION
When set to any value, the library migration wizard is available from the background popup
menu in the project manager. This wizard can be used to migrate libraries created using pre-
2003.1 releases to the hierarchical data model (HDM).

HDS_LIBS
Specifies the full pathname to the current user project file (hds.hdp). This variable is overridden
if the location is specified using the -hdpfile command line switch.

HDS_LOG_TIMEOUT
Specifies a timeout period in seconds for the log displayer process. This variable is not usually
required but can be used (set to a low value such as 5) to overcome a problem on Windows
workstations which prevents the simulator from being re-invoked.

HDS_MAX_ILOG_AREA
Specifies the maximum image area in pixels which is used when exporting a diagram as HTML.
If not set, defaults to 5000000 pixels square.

HDS_NEW_PROJECT_DIR
Specifies the pathname to the default location used to contain the folder for a new project.

HDS_PLUGINS
Specifies a list of pathnames to the location of directories containing "plug-in" drivers for
external tools. Multiple locations can be specified by separating the pathname strings by a colon
(on UNIX or Linux) or semi-colon (on a Windows PC). When set, a plug-in one of the specified
directories takes priority over a standard plug-in with the same name in the
HDS_HOME\resources\downstream\drivers directory.

HDS_PORT
Specifies an integer number for the IPC (inter-process communication) port used to
communicate with an external tool. This variable should be set when you want to setup two-way
communication between the HDL Designer Series source objects and HDL code displayed using
a server application such as the GNU Emacs editor. Typically, HDS_PORT should be set to

Start Here Guide, V2010.350

Environment Variables
List of Variables

June, 2011

<localhost>:<portnumber> where localhost is the name of your workstation and portnumber is
an unused IPC port number or TCP service name allocated by your system administrator.

HDS_PREFS
Specifies the full pathname to a pre-2003.1 user preferences file (.hdsPrefsV where V is the
software version number) which you want to be migrated to the latest release. This variable is
overridden if the -prefsfile command line switch is used to specify the preferences file.

HDS_PROJECT_DIR
This variable is set internally to the location containing the folder for the active project. It can be
used in the library mapping wizard to specify a root directory relative to the active project folder.

HDS_REPOSITORY
Specifies the pathname of a directory used as the repository for RCS source control objects. If
this variable is set and no location is already set in your preferences, it is used as the RCS
repository.

HDS_SIGNAL_LIMIT
Specifies a default integer limit to the number of signal declarations found in a HDL file by the
HDL parser. The limit can be overidden by specifying a value in the Checks tab of the Main
Settings dialog box.

HDS_TCL
Specifies the pathname of a Tcl script that is sourced at start up immediately before any file
specified with the -do switch.

HDS_TEAM_HOME
Specifies a pathname to the location of the hds_team directory and sets team member mode. The
hds_team directory contains the default shared resources project file (shared.hdp) and versioned
files for team preferences, tasks and templates. The default location is in the user directory or the
location from which team preferences for a previous release have been read. This variable is
ignored in single-user mode or if an existing location is specified using the -team_home
command line switch.

HDS_TEAM_VER
This variable is automatically derived at run time to specify the versioned directory containing
team preference, task and template files for the current release. For example:
$HDS_TEAM_HOME/hds_team/v2003

HDS_TEAMPREFS
Specifies the full pathname to a pre-2003.1 team preferences file (.hdsTeamPrefsV where V is
the software version number) which you want to be migrated to the latest release. This variable is
overridden if the -teamprefsfile command line switch is used to specify an old team preferences
file.

HDS_USER_HOME
Specifies the location of the hds_user directory containing the user resource files (including
versioned files for user preferences, tasks and templates). The default location is in the user

Environment Variables
List of Variables

Start Here Guide, V2010.3 51
June, 2011

directory or in the location from which user preferences for a previous release have been read.
This variable is ignored if an existing location is specified using the -user_home command line
switch.

Note
If the user directory contains special characters, such as ü or ä, you should change the
hds_user directory to another directory that does not contain any special characters.

HDS_USER_VER
This variable is automatically derived at run time to specify the versioned directory containing
user preference, task and template files for the current release. For example:
$HDS_USER_HOME/hds_user/v2004.

LD_LIBRARY_PATH
Specifies the location of directories containing some display libraries which are required on
UNIX or Linux systems.

LM_LICENSE_FILE
Specifies the location of the licensing file. Typically specified by a port number and host name in
the form: <portnumber>@hostname An evaluation license may be located by specifying the
pathname. Multiple locations can be separated by a : (colon) on UNIX or Linux or by a ; (semi-
colon) on Windows.

MGC_HOME
Specifies a pathname to the location of a Mentor Graphics software tree. This variable is not
required but may be useful if you want to use other Mentor Graphics tools. (For example, if you
want to read a default location map file in the MGC_HOME tree.)

MGC_LOCATION_MAP
Specifies a pathname to a Mentor Graphics location map file. When set, any valid location map
entry can be used to set a library mapping pathname.

MGC_WD
Specifies a pathname to the location of the working directory used by the tools installed in a
Mentor Graphics software tree. It is not used by the HDL Designer Series tools. However, if you
use the ModelSim downstream tools, the vmap utility checks for an existing modelsim.ini file in
this directory and if it exists, references this file for library mapping.

MGLS_CONN_TIMEOUT
Specifies a delay (in seconds) to wait for the license server to respond. The default is 10 but it
can be increased to reduce the risk of timeout due to slow response from the server.

MGLS_HOME
Specifies a pathname to the location of the Mentor Graphics licensing system on a UNIX or
Linux system.

Start Here Guide, V2010.352

Environment Variables
Setting Environment Variables

June, 2011

MGLS_LICENSE_FILE
Specifies the location of an alternative license file that is used in preference to the
LM_LICENSE_FILE variable for users who are already using other Mentor Graphics products.

MGLS_PKGINFO_FILE
Specifies a pathname to a directory containing an alternative mgc.pkginfo file which may be
required in an existing UNIX MGC licensing environment. If this variable is not set, HDS uses
the mgc.pkginfo file in the bin subdirectory of the HDS installation.

MODELSIM
Specifies a pathname to the initialization file (modelsim.ini) used by the ModelSim compiler and
simulator on UNIX or Linux systems. HDL Designer Series tools create this file in the compiled
library directory and the variable does not need to be set unless you invoke ModelSim
independently.

SPYGLASS_HOME
Specifies a pathname to the location of a SpyGlass software tree containing the Atrenta SpyGlass
RTL rule checker.

SSDIR
Specifies a pathname to the srcsafe.ini file in a Microsoft or Mainsoft Visual SourceSafe version
control system.

TZ
Specifies the time zone. Usually set to an alphabetic time zone name. For example: GB

Setting Environment Variables
An environment variable is a shell-level variable that lets you communicate with your program
and to set its internal states as it is executing. The names of these variables and the values that
you assign to them are case sensitive.

Environment variables can be set on UNIX systems using the set or setenv shell commands. For
example:

setenv HDS_REPOSITORY /usr1/hds_repository_directory

User and system environment variables can be set on Windows systems using the Advanced
tab of the System dialog box which can be accessed from the Windows Control Panel. To enter
a new user variable, check that no existing variable is selected and enter the new variable name
and value. For example:

Variable: HDS_REPOSITORY
Value: C:\Designs\hds_repository_directory

Environment Variables
Setting Environment Variables

Start Here Guide, V2010.3 53
June, 2011

Note
Take care that an existing system variable is not selected when using the dialog box. New
user variables are available when you apply the dialog box but accidental changes to a
system variable may cause problems later when rebooting your machine.

Start Here Guide, V2010.354

Environment Variables
Setting Environment Variables

June, 2011

55

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

Start Here Guide, V2010.3
June, 2011

Index

— C —
Command line switches, 18

list of switches
see the Quick Reference Index

— D —
DesignPad, 6

— E —
Environment variables

CDS_INST_DIR, 48
CVE_HOME, 48
CVSROOT, 48
EDITOR, 48
EXEMPLAR, 48
HDS_DEBUGFONTS, 48
HDS_GENRULES_SCRIPT, 48
HDS_HOME, 48
HDS_INSTANCE_LIMIT, 48
HDS_KANJI_DIALOGS, 48
HDS_KEEPFILE, 49
HDS_KEYS, 49
HDS_LIB_MIGRATION, 49
HDS_LIBS, 49
HDS_LOG_TIMEOUT, 49
HDS_MAX_ILOG_AREA, 49
HDS_NEW_PROJECT_DIR, 49
HDS_PLUGINS, 49
HDS_PORT, 49
HDS_PREFS, 50
HDS_PROJECT_DIR, 50
HDS_REPOSITORY, 50
HDS_SIGNAL_LIMIT, 50
HDS_TCL, 50
HDS_TEAM_HOME, 19, 50
HDS_TEAM_VER, 50
HDS_TEAMPREFS, 50
HDS_USER_HOME, 50
HDS_USER_VER, 51
LD_LIBRARY_PATH, 51

LM_LICENSE_FILE, 51
MGC_HOME, 51
MGC_LOCATION_MAP, 51
MGC_WD, 51
MGLS_CONN_TIMEOUT, 51
MGLS_HOME, 51
MGLS_LICENSE_FILE, 52
MGLS_PKGINFO_FILE, 52
MODELSIM, 52
setting, 52
SPYGLASS_HOME, 52
SSDIR, 52
TZ, 52

— H —
HDL Author, 5

invoking, 17
HDL Designer, 7

invoking, 17
HDL Designer Series, 5

invoking, 17
HDL2Graphics, 7

— L —
Library

Ethernet, 28
exemplar, 29
hds_package_library, 29
ieee, 30
moduleware, 30
renoir_package_library, 30
SCRATCH_LIB, 28
Sequencer_vhd, 29
Sequencer_vlg, 29
std, 30
std_developerskit, 30
synopsys, 30
TIMER_Vhdl, 29
TIMER_Vlog, 29
UART, 29

Index

56
June, 2011

Start Here Guide, V2010.3

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

UART_TXT, 29
UART_V, 29
verilog, 30

— M —
ModuleWare, 7

— O —
Online help, 15

— P —
Product features, 5
Project

example, 28
shared, 29

— Q —
Quick Reference Index, 11

— U —
UART

address_decode, 35
clock_divider, 35, 36
control_operation, 37
convert, 39
cpu_interface, 35, 36
data_out_mux, 37
interface, 34
overview, 33
ser_out_mux, 40
serial_interface, 35, 37
simulation results, 41
specification, 43
status_registers, 39
test bench, 40
tester, 40
top-level block diagram, 34
xmit rcv control, 39

End-User License Agreement
The latest version of the End-User License Agreement is available on-line at:

www.mentor.com/eula

END-USER LICENSE AGREEMENT (“Agreement”)

This is a legal agreement concerning the use of Software (as defined in Section 2) and hardware (collectively
“Products”) between the company acquiring the Products (“Customer”), and the Mentor Graphics entity that
issued the corresponding quotation or, if no quotation was issued, the applicable local Mentor Graphics entity
(“Mentor Graphics”). Except for license agreements related to the subject matter of this license agreement which
are physically signed by Customer and an authorized representative of Mentor Graphics, this Agreement and the
applicable quotation contain the parties' entire understanding relating to the subject matter and supersede all
prior or contemporaneous agreements. If Customer does not agree to these terms and conditions, promptly return
or, in the case of Software received electronically, certify destruction of Software and all accompanying items
within five days after receipt of Software and receive a full refund of any license fee paid.

1. ORDERS, FEES AND PAYMENT.

1.1. To the extent Customer (or if agreed by Mentor Graphics, Customer’s appointed third party buying agent) places and
Mentor Graphics accepts purchase orders pursuant to this Agreement (“Order(s)”), each Order will constitute a contract
between Customer and Mentor Graphics, which shall be governed solely and exclusively by the terms and conditions of this
Agreement, any applicable addenda and the applicable quotation, whether or not these documents are referenced on the
Order. Any additional or conflicting terms and conditions appearing on an Order will not be effective unless agreed in
writing by an authorized representative of Customer and Mentor Graphics.

1.2. Amounts invoiced will be paid, in the currency specified on the applicable invoice, within 30 days from the date of such
invoice. Any past due invoices will be subject to the imposition of interest charges in the amount of one and one-half
percent per month or the applicable legal rate currently in effect, whichever is lower. Prices do not include freight,
insurance, customs duties, taxes or other similar charges, which Mentor Graphics will state separately in the applicable
invoice(s). Unless timely provided with a valid certificate of exemption or other evidence that items are not taxable, Mentor
Graphics will invoice Customer for all applicable taxes including, but not limited to, VAT, GST, sales tax and service tax.
Customer will make all payments free and clear of, and without reduction for, any withholding or other taxes; any such
taxes imposed on payments by Customer hereunder will be Customer’s sole responsibility. If Customer appoints a third
party to place purchase orders and/or make payments on Customer’s behalf, Customer shall be liable for payment under
Orders placed by such third party in the event of default.

1.3. All Products are delivered FCA factory (Incoterms 2000), freight prepaid and invoiced to Customer, except Software
delivered electronically, which shall be deemed delivered when made available to Customer for download. Mentor
Graphics retains a security interest in all Products delivered under this Agreement, to secure payment of the purchase price
of such Products, and Customer agrees to sign any documents that Mentor Graphics determines to be necessary or
convenient for use in filing or perfecting such security interest. Mentor Graphics’ delivery of Software by electronic means
is subject to Customer’s provision of both a primary and an alternate e-mail address.

2. GRANT OF LICENSE. The software installed, downloaded, or otherwise acquired by Customer under this Agreement,
including any updates, modifications, revisions, copies, documentation and design data (“Software”) are copyrighted, trade
secret and confidential information of Mentor Graphics or its licensors, who maintain exclusive title to all Software and retain
all rights not expressly granted by this Agreement. Mentor Graphics grants to Customer, subject to payment of applicable
license fees, a nontransferable, nonexclusive license to use Software solely: (a) in machine-readable, object-code form (except
as provided in Subsection 5.2); (b) for Customer’s internal business purposes; (c) for the term of the license; and (d) on the
computer hardware and at the site authorized by Mentor Graphics. A site is restricted to a one-half mile (800 meter) radius.
Customer may have Software temporarily used by an employee for telecommuting purposes from locations other than a
Customer office, such as the employee's residence, an airport or hotel, provided that such employee's primary place of
employment is the site where the Software is authorized for use. Mentor Graphics’ standard policies and programs, which vary
depending on Software, license fees paid or services purchased, apply to the following: (a) relocation of Software; (b) use of
Software, which may be limited, for example, to execution of a single session by a single user on the authorized hardware or for
a restricted period of time (such limitations may be technically implemented through the use of authorization codes or similar
devices); and (c) support services provided, including eligibility to receive telephone support, updates, modifications, and
revisions. For the avoidance of doubt, if Customer requests any change or enhancement to Software, whether in the course of

 IMPORTANT INFORMATION

USE OF ALL SOFTWARE IS SUBJECT TO LICENSE RESTRICTIONS. CAREFULLY READ THIS
LICENSE AGREEMENT BEFORE USING THE PRODUCTS. USE OF SOFTWARE INDICATES

CUSTOMER’S COMPLETE AND UNCONDITIONAL ACCEPTANCE OF THE TERMS AND
CONDITIONS SET FORTH IN THIS AGREEMENT. ANY ADDITIONAL OR DIFFERENT PURCHASE

ORDER TERMS AND CONDITIONS SHALL NOT APPLY.

http://www.mentor.com/eula

receiving support or consulting services, evaluating Software, performing beta testing or otherwise, any inventions, product
improvements, modifications or developments made by Mentor Graphics (at Mentor Graphics’ sole discretion) will be the
exclusive property of Mentor Graphics.

3. ESC SOFTWARE. If Customer purchases a license to use development or prototyping tools of Mentor Graphics’ Embedded
Software Channel (“ESC”), Mentor Graphics grants to Customer a nontransferable, nonexclusive license to reproduce and
distribute executable files created using ESC compilers, including the ESC run-time libraries distributed with ESC C and C++
compiler Software that are linked into a composite program as an integral part of Customer’s compiled computer program,
provided that Customer distributes these files only in conjunction with Customer’s compiled computer program. Mentor
Graphics does NOT grant Customer any right to duplicate, incorporate or embed copies of Mentor Graphics’ real-time operating
systems or other embedded software products into Customer’s products or applications without first signing or otherwise
agreeing to a separate agreement with Mentor Graphics for such purpose.

4. BETA CODE.

4.1. Portions or all of certain Software may contain code for experimental testing and evaluation (“Beta Code”), which may not
be used without Mentor Graphics’ explicit authorization. Upon Mentor Graphics’ authorization, Mentor Graphics grants to
Customer a temporary, nontransferable, nonexclusive license for experimental use to test and evaluate the Beta Code
without charge for a limited period of time specified by Mentor Graphics. This grant and Customer’s use of the Beta Code
shall not be construed as marketing or offering to sell a license to the Beta Code, which Mentor Graphics may choose not to
release commercially in any form.

4.2. If Mentor Graphics authorizes Customer to use the Beta Code, Customer agrees to evaluate and test the Beta Code under
normal conditions as directed by Mentor Graphics. Customer will contact Mentor Graphics periodically during Customer’s
use of the Beta Code to discuss any malfunctions or suggested improvements. Upon completion of Customer’s evaluation
and testing, Customer will send to Mentor Graphics a written evaluation of the Beta Code, including its strengths,
weaknesses and recommended improvements.

4.3. Customer agrees to maintain Beta Code in confidence and shall restrict access to the Beta Code, including the methods and
concepts utilized therein, solely to those employees and Customer location(s) authorized by Mentor Graphics to perform
beta testing. Customer agrees that any written evaluations and all inventions, product improvements, modifications or
developments that Mentor Graphics conceived or made during or subsequent to this Agreement, including those based
partly or wholly on Customer’s feedback, will be the exclusive property of Mentor Graphics. Mentor Graphics will have
exclusive rights, title and interest in all such property. The provisions of this Subsection 4.3 shall survive termination of this
Agreement.

5. RESTRICTIONS ON USE.

5.1. Customer may copy Software only as reasonably necessary to support the authorized use. Each copy must include all
notices and legends embedded in Software and affixed to its medium and container as received from Mentor Graphics. All
copies shall remain the property of Mentor Graphics or its licensors. Customer shall maintain a record of the number and
primary location of all copies of Software, including copies merged with other software, and shall make those records
available to Mentor Graphics upon request. Customer shall not make Products available in any form to any person other
than Customer’s employees and on-site contractors, excluding Mentor Graphics competitors, whose job performance
requires access and who are under obligations of confidentiality. Customer shall take appropriate action to protect the
confidentiality of Products and ensure that any person permitted access does not disclose or use it except as permitted by
this Agreement. Customer shall give Mentor Graphics written notice of any unauthorized disclosure or use of the Products
as soon as Customer learns or becomes aware of such unauthorized disclosure or use. Except as otherwise permitted for
purposes of interoperability as specified by applicable and mandatory local law, Customer shall not reverse-assemble,
reverse-compile, reverse-engineer or in any way derive any source code from Software. Log files, data files, rule files and
script files generated by or for the Software (collectively “Files”), including without limitation files containing Standard
Verification Rule Format (“SVRF”) and Tcl Verification Format (“TVF”) which are Mentor Graphics’ proprietary syntaxes
for expressing process rules, constitute or include confidential information of Mentor Graphics. Customer may share Files
with third parties, excluding Mentor Graphics competitors, provided that the confidentiality of such Files is protected by
written agreement at least as well as Customer protects other information of a similar nature or importance, but in any case
with at least reasonable care. Customer may use Files containing SVRF or TVF only with Mentor Graphics products. Under
no circumstances shall Customer use Software or Files or allow their use for the purpose of developing, enhancing or
marketing any product that is in any way competitive with Software, or disclose to any third party the results of, or
information pertaining to, any benchmark.

5.2. If any Software or portions thereof are provided in source code form, Customer will use the source code only to correct
software errors and enhance or modify the Software for the authorized use. Customer shall not disclose or permit disclosure
of source code, in whole or in part, including any of its methods or concepts, to anyone except Customer’s employees or
contractors, excluding Mentor Graphics competitors, with a need to know. Customer shall not copy or compile source code
in any manner except to support this authorized use.

5.3. Customer may not assign this Agreement or the rights and duties under it, or relocate, sublicense or otherwise transfer the
Products, whether by operation of law or otherwise (“Attempted Transfer”), without Mentor Graphics’ prior written
consent and payment of Mentor Graphics’ then-current applicable relocation and/or transfer fees. Any Attempted Transfer
without Mentor Graphics’ prior written consent shall be a material breach of this Agreement and may, at Mentor Graphics’
option, result in the immediate termination of the Agreement and/or the licenses granted under this Agreement. The terms

of this Agreement, including without limitation the licensing and assignment provisions, shall be binding upon Customer’s
permitted successors in interest and assigns.

5.4. The provisions of this Section 5 shall survive the termination of this Agreement.

6. SUPPORT SERVICES. To the extent Customer purchases support services, Mentor Graphics will provide Customer updates
and technical support for the Products, at the Customer site(s) for which support is purchased, in accordance with Mentor
Graphics’ then current End-User Support Terms located at http://supportnet.mentor.com/about/legal/.

7. AUTOMATIC CHECK FOR UPDATES; PRIVACY. Technological measures in Software may communicate with servers
of Mentor Graphics or its contractors for the purpose of checking for and notifying the user of updates and to ensure that the
Software in use is licensed in compliance with this Agreement. Mentor Graphics will not collect any personally identifiable data
in this process and will not disclose any data collected to any third party without the prior written consent of Customer, except to
Mentor Graphics’ outside attorneys or as may be required by a court of competent jurisdiction.

8. LIMITED WARRANTY.

8.1. Mentor Graphics warrants that during the warranty period its standard, generally supported Products, when properly
installed, will substantially conform to the functional specifications set forth in the applicable user manual. Mentor
Graphics does not warrant that Products will meet Customer’s requirements or that operation of Products will be
uninterrupted or error free. The warranty period is 90 days starting on the 15th day after delivery or upon installation,
whichever first occurs. Customer must notify Mentor Graphics in writing of any nonconformity within the warranty period.
For the avoidance of doubt, this warranty applies only to the initial shipment of Software under an Order and does not
renew or reset, for example, with the delivery of (a) Software updates or (b) authorization codes or alternate Software under
a transaction involving Software re-mix. This warranty shall not be valid if Products have been subject to misuse,
unauthorized modification or improper installation. MENTOR GRAPHICS’ ENTIRE LIABILITY AND CUSTOMER’S
EXCLUSIVE REMEDY SHALL BE, AT MENTOR GRAPHICS’ OPTION, EITHER (A) REFUND OF THE PRICE
PAID UPON RETURN OF THE PRODUCTS TO MENTOR GRAPHICS OR (B) MODIFICATION OR
REPLACEMENT OF THE PRODUCTS THAT DO NOT MEET THIS LIMITED WARRANTY, PROVIDED
CUSTOMER HAS OTHERWISE COMPLIED WITH THIS AGREEMENT. MENTOR GRAPHICS MAKES NO
WARRANTIES WITH RESPECT TO: (A) SERVICES; (B) PRODUCTS PROVIDED AT NO CHARGE; OR (C) BETA
CODE; ALL OF WHICH ARE PROVIDED “AS IS.”

8.2. THE WARRANTIES SET FORTH IN THIS SECTION 8 ARE EXCLUSIVE. NEITHER MENTOR GRAPHICS NOR
ITS LICENSORS MAKE ANY OTHER WARRANTIES EXPRESS, IMPLIED OR STATUTORY, WITH RESPECT TO
PRODUCTS PROVIDED UNDER THIS AGREEMENT. MENTOR GRAPHICS AND ITS LICENSORS
SPECIFICALLY DISCLAIM ALL IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NON-INFRINGEMENT OF INTELLECTUAL PROPERTY.

9. LIMITATION OF LIABILITY. EXCEPT WHERE THIS EXCLUSION OR RESTRICTION OF LIABILITY WOULD BE
VOID OR INEFFECTIVE UNDER APPLICABLE LAW, IN NO EVENT SHALL MENTOR GRAPHICS OR ITS
LICENSORS BE LIABLE FOR INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES (INCLUDING
LOST PROFITS OR SAVINGS) WHETHER BASED ON CONTRACT, TORT OR ANY OTHER LEGAL THEORY, EVEN
IF MENTOR GRAPHICS OR ITS LICENSORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. IN
NO EVENT SHALL MENTOR GRAPHICS’ OR ITS LICENSORS’ LIABILITY UNDER THIS AGREEMENT EXCEED
THE AMOUNT RECEIVED FROM CUSTOMER FOR THE HARDWARE, SOFTWARE LICENSE OR SERVICE GIVING
RISE TO THE CLAIM. IN THE CASE WHERE NO AMOUNT WAS PAID, MENTOR GRAPHICS AND ITS LICENSORS
SHALL HAVE NO LIABILITY FOR ANY DAMAGES WHATSOEVER. THE PROVISIONS OF THIS SECTION 9 SHALL
SURVIVE THE TERMINATION OF THIS AGREEMENT.

10. HAZARDOUS APPLICATIONS. CUSTOMER ACKNOWLEDGES IT IS SOLELY RESPONSIBLE FOR TESTING ITS
PRODUCTS USED IN APPLICATIONS WHERE THE FAILURE OR INACCURACY OF ITS PRODUCTS MIGHT
RESULT IN DEATH OR PERSONAL INJURY (“HAZARDOUS APPLICATIONS”). NEITHER MENTOR GRAPHICS
NOR ITS LICENSORS SHALL BE LIABLE FOR ANY DAMAGES RESULTING FROM OR IN CONNECTION WITH
THE USE OF MENTOR GRAPHICS PRODUCTS IN OR FOR HAZARDOUS APPLICATIONS. THE PROVISIONS OF
THIS SECTION 10 SHALL SURVIVE THE TERMINATION OF THIS AGREEMENT.

11. INDEMNIFICATION. CUSTOMER AGREES TO INDEMNIFY AND HOLD HARMLESS MENTOR GRAPHICS AND
ITS LICENSORS FROM ANY CLAIMS, LOSS, COST, DAMAGE, EXPENSE OR LIABILITY, INCLUDING
ATTORNEYS’ FEES, ARISING OUT OF OR IN CONNECTION WITH THE USE OF PRODUCTS AS DESCRIBED IN
SECTION 10. THE PROVISIONS OF THIS SECTION 11 SHALL SURVIVE THE TERMINATION OF THIS
AGREEMENT.

12. INFRINGEMENT.

12.1. Mentor Graphics will defend or settle, at its option and expense, any action brought against Customer in the United States,
Canada, Japan, or member state of the European Union which alleges that any standard, generally supported Product
acquired by Customer hereunder infringes a patent or copyright or misappropriates a trade secret in such jurisdiction.
Mentor Graphics will pay costs and damages finally awarded against Customer that are attributable to the action. Customer
understands and agrees that as conditions to Mentor Graphics’ obligations under this section Customer must: (a) notify
Mentor Graphics promptly in writing of the action; (b) provide Mentor Graphics all reasonable information and assistance

http://supportnet.mentor.com/about/legal/

to settle or defend the action; and (c) grant Mentor Graphics sole authority and control of the defense or settlement of the
action.

12.2. If a claim is made under Subsection 12.1 Mentor Graphics may, at its option and expense, (a) replace or modify the Product
so that it becomes noninfringing; (b) procure for Customer the right to continue using the Product; or (c) require the return
of the Product and refund to Customer any purchase price or license fee paid, less a reasonable allowance for use.

12.3. Mentor Graphics has no liability to Customer if the action is based upon: (a) the combination of Software or hardware with
any product not furnished by Mentor Graphics; (b) the modification of the Product other than by Mentor Graphics; (c) the
use of other than a current unaltered release of Software; (d) the use of the Product as part of an infringing process; (e) a
product that Customer makes, uses, or sells; (f) any Beta Code or Product provided at no charge; (g) any software provided
by Mentor Graphics’ licensors who do not provide such indemnification to Mentor Graphics’ customers; or
(h) infringement by Customer that is deemed willful. In the case of (h), Customer shall reimburse Mentor Graphics for its
reasonable attorney fees and other costs related to the action.

12.4. THIS SECTION 12 IS SUBJECT TO SECTION 9 ABOVE AND STATES THE ENTIRE LIABILITY OF MENTOR
GRAPHICS AND ITS LICENSORS FOR DEFENSE, SETTLEMENT AND DAMAGES, AND CUSTOMER’S SOLE
AND EXCLUSIVE REMEDY, WITH RESPECT TO ANY ALLEGED PATENT OR COPYRIGHT INFRINGEMENT
OR TRADE SECRET MISAPPROPRIATION BY ANY PRODUCT PROVIDED UNDER THIS AGREEMENT.

13. TERMINATION AND EFFECT OF TERMINATION. If a Software license was provided for limited term use, such license
will automatically terminate at the end of the authorized term.

13.1. Mentor Graphics may terminate this Agreement and/or any license granted under this Agreement immediately upon written
notice if Customer: (a) exceeds the scope of the license or otherwise fails to comply with the licensing or confidentiality
provisions of this Agreement, or (b) becomes insolvent, files a bankruptcy petition, institutes proceedings for liquidation or
winding up or enters into an agreement to assign its assets for the benefit of creditors. For any other material breach of any
provision of this Agreement, Mentor Graphics may terminate this Agreement and/or any license granted under this
Agreement upon 30 days written notice if Customer fails to cure the breach within the 30 day notice period. Termination of
this Agreement or any license granted hereunder will not affect Customer’s obligation to pay for Products shipped or
licenses granted prior to the termination, which amounts shall be payable immediately upon the date of termination.

13.2. Upon termination of this Agreement, the rights and obligations of the parties shall cease except as expressly set forth in this
Agreement. Upon termination, Customer shall ensure that all use of the affected Products ceases, and shall return hardware
and either return to Mentor Graphics or destroy Software in Customer’s possession, including all copies and
documentation, and certify in writing to Mentor Graphics within ten business days of the termination date that Customer no
longer possesses any of the affected Products or copies of Software in any form.

14. EXPORT. The Products provided hereunder are subject to regulation by local laws and United States government agencies,
which prohibit export or diversion of certain products and information about the products to certain countries and certain
persons. Customer agrees that it will not export Products in any manner without first obtaining all necessary approval from
appropriate local and United States government agencies.

15. U.S. GOVERNMENT LICENSE RIGHTS. Software was developed entirely at private expense. All Software is commercial
computer software within the meaning of the applicable acquisition regulations. Accordingly, pursuant to US FAR 48 CFR
12.212 and DFAR 48 CFR 227.7202, use, duplication and disclosure of the Software by or for the U.S. Government or a U.S.
Government subcontractor is subject solely to the terms and conditions set forth in this Agreement, except for provisions which
are contrary to applicable mandatory federal laws.

16. THIRD PARTY BENEFICIARY. Mentor Graphics Corporation, Mentor Graphics (Ireland) Limited, Microsoft Corporation
and other licensors may be third party beneficiaries of this Agreement with the right to enforce the obligations set forth herein.

17. REVIEW OF LICENSE USAGE. Customer will monitor the access to and use of Software. With prior written notice and
during Customer’s normal business hours, Mentor Graphics may engage an internationally recognized accounting firm to
review Customer’s software monitoring system and records deemed relevant by the internationally recognized accounting firm
to confirm Customer’s compliance with the terms of this Agreement or U.S. or other local export laws. Such review may include
FLEXlm or FLEXnet (or successor product) report log files that Customer shall capture and provide at Mentor Graphics’
request. Customer shall make records available in electronic format and shall fully cooperate with data gathering to support the
license review. Mentor Graphics shall bear the expense of any such review unless a material non-compliance is revealed. Mentor
Graphics shall treat as confidential information all information gained as a result of any request or review and shall only use or
disclose such information as required by law or to enforce its rights under this Agreement. The provisions of this Section 17
shall survive the termination of this Agreement.

18. CONTROLLING LAW, JURISDICTION AND DISPUTE RESOLUTION. The owners of certain Mentor Graphics
intellectual property licensed under this Agreement are located in Ireland and the United States. To promote consistency around
the world, disputes shall be resolved as follows: excluding conflict of laws rules, this Agreement shall be governed by and
construed under the laws of the State of Oregon, USA, if Customer is located in North or South America, and the laws of Ireland
if Customer is located outside of North or South America. All disputes arising out of or in relation to this Agreement shall be
submitted to the exclusive jurisdiction of the courts of Portland, Oregon when the laws of Oregon apply, or Dublin, Ireland when
the laws of Ireland apply. Notwithstanding the foregoing, all disputes in Asia arising out of or in relation to this Agreement shall
be resolved by arbitration in Singapore before a single arbitrator to be appointed by the chairman of the Singapore International

Arbitration Centre (“SIAC”) to be conducted in the English language, in accordance with the Arbitration Rules of the SIAC in
effect at the time of the dispute, which rules are deemed to be incorporated by reference in this section. This section shall not
restrict Mentor Graphics’ right to bring an action against Customer in the jurisdiction where Customer’s place of business is
located. The United Nations Convention on Contracts for the International Sale of Goods does not apply to this Agreement.

19. SEVERABILITY. If any provision of this Agreement is held by a court of competent jurisdiction to be void, invalid,
unenforceable or illegal, such provision shall be severed from this Agreement and the remaining provisions will remain in full
force and effect.

20. MISCELLANEOUS. This Agreement contains the parties’ entire understanding relating to its subject matter and supersedes all
prior or contemporaneous agreements, including but not limited to any purchase order terms and conditions. Some Software
may contain code distributed under a third party license agreement that may provide additional rights to Customer. Please see
the applicable Software documentation for details. This Agreement may only be modified in writing by authorized
representatives of the parties. Waiver of terms or excuse of breach must be in writing and shall not constitute subsequent
consent, waiver or excuse.

Rev. 100615, Part No. 246066

	Table of Contents
	Chapter 1 Introduction
	The HDL Designer Series
	HDL Author
	HDL Designer

	Documentation
	Help and Manuals
	What’s New
	Quick Reference Index
	Manuals
	Application Notes
	Other Documents

	Support and Training
	Technical Support and Downloads
	Tutorials
	Self-Running Demos
	Contact Us

	System Admin
	Searching Documentation
	Dialog Box Help

	Customer Support

	Chapter 2 Invoking HDL Designer Tools
	Invoking on Windows
	Invoking on UNIX or Linux
	Command Line Switches
	Team Member Mode
	HDS Setup Assistant Wizard
	Starting the Wizard
	Using the HDS Setup Wizard
	Language Page
	Design Page
	Simulator Page
	Synthesis Page
	Other Flows Page
	Project Setup Page
	Design Library Page
	Version Management Page

	The Default Project
	Example Libraries
	Shared Libraries
	Using the Example Designs

	Appendix A UART Example Design
	Overview
	Design Description (uart_top)
	UART Interface
	UART Structure
	Address Decode
	Clock Divider
	CPU Interface
	Control Operation
	Data Out Mux

	Serial Interface
	Xmit Rcv Control
	Status Registers
	Convert
	Ser Out Mux

	Test Bench (uart_tb)
	Simulation Results

	UART Specification
	UART Registers
	UART Application
	Reading from a UART Register
	Writing to a UART Register
	Transmitting Data
	Receiving Data

	Appendix B Environment Variables
	List of Variables
	Setting Environment Variables

	Index
	End-User License Agreement
	Documentation Feedback

