
© 1996-2011 Mentor Graphics Corporation
All rights reserved.

This document contains information that is proprietary to Mentor Graphics Corporation. The original recipient of this
document may duplicate this document in whole or in part for internal business purposes only, provided that this entire
notice appears in all copies. In duplicating any part of this document, the recipient agrees to make every reasonable
effort to prevent the unauthorized use and distribution of the proprietary information.

HDL Designer SeriesTM Tcl Reference
Manual

Software Version 2010.3

June, 2011

This document is for information and instruction purposes. Mentor Graphics reserves the right to make
changes in specifications and other information contained in this publication without prior notice, and the
reader should, in all cases, consult Mentor Graphics to determine whether any changes have been
made.

The terms and conditions governing the sale and licensing of Mentor Graphics products are set forth in
written agreements between Mentor Graphics and its customers. No representation or other affirmation
of fact contained in this publication shall be deemed to be a warranty or give rise to any liability of Mentor
Graphics whatsoever.

MENTOR GRAPHICS MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE.

MENTOR GRAPHICS SHALL NOT BE LIABLE FOR ANY INCIDENTAL, INDIRECT, SPECIAL, OR
CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING BUT NOT LIMITED TO LOST PROFITS)
ARISING OUT OF OR RELATED TO THIS PUBLICATION OR THE INFORMATION CONTAINED IN IT,
EVEN IF MENTOR GRAPHICS CORPORATION HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

RESTRICTED RIGHTS LEGEND 03/97

U.S. Government Restricted Rights. The SOFTWARE and documentation have been developed entirely
at private expense and are commercial computer software provided with restricted rights. Use,
duplication or disclosure by the U.S. Government or a U.S. Government subcontractor is subject to the
restrictions set forth in the license agreement provided with the software pursuant to DFARS 227.7202-
3(a) or as set forth in subparagraph (c)(1) and (2) of the Commercial Computer Software - Restricted
Rights clause at FAR 52.227-19, as applicable.

Contractor/manufacturer is:
Mentor Graphics Corporation

8005 S.W. Boeckman Road, Wilsonville, Oregon 97070-7777.
Telephone: 503.685.7000

Toll-Free Telephone: 800.592.2210
Website: www.mentor.com

SupportNet: supportnet.mentor.com/
Send Feedback on Documentation: supportnet.mentor.com/user/feedback_form.cfm

TRADEMARKS: The trademarks, logos and service marks ("Marks") used herein are the property of
Mentor Graphics Corporation or other third parties. No one is permitted to use these Marks without the
prior written consent of Mentor Graphics or the respective third-party owner. The use herein of a third-
party Mark is not an attempt to indicate Mentor Graphics as a source of a product, but is intended to
indicate a product from, or associated with, a particular third party. A current list of Mentor Graphics’
trademarks may be viewed at: www.mentor.com/terms_conditions/trademarks.cfm.

http://www.mentor.com
http://supportnet.mentor.com/
http://supportnet.mentor.com/user/feedback_form.cfm
http://www.mentor.com/terms_conditions/trademarks.cfm

HDL Designer Series Tcl Reference Manual, V2010.3 3
June, 2011

Table of Contents

Chapter 1
HDS Library Contents API . 9

Introduction . 9
API Command Modes. 9
Accessing the Console . 9
Document Conventions. 10

Command Basics . 10
Example Scripts . 11

Generated HDL File Paths . 11

Chapter 2
HDS Tcl API Command Reference. 23

Pre-Defined Commands. 23
General Commands. 23
addLibraryMapping . 25
configureProperties . 27
getDesignUnitFiles . 28
getLibrarriesRootDirectory. 30
getLibraryMacroDefinitions . 31
getLibrarySearchPath . 32
getLibraryVerilogIncludeSearchPath . 33
getVerilogIncludeSearchPath . 34
invokeGUI (). 35
setBlackBoxFile . 36
setDefaultView . 38
setDontTouchFile . 39
setLibrariesRootDirectory. 41
setLibraryMacroDefinitions . 42
setLibrarySearchPath . 43
setLibraryVerilogIncludeSearchPath . 44
setPolicyLocation . 45
setRulesetLocation . 46
setVerilogIncludeSearchPath . 47
unsetBlackBoxFile . 48
unsetDontTouchFile . 49
DesignChecker Commands. 51
disableDumpCodeSnippet() . 52
disableFilterAssocViolation() . 53
enableDumpCodeSnippet () . 54
enableFilterAssocViolation (). 55
setCheckedFileDUsReport . 56
setCheckedFileDUsReportContents . 57

Table of Contents

4
June, 2011

HDL Designer Series Tcl Reference Manual, V2010.3

setExclusionReport . 58
setExclusionReportContents . 59
setRulesCheckedReport . 60
setSnippetLinesAfter. 61
setSnippetLinesBefore . 62
HDL2Graphics Commands. 63
runH2G . 64
runHdlImport . 65
runHtmlExport . 67
setupH2G . 68
setupHdlImport . 71
setupHtmlExport . 72
Batch Mode Tasks. 74
runTask . 75
setCompileAlways (enable) . 76
setupTask (args) . 77
Generation Commands . 78
runConfigGenerate . 79
runGenerate. 80
setupGenerate . 81
Library Commands . 83
library names() . 84
library open . 85
Version Management Commands. 86
runVMChangeLock . 87
runVMCheckIn . 88
runVMCheckOut. 89
runVMGet . 90
runVMHistory. 91
runVMLabel . 92
runVMSynchronize (args) . 93
runVMUndoCheckOut . 94
setupVM . 95
setupVMChangeLock . 96
setupVMCheckIn . 97
setupVMCheckOut . 98
setupVMGet . 99
setupVMHierarchy . 100
setupVMLabel. 101
setupVMSynchronize . 102

Dynamically Created Commands . 103
Command Structure . 103
HDS objects . 104
Option . 105
Command list . 105
architecture object commands. 106
blockFrame object commands . 107
caseFrame object commands . 108
configuration object commands . 109

Table of Contents

HDL Designer Series Tcl Reference Manual, V2010.3 5
June, 2011

declaration object commands . 111
elseFrame object commands . 112
embeddedFrame object commands. 113
entity option object commands . 114
file object commands . 116
forFrame object commands. 118
frameConfiguration object commands . 119
frame object commands . 120
ifFrame object commands. 121
instance object commands . 122
library object commands. 123
machineFrame object commands . 125
packageHeader object commands. 126
packageBody object commands . 127

Command List . 127

Index

End-User License Agreement

HDL Designer Series Tcl Reference Manual, V2010.3 6
June, 2011

List of Tables

Table 1-1. Generated HDL Commands . 12
Table 2-1. architecture object commands . 106
Table 2-2. blockFrame object commands . 107
Table 2-3. caseFrame object commands . 108
Table 2-4. configuration object commands . 109
Table 2-5. declaration object commands . 111
Table 2-6. elseFrame object commands . 112
Table 2-7. embeddedFrame object commands . 113
Table 2-8. entity option object commands . 114
Table 2-9. file object commands . 116
Table 2-10. forFrame object commands . 118
Table 2-11. frameConfiguration object commands . 119
Table 2-12. frame object commands . 120
Table 2-13. ifFrame object commands . 121
Table 2-14. instance object commands . 122
Table 2-15. library object commands . 123
Table 2-16. machineFrame object commands . 125
Table 2-17. packageHeader object commands . 126
Table 2-18. packageBody object commands . 127

List of Tables

HDL Designer Series Tcl Reference Manual, V2010.3 7
June, 2011

8
June, 2011

HDL Designer Series Tcl Reference Manual, V2010.3

HDL Designer Series Tcl Reference Manual, V2010.3 9
June, 2011

Chapter 1
HDS Library Contents API

Introduction
This document is designed to help you use the HDS library contents API more effectively. The
HDS library contents API enables Tcl scripts to:

1. Access the structure of a design

2. Navigate the libraries, files and declarations of the design

3. Examine the hierarchies produced by component instantiation.

For more information on the Tcl language refer to:

http://www.tcl.tk/man/tcl8.5/tutorial/tcltutorial.html

API Command Modes
The API commands can be used in one of two modes:

• Interactive: via the console page of the HDS log window. This mode provides a
convenient way of learning about the API and debugging scripts, since the commands
provide considerable feedback on how they should be used.This is described in more
detail in the following sections.

• Batch: via the -tcl command line switch in HDS.

Accessing the Console
Text entered here will be executed as Tcl commands and can use the API commands described
in the following sections.

To access the log window:

1. Invoke HDS to display the Design Manager window.

2. Select Window > HDS Log Window.

http://www.tcl.tk/man/tcl8.5/tutorial/tcltutorial.html

HDL Designer Series Tcl Reference Manual, V2010.310

HDS Library Contents API
Command Basics

June, 2011

Figure 1-1. 2. Log Window

Document Conventions
In the following examples, text in bold represents commands typed into the console, text in
italics represents output from HDS in response to a command.

Command Basics
HDS API commands are either dynamically created or predefined. To start using the API
commands you should gain access to your design library using the library open
command:library open is an example of a predefined command. HDS responds to the
command by creating a handle that refers to the library object to be accessed. HDS created
handles are designated by hds followed by a unique number.

In this example hds0 is a handle referring to the library UART.

The following is an example of a dynamically created command composed of the above
returned UART library handle and the files option.The command returns a set of handles
referring to the UART library files. Refer to “library object commands” on page 123.

The Tcl language supports the concept of variables. Variables are set and unset with the
standard Tcl set and unset commands. To ease the use of the created handles, they are stored

library open uart hds0

hds0 files hds1 hds2 hds3 hds4 hds5 hds6
hds7 hds8 hds9 hds10 hds11 hds12
hds13 hds14

HDS Library Contents API
Example Scripts

HDL Designer Series Tcl Reference Manual, V2010.3 11
June, 2011

in variables. In the following example the set command stores the UART handle hds0 in
variable lib

Notice the use of nested commands where the result of the second command [library open

uart] is used as a part of the first command.

You can now use the lib variable which carries a handle to the UART library instead of the
handle itself in the command.

All objects have a ‘configure’ command option, this provides access to the attributes of the
object. If you use the configure command with no arguments, it shows the names and values of
all the attributes.

To get a list of all object command options you can type:

$lib help
Error: bad option "help" should be configure or file

Example Scripts
This section provides and explains some sample scripts that show how an HDS design can be
accessed using the Tcl API commands.

Generated HDL File Paths
Some source files of a design may be HDS graphics files. Using the Tcl API commands you can
navigate to and print out the HDL text files generated from the graphics:

Steps

By copying the Tcl commands in the following table and pasting it into the HDS log window,
HDS responds with a set of handles referring to the designated HDS objects and finally prints
out the path to the uart_tb generated HDL file.

set lib [library open uart] hds0

$lib files hds1 hds2 hds3 hds4 hds5 hds6
hds7 hds8 hds9 hds10 hds11 hds12
hds13 hds14

HDL Designer Series Tcl Reference Manual, V2010.312

HDS Library Contents API
Example Scripts

June, 2011

Now let us see how this piece of code works.

set lib [library open UART]

A variable lib is automatically declared using the Set tcl command. The value of the variable lib
is substituted with the value of the command within []

In other words the result of the library open command is given to the variable lib. Refer to
“library object commands” on page 123. When a '[' appears in a command, Tcl treats everything
between it and the matching ']' as a nested Tcl command. Tcl evaluates the nested API
command and substitutes its result into the enclosing command in place of the bracketed text.
So the above command is translated as follows:

set lib hds0

where hds0 is an HDS handle referring to the library UART

set tb [$lib declaration uart_tb struct]

Again the value of the automatically declared variable tb is substituted with the result of the
second command.

When a $ appears in a command, Tcl treats the letters and digits following it as a variable name,
and substitutes the value of the variable in place of the name.

So $lib carries the value hds0 mentioned in the first step which is a handle referring to the
UART library. The $lib together with the declaration option and the uart_tb struct argument
constitute a new command.This command returns hds1 which is a handle referring to an HDS
declaration. Refer to “library object commands” on page 123.

set generatedHdlFile [[$tb file] generated]

In this step you can see that there are multiple nested Tcl API commands. The value hds1of the
command [$tb file] is used to create a second dynamic command i.e. hds1 generated. The
value of the second command substitutes the value of the variable generatedHDLFile.

Table 1-1. Generated HDL Commands

Tcl Command HDS Response

set lib [library open uart] hds0

set tb [$lib declaration uart_tb struct] hds1

set generatedHdlFile [[$tb file] generated] hds43

puts [$lib configure
hardHdlDir]/[$generatedHdlFile configure
relativePathname]

C:/Lastbuild/32/LatestBuild/examples/
uart/hdl/uart_tb_struct.vhd

HDS Library Contents API
Example Scripts

HDL Designer Series Tcl Reference Manual, V2010.3 13
June, 2011

puts [$lib configure hardHdlDir]/[$generatedHdlFile configure relativePathname]

Finally you can print out the path of the UART_tb generated file using the puts Tcl command.
Refer to “library object commands” on page 123 and “file object commands” on page 116.

/home/designs/UART/hdl/uart_tb_struct.vhd

Reporting VHDL Packages Directly Referenced by a Library
Instead of using discrete Tcl commands, Tcl procedures will be used. Procedures in Tcl serve
much the same purpose as functions in C. They may take arguments, and may return values.
The basic syntax for defining a procedure is:

proc name argList body

Once a procedure is created, it is considered to be a command, just like any other built-in Tcl
command. As such, it may be called using its name, followed by a value for each of its
arguments. The return value from a procedure is equivalent to the result of a built-in Tcl
command. Thus, command substitution can be used to substitute the return value of a procedure
into another expression.

In this example the procedure showPkgs is considered a command which takes a library object
as an argument and finally prints out the VHDL packages directly referenced by that library.

The API refers to entities and architectures, since these correspond to the separation of interface
and implementation found both in VHDL designs and in HDS graphics files. A Verilog module
corresponds to both an entity and architecture, so each module in Verilog text files becomes
both an entity and an architecture in the API. This allows scripts using the API to treat VHDL
text, Verilog text and HDS graphics in a consistent fashion.

All objects have a class attribute. The class attribute may have one of the following values
(architecture, architectureFrame, blockFrame, caseFrame, configuration, directory, elseFrame,
embeddedFrame, entity, file, forFrame, frameConfiguration, ifFrame, instance, library,
machineFrame, packageBody or packageHeader).

Objects of class entity, architecture, packageHeader and packageBody support a 'packages'
command that returns a list of packages used by the declaration. Refer to“Dynamically Created
Commands” on page 103.

Steps

proc showPkgs {lib} {
 foreach file [$lib files] {
 foreach decl [$file declarations] {
 foreach pkg [$decl packages] {
 if {![info exists alreadyDone($pkg)]} {
 puts "[$pkg configure fullName]"
 set alreadyDone($pkg) 1
 }

HDL Designer Series Tcl Reference Manual, V2010.314

HDS Library Contents API
Example Scripts

June, 2011

 }
 }
 }
}
showPkgs [library open uart]

ieee.std_logic_1164
ieee.std_logic_arith
std.TEXTIO

Note
You can ask a Verilog declaration for its packages, the result is always an empty list. This
uniformity can be helpful when examining mixed language designs.

Reporting Verilog Include Files
File objects support an 'includes' command that provides access to the files `included by a file.
Unlike most API functions, the include files are given in text form. This is because include files
are not constrained to reside within HDS libraries, they can be present anywhere in the
filesystem.

The following example reports all files included by the files of a library:

proc showIncls {lib} {
 foreach file [$lib files] {
 foreach inc [$file includes] {
 if {![info exists alreadyDone($inc)]} {
 puts $inc
 set alreadyDone($inc) 1
 }
 }
 }
}

Refer to “library object commands” on page 123 and “file object commands” on page 116.

Issue: our example designs have no include statements.

Note
You can ask a VHDL file for its includes, the result is always an empty list. This
uniformity can be helpful when examining mixed language designs.

Simple Design Hierarchy Traversal
The following example shows a script that walks the hierarchy of a design and reports its
structure:

proc indent {} { return [string repeat { } $::indent] }

HDS Library Contents API
Example Scripts

HDL Designer Series Tcl Reference Manual, V2010.3 15
June, 2011

The procedure indent is used as a command in the procedure walkArch. It adds indentations to
the produced results. Indent has 0 arguments and uses the string repeat command to return a
space repeated a number of times equal to the value of the variable $:: indent

proc walkArch {arch} {
 puts "[indent]ARCH [$arch configure fullName]"
 incr ::indent
 foreach inst [$arch instances] {
 puts "[indent]INST [$inst configure name]"
 walkArch [$inst child]
 }
 incr ::indent -1
 puts "[indent]-- end [$arch configure fullName]"
}
set lib [library open uart]
set indent 0
walkArch [$lib declaration uart_tb struct]

Refer to “library object commands” on page 123, “instance object commands” on page 122 and
“architecture object commands” on page 106.

The procedure walkArch takes a library declaration as an argument and returns all the library
architectures and their instances.

ARCH UART.uart_tb(struct)
 INST U_0
 ARCH UART.tester(flow)
 -- end UART.tester(flow)
 INST U_1
 ARCH UART.uart_top(struct)
 INST U_1
 ARCH UART.cpu_interface(intconx)
 INST U_0
 ARCH UART.control_operation(fsm)
 -- end UART.control_operation(fsm)
 -- end UART.cpu_interface(intconx)
 INST U_2
 ARCH UART.clock_divider(flow)
 -- end UART.clock_divider(flow)
 INST U_3
 ARCH UART.address_decode(tbl)
 -- end UART.address_decode(tbl)
 INST U_4
 ARCH UART.serial_interface(struct)
 INST ser_out_mux
Error: Instance ser_out_mux is unbound

In this case, the command reports an error, since moduleware instances do not have a
corresponding architecture.

HDL Designer Series Tcl Reference Manual, V2010.316

HDS Library Contents API
Example Scripts

June, 2011

Robust Design Hierarchy Traversal
If you want your script to trap unbound component instances and continue walking the
hierarchy, you need to use the 'catch' command. The catch command evaluates a script and traps
exceptional returns

proc indent {} { return [string repeat { } $::indent] }
proc walkArch {arch} {
 puts "[indent]ARCH [$arch configure fullName]"
 incr ::indent
 foreach inst [$arch instances] {
 if {![catch {$inst child} child]} {
 puts "[indent]INST [$inst configure name]"
 walkArch $child
 }
 }
 incr ::indent -1
 puts "[indent]-- end [$arch configure fullName]"
}
set lib [library open uart]
set indent 0
walkArch [$lib declaration uart_tb struct]

Refer to “library object commands” on page 123, “instance object commands” on page 122 and
“architecture object commands” on page 106.

ARCH UART.uart_tb(struct)
 INST U_0
 ARCH UART.tester(flow)
 -- end UART.tester(flow)
 INST U_1
 ARCH UART.uart_top(struct)
 INST U_1
 ARCH UART.cpu_interface(intconx)
 INST U_0
 ARCH UART.control_operation(fsm)
 -- end UART.control_operation(fsm)
 -- end UART.cpu_interface(intconx)
 INST U_2
 ARCH UART.clock_divider(flow)
 -- end UART.clock_divider(flow)
 INST U_3
 ARCH UART.address_decode(tbl)
 -- end UART.address_decode(tbl)
 INST U_4
 ARCH UART.serial_interface(struct)
 INST U_0
 ARCH UART.xmit_rcv_control(fsm)
 -- end UART.xmit_rcv_control(fsm)
 INST U_1
 ARCH UART.status_registers(spec)
 -- end UART.status_registers(spec)
 -- end UART.serial_interface(struct)
 -- end UART.uart_top(struct)
-- end UART.uart_tb(struct)

HDS Library Contents API
Example Scripts

HDL Designer Series Tcl Reference Manual, V2010.3 17
June, 2011

Design Hierarchy and Frames
The API uses the term 'frame' to refer to a number of constructs that add hierarchy within an
architecture:

• FOR frames, IF frames, and BLOCK frames in a VHDL block diagram

• FOR frames, IF frames and ELSE frames in a Verilog block diagram

• FOR GENERATE, IF GENERATE and BLOCK statements in a VHDL text file

• FOR GENERATE statements in a Verilog text file

• Concurrent and hierarchical states in a state machine or algorithmic state machine
(ASM)

• Concurrent flowcharts and hierarchical actions in a flow chart

With a slightly more complex script, you can gain access to these additional details:

proc indent {} { return [string repeat { } $::indent] }
proc walkFrame {frame} {
 puts "[indent][$frame configure]"
 incr ::indent
 foreach sub [$frame subFrames] {
 walkFrame $sub
 }
 foreach inst [$frame instances] {
 if {![catch {$inst child} child]} {
 puts "[indent]INST [$inst configure name]"
 walkArch $child
 }
 }
 incr ::indent -1
}
proc walkArch {arch} {
 puts "[indent]ARCH [$arch configure fullName]"
 incr ::indent
 walkFrame [$arch frame]
 incr ::indent -1
 puts "[indent]-- end [$arch configure fullName]"
}
set lib [library open uart]
set indent 0
walkArch [$lib declaration uart_tb struct]

Refer to “library object commands” on page 123, “instance object commands” on page 122 and
“architecture object commands” on page 106 and “frame object commands” on page 120.

ARCH UART.uart_tb(struct)
 class architectureFrame name struct
 INST U_0
 ARCH UART.tester(flow)
 class architectureFrame name flow

HDL Designer Series Tcl Reference Manual, V2010.318

HDS Library Contents API
Example Scripts

June, 2011

 class machineFrame name tester_top
 class machineFrame name {tester_top test_rcv}
 class machineFrame name {tester_top test_status}
 class machineFrame name {tester_top test_xmit}
 -- end UART.tester(flow)
 INST U_1
 ARCH UART.uart_top(struct)
 class architectureFrame name struct
 INST U_1
 ARCH UART.cpu_interface(intconx)
 class architectureFrame name intconx
 class embeddedFrame name data_out_mux
 INST U_0
 ARCH UART.control_operation(fsm)
 class architectureFrame name fsm
 class machineFrame name cntrl_op
 class machineFrame name {cntrl_op RX}
 class machineFrame name {cntrl_op TX}
 -- end UART.control_operation(fsm)
 -- end UART.cpu_interface(intconx)
 INST U_2
 ARCH UART.clock_divider(flow)
 class architectureFrame name flow
 class machineFrame name clk_div
 -- end UART.clock_divider(flow)
 INST U_3
 ARCH UART.address_decode(tbl)
 class architectureFrame name tbl
 -- end UART.address_decode(tbl)
 INST U_4
 ARCH UART.serial_interface(struct)
 class architectureFrame name struct
 class embeddedFrame name convert
 class machineFrame name conv
 INST U_0
 ARCH UART.xmit_rcv_control(fsm)
 class architectureFrame name fsm
 class machineFrame name rcv
 class machineFrame name xmit
 -- end UART.xmit_rcv_control(fsm)
 INST U_1
 ARCH UART.status_registers(spec)
 class architectureFrame name spec
 -- end UART.status_registers(spec)
 -- end UART.serial_interface(struct)
 -- end UART.uart_top(struct)
-- end UART.uart_tb(struct)

Design Hierarchy and VHDL Configurations
The previous examples walked the design hierarchy assuming that each component instance
was bound to a single architecture. In a design using VHDL configuration declarations, an
architecture can have multiple configurations, each with different bindings for the component
instances. Walking the hierarchy of such a design requires keeping track of the configuration.

HDS Library Contents API
Example Scripts

HDL Designer Series Tcl Reference Manual, V2010.3 19
June, 2011

The API includes configuration objects, which correspond to VHDL configuration declarations
and frameConfiguration objects which correspond to a single level within the hierarchical
structure of a configuration declaration. Designs containing FOR GENERATE, IF GENERATE
and BLOCK statements will need corresponding entries in the configuration declarations, so
when walking a design using configuration declarations, frames should be taken into account.

The following example shows how to walk a hierarchy using configuration declarations. It uses
configuredSubFrames in place of subFrames and configuredChild in place of child.

proc indent {} { return [string repeat { } $::indent] }
proc walkFrame {frame frameCfg} {
 puts "[indent][$frame configure]"
 incr ::indent
 foreach {childFrame childFrameCfg} [$frame configuredSubFrames
$frameCfg] {
 walkFrame $childFrame $childFrameCfg
 }
 foreach inst [$frame instances] {
 if {![catch {$inst configuredChild $frameCfg} childInfo]} {
 foreach {childCfg childArch childFrameCfg} $childInfo {break}
 puts "[indent]INST [$inst configure name]"
 walkArch $childArch $childFrameCfg
 }
 }
 incr ::indent -1
}
proc walkArch {arch frameCfg} {
 puts "[indent]ARCH [$arch configure fullName]"
 incr ::indent
 walkFrame [$arch frame] $frameCfg
 incr ::indent -1
 puts "[indent]-- end [$arch configure fullName]"
}
set lib [library open someLib]
set indent 0
set cfg [$lib declaration someCfg]
walkArch [$cfg architecture] [$cfg frameConfiguration]

Refer to “library object commands” on page 123, “instance object commands” on page 122 and
“architecture object commands” on page 106 and “frame object commands” on page 120.

Issue: our sample designs do not use configurations.

Pruning the Hierarchy
The previous examples will expand each component instance, regardless of how many times it
has previously been encountered within the hierarchy. In some cases, it is appropriate to prune
the traversal so that a declaration is seen only once. This can be accomplished by adding a check
at the start of walkArch:

proc walkArch {arch} {
 if {[info exists ::alreadyDone($arch)]} {
 return

HDL Designer Series Tcl Reference Manual, V2010.320

HDS Library Contents API
Example Scripts

June, 2011

 }

 puts "[indent]ARCH [$arch configure fullName]"
 incr ::indent
 walkFrame [$arch frame]
 incr ::indent -1
 puts "[indent]-- end [$arch configure fullName]"
}

Finding the Compilation Order
Most VHDL compilation tools and some Verilog compilation tools need to be given the source
files in an order which ensures that declarations are encountered before they are used. The API
can be used to determine an appropriate order. The script shown below does this, though with
some restrictions:

• For graphical VHDL designs, it assumes that the generation setting is for combined
entity and architecture files.

• It does not handle VHDL configuration declarations, these require a more sophisticated
form of pruning, since a single architecture can have a different structure for each
configuration

• It does not handle HDL text files containing declarations that are not part of the design
hierarchy

proc walkDependencies {decl} {
 global alreadyDone

 # Only look at each declaration once.
 if {[info exists alreadyDone($decl)]} {
 return
 }
 set alreadyDone($decl) 1

 # Only report each file once.
 set declFile [$decl file]
 if {[info exists alreadyDone($declFile)]} {
 set reportFile 0
 } else {
 set reportFile 1
 set alreadyDone($declFile) 1
 }

 foreach pkg [$decl packages] {
 walkDependencies $pkg
 }

 if {[$decl configure class] eq "architecture"} {
 walkDependencies [$decl entity]

 foreach inst [$decl instances] {
 if {![catch {$inst child} child]} {
 walkDependencies $child
 }

HDS Library Contents API
Example Scripts

HDL Designer Series Tcl Reference Manual, V2010.3 21
June, 2011

 }
 }

 set file [$decl file]
 set fileType [$file configure type]
 if {![regexp {Text$} $fileType]} {
 if {[lsearch {symbol blockInterface} $fileType] != -1} {
 # This assumes ent+arch are generated to a single file.
 set reportFile 0
 } else {
 set file [$file generated]
 }
 }

 if {$reportFile} {
 set lib [$file library]
 # Exclude standard and downstreamOnly libraries.
 if {[$lib configure type] eq "regular"} {
 puts "[$lib configure hardHdlDir]/[$file configure
relativePathname]"
 }
 }

 if {[$decl configure class] eq "packageHeader"} {
 walkDependencies [$decl body]
 }
}

catch {unset alreadyDone}
set lib [library open uart]
walkDependencies [$lib declaration uart_tb struct]

Refer to “library object commands” on page 123, “declaration object commands” on page 111,
and “file object commands” on page 116.

/hds/install/UART/hdl/tester_flow.vhd
/hds/install/UART/hdl/control_operation_fsm.vhd
/hds/install/UART/hdl/cpu_interface_intconx.vhd
/hds/install/UART/hdl/clock_divider_flow.vhd
/hds/install/UART/hdl/address_decode_tbl.vhd
/hds/install/UART/hdl/xmit_rcv_control_fsm.vhd
/hds/install/UART/hdl/status_registers_spec.vhd
/hds/install/UART/hdl/status_registers_spec.vhd
/hds/install/UART/hdl/serial_interface_struct.vhd
/hds/install/UART/hdl/uart_top_struct.vhd
/hds/install/UART/hdl/uart_tb_struct.vhd

HDL Designer Series Tcl Reference Manual, V2010.322

HDS Library Contents API
Example Scripts

June, 2011

HDL Designer Series Tcl Reference Manual, V2010.3 23
June, 2011

Chapter 2
HDS Tcl API Command Reference

Mentor Graphics has added a number of command extensions to the Tcl language to handle and
support the HDL Designer operations. These commands are “built-in” and are executed the
same as the standard Tcl commands.

This chapter provides a set of commands that can be used to work with and reference HDS
objects. HDS Tcl commands are either pre-defined or dynamically created.

Pre-Defined Commands

General Commands
• addLibraryMapping (library args)

• configureProperties (designObject args)

• getDesignUnitFiles

• getLibrarriesRootDirectory

• getLibraryMacroDefinitions

• getLibrarySearchPath

• getLibraryVerilogIncludeSearchPath

• getVerilogIncludeSearchPath

• invokeGUI ()

• setBlackBoxFile

• setDefaultView(library file primary secondary)

• setDontTouchFile

• setLibrariesRootDirectory

• setLibraryMacroDefinitions

• setLibrarySearchPath

• setLibraryVerilogIncludeSearchPath

• setPolicyLocation (location)

HDL Designer Series Tcl Reference Manual, V2010.324

HDS Tcl API Command Reference
Pre-Defined Commands

June, 2011

• setRulesetLocation (location)

• setVerilogIncludeSearchPath

• unsetBlackBoxFile

• unsetDontTouchFile

HDS Tcl API Command Reference
addLibraryMapping

HDL Designer Series Tcl Reference Manual, V2010.3 25
June, 2011

addLibraryMapping
Usage:

addLibraryMapping <library> [-hdl <path>] [-hds <path>] [-downstream <path>] [-regular | -
protected] [-all | -specified]

Description:

Adds (or changes) a library mapping and sets the library type and mode. Project file is edited
and saved.

Arguments:

• library:

Library name to add or change mapping(s) for.

• -hdl <path>:

Adds (or changes) the HDL mapping and make it points to <path> location.

• -hds <path>:

Adds (or changes) the HDS mapping and make it points to <path> location.

• -downstream <path>:

Adds (or changes) a downstream mapping <mapping name> (example: ModelSim,
QuestaSim, DesignChecker, etc.) and make it points to <path> location.

• -regular:

Sets the library type to Regular. This option is the default.

• -protected:

Sets the library type to Protected.

• -all:

Sets the library mode to All. This option is the default.

• -specified:

Sets the library mode to Specified.

Example:

Adding a new HDL & HDS mappings for a library named "mylib"

addLibraryMapping "mylib" -hdl "d:/mydesign" -hds "d:/libraries/mylib/hds"
-all

Adding a downstream mapping for "ModelSim Compile" task

addLibraryMapping "mylib" -downstream ModelSim "d:/libraries/mylib/work"

Changing the library type to Protected

HDL Designer Series Tcl Reference Manual, V2010.326

HDS Tcl API Command Reference
addLibraryMapping

June, 2011

addLibraryMapping "mylib" -protected

HDS Tcl API Command Reference
configureProperties

HDL Designer Series Tcl Reference Manual, V2010.3 27
June, 2011

configureProperties
Set and get properties on a design object.

Syntax

configureProperties (designObject args)

Arguments

Returns

Pass only a design object to return it's property names/values as a list {{name1} val1 {name2}
val2}:

set properties [::configureProperties $designObject]

Pass a design object and a property name to get the value of the property on this object:
set propertyValue [::configureProperties $designObject
$propertyName]

Pass a design object and a list of property name/value pairs to set the value of properties on this
object:

::configureProperties $designObject {$propertyName $propertyValue}

designObject Design object: {library|library/file|library.unit
?primaryName? ?secondaryName? ?filePath?}.

args Optional sequence of property keys and values: key
?value? ?key value?

HDL Designer Series Tcl Reference Manual, V2010.328

HDS Tcl API Command Reference
getDesignUnitFiles

June, 2011

getDesignUnitFiles
Usage:

getDesignUnitFiles <unit> [-source | -text | -graphics] [-generated] [-defaultView] [-skipEntity]
[-diskPath | -libraryPath]

Description:

Gets the files associated with a design unit.

Arguments:

• unit:

The design unit name in the form "<library>.<unit>(<view>)" to get the associated files for
specific view, or in the form "<library>.<unit>" to get the associated files for all/default
view(s) (check "-defaultView:" option).

• -source:

Default option. Get all source HDL and graphics files.

• -text:

Get all source HDL files.

• -graphics:

Get all source graphics files.

• -generated:

Get all generated HDL files.

• -defaultView:

Applicable only when no view name specified in the design unit name. Get the files
associated with the unit's default view only. If not specified, get the files associated with all
available view for the design unit.

• -skipEntity:

Skip all files associated with the specified view's entity or symbol.

• -diskPath:

Default option. Get the absolute file paths.

• -libraryPath:

Get file paths relative to library HDL/HDS mappings.

Example:

Getting all source HDL and graphics files for "accumulator" design unit

 getDesignUnitFiles "sequencer_vhd.accumulator" -source

Getting all graphical views files (except the symbol file) for "accumulator" design unit

HDS Tcl API Command Reference
getDesignUnitFiles

HDL Designer Series Tcl Reference Manual, V2010.3 29
June, 2011

 getDesignUnitFiles "sequencer_vhd.accumulator" -graphics -skipEntity

Getting all generated files for "flow" view of "accumulator" design unit

 getDesignUnitFiles "sequencer_vhd.accumulator(flow)" -generated

Getting absolute paths for all source files for "accumulator" design unit's default view

 getDesignUnitFiles "sequencer_vhd.accumulator" -defaultView -absolute

Black-box all source HDL and graphics files for "accumulator" design unit

 eval setBlackBoxFile "sequencer_vhd" [getDesignUnitFiles
"sequencer_vhd.accumulator" -source] -justification {"black box for DC"}

Returns:

List of design unit's associated files.

HDL Designer Series Tcl Reference Manual, V2010.330

HDS Tcl API Command Reference
getLibrarriesRootDirectory

June, 2011

getLibrarriesRootDirectory
Usage:

getLibrariesRootDirectory

Description:

Gets the default root directory location for libraries' HDL and HDS mappings. The default root
directory is used when there is no specific location specified for HDL or HDS mappings.
Mappings directories are created under "<libraries root directory>/<library name>".

Example:

Printing the default libraries root directory

puts "Libraries default root directory: [getLibrariesRootDirectory]"

See Also:

• setLibrariesRootDirectory

HDS Tcl API Command Reference
getLibraryMacroDefinitions

HDL Designer Series Tcl Reference Manual, V2010.3 31
June, 2011

getLibraryMacroDefinitions
Usage:

getLibraryMacroDefinitions <library> [-exact]

Description:

Gets the library macro definitions.

Arguments:

• <library>:

Library name to get the macro definitions for.

• -exact:

Return the exact macro definitions strings.

Example:

Printing the list of macro definitions for "mylib" library

set libMacros [getLibraryMacroDefinitions "mylib"]
foreach macro $libMacros {

puts "Macro: $macro"
}

Getting the current exact macros string

set libMacros [getLibraryMacroDefinitions "mylib" -exact]

Append new macro definition to the currently defines ones

setLibraryMacroDefinitions "mylib" "$libMacros +define+WIDTH=8"

See Also:

• setLibraryMacroDefinitions

HDL Designer Series Tcl Reference Manual, V2010.332

HDS Tcl API Command Reference
getLibrarySearchPath

June, 2011

getLibrarySearchPath
Usage:

getLibrarySearchPath

Description:

Get the project libraries search path.

Example:

Printing the list of libraries in the libraries search path

set libSearchPath [getLibrarySearchPath]
puts "Libraries in library search path..."
foreach lib $libSearchPath {

puts "Library: $lib"
}

See Also:

• setLibrarySearchPath

HDS Tcl API Command Reference
getLibraryVerilogIncludeSearchPath

HDL Designer Series Tcl Reference Manual, V2010.3 33
June, 2011

getLibraryVerilogIncludeSearchPath
Usage:

getLibraryVerilogIncludeSearchPath <library>

Description:

Gets the library Verilog include search path.

Arguments:

• <library>:

Library name to get the search path for.

Example:

Printing the list of directories specified in the Verilog include search path for "mylib" library set
library "mylib"

set libSearchPath [getLibraryVerilogIncludeSearchPath $library]
puts "Directories in library '$library' include search path..."
foreach dir $libSearchPath {

puts "Include directory: $dir"
}

See Also:

• getVerilogIncludeSearchPath

• setLibraryVerilogIncludeSearchPath

HDL Designer Series Tcl Reference Manual, V2010.334

HDS Tcl API Command Reference
getVerilogIncludeSearchPath

June, 2011

getVerilogIncludeSearchPath
Usage:

getVerilogIncludeSearchPath

Description:

Gets the default Verilog include search path.

Example:

Printing the list of directories specified in the default Verilog include search path

set libSearchPath [getVerilogIncludeSearchPath]
puts "Directories in default include search path..."
foreach dir $libSearchPath {

puts "Include directory: $dir"
}

See Also:

• setVerilogIncludeSearchPath

• getLibraryVerilogIncludeSearchPath

HDS Tcl API Command Reference
invokeGUI ()

HDL Designer Series Tcl Reference Manual, V2010.3 35
June, 2011

invokeGUI ()
Invoke the graphical user interface.

HDL Designer Series Tcl Reference Manual, V2010.336

HDS Tcl API Command Reference
setBlackBoxFile

June, 2011

setBlackBoxFile
Usage:

setBlachBoxFile <library> <file 1> <file 2> <file 3>… [-diskPath | -libraryPath] [-justification
<comment>]

Description:

Marks file(s) as black-box for DesignChecker task.

Arguments:

• library:

Library name of the file(s) to be marked as black-box.

• file:

Path of the file to be marked as black-box (check -diskPath:, and -libraryPath: options).
Multiple files can be provided (separated by a white-space).

• -diskPath:

Default option. Accept file paths as absolute or relative path on disk.

• -libraryPath:

Accept file paths as relative to the library HDL/HDS mappings.

• -justification <comment>:

Optional. Specifies a comment which explains why the file is marked as black-box.

Example:

Black-box HDL file in "uart_txt" library providing the absolute path on disk

setBlackBoxFile "uart_txt"
"$env(HDS_PROJECT_DIR)/uart_txt/hdl/clock_divider.v" -diskPath

Black-box two HDL files in "ethernet" library providing relative file paths

setBlackBoxFile "ethernet" "bench/verilog/tb_eth_behcomp.v"
"bench/verilog/stimuli/eth_txethmac_stim.v" -libraryPath

Black-box graphics file in "sequencer_vhd" library providing relative file path

setBlackBoxFile "sequencer_vhd" "accumulator/flow.fc" -libraryPath -
justification "black-box 'flow' flow chart view"

Black-box all source HDL and graphics files for "accumulator" design unit in "sequencer_vhd"
library

eval setBlackBoxFile "sequencer_vhd" [getDesignUnitFiles
"sequencer_vhd.accumulator" -source] -justification {"black box for DC"}

HDS Tcl API Command Reference
setBlackBoxFile

HDL Designer Series Tcl Reference Manual, V2010.3 37
June, 2011

See also:

unsetBlackBoxFile

HDL Designer Series Tcl Reference Manual, V2010.338

HDS Tcl API Command Reference
setDefaultView

June, 2011

setDefaultView
Set Default View.

Syntax

setDefaultView (library file primary secondary)

Arguments

library Library name.

file File path, relative to the library HDS mapping.

primary Primary HDL declaration (VHDL entity or verilog
module).

secondary Secondary HDL declaration (VHDL architecture, use
module name for verilog).

HDS Tcl API Command Reference
setDontTouchFile

HDL Designer Series Tcl Reference Manual, V2010.3 39
June, 2011

setDontTouchFile
Usage:

setDontTouchFile <library> <file 1> <file 2> <file 3>… [-diskPath | -libraryPath] [-tool <tool
1> <tool 2> <tool 3>…] [-justification <comment>]

Description:

Marks file(s) as dont touch for all tasks.

Arguments:

• library:

Library name of the file(s) to be marked as dont touch.

• file:

Path of the file to be marked as dont touch (check -diskPath:, and -libraryPath: options).
Multiple files can be provided (separated by a white-space).

• -diskPath:

Default option. Accept file paths as absolute or relative path on disk.

• -libraryPath:

Accept file paths as relative to the library HDL/HDS mappings.

• -tool <tool 1> <tool 2> <tool 3>…:

Specifies tools to mark this file as dont touch for. This argument is optional. Multiple tools
can be specified. They could be one of the following:

• -justification <comment>:

Optional. Specifies a comment which explains why the file is marked as dont touch.

ALL All the tools. This is the default value.

H2G Conversion to graphics

GENERATION Generation

VHDL_CONFIGURATION_GENERATION VHDL configuration generation

ALL_PLUGINS All the downstream plug-ins (any plug-in
which outputs files to downstream mapping).

SIMULATION_PLUGINS All simulation plug-ins

SYNTHESIS_PLUGINS All synthesis plug-ins

DESIGNCHECKER DesignChecker plug-in

PLUGIN:<downstream plug-in name> A specific downstream plug-in. Example"
"PLUGIN:QuestaSim Compiler".

HDL Designer Series Tcl Reference Manual, V2010.340

HDS Tcl API Command Reference
setDontTouchFile

June, 2011

Example:

Dont touch HDL file in "uart_txt" library providing the absolute path on disk

setDontTouchFile "uart_txt"
"$env(HDS_PROJECT_DIR)/uart_txt/hdl/clock_divider.v" -diskPath

Dont touch two HDL files in "ethernet" library providing relative file paths

setDontTouchFile "ethernet" "bench/verilog/tb_eth_behcomp.v"
"bench/verilog/stimuli/eth_txethmac_stim.v" -libraryPath

Dont touch a HDL file in "ethernet" library for DesignChecker and QuestaSim Compiler plug-
in only

setDontTouchFile "ethernet" "bench/verilog/tb_eth_behcomp.v" -libraryPath
-tool DESIGNCHECKER PLUGIN:QuestaSim\ Compiler

Dont touch graphics file in "sequencer_vhd" library providing relative file path

setDontTouchFile "sequencer_vhd" "accumulator/flow.fc" -libraryPath -
justification "dont touch 'flow' flow chart view"

Dont touch all source HDL and graphics files for "accumulator" design unit in "sequencer_vhd"
library

eval setDontTouchFile "sequencer_vhd" [getDesignUnitFiles
"sequencer_vhd.accumulator" -source] -justification {"dont touch"}

See also:

unsetDontTouchFile

HDS Tcl API Command Reference
setLibrariesRootDirectory

HDL Designer Series Tcl Reference Manual, V2010.3 41
June, 2011

setLibrariesRootDirectory
Usage:

setLibrariesRootDirectory <directory>

Description:

Sets the default root directory location for libraries' HDL and HDS mappings. The default root
directory is used when there is no specific location specified for HDL or HDS mappings.
Mappings directories are created under "<libraries root directory>/<library name>".

Arguments:

• <directory>:

Directory path where libraries mapping created underneath by default.

Example:

Setting the libraries default root directory preference

setLibrariesRootDirectory "d:/design/libraries"

Importing some files to a library that does not exist

runHdlImport "newlib" "d:/design/file1.v" "d:/design/file2.v"

Mappings (HDL and HDS) for library "newlib" are created at "d:/design/libraries/newlib"

See Also:

• getLibrarriesRootDirectory

HDL Designer Series Tcl Reference Manual, V2010.342

HDS Tcl API Command Reference
setLibraryMacroDefinitions

June, 2011

setLibraryMacroDefinitions
Usage:

setLibraryMacroDefinitions <library> <macros>

Description:

Sets the library macro definitions.

Arguments:

• <library>:

Library name to set the macro definitions for.

• <macros>:

Macro definitions (separated by white-space or new line). Example: "+define+WIDTH=16
+define+ADDRESS=1".

Example:

Setting the macro definitions for "mylib" library

setLibraryMacroDefinitions "mylib" "+define+WIDTH=16 +define+ADDRESS=1"

See Also:

• getLibraryMacroDefinitions

HDS Tcl API Command Reference
setLibrarySearchPath

HDL Designer Series Tcl Reference Manual, V2010.3 43
June, 2011

setLibrarySearchPath
Usage:

setLibrarySearchPath <libraries> [-start | -end]

Description:

Sets the project libraries search path used when a missing component is referenced.

Arguments:

• <libraries>:

List of libraries to be searched for missing components (separated by white-space). It can be
empty. Example: "components_lib primitives_library".

• -start:

Appends the provided search path to the beginning of the current search path.

• -end:

Appends the provided search path to the end of the current search path.

Example:

Printing current library search path

puts "Current library search path \"[getLibrarySearchPath]\"."

Appending new libraries to the current search path

puts "Add 'components_lib' and 'primitives_lib' libraries to the search
path..."
setLibrarySearchPath "components_lib primitives_lib" -start

Printing the new library search path

puts "New library search path \"[getLibrarySearchPath]\"."

See Also:

• getLibrarySearchPath

HDL Designer Series Tcl Reference Manual, V2010.344

HDS Tcl API Command Reference
setLibraryVerilogIncludeSearchPath

June, 2011

setLibraryVerilogIncludeSearchPath
Usage:

setLibraryVerilogIncludeSearchPath <library> <directories> [-start | -end]

Description:

Sets the library Verilog include search path. The include search path is used to search for
included files. The default include search path is used if this library-specific search path is not
specified.

Arguments:

• <library>:

Library name to set the search path for.

• <directory>:

Search path directories (separated by ";"). Referencing environment variables and library
names (where $<library name> points to the library's HDL mapping) is allowed. Example:
"c:\my_includes;c:\design\includes".

• -start:

Appends the provided search path to the beginning of the current search path.

• -end:

Appends the provided search path to the end of the current search path.

Example:

Setting Verilog include search path for "mylib" library to path under the library's HDL mapping

setLibraryVerilogIncludeSearchPath "mylib" "\$mylib/includes"

Appending new directories to the Verilog include search path for "mylib" library

setLibraryVerilogIncludeSearchPath "mylib"
"c:\my_includes;c:\design\includes" -end

See Also:

• setVerilogIncludeSearchPath

• getLibraryVerilogIncludeSearchPath

HDS Tcl API Command Reference
setPolicyLocation

HDL Designer Series Tcl Reference Manual, V2010.3 45
June, 2011

setPolicyLocation
Set the location for DesignChecker policies.

Syntax

setPolicyLocation (location)

Arguments

location Directory path beneath which the policies are
located.

HDL Designer Series Tcl Reference Manual, V2010.346

HDS Tcl API Command Reference
setRulesetLocation

June, 2011

setRulesetLocation
Set the location for DesignChecker Rulesets.

Syntax

setRulesetLocation (location)

Arguments

location Directory path beneath which the Rulesets are
located.

HDS Tcl API Command Reference
setVerilogIncludeSearchPath

HDL Designer Series Tcl Reference Manual, V2010.3 47
June, 2011

setVerilogIncludeSearchPath
Usage:

setVerilogIncludeSearchPath <directories> [-start | -end]

Description:

Sets the default Verilog include search path. The include search path is used to search for
included files. This path is used if the library specific include search path is not specified.

Arguments:

• <directory>:

Search path directories (separated by ";"). Referencing environment variables and library
names (where $<library name> points to the library's HDL mapping) is allowed. Example:
"c:\my_includes;c:\design\includes".

• -start:

Appends the provided search path to the beginning of the current search path.

• -end:

Appends the provided search path to the end of the current search path.

Example:

Setting the default include search path preference

setVerilogIncludeSearchPath "c:\my_includes;c:\design\includes"

Append a new directory (specified by referencing an environment variable) to the default
include search path preference

setVerilogIncludeSearchPath "\$MY_INCLUDES" -start

See Also:

• getVerilogIncludeSearchPath

• setLibraryVerilogIncludeSearchPath

HDL Designer Series Tcl Reference Manual, V2010.348

HDS Tcl API Command Reference
unsetBlackBoxFile

June, 2011

unsetBlackBoxFile
Usage:

unsetBlackBoxFile <library> <file 1> <file 2> <file 3>… [-diskPath | -libraryPath]

Description:

Unsets the black-box property for file(s).

Arguments:

• library:

Library name of the file(s) to have the black-box property unset for.

• file:

Path of the file to have the black-box property unset for (check -diskPath:, and -libraryPath:
options).

• -diskPath:

Default option. Accept file paths as absolute or relative path on disk.

• -libraryPath:

Accept file paths as relative to the library HDL/HDS mappings.

Example:

Remove black-box property for HDL file in "uart_txt" library providing the absolute path on
disk

unsetBlackBoxFile "uart_txt"
"$env(HDS_PROJECT_DIR)/uart_txt/hdl/clock_divider.v" -diskPath

Remove black-box property for two HDL files in "ethernet" library providing relative file paths

unsetBlackBoxFile "ethernet" "bench/verilog/tb_eth_behcomp.v"
"bench/verilog/stimuli/eth_txethmac_stim.v" -libraryPath

Remove black-box property for graphics file in "sequencer_vhd" library providing relative file
path

unsetBlackBoxFile "sequencer_vhd" "accumulator/flow.fc" -libraryPath

See also:

setBlackBoxFile

HDS Tcl API Command Reference
unsetDontTouchFile

HDL Designer Series Tcl Reference Manual, V2010.3 49
June, 2011

unsetDontTouchFile
Usage:

unsetDontTouchFile <library> <file 1> <file 2> <file 3>… [-diskPath | -libraryPath] [-tool
<tool 1> <tool 2> <tool 3>…]

Description:

Unsets the dont touch property for file(s).

Arguments:

• library:

Library name of the file(s) to have the dont touch property unset for.

• file:

Path of the file to have the dont touch property unset for (check -diskPath:, and -libraryPath:
options). Multiple files can be provided (separated by a white-space).

• -diskPath:

Default option. Accept file paths as absolute or relative path on disk.

• -libraryPath:

Accept file paths as relative to the library HDL/HDS mappings.

• -tool <tool 1> <tool 2> <tool 3>…:

Specifies tools to unmark this file as dont touch for. This argument is optional. Multiple
tools can be specified. They could be one of the following:

ALL All the tools. This is the default value.

H2G Conversion to graphics

GENERATION Generation

VHDL_CONFIGURATION_GENERATION VHDL configuration generation

ALL_PLUGINS All the downstream plug-ins (any plug-in
which outputs files to downstream mapping).

SIMULATION_PLUGINS All simulation plug-ins

SYNTHESIS_PLUGINS All synthesis plug-ins

DESIGNCHECKER DesignChecker plug-in

PLUGIN:<downstream plug-in name> A specific downstream plug-in. Example"
"PLUGIN:QuestaSim Compiler".

HDL Designer Series Tcl Reference Manual, V2010.350

HDS Tcl API Command Reference
unsetDontTouchFile

June, 2011

Example:

Remove dont touch property for HDL file in "uart_txt" library providing the absolute path on
disk

unsetDontTouchFile "uart_txt"
"$env(HDS_PROJECT_DIR)/uart_txt/hdl/clock_divider.v" -diskPath

Remove dont touch property for two HDL files in "ethernet" library

unsetDontTouchFile "ethernet" "bench/verilog/tb_eth_behcomp.v"
"bench/verilog/stimuli/eth_txethmac_stim.v" -libraryPath

Remove dont touch property for a HDL file in "ethernet" library for Generation and
DesignChecker

unsetDontTouchFile "ethernet" "bench/verilog/tb_eth_behcomp.v" -
libraryPath -tool GENERATION DESIGNCHECKER

Remove dont touch property for graphics file in "sequencer_vhd" library

unsetDontTouchFile "sequencer_vhd" "accumulator/flow.fc" -libraryPath

See also:

setDontTouchFile

HDS Tcl API Command Reference
unsetDontTouchFile

HDL Designer Series Tcl Reference Manual, V2010.3 51
June, 2011

DesignChecker Commands
The following DesignChecker commands cannot be used directly in HDS batch files. These
commands can only be used in a Tcl file passed to an HDS batch file through the ConfigFile
option as follows:

setupTask {DesignChecker} –settings ConfigFile {<absolute path of the tcl
file >}

• disableDumpCodeSnippet()

• disableFilterAssocViolation()

• enableDumpCodeSnippet ()

• enableFilterAssocViolation ()

• setCheckedFileDUsReport (filelist formatlist)

• setCheckedFileDUsReportContents (panes)

• setExclusionReport (filelist formatlist)

• setExclusionReportContents (panes)

• setRulesCheckedReport (filelist formatlist)

• setSnippetLinesAfter (linesCount)

• setSnippetLinesBefore (linesCount)

HDL Designer Series Tcl Reference Manual, V2010.352

HDS Tcl API Command Reference
disableDumpCodeSnippet()

June, 2011

disableDumpCodeSnippet()
Disable the dumping of code snippets along with violations in the results report produced by

DesignChecker.

HDS Tcl API Command Reference
disableFilterAssocViolation()

HDL Designer Series Tcl Reference Manual, V2010.3 53
June, 2011

disableFilterAssocViolation()
Disable the filtering of associated violations while dumping the results report generated by

DesignChecker.

HDL Designer Series Tcl Reference Manual, V2010.354

HDS Tcl API Command Reference
enableDumpCodeSnippet ()

June, 2011

enableDumpCodeSnippet ()
Allow code snippets to be dumped along with violations in the results report produced by

DesignChecker.

HDS Tcl API Command Reference
enableFilterAssocViolation ()

HDL Designer Series Tcl Reference Manual, V2010.3 55
June, 2011

enableFilterAssocViolation ()
Enable filtering associated violations while dumping the results report. This affects the results

report generated by DesignChecker.

HDL Designer Series Tcl Reference Manual, V2010.356

HDS Tcl API Command Reference
setCheckedFileDUsReport

June, 2011

setCheckedFileDUsReport
Set the list of files, and the corresponding formats, in which the Checked File/Design Units

reports will be dumped. This affects the Checked File/Design Units report generated by
DesignChecker.

Syntax

setCheckedFileDUsReport (filelist formatlist)

Arguments

filelist A list of the files to which Checked File/Design
Units reports can be dumped. Using this API, you
can generate multiple Checked File/Design Units
reports.

formatlist The corresponding format of each report file. For
example:
setCheckedFileDUsReport
{"/home/username/CheckedFiles.htm"}
{"HTML"}

HDS Tcl API Command Reference
setCheckedFileDUsReportContents

HDL Designer Series Tcl Reference Manual, V2010.3 57
June, 2011

setCheckedFileDUsReportContents
Set the contents of the checked file/design units report, that is, specify which panes of the

DesignChecker Checked File/Design Units tab will be dumped in the report.

Syntax

setCheckedFileDUsReportContents (panes)

Arguments

panes List of panes which need to be dumped in the
Checked File/Design Units report. For example:

setCheckedFileDUsReportContents
{{Checked Files} {Checked Design
Units}}

HDL Designer Series Tcl Reference Manual, V2010.358

HDS Tcl API Command Reference
setExclusionReport

June, 2011

setExclusionReport
Set the list of files, and the corresponding formats, in which the exclusion reports will be

dumped. This affects the exclusion reports generated by DesignChecker,

Syntax

setExclusionReport (filelist formatlist)

Arguments

filelist A list of the files to which exclusion reports can be
dumped. Using this API, you can generate
multiple exclusion reports. For example:

setExclusionReport
{"/home/username/ExcRep.csv"
"/home/username/ExcRep.htm"} {"CSV"
"HTML"}

formatlist The corresponding format of each report file.

HDS Tcl API Command Reference
setExclusionReportContents

HDL Designer Series Tcl Reference Manual, V2010.3 59
June, 2011

setExclusionReportContents
Set the contents of the exclusion report, that is, specify which panes of the DesignChecker

Exclusions tab will be dumped in the exclusions report.

Syntax

setExclusionReportContents (panes)

Arguments

panes List of panes which need to be dumped in the
exclusions report. For example:

setExclusionReportContents
{{Code/Rule Exclusions} {Black Boxed
Files} {Don't Touch Files}
{Exclusion Pragmas} {Pragma Code
Excluded} {Unbound
Component/Instances} {Summary}}

HDL Designer Series Tcl Reference Manual, V2010.360

HDS Tcl API Command Reference
setRulesCheckedReport

June, 2011

setRulesCheckedReport
Set the list of files, and the corresponding formats, in which the rule details reports will be

dumped. This affects the rule details report generated by DesignChecker.

Syntax

setRulesCheckedReport (filelist formatlist)

Arguments

filelist A list of the files to which rule details reports can
be dumped. Using this API, you can generate
multiple rule details reports. For example:

setRulesCheckedReport
{"/home/username/RulesCheckedRep.csv
"
"/home/username/RulesCheckedRep.tsv"
} {"CSV" "TSV"}

formatlist The corresponding format of each report file.

HDS Tcl API Command Reference
setSnippetLinesAfter

HDL Designer Series Tcl Reference Manual, V2010.3 61
June, 2011

setSnippetLinesAfter
Specify the number of lines to add to the dumped code snippet after the violation line number.

This affects the code snippet displayed in the results report generated by DesignChecker.

Syntax

setSnippetLinesAfter (linesCount)

Arguments

linesCount The number of lines to add to the dumped code
snippet after the violation line number.

HDL Designer Series Tcl Reference Manual, V2010.362

HDS Tcl API Command Reference
setSnippetLinesBefore

June, 2011

setSnippetLinesBefore
Specify the number of lines to add to the dumped code snippet before the violation line number.

This affects the code snippet displayed in the results report generated by DesignChecker.

Syntax

setSnippetLinesBefore (linesCount)

Arguments

linesCount The number of lines to add to the dumped code
snippet before the violation line number

HDS Tcl API Command Reference
setSnippetLinesBefore

HDL Designer Series Tcl Reference Manual, V2010.3 63
June, 2011

HDL2Graphics Commands
• runH2G (hierarchyType library file primary secondary)

• runHdlImport (library args)

• runHtmlExport (library unit view file)

• setupH2G (args)

• setupHdlImport (args)

• setupHtmlExport (args)

HDL Designer Series Tcl Reference Manual, V2010.364

HDS Tcl API Command Reference
runH2G

June, 2011

runH2G
Convert specified text declarations to graphics. Uses options set by setupH2G.

Syntax

runH2G (hierarchyType library file primary secondary)

Arguments

hierarchy Type SINGLE | HIERARCHY.

library Library name.

file File path, relative to the library HDL mapping.

primary Primary HDL declaration (VHDL entity or verilog
module).

secondary Secondary HDL declaration (VHDL architecture).

HDS Tcl API Command Reference
runHdlImport

HDL Designer Series Tcl Reference Manual, V2010.3 65
June, 2011

runHdlImport
Usage:

runHdlImport <library> [<path to file 1> … <path to file n>] [-filelist <path to filelist>] [-copy |
-point] [-clean]

Description:

Imports HDL files to a new or an existing library. Options set by setupHdlImport are used.

Arguments:

• <library>:

The name of the target library where files are imported. It could be an empty string. If an
empty string is provided (and no library specified in filelist), the project's default library is
used if -copy option is supplied and a made-up library name is used if -point option is
supplied. If the library does not exist, it is automatically created at the libraries root
directory preference (see setLibrariesRootDirectory).

• <path to file 1> … <path to file n>:

File paths to be imported. File paths can be specified relative to the current working
directory.

• -filelist <path to file-list>:

Imports a list of files specified in a filelist (see HDS User Manual for filelist format). Filelist
path can be specified relative to the current working directory.

• -copy:

Imports the files by copying them to the target library HDL mapping. This option is the
default.

• -point:

Imports the files by pointing the library HDL mapping to them. If the target library is
already created, the HDL mapping must by enclosing all the files to import.

• -clean:

Applicable only when -point option is supplied. If the target library is not created, it cleans
the HDS mapping specified by the libraries root directory preference (see
setLibrariesRootDirectory) if it is not empty.

Example:

Importing files by pointing to them (without copying)

runHdlImport "mylib" "d:/mydesign/file1.v" "d:/mydesign/file2.v" -point -
clean

Importing files specified in a file-list by copying them to the target library location

HDL Designer Series Tcl Reference Manual, V2010.366

HDS Tcl API Command Reference
runHdlImport

June, 2011

runHdlImport "mylib" -filelist "d:/mydesign/components/filelist.txt" -
copy

Importing a set of files specified in a Tcl list

set files {{d:/mydesign/file1.v} {d:/mydesign/file2.v}}
eval runHdlImport {""} $files -point -clean

See Also:

• setupHdlImport

HDS Tcl API Command Reference
runHtmlExport

HDL Designer Series Tcl Reference Manual, V2010.3 67
June, 2011

runHtmlExport
Run the HTML export on the given design object. Uses options set by setupHtmlExport.

Syntax

runHtmlExport (library unit view file)

Arguments

library Library name.

unit Design unit name.

view View name for graphics or secondary declaration name
for HDL (VHDL architecture). View name can be left
empty when exporting primary unit files (e.g. graphical
symbol).

file File path, relative to the library HDS/HDL mapping.

HDL Designer Series Tcl Reference Manual, V2010.368

HDS Tcl API Command Reference
setupH2G

June, 2011

setupH2G
Setup the options for runH2G.

Syntax

setupH2G (args)

Arguments

args Option names and values.

View Styles Options:

createAltSmFlowChart ON|OFF
(ON)

If a State Diagram view cannot be created, create a
FlowChart view instead.

createBlockDiagram ON|OFF
(ON)

Create a structural Block Diagram view.

createFlowChart ON|OFF (OFF) Create a Flow Chart view.

createIBD ON|OFF (OFF) Create an IBD view.

createLeafBlockDiagram
ON|OFF (OFF)

Create a leaf level Block Diagram view.

createStateDiagram ON|OFF
(OFF)

Create a State Diagram view.

createSymbolAlways ON|OFF
(OFF)

Create a symbol even if no view styles are
selected.

General Options:

overwrite ON|OFF (OFF) If a graphical view already exists, overwrite it.

copyOnOverwrite ON|OFF
(OFF)

Copy a view before overwriting it.

searchLibraries <libraries> Search for black box components in these libraries.

setDefaultView ON|OFF (ON) Set graphical views as default.

setLibrary <unit> <library> Specify a library for a black box component.

verbose ON|OFF (OFF) Display additional information during conversion.

setCreateForGenerate ON|OFF
(ON)

Create graphical views rather than visualizations.

Block Diagram Options:

assignmentShape
RECTANGLE|BUFFER
(RECTANGLE)

Specify the shape of concurrent assignments, if
extracted.

HDS Tcl API Command Reference
setupH2G

HDL Designer Series Tcl Reference Manual, V2010.3 69
June, 2011

connectEmbedded ON|OFF
(OFF)

Create signals between embedded blocks.

createEmbeddedStateDiagram
ON|OFF (OFF)

Create embedded state machines if possible.

defaultInstanceView ON|OFF
(OFF)

Apply to instances in preference to a specified
view.

diagramTextVisibility
NONE|ALL|PREFS (NONE)

Specify the visibility of text associated with the
diagram.

extractAssignments ON|OFF
(OFF)

Create separate embedded blocks for concurrent
assignments.

instanceLimit <positive integer>
(1000)

Maximum number of instances allowed in a Block
Diagram.

netTextVisibility
NONE|PORT_ONLY|ALL|PRE
FS (PORT_ONLY)

Specify the visibility of text associated with nets.

portTextVisibility
NONE|NAME_ONLY|NAME_
AND_TYPE|PREFS (PREFS)

Specify the visibility of text associated with
PortIO.

Placement Options:

instanceAutoSize
WIDTH|HEIGHT|WIDTH_AND
_HEIGHT|NONE
(WIDTH_AND_HEIGHT)

Size component instances to fit the visible text.

placementLimit <positive
integer> (50)

Maximum number of auto-placed instances.

preservePlacement ON|OFF
(OFF)

Preserve placement of existing diagrams.

Routing Options:

alignPorts ON|OFF (ON) Align port I/O with connections.

bundleLimit <positive integer>
(5)

Maximum number of signals allowed in a bundle.

bundleSignals
DIRECT|INDIRECT|NONE
(NONE)

Bundle signals between nodes.

busReconstruct ON|OFF (OFF) Reconstruct buses for signal slices.

connectionLimit <positive
integer>

Maximum number of connections allowed for a
net.

HDL Designer Series Tcl Reference Manual, V2010.370

HDS Tcl API Command Reference
setupH2G

June, 2011

globalConnectors ON|OFF (ON) Create global connectors for global signals.

movePorts ON|OFF (ON) Allow connector end points to move during
routing.

routeSignals ON|OFF (ON) Connect and route signals on the diagram.

useDefaults Set all options to default values. Default values are
shown in brackets, above.

HDS Tcl API Command Reference
setupHdlImport

HDL Designer Series Tcl Reference Manual, V2010.3 71
June, 2011

setupHdlImport
Usage:

setupHdlImport [-useDefaults] [-overwrite (ON | OFF)] [-importReferencedText (ON | OFF)] [-
importDirectoryStructure (ON | OFF)] [-defaultLanguage (VHDL | Verilog | UNKNOWN)]

Description:

Setup the options for runHdlImport.

Arguments:

• -useDefaults:

Sets all options to default values. Default values are shown in brackets, above.

• -overwrite:

Overwrite existing files.

• -importReferencedText:

Reference files from their original location instead of copying.

• -importDirectoryStructure:

Imports directory structure of source files.

• -defaultLanguage:

Specifies the language of source files with unrecognized extensions. Use UNKNOWN to
import non-HDL files.

HDL Designer Series Tcl Reference Manual, V2010.372

HDS Tcl API Command Reference
setupHtmlExport

June, 2011

setupHtmlExport
Setup the options for runHTMLExport.

Syntax

setupHtmlExport (args)

Arguments

args Option names and values.

HTML Settings:

-reset_defaults Reset all options back to their defaults.

-export_directory <path> Target directory for export.

-hierarchy_levels ALL|<number>
(ALL)

Levels of hierarchy to descend.

-export_visualizations ON|OFF
(ON)

Switch to creation of visualization.

-include_doc_types
ALL|<doc_types> (ALL)

Add a list of document types to include in the
export (see the Documentation and Visualization
Options dialog box for document type names).

-include_only_doc_types Make these document types the only ones included
for export. More types can be added with
subsequent include_doc_types calls (see the
Documentation and Visualization Options dialog
box for document type names).

-export_all_ict ON|OFF Switch to export all ICT views.

-export_generated ON|OFF (ON) Switch to export generated files.

-export_sidedata_files
ALL|REGISTERED (ALL)

Set the types of sidedata files to export.

-export_sidedata_type
USER|DESIGN|ALL|NONE (ALL)

Set the types of sidedata to export.

-title_page AUTO|<path> (AUTO) Set the path to the title page to use.

-index_page AUTO|<page>
(AUTO)

Set the index page name.

Graphics Settings:

-graphics_format JPEG|PNG|SVG
(SVG)

Set the format to use when exporting graphics.

-jpeg_quality <1- 100> (100) Quality to use for JPEG graphics.

HDS Tcl API Command Reference
setupHtmlExport

HDL Designer Series Tcl Reference Manual, V2010.3 73
June, 2011

-graphics_size <1- 100> (100) Percentage size for graphics.

HDL Designer Series Tcl Reference Manual, V2010.374

HDS Tcl API Command Reference
setupHtmlExport

June, 2011

Batch Mode Tasks
o runTask(args)

o setCompileAlways (enable)

o setupTask (args)

Use these commands to setup and run tasks in batch mode.

When specifying a task, be aware that it is a tcl list, with each element of the list being a level of
hierarchy

As each element is separated with whitespace, be sure to escape whitespace that is part of a task
name

For example, if you have a flow arranged like this:

Flow 1

 |--- Tool A

 |--- Tool B

 |--- Flow 2

 |--- Tool C

 |--- Tool D

This refers to "Flow 1" : {Flow\ 1}

This refers to "Tool A" : {Flow\ 1 Tool\ A}

This refers to "Tool D" : {Flow\ 1 Flow\ 2 Tool\ D}

HDS Tcl API Command Reference
runTask

HDL Designer Series Tcl Reference Manual, V2010.3 75
June, 2011

runTask
Run a task.

Syntax

runTask (args)

Arguments

args Option names and values.

<taskName> Specify the task run. Must be specified.

[library [unit [view [pathName]]]] Specifies the view to run the task on. If none
are specified uses design root.

user If HDS finds a user and a team task with the
same name, pick the user task. This is the
default.

team If HDS finds a user and a team task with the
same name, pick the team task.

HDL Designer Series Tcl Reference Manual, V2010.376

HDS Tcl API Command Reference
setCompileAlways (enable)

June, 2011

setCompileAlways (enable)
Enable or disable incremental compilation for all incremental compilers.

Syntax

setCompileAlways (enable)

Arguments

enable ON|OFF: Set the global compile always switch (defaults
to off)

HDS Tcl API Command Reference
setupTask (args)

HDL Designer Series Tcl Reference Manual, V2010.3 77
June, 2011

setupTask (args)
Setup options for a task.

Syntax

setupTask (args)

Arguments

<taskName> Specify the task to apply these setup options to. Must be
specified.

setting <name> <value> Changes the value of the setting given by <name> on the
specified task.

single Changes the hierarchy depth to be used when running the
task to single level.

hierarchical Changes the hierarchy depth to be used when running the
task to hierarchy through blocks.

throughCpt Changes the hierarchy depth to be used when running the
task to hierarchy through components.

user If HDS finds a user and a team task with the same name,
pick the user task. This is the default.

team If HDS finds a user and a team task with the same name,
pick the team task.

HDL Designer Series Tcl Reference Manual, V2010.378

HDS Tcl API Command Reference
setupTask (args)

June, 2011

Generation Commands
• runConfigGenerate

• runGenerate

• setupGenerate

HDS Tcl API Command Reference
runConfigGenerate

HDL Designer Series Tcl Reference Manual, V2010.3 79
June, 2011

runConfigGenerate
Generate VHDL configuration files for the specified graphical objects. Uses options set by

setupGenerate.

Syntax

runConfigGenerate (library entity arch)

Arguments

library (= {}) Library name.

entity (= {}) Design unit name for graphics.

arch (= {}) View name (file name without extension) for graphics file.

HDL Designer Series Tcl Reference Manual, V2010.380

HDS Tcl API Command Reference
runGenerate

June, 2011

runGenerate
Generate HDL for the specified graphical objects. Uses options set by setupGenerate.

Syntax

runGenerate (library entity arch)

Arguments

library (= {}) Library name. (If you want to generate a whole library,
then specify this value only).

entity (= {}) Design unit name for graphics.

arch (= {}) View name (file name with extension) for graphics file.

HDS Tcl API Command Reference
setupGenerate

HDL Designer Series Tcl Reference Manual, V2010.3 81
June, 2011

setupGenerate
Setup options for runGenerate and runConfigGenerate.

Syntax

setupGenerate (args)

Arguments

useDefaults Using this value will allow you to override
your preference values to the following.

generateAlways ON|OFF Always generate even if no changes have been
made. Default (OFF).

semanticChecking ON|OFF Default (ON).

semanticWarnings ON|OFF Default (OFF).

tabWidth (POSITIVE INTEGER) Default (3).

autoTypeConversion NONE |
CONV_FUNC_ONLY | FULL>

Default (FULL).

combineEntityArch ON|OFF Default (OFF).

embedConfigStatements ON|OFF Default (ON).

embedViewNameInConfig ON|OFF Default (ON).

embedViewNameInConfig ON|OFF Default (OFF).

hierarchicalConfigSpecification
ON|OFF

Default (OFF).

thruCptsConfigSpecification ON|OFF Default (OFF).

synopsysPragmasForEmbeddedConfig
ON|OFF

Default (ON).

single This is the default.

hierarchical Goes down through blocks.

throughCpt Goes down through blocks and components.

genericsInConfig ON|OFF Default (OFF).

workAsLibInConfig ON|OFF Default (OFF).

leafInConfig ON|OFF Default (OFF).

viewInStandaloneConfig ON|OFF Default (OFF).

HDL Designer Series Tcl Reference Manual, V2010.382

HDS Tcl API Command Reference
setupGenerate

June, 2011

customCodeGen ON|OFF Default (OFF). If you require a flat
configuration file, when using
runConfigGenerate specify -
hierarchicalConfigSpecification and -
thruCptsConfigSpecification with OFF.

useDefaultCustomCodeScript ON|OFF Default (ON). Specify whether you want to
use the default custom code script.

includeVhdlGenProps ON|OFF Include generation properties after header in
generated VHDL.

includeVerilogGenProps ON|OFF Include generation properties after header in
generated Verilog.

HDS Tcl API Command Reference
setupGenerate

HDL Designer Series Tcl Reference Manual, V2010.3 83
June, 2011

Library Commands
• library names()

• library open

HDL Designer Series Tcl Reference Manual, V2010.384

HDS Tcl API Command Reference
library names()

June, 2011

library names()
Obtains the names of all libraries in the project.

Syntax

library names()

Arguments

Returns

List of library names.

entity (= {}) Design unit name for graphics.

arch (= {}) View name (file name without extension) for graphics file.

HDS Tcl API Command Reference
library open

HDL Designer Series Tcl Reference Manual, V2010.3 85
June, 2011

library open
Opens a library so its content can be examined.

Syntax

library open (libraryName)

Arguments

Returns

The library object, see “library object commands” on page 123.

libraryName The library to open.

HDL Designer Series Tcl Reference Manual, V2010.386

HDS Tcl API Command Reference
library open

June, 2011

Version Management Commands
• runVMChangeLock (args)

• runVMCheckIn (args)

• runVMCheckOut (args)

• runVMGet (args)

• runVMHistory (args)

• runVMLabel (args)

• runVMSynchronize (args)

• runVMUndoCheckOut (args)

• setupVM (option arg)

• setupVMChangeLock (option arg)

• setupVMCheckIn (option arg)

• setupVMCheckOut (option arg)

• setupVMGet (option arg)

• setupVMHierarchy (option arg)

• setupVMLabel (option arg)

• setupVMSynchronize (option arg)

HDS Tcl API Command Reference
runVMChangeLock

HDL Designer Series Tcl Reference Manual, V2010.3 87
June, 2011

runVMChangeLock
Change lock on a specified library, design unit, view. Uses options set by

setupVMChangeLock.

Syntax

runVMChangeLock (args)

Arguments

library The library name. This is required.

view View name (optional, absent if design unit not specified).

HDL Designer Series Tcl Reference Manual, V2010.388

HDS Tcl API Command Reference
runVMCheckIn

June, 2011

runVMCheckIn
Check in a specified library, design unit, view. Uses options set by setupVMCheckIn.

Syntax

runVMCheckIn (args)

Arguments

library The library name. This is required.

designUnit Design unit name (optional).

view View name (optional, absent if design unit not specified).

HDS Tcl API Command Reference
runVMCheckOut

HDL Designer Series Tcl Reference Manual, V2010.3 89
June, 2011

runVMCheckOut
Check out a specified library, design unit, view. Uses options set by setupVMCheckOut.

Syntax

runVMCheckOut (args)

Arguments

library The library name. This is required.

designUnit Design unit name (optional).

view View name (optional, absent if design unit not specified).

HDL Designer Series Tcl Reference Manual, V2010.390

HDS Tcl API Command Reference
runVMGet

June, 2011

runVMGet
Get a specified library, design unit, view. Uses options set by setupVMGet.

Syntax

runVMGet (args)

Arguments

library The library name. This is required.

designUnit Design unit name (optional).

view View name (optional, absent if design unit not specified).

HDS Tcl API Command Reference
runVMHistory

HDL Designer Series Tcl Reference Manual, V2010.3 91
June, 2011

runVMHistory
Get the history of a specified library, design unit, view.

Syntax

runVMHistory (args)

Arguments

library The library name. This is required.

designUnit Design unit name (optional).

view View name (optional, absent if design unit not specified).

HDL Designer Series Tcl Reference Manual, V2010.392

HDS Tcl API Command Reference
runVMLabel

June, 2011

runVMLabel
Label a specified library, design unit, view. Uses options set by setupVMLabel.

Syntax

runVMLabel (args)

Arguments

library The library name. This is required.

designUnit Design unit name (optional).

view View name (optional, absent if design unit not specified).

HDS Tcl API Command Reference
runVMSynchronize (args)

HDL Designer Series Tcl Reference Manual, V2010.3 93
June, 2011

runVMSynchronize (args)
Synchronize a specified library, design unit, view. Uses options set by setupVMSynchronize.

Syntax

runVMSynchronize (args)

Arguments

library The library name. This is required.

designUnit Design unit name (optional).

view View name (optional, absent if design unit not specified).

HDL Designer Series Tcl Reference Manual, V2010.394

HDS Tcl API Command Reference
runVMUndoCheckOut

June, 2011

runVMUndoCheckOut
Undo the check out of a specified library, design unit, view.

Syntax

runVMUndoCheckOut (args)

Arguments

library The library name. This is required.

designUnit Design unit name (optional).

view View name (optional, absent if design unit not specified).

HDS Tcl API Command Reference
setupVM

HDL Designer Series Tcl Reference Manual, V2010.3 95
June, 2011

setupVM
Setup the options for Version Management.

Syntax

setupVM (option arg)

Arguments

option Option name.

arg Option value.

tool <string> The version management interface required.

library <string> Specify the library on which you want to invoke
these options (this is only necessary if you want to
set the repository mappings).

repository <string> Specify the repository mapping.

hds_repository <string> Specify the hds repository mapping.

hdl_repository <string> The hdl repository mapping.

include_default_view 1|0 You can choose to version manage the default
view file.

include_side_data 1|0 Side data for a version managed object is included.

verbose 1|0 Additional info is displayed in the log window.

create_empty_side_data 1|0 Automatically create side data directories if they
do not exist.

multiple_repository_mode 1|0 Repository is defined on a mapping by mapping
basis.

include_generated_hdl 1|0 Generated HDL for a version managed object is
included.

HDL Designer Series Tcl Reference Manual, V2010.396

HDS Tcl API Command Reference
setupVMChangeLock

June, 2011

setupVMChangeLock
Setup the change lock options for Version Management.

Syntax

setupVMChangeLock (option arg)

Arguments

option Option name.

arg Option value.

version <string> The version required.

change_lock 1|0 When you lock an object, the version in your
private workspace is made editable. If you unlock
an object, the version in your workspace is made
read-only.

HDS Tcl API Command Reference
setupVMCheckIn

HDL Designer Series Tcl Reference Manual, V2010.3 97
June, 2011

setupVMCheckIn
Setup the check-in options for Version Management.

Syntax

setupVMCheckIn (option arg)

Arguments

option Option name.

arg Option value.

version <string> The version required.

label <string> You can specify a symbolic label which is
associated with a particular set of objects.

description <string> Specify a description for the check in.

overwrite_label 1|0 Transfer the label to the new version number.

retain_lock 1|0 You can choose to retain a lock on the checked in
objects.

HDL Designer Series Tcl Reference Manual, V2010.398

HDS Tcl API Command Reference
setupVMCheckOut

June, 2011

setupVMCheckOut
Setup the check-out options for Version Management.

Syntax

setupVMCheckOut (option arg)

Arguments

option Option name.

arg Option value.

version <string> The version required.

lock 1|0 The objects are normally checked out with a lock
to prevent concurrent editing by other users but
you can choose to unset this option.

comment <string> If you are using ClearCase, you can enter a
comment in the description field.

HDS Tcl API Command Reference
setupVMGet

HDL Designer Series Tcl Reference Manual, V2010.3 99
June, 2011

setupVMGet
Setup the Get options for Version Management.

Syntax

setupVMGet (option arg)

Arguments

option Option name.

arg Option value.

version <string> The version required.

overwrite 1|0 Transfer the label to the new version number.

HDL Designer Series Tcl Reference Manual, V2010.3100

HDS Tcl API Command Reference
setupVMHierarchy

June, 2011

setupVMHierarchy
Setup the hierarchy options for Version Management.

Syntax

setupVMHierarchy (option arg)

Arguments

option Option name.

arg Option value.

hierarchy 1|0 Include the hierarchy below the selected object.

through_components 1|0 If hierarchy selected, then include components.

through_libraries 1|0 You can choose to limit the scope to the current
library or operate on objects through all libraries.

include_protected_libraries 1|0 Include objects in protected libraries.

packages 1|0 Automatically include referenced VHDL packages
or Verilog include files.

HDS Tcl API Command Reference
setupVMLabel

HDL Designer Series Tcl Reference Manual, V2010.3 101
June, 2011

setupVMLabel
Setup the label options for Version Management.

Syntax

setupVMLabel (option arg)

Arguments

option Option name.

arg Option value.

version <string> The version required.

label <string> Specify the required label.

add 1|0 Add or remove the label.

overwrite 1|0 Transfer the label to the new version number.

description Specify a description for the label.

HDL Designer Series Tcl Reference Manual, V2010.3102

HDS Tcl API Command Reference
setupVMSynchronize

June, 2011

setupVMSynchronize
Setup the Synchronize options for Version Management.

Syntax

setupVMSynchronize (option arg)

Arguments

option Option name.

arg Option value.

version <string> The version required.

add_files 1|0 If this option is not set, only objects that already
exist are synchronized.

HDS Tcl API Command Reference
Dynamically Created Commands

HDL Designer Series Tcl Reference Manual, V2010.3 103
June, 2011

Dynamically Created Commands

Command Structure
A dynamically created Tcl command consists of an HDS object or a variable holding the value
of a handle to that object. The object is followed by an option possibly followed by one or more
arguments and is written according to the following format:

HDS object /Option/?Arguments

HDL Designer Series Tcl Reference Manual, V2010.3104

HDS Tcl API Command Reference
HDS objects

June, 2011

HDS objects
HDS Objects listing

architecture - block - blockFrame - caseFrame - configuration - declaration - elseFrame -
embeddedFrame - file - forFrame - frameConfiguration - frame - ifFrame - instance - library -
machineFrame - package Body

Example

$lib configure class

The command in the above example is a library command in other words the HDS object
referenced in this command is a library object. The variable $lib holds the value of a handle
referring to the UART library.

Variables are created using the standard Tcl set command. HDS refers to objects through a set
of handles.The pre-defined library open command returns a handle to the UART library that
substitutes the value of the lib variable.

set lib [library open uart]

A variable can hold the value of one or more handles referring to HDS objects i.e

set fl [$lib files]

While the variable $lib holds the value of the handle hds0 which refers to the library UART,
variable $fl holds the values of a set of handles referring to the UART library files.

Notice that variable names are always preceded by a $.

HDS Tcl API Command Reference
Option

HDL Designer Series Tcl Reference Manual, V2010.3 105
June, 2011

Option
Options Listing

configure - entity - file - frame instances - packages - configuredSubFrames - subFrames -
architecture - configuredChild - close - declaration - files - hdlDirectory - packages

Example

$lib configure class

All objects have a ‘configure’ command option, this provides access to the attributes of the
object. If you use the configure command with no arguments, it shows the names and values of
all the attributes

Arguments

Each command may have one or more argument

Command list
architecture - block - blockFrame - caseFrame - configuration - declaration - elseFrame -
embeddedFrame - file - forframe - frameConfiguration - frame - ifframe - instance - library -
machineFrame - package Body

HDL Designer Series Tcl Reference Manual, V2010.3106

HDS Tcl API Command Reference
architecture object commands

June, 2011

architecture object commands
Associated with an implementation of an entity. Corresponds to a VHDL architecture, a Verilog
module and an HDS structural or leaf graphics file.

• $architecture configure (args)

• $architecture entity ()

• $architecture file ()

• $architecture frame ()

• $architecture instances ()

• $architecture packages ()

Table 2-1. architecture object commands

Command Description

$architecture configure (args) With no arguments lists the names and values of all
options.
The following arguments are available:
class : identifies the object as an architecture
name : name of the declaration itself
fullName : fully qualified name including those of
parent objects
startLine : the line number where the declaration begins
in the source file
refName : Name that can be to refer to the object when
running tasks or accessing properties

$architecture entity () Gets the entity associated with the architecture. Refer to
“entity option object commands” on page 114.
Returns: The entity object.

$architecture file () Obtains the file containing the object.
Returns: A single object, refer to“file object commands”
on page 116.

$architecture frame () Obtains the root frame of the architecture. Refer to
“frame object commands” on page 120.
Returns: The root frame.

$architecture instances () Gets all the instances in all frames of the architecture.
Refer to “instance object commands” on page 122.

$architecture packages () Obtains the packages referenced.
Returns: A list of packages, refer to “packageHeader
object commands” on page 126, or an empty list if the
declaration is not VHDL.

HDS Tcl API Command Reference
blockFrame object commands

HDL Designer Series Tcl Reference Manual, V2010.3 107
June, 2011

blockFrame object commands
A VHDL block statement

• $blockFrame configure (args)

• $blockFrame configuredSubFrames (frameConfiguration)

• $blockFrame instances ()

• $blockFrame subFrames ()

Table 2-2. blockFrame object commands

Command Description

$blockFrame configure (args) With no arguments lists the names and values of
all options.
With one argument lists the value of the specified
option.

Arguments

class : identifies the object as a blockFrame
name :

$blockFrameconfiguredSubFrames
(frameConfiguration)

Obtains the sub-frames.

Arguments

frameConfiguration : defines a level in a VHDL
configuration declaration from which the bindings
are selected

Returns

A list of sub-frame information, each consecutive
pair represents a frame and a frameConfiguration
in that order.

$blockFrame instances () Obtains the component instances; Instances
contained within a sub-frame are not included.
Refer to “instance object commands” on page 122.

Returns

A list of instances.

$blockFrame subFrames () Obtains the sub-frames.

Returns

A list of sub-frames.

HDL Designer Series Tcl Reference Manual, V2010.3108

HDS Tcl API Command Reference
caseFrame object commands

June, 2011

caseFrame object commands
A Verilog case statement

• $caseFrame configure (args)

• $caseFrame configuredSubFrames (frameConfiguration)

• $caseFrame instances ()

• $caseFrame subFrames ()

Table 2-3. caseFrame object commands

Command Description

$caseFrame configure (args) With no arguments lists the names and values of
all options.
With one argument lists the value of the specified
option.

Arguments

class : identifies the object as a caseFrame
name :

$caseFrame configuredSubFrames
(frameConfiguration)

Obtains the sub-frames.

Arguments

frameConfiguration :defines a level in a VHDL
configuration declaration from which the bindings
are selected

Returns

A list of sub-frame information, each consecutive
pair represents a frame and a frameConfiguration
in that order.

$caseFrame instances () Obtains the component instances, directly
contained within the frame. Instances contained
within a sub-frame are not included. Refer to
“instance object commands” on page 122.

Returns

A list of instances.

$caseFrame subFrames () Obtains the sub-frames.

Returns

 A list of sub-frames.

HDS Tcl API Command Reference
configuration object commands

HDL Designer Series Tcl Reference Manual, V2010.3 109
June, 2011

configuration object commands
A VHDL configuration declaration

• $configuration architecture ()

• $configuration configure (args)

• $configuration file ()

• $configuration frameConfiguration ()

• $configuration packages ()

Table 2-4. configuration object commands

Command Description

$configuration architecture () Gets the architecture associated with the
configuration. Refer to“architecture object
commands” on page 106.

Returns

The architecture object.

$configuration configure (args) With no arguments lists the names and values
of all options.
With one argument lists the value of the
specified option.

Arguments

class : identifies the object as a configuration
name : name of the declaration itself
fullName : fully qualified name including those
of parent objects
startLine : the line number where the
declaration begins in the source file
refName : Name that can be to refer to the
object when running tasks or accessing
properties

$configuration file () Obtain the file containing the object.

Returns

A single object. Refer to “file object
commands” on page 116.

HDL Designer Series Tcl Reference Manual, V2010.3110

HDS Tcl API Command Reference
configuration object commands

June, 2011

$configuration frameConfiguration () Gets the frame configuration associated with
the configuration, refer to “frameConfiguration
object commands” on page 119.

Returns

The architecture object.

$configuration packages () Obtains the packages referenced.

Returns

A list of packages, refer to “packageHeader
object commands” on page 126, or an empty
list if the declaration is not VHDL.

Table 2-4. configuration object commands (cont.)

Command Description

HDS Tcl API Command Reference
declaration object commands

HDL Designer Series Tcl Reference Manual, V2010.3 111
June, 2011

declaration object commands
• $declaration configure (args)

• $declaration file ()

• $declaration packages ()

Table 2-5. declaration object commands

Command Description

$declaration configure (args) With no arguments lists the names and values of
all options.
With one argument lists the value of the specified
option.

Arguments

name : name of the declaration itself
fullName : fully qualified name including those of
parent objects
startLine : the line number where the declaration
begins in the source file
refName : Name that can be to refer to the object
when running tasks or accessing properties
class : identifies the object as a declaration

$declaration file () Obtains the file containing the object.

Returns

A single object, refer to “file object commands” on
page 116.

$declaration packages () Obtains the packages referenced.

Returns

A list of packages, see “packageHeader object
commands” on page 126, or an empty list if the
declaration is not VHDL.

HDL Designer Series Tcl Reference Manual, V2010.3112

HDS Tcl API Command Reference
elseFrame object commands

June, 2011

elseFrame object commands
A Verilog `else statement

• $elseFrame configure (args)

• $elseFrame configuredSubFrames (frameConfiguration)

• $elseFrame instances ()

• $elseFrame subFrames ()

Table 2-6. elseFrame object commands

Command Description

$elseFrame configure (args) With no arguments lists the names and values of
all options.
With one argument lists the value of the specified
option.

Arguments

class : identifies the object as an elseFrame
name :

$elseFrame configuredSubFrames
(frameConfiguration)

Obtains the sub-frames.

Argument

frameConfiguration :defines a level in a VHDL
configuration declaration from which the bindings
are selected

Returns

A list of sub-frame information, each consecutive
pair represents a frame and a frameConfiguration
in that order.

$elseFrame instances () Obtains the component instances, refer to“instance
object commands” on page 122, directly contained
within the frame. Instances contained within a sub-
frame are not included.

Returns

A list of instances.

$elseFrame subFrames () Obtains the sub-frames.

Returns

A list of sub-frames.

HDS Tcl API Command Reference
embeddedFrame object commands

HDL Designer Series Tcl Reference Manual, V2010.3 113
June, 2011

embeddedFrame object commands
Represents an embedded text within a graphics file

• $embeddedFrame configure (args)

• $embeddedFrame configuredSubFrames (frameConfiguration)

• $embeddedFrame instances ()

• $embeddedFrame subFrames ()

Table 2-7. embeddedFrame object commands

Command Description

$embeddedFrame configure (args) With no arguments lists the names and values
of all options.
With one argument lists the value of the
specified option.

Arguments

class : identifies the object as an
embeddedFrame
name :

$embeddedFrame configuredSubFrames
(frameConfiguration)

Obtains the sub-frames.

Argument

frameConfiguration :defines a level in a
VHDL configuration declaration from which
the bindings are selected

Returns

A list of sub-frame information, each
consecutive pair represents a frame and a
frameConfiguration in that order.

$embeddedFrame instances () Obtains the component instances, refer to
“instance object commands” on page 122,
directly contained within the frame. Instances
contained within a sub-frame are not
included.

Returns

A list of instances.

$embeddedFrame subFrames () Obtains the sub-frames.

Returns

A list of sub-frames.

HDL Designer Series Tcl Reference Manual, V2010.3114

HDS Tcl API Command Reference
entity option object commands

June, 2011

entity option object commands
Associated with the interface to a design unit. Corresponds to a VHDL entity, a Verilog module
and an HDS symbol or block interface file

• $entity architecture (name)

• $entity configure (args)

• $entity file ()

• $entity packages ()

Table 2-8. entity option object commands

Command Description

$entity architecture (name) Obtains the architecture for an entity.

Argument

name (= {})
The name of the architecture to find, if omitted uses the
default view settings to choose between alternative
architectures.

Returns

The matching architecture, refer to “architecture object
commands” on page 106.

$entity configure (args) With no arguments lists the names and values of all
options.
With one argument lists the value of the specified
option.

Arguments

class : identifies the object as an entity
name : name of the declaration itself
fullName : fully qualified name including those of
parent objects
startLine : the line number where the declaration
begins in the source file
refName : Name that can be to refer to the object when
running tasks or accessing properties

$entity file () Obtains the file containing the object.

Returns:

A single object, refer to “file object commands” on
page 116.

HDS Tcl API Command Reference
entity option object commands

HDL Designer Series Tcl Reference Manual, V2010.3 115
June, 2011

$entity packages () Obtains the packages referenced.

Returns

A list of packages, see “packageHeader object
commands” on page 126, or an empty list if the
declaration is not VHDL.

Table 2-8. entity option object commands (cont.)

Command Description

HDL Designer Series Tcl Reference Manual, V2010.3116

HDS Tcl API Command Reference
file object commands

June, 2011

file object commands
• $file configure (args)

• $file declarations ()

• $file generated ()

• $file includes ()

• $file library ()

Table 2-9. file object commands

Command Description

$file configure (args) With no arguments lists the names and values of all
options.
With one argument lists the value of the specified
option.

Arguments

relativePathname : pathname relative to the library
mapping
language : HDL language
version : version checked out from the version
management system
timestamp : time the file was last modified
type : identifies the type of the file
exclusionType :
designDir : The full hard pathname of the design side
data directory
userDir : The full hard pathname of the design side
data directory
refName : Name that can be to refer to the object when
running tasks or accessing properties
class : identifies the object as a file

$file declarations () Obtains the declarations in the file.

Returns

A list of declaration objects.

$file generated () Gets the HDL file generated from the current file.

Returns

The file.

HDS Tcl API Command Reference
file object commands

HDL Designer Series Tcl Reference Manual, V2010.3 117
June, 2011

$file includes () Gets the include files.

Returns

A list of files or the empty list of the language is not
Verilog.

$file library () Gets the library containing the file.

Returns

The library.

Table 2-9. file object commands (cont.)

Command Description

HDL Designer Series Tcl Reference Manual, V2010.3118

HDS Tcl API Command Reference
forFrame object commands

June, 2011

forFrame object commands
A VHDL 'for generate' statement.

• $forFrame configure (args)

• $forFrame configuredSubFrames (frameConfiguration)

• $forFrame instances ()

• $forFrame subFrames ()

Table 2-10. forFrame object commands

Command Description

 $forFrame configure (args) With no arguments lists the names and values of
all options.
With one argument lists the value of the specified
option.

Arguments

leftBound :
rightBound :
class : identifies the object as a forFrame
name :

$forFrame configuredSubFrames
(frameConfiguration)

Obtains the sub-frames.

Arguments

frameConfiguration: defines a level in a VHDL
configuration declaration from which the bindings
are selected

Returns

A list of sub-frame information, each consecutive
pair represents a frame and a frameConfiguration
in that order.

$forFrame instances () Obtains the component instances, refer to
“instance object commands” on page 122, directly
contained within the frame. Instances contained
within a sub-frame are not included.

Returns

A list of instances.

$forFrame subFrames () Obtains the sub-frames.

Returns

A list of sub-frames.

HDS Tcl API Command Reference
frameConfiguration object commands

HDL Designer Series Tcl Reference Manual, V2010.3 119
June, 2011

frameConfiguration object commands
Represents a single level within the hierarchical structure of a VHDL configuration declaration,
see configurationRefApi.tcl. These objects have do little in themselves but are passed as
arguments to control the path through the design hierarchy. Refer to configuredChild in
“instance object commands” on page 122 and configuredSubFrames in“architecture object
commands” on page 106.

$frameConfiguration configure (args)

Table 2-11. frameConfiguration object commands

Command Description

$frameConfiguration configure
(args)

With no arguments lists the names and values of all
options.
With one argument lists the value of the specified
option.

Arguments:

name :
class : identifies the object as a frameConfiguration

HDL Designer Series Tcl Reference Manual, V2010.3120

HDS Tcl API Command Reference
frame object commands

June, 2011

frame object commands
• $frame configure (args)

• $frame configuredSubFrames (frameConfiguration)

• $frame instances ()

• $frame subFrames ()

Table 2-12. frame object commands

Command Description

$frame configure (args) With no arguments lists the names and values of
all options.
With one argument lists the value of the specified
option.

Arguments

name :
class : identifies the object as a frame

$frame configuredSubFrames
(frameConfiguration)

Obtains the sub-frames.

Argument

frameConfiguration: defines a level in a VHDL
configuration declaration from which the bindings
are selected

Returns

A list of sub-frame information, each consecutive
pair represents a frame and a frameConfiguration
in that order.

$frame instances () Obtains the component instances, see “instance
object commands” on page 122, directly contained
within the frame. Instances contained within a sub-
frame are not included.

Returns

A list of instances.

$frame subFrames () Obtains the sub-frames.

Returns

A list of sub-frames.

HDS Tcl API Command Reference
ifFrame object commands

HDL Designer Series Tcl Reference Manual, V2010.3 121
June, 2011

ifFrame object commands
A VHDL 'if generate' statement or a Verilog 'ifdef

• $ifFrame configure (args)

• $ifFrame configuredSubFrames (frameConfiguration)

• $ifFrame instances ()

• $ifFrame subFrames ()

Table 2-13. ifFrame object commands

Command Description

 $ifFrame configure (args) With no arguments lists the names and values of
all options.
With one argument lists the value of the specified
option.

Arguments

class : identifies the object as an ifFrame
name :

$ifFrame configuredSubFrames
(frameConfiguration)

Obtains the sub-frames.

Argument

frameConfiguration: defines a level in a VHDL
configuration declaration from which the bindings
are selected

Returns

A list of sub-frame information, each consecutive
pair represents a frame and a frameConfiguration
in that order.

$ifFrame instances () Obtains the component instances, see“instance
object commands” on page 122, directly contained
within the frame. Instances contained within a sub-
frame are not included.

Returns

A list of instances.

$ifFrame subFrames () Obtains the sub-frames.

Returns

A list of sub-frames.

HDL Designer Series Tcl Reference Manual, V2010.3122

HDS Tcl API Command Reference
instance object commands

June, 2011

instance object commands
A component instance in a block diagram, IBD or structural HDL text file.

• $instance child ()

• $instance configure (args)

• $instance configuredChild (frameConfiguration)

Table 2-14. instance object commands

Command Description

$instance child () Obtains the architecture under the component
instance.

Returns

The architecture object.

$instance configure (args) With no arguments lists the names and values of
all options.
With one argument lists the value of the specified
option.

Arguments

name :
class : identifies the object as an instance

$instance configuredChild
(frameConfiguration)

Like 'child' but supporting VHDL configuration
declarations.

Arguments

frameConfiguration see “frameConfiguration
object commands” on page 119.

Returns

A 3 element list containing:
The configuration declaration object, if specified
in the component binding; see “configuration
object commands” on page 109.
The architecture object, see“architecture object
commands” on page 106.
The frame configuration for the root of the child
architecture.

HDS Tcl API Command Reference
library object commands

HDL Designer Series Tcl Reference Manual, V2010.3 123
June, 2011

library object commands
A library object is obtained from the 'library open' command. It provides access to the files and
declarations within the library.

• $library close ()

• $library configure (args)

• $library declaration (primaryName secondaryName)

• $library file (relativePathname)

• $library files ()

• $library hdlDirectory ()

Table 2-15. library object commands

Command Description

 $library close () Removes the library from memory.
It is an error to close a library while an editor
window or Design Explorer tab is showing design
items in the library.

Returns

None.

$library configure (args) With no arguments lists the names and values of
all options.
With one argument lists the value of the specified
option.

Arguments

name : name of the library
type : regular, standard or downstreamOnly
hdlDir : directory as literally given
hdsDir : directory as literally given
hardHdlDir : directory with variables expanded
hardHdsDir : directory with variables expanded
refName : Name that can be to refer to the object
when running tasks or accessing properties
class : identifies the object as a library

HDL Designer Series Tcl Reference Manual, V2010.3124

HDS Tcl API Command Reference
library object commands

June, 2011

$library declaration (primaryName
secondaryName)

Finds an entity, architecture, package or
configuration declaration by name. Raises an error
if a matching architecture is not available.

Argument

primaryName:name to look for
secondaryName (= {}) :only specified when
looking for an architecture can be the empty string
if the default architecture should be used

Returns

The matching declaration.

$library file (relativePathname) Finds a file, raises an error if not available.

Argument

relativePathname:pathname of the file relative to
the root directory of the library.

Returns

The file object.

$library files () Obtains the files of the library, see “file object
commands” on page 116.

Returns

List of files.

$library hdlDirectory () Obtains the root HDL directory of the library.

Returns

Directory object.

Table 2-15. library object commands (cont.)

Command Description

HDS Tcl API Command Reference
machineFrame object commands

HDL Designer Series Tcl Reference Manual, V2010.3 125
June, 2011

machineFrame object commands
Represents hierarchy or concurrency within a state machine, algorithmic state machine or flow
chart file.

• $machineFrame configure (args)

• $machineFrame configuredSubFrames (frameConfiguration)

• $machineFrame instances ()

• $machineFrame subFrames ()

Table 2-16. machineFrame object commands

Command Description

$machineFrame configure (args) With no arguments lists the names and values
of all options.
With one argument lists the value of the
specified option.

Arguments

class : identifies the object as a machineFrame
name :

$machineFrame configuredSubFrames
(frameConfiguration)

Obtains the sub-frames.

Arguments

frameConfiguration: defines a level in a
VHDL configuration declaration from which
the bindings are selected

Returns

A list of sub-frame information, each
consecutive pair represents a frame and a
frameConfiguration in that order.

$machineFrame instances () Obtains the component instances, see“instance
object commands” on page 122, directly
contained within the frame. Instances contained
within a sub-frame are not included.

Returns

A list of instances.

$machineFrame subFrames () Obtains the sub-frames.

Returns

A list of sub-frames.

HDL Designer Series Tcl Reference Manual, V2010.3126

HDS Tcl API Command Reference
packageHeader object commands

June, 2011

packageHeader object commands
• $packageHeader body ()

• $packageHeader configure (args)

• $packageHeader file ()

• $packageHeader packages ()

Table 2-17. packageHeader object commands

Command Description

$packageHeader body () Gets the package body implementing the
interface of a package header, see
“packageBody object commands” on page 127.

Returns

The body object.

$packageHeader configure (args) With no arguments lists the names and values
of all options.
With one argument lists the value of the
specified option.

Arguments

class : identifies the object as a packageHeader
name : name of the declaration itself
fullName : fully qualified name including those
of parent objects
startLine : the line number where the
declaration begins in the source file
refName : Name that can be to refer to the
object when running tasks or accessing
properties

$packageHeader file () Obtains the file containing the object.

Returns

A single object, see “file object commands” on
page 116.

$packageHeader packages () Obtains the packages referenced.

Returns

A list of packages, see “packageHeader object
commands” on page 126, or an empty list if the
declaration is not VHDL.

HDS Tcl API Command Reference
packageBody object commands

HDL Designer Series Tcl Reference Manual, V2010.3 127
June, 2011

packageBody object commands
A VHDL package body

• $packageBody configure (args)

• $packageBody file ()

• $packageBody packages ()

Command List
addLibraryMapping
configureProperties
invokeGUI ()
setDefaultView

Table 2-18. packageBody object commands

Command Description

 $packageBody configure (args) With no arguments lists the names and values
of all options.
With one argument lists the value of the
specified option.

Arguments

class : identifies the object as a packageBody
name : name of the declaration itself
fullName : fully qualified name including those
of parent objects
startLine : the line number where the
declaration begins in the source file
refName : Name that can be to refer to the
object when running tasks or accessing
properties

$packageBody file () Obtains the file containing the object.

Returns

A single object, see “file object commands” on
page 116.

$packageBody packages () Obtains the packages referenced.

Returns

A list of packages, see “packageHeader object
commands” on page 126, or an empty list if the
declaration is not VHDL.

HDL Designer Series Tcl Reference Manual, V2010.3128

HDS Tcl API Command Reference
Command List

June, 2011

setPolicyLocation
setRulesetLocation
disableDumpCodeSnippet()
disableFilterAssocViolation()
enableDumpCodeSnippet ()
enableFilterAssocViolation ()
setCheckedFileDUsReport
setCheckedFileDUsReportContents
setExclusionReport
setExclusionReportContents
setRulesCheckedReport
setSnippetLinesAfter
setSnippetLinesBefore
runH2G
runHdlImport
runHtmlExport
setupH2G
setupHdlImport
setupHtmlExport
runTask
setCompileAlways (enable)
setupTask (args)
runConfigGenerate
runGenerate
setupGenerate
library names()
library open
runVMChangeLock
runVMCheckIn
runVMCheckOut
runVMGet
runVMHistory
runVMLabel
runVMSynchronize (args)
runVMUndoCheckOut
setupVM
setupVMChangeLock
setupVMCheckIn
setupVMCheckOut
setupVMGet
setupVMHierarchy
setupVMLabel
setupVMSynchronize
$architecture entity ()
$architecture file ()

HDS Tcl API Command Reference
Command List

HDL Designer Series Tcl Reference Manual, V2010.3 129
June, 2011

$architecture frame ()
$architecture instances ()
$architecture packages ()
$blockFrame configure (args)
$blockFrame configuredSubFrames (frameConfiguration)
$blockFrame instances ()
$blockFrame subFrames ()
$caseFrame configure (args)
$caseFrame configuredSubFrames (frameConfiguration)
$caseFrame instances ()
$caseFrame subFrames ()
$configuration architecture ()
$configuration configure (args)
$configuration file ()
$configuration frameConfiguration ()
$configuration packages ()
$declaration configure (args)
$declaration file ()
$declaration packages ()
$elseFrame configure (args)
$elseFrame configuredSubFrames (frameConfiguration)
$elseFrame instances ()
$elseFrame subFrames ()
$embeddedFrame configure (args)
$embeddedFrame configuredSubFrames (frameConfiguration)
$embeddedFrame instances ()
$embeddedFrame subFrames ()
$embeddedFrame configure (args)
$embeddedFrame configuredSubFrames (frameConfiguration)
$embeddedFrame instances ()
$embeddedFrame subFrames ()
$file configure (args)
$file declarations ()
$file generated ()
$file includes ()
$file library ()
$forFrame configure (args)
$forFrame configuredSubFrames (frameConfiguration)
$forFrame instances ()
$forFrame subFrames ()
$frameConfiguration configure (args)
$frame configure (args)
$frame configuredSubFrames (frameConfiguration)
$frame instances ()
$frame subFrames ()

HDL Designer Series Tcl Reference Manual, V2010.3130

HDS Tcl API Command Reference
Command List

June, 2011

$ifFrame configure (args)
$ifFrame configuredSubFrames (frameConfiguration)
$ifFrame instances ()
$ifFrame subFrames ()
$instance child ()
$instance configure (args)
$instance configuredChild (frameConfiguration)
$library close ()
$library configure (args)
$library declaration (primaryName secondaryName)
$library file (relativePathname)
$library files ()
$library hdlDirectory ()
$machineFrame configure (args)
$machineFrame configuredSubFrames (frameConfiguration)
$machineFrame instances ()
$machineFrame subFrames ()
$packageHeader body ()
$packageHeader configure (args)
$packageHeader file ()
$packageHeader packages ()
$packageBody configure (args)
$packageBody file ()
$packageBody packages ()

131

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

HDL Designer Series Tcl Reference Manual, V2010.3
June, 2011

Index

— Symbols —
$architecture configure (args), 106
$architecture entity (), 106
$architecture file (), 106
$architecture frame (), 106
$architecture instances (), 106
$architecture packages (), 106
$architecture/option/arguments, 106
$blockFrame configure (args), 107
$blockFrame configuredSubFrames

(frameConfiguration), 107
$blockFrame instances (), 107
$blockFrame subFrames (), 107
$caseFrame configure (args), 108
$caseFrame configuredSubFrames

(frameConfiguration), 108
$caseFrame instances (), 108
$caseFrame option (args), 108
$caseFrame subFrames (), 108
$configuration architecture (), 109
$configuration configure (args), 109
$configuration file (), 109
$configuration frameConfiguration (), 110
$configuration option (args), 109
$configuration packages (), 110
$declaration configure (args), 111
$declaration file (), 111
$declaration option (args), 111
$declaration packages (), 111
$elseFrame configure (args), 112
$elseFrame configuredSubFrames

(frameConfiguration), 112
$elseFrame instances (), 112
$elseFrame subFrames (), 112
$embeddedFrame configure (args), 113
$embeddedFrame configuredSubFrames

(frameConfiguration), 113
$embeddedFrame instances (), 113
$embeddedFrame option (args), 113

$embeddedFrame subFrames (), 113
$entity architecture (name), 114
$entity configure (args), 114
$entity file (), 114
$entity option (arg), 114
$entity packages (), 115
$file configure (args), 116
$file declarations (), 116
$file generated (), 116
$file includes (), 117
$file library (), 117
$forFrame configure (args), 118
$forFrame configuredSubFrames

(frameConfiguration), 118
$forFrame instances (), 118
$forFrame option (args), 118
$forFrame subFrames (), 118
$frame configure (args), 120
$frame configuredSubFrames

(frameConfiguration), 120
$frame instances (), 120
$frame option (args), 120
$frame subFrames (), 120
$frameConfiguration configure (args), 119
$ifFrame configure (args), 121
$ifFrame configuredSubFrames

(frameConfiguration), 121
$ifFrame instances (), 121
$ifFrame option (args), 121
$ifFrame subFrames (), 121
$instance child (), 122
$instance configure (args), 122
$instance configuredChild

(frameConfiguration), 122
$instance option (), 122
$library close (), 123
$library configure (args), 123
$library declaration (primaryName

secondaryName), 124
$library file (relativePathname), 124

Index

132
June, 2011

HDL Designer Series Tcl Reference Manual, V2010.3

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

$library files (), 124
$library hdlDirectory (), 124
$library option (), 123
$machineFrame configure (args), 125
$machineFrame configuredSubFrames

(frameConfiguration), 125
$machineFrame instances (), 125
$machineFrame option (args), 125
$machineFrame subFrames (), 125
$packageBody configure (args), 127
$packageBody file (), 127
$packageBody option (args), 127
$packageBody packages (), 127
$packageHeader body (), 126
$packageHeader configure (args), 126
$packageHeader file (), 126
$packageHeader packages (), 126

— A —
addLibraryMapping, 25
API Command Modes, 9
architecture object commands, 106

— B —
blockFrame object commands, 107

— C —
caseFrame object commands, 108
Command Basics, 10
Compilation Order, 20
configuration object commands, 109
configureProperties (designObject args), 27
Console

Accessing, 9

— D —
declaration object commands, 111
Design Hierarchy and Frames, 17
Design Hierarchy and VHDL Configurations,

18
Design Hierarchy Traversal, Robust, 16
Design Hierarchy Traversal, Simple, 14
Document Conventions, 10

— E —
elseFrame object commands, 112
embeddedFrame object commands, 113

entity option object commands, 114
Example Scripts, 11

— F —
file object commands, 116
forFrame object commands, 118
frame object commands, 120
frameConfiguration object commands, 119

— G —
Generated HDL File Paths, 11

— H —
HDS objects, 104
Hierarchy

Pruning, 19

— I —
ifFrame object commands, 121
instance object commands, 122
invokeGUI (), 35, 56

— L —
library names (), 84
library object commands, 123
library open (libraryName), 85

— M —
machineFrame object commands, 125

— P —
packageBody object commands, 127
packageHeader object commands, 126

— R —
runConfigGenerate (library entity arch), 79
runGenerate (library entity arch), 80
runH2G (hierarchyType library file primary

secondary), 64
runHdlImport (library args), 65
runTask (args), 75
runVMChangeLock (args), 87
runVMCheckIn (args), 88
runVMCheckOut (args), 89
runVMGet (args), 90
runVMHistory (args), 91
runVMLabel (args), 92
runVMSynchronize (args), 93

133HDL Designer Series Tcl Reference Manual, V2010.3
June, 2011

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

runVMUndoCheckOut (args), 94

— S —
setCompileAlways (enable), 76
setDefaultView (library file primary

secondary), 38, 58
setRulesetLocation (location), 46, 61
setupGenerate (args), 81
setupH2G (args), 68
setupHdlImport (args), 71
setupTask (args), 77
setupVM (option arg), 95
setupVMChangeLock (option arg), 96
setupVMCheckIn (option arg), 97
setupVMCheckOut (option arg), 98
setupVMGet (option arg), 99
setupVMHierarchy (option arg), 100
setupVMLabel (option arg), 101
setupVMSynchronize (option arg), 102

— V —
Verilog Include Files, 14
VHDL Packages, 13

134
June, 2011

HDL Designer Series Tcl Reference Manual, V2010.3

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

End-User License Agreement
The latest version of the End-User License Agreement is available on-line at:

www.mentor.com/eula

END-USER LICENSE AGREEMENT (“Agreement”)

This is a legal agreement concerning the use of Software (as defined in Section 2) and hardware (collectively
“Products”) between the company acquiring the Products (“Customer”), and the Mentor Graphics entity that
issued the corresponding quotation or, if no quotation was issued, the applicable local Mentor Graphics entity
(“Mentor Graphics”). Except for license agreements related to the subject matter of this license agreement which
are physically signed by Customer and an authorized representative of Mentor Graphics, this Agreement and the
applicable quotation contain the parties' entire understanding relating to the subject matter and supersede all
prior or contemporaneous agreements. If Customer does not agree to these terms and conditions, promptly return
or, in the case of Software received electronically, certify destruction of Software and all accompanying items
within five days after receipt of Software and receive a full refund of any license fee paid.

1. ORDERS, FEES AND PAYMENT.

1.1. To the extent Customer (or if agreed by Mentor Graphics, Customer’s appointed third party buying agent) places and
Mentor Graphics accepts purchase orders pursuant to this Agreement (“Order(s)”), each Order will constitute a contract
between Customer and Mentor Graphics, which shall be governed solely and exclusively by the terms and conditions of this
Agreement, any applicable addenda and the applicable quotation, whether or not these documents are referenced on the
Order. Any additional or conflicting terms and conditions appearing on an Order will not be effective unless agreed in
writing by an authorized representative of Customer and Mentor Graphics.

1.2. Amounts invoiced will be paid, in the currency specified on the applicable invoice, within 30 days from the date of such
invoice. Any past due invoices will be subject to the imposition of interest charges in the amount of one and one-half
percent per month or the applicable legal rate currently in effect, whichever is lower. Prices do not include freight,
insurance, customs duties, taxes or other similar charges, which Mentor Graphics will state separately in the applicable
invoice(s). Unless timely provided with a valid certificate of exemption or other evidence that items are not taxable, Mentor
Graphics will invoice Customer for all applicable taxes including, but not limited to, VAT, GST, sales tax and service tax.
Customer will make all payments free and clear of, and without reduction for, any withholding or other taxes; any such
taxes imposed on payments by Customer hereunder will be Customer’s sole responsibility. If Customer appoints a third
party to place purchase orders and/or make payments on Customer’s behalf, Customer shall be liable for payment under
Orders placed by such third party in the event of default.

1.3. All Products are delivered FCA factory (Incoterms 2000), freight prepaid and invoiced to Customer, except Software
delivered electronically, which shall be deemed delivered when made available to Customer for download. Mentor
Graphics retains a security interest in all Products delivered under this Agreement, to secure payment of the purchase price
of such Products, and Customer agrees to sign any documents that Mentor Graphics determines to be necessary or
convenient for use in filing or perfecting such security interest. Mentor Graphics’ delivery of Software by electronic means
is subject to Customer’s provision of both a primary and an alternate e-mail address.

2. GRANT OF LICENSE. The software installed, downloaded, or otherwise acquired by Customer under this Agreement,
including any updates, modifications, revisions, copies, documentation and design data (“Software”) are copyrighted, trade
secret and confidential information of Mentor Graphics or its licensors, who maintain exclusive title to all Software and retain
all rights not expressly granted by this Agreement. Mentor Graphics grants to Customer, subject to payment of applicable
license fees, a nontransferable, nonexclusive license to use Software solely: (a) in machine-readable, object-code form (except
as provided in Subsection 5.2); (b) for Customer’s internal business purposes; (c) for the term of the license; and (d) on the
computer hardware and at the site authorized by Mentor Graphics. A site is restricted to a one-half mile (800 meter) radius.
Customer may have Software temporarily used by an employee for telecommuting purposes from locations other than a
Customer office, such as the employee's residence, an airport or hotel, provided that such employee's primary place of
employment is the site where the Software is authorized for use. Mentor Graphics’ standard policies and programs, which vary
depending on Software, license fees paid or services purchased, apply to the following: (a) relocation of Software; (b) use of
Software, which may be limited, for example, to execution of a single session by a single user on the authorized hardware or for
a restricted period of time (such limitations may be technically implemented through the use of authorization codes or similar
devices); and (c) support services provided, including eligibility to receive telephone support, updates, modifications, and
revisions. For the avoidance of doubt, if Customer requests any change or enhancement to Software, whether in the course of

 IMPORTANT INFORMATION

USE OF ALL SOFTWARE IS SUBJECT TO LICENSE RESTRICTIONS. CAREFULLY READ THIS
LICENSE AGREEMENT BEFORE USING THE PRODUCTS. USE OF SOFTWARE INDICATES

CUSTOMER’S COMPLETE AND UNCONDITIONAL ACCEPTANCE OF THE TERMS AND
CONDITIONS SET FORTH IN THIS AGREEMENT. ANY ADDITIONAL OR DIFFERENT PURCHASE

ORDER TERMS AND CONDITIONS SHALL NOT APPLY.

http://www.mentor.com/eula

receiving support or consulting services, evaluating Software, performing beta testing or otherwise, any inventions, product
improvements, modifications or developments made by Mentor Graphics (at Mentor Graphics’ sole discretion) will be the
exclusive property of Mentor Graphics.

3. ESC SOFTWARE. If Customer purchases a license to use development or prototyping tools of Mentor Graphics’ Embedded
Software Channel (“ESC”), Mentor Graphics grants to Customer a nontransferable, nonexclusive license to reproduce and
distribute executable files created using ESC compilers, including the ESC run-time libraries distributed with ESC C and C++
compiler Software that are linked into a composite program as an integral part of Customer’s compiled computer program,
provided that Customer distributes these files only in conjunction with Customer’s compiled computer program. Mentor
Graphics does NOT grant Customer any right to duplicate, incorporate or embed copies of Mentor Graphics’ real-time operating
systems or other embedded software products into Customer’s products or applications without first signing or otherwise
agreeing to a separate agreement with Mentor Graphics for such purpose.

4. BETA CODE.

4.1. Portions or all of certain Software may contain code for experimental testing and evaluation (“Beta Code”), which may not
be used without Mentor Graphics’ explicit authorization. Upon Mentor Graphics’ authorization, Mentor Graphics grants to
Customer a temporary, nontransferable, nonexclusive license for experimental use to test and evaluate the Beta Code
without charge for a limited period of time specified by Mentor Graphics. This grant and Customer’s use of the Beta Code
shall not be construed as marketing or offering to sell a license to the Beta Code, which Mentor Graphics may choose not to
release commercially in any form.

4.2. If Mentor Graphics authorizes Customer to use the Beta Code, Customer agrees to evaluate and test the Beta Code under
normal conditions as directed by Mentor Graphics. Customer will contact Mentor Graphics periodically during Customer’s
use of the Beta Code to discuss any malfunctions or suggested improvements. Upon completion of Customer’s evaluation
and testing, Customer will send to Mentor Graphics a written evaluation of the Beta Code, including its strengths,
weaknesses and recommended improvements.

4.3. Customer agrees to maintain Beta Code in confidence and shall restrict access to the Beta Code, including the methods and
concepts utilized therein, solely to those employees and Customer location(s) authorized by Mentor Graphics to perform
beta testing. Customer agrees that any written evaluations and all inventions, product improvements, modifications or
developments that Mentor Graphics conceived or made during or subsequent to this Agreement, including those based
partly or wholly on Customer’s feedback, will be the exclusive property of Mentor Graphics. Mentor Graphics will have
exclusive rights, title and interest in all such property. The provisions of this Subsection 4.3 shall survive termination of this
Agreement.

5. RESTRICTIONS ON USE.

5.1. Customer may copy Software only as reasonably necessary to support the authorized use. Each copy must include all
notices and legends embedded in Software and affixed to its medium and container as received from Mentor Graphics. All
copies shall remain the property of Mentor Graphics or its licensors. Customer shall maintain a record of the number and
primary location of all copies of Software, including copies merged with other software, and shall make those records
available to Mentor Graphics upon request. Customer shall not make Products available in any form to any person other
than Customer’s employees and on-site contractors, excluding Mentor Graphics competitors, whose job performance
requires access and who are under obligations of confidentiality. Customer shall take appropriate action to protect the
confidentiality of Products and ensure that any person permitted access does not disclose or use it except as permitted by
this Agreement. Customer shall give Mentor Graphics written notice of any unauthorized disclosure or use of the Products
as soon as Customer learns or becomes aware of such unauthorized disclosure or use. Except as otherwise permitted for
purposes of interoperability as specified by applicable and mandatory local law, Customer shall not reverse-assemble,
reverse-compile, reverse-engineer or in any way derive any source code from Software. Log files, data files, rule files and
script files generated by or for the Software (collectively “Files”), including without limitation files containing Standard
Verification Rule Format (“SVRF”) and Tcl Verification Format (“TVF”) which are Mentor Graphics’ proprietary syntaxes
for expressing process rules, constitute or include confidential information of Mentor Graphics. Customer may share Files
with third parties, excluding Mentor Graphics competitors, provided that the confidentiality of such Files is protected by
written agreement at least as well as Customer protects other information of a similar nature or importance, but in any case
with at least reasonable care. Customer may use Files containing SVRF or TVF only with Mentor Graphics products. Under
no circumstances shall Customer use Software or Files or allow their use for the purpose of developing, enhancing or
marketing any product that is in any way competitive with Software, or disclose to any third party the results of, or
information pertaining to, any benchmark.

5.2. If any Software or portions thereof are provided in source code form, Customer will use the source code only to correct
software errors and enhance or modify the Software for the authorized use. Customer shall not disclose or permit disclosure
of source code, in whole or in part, including any of its methods or concepts, to anyone except Customer’s employees or
contractors, excluding Mentor Graphics competitors, with a need to know. Customer shall not copy or compile source code
in any manner except to support this authorized use.

5.3. Customer may not assign this Agreement or the rights and duties under it, or relocate, sublicense or otherwise transfer the
Products, whether by operation of law or otherwise (“Attempted Transfer”), without Mentor Graphics’ prior written
consent and payment of Mentor Graphics’ then-current applicable relocation and/or transfer fees. Any Attempted Transfer
without Mentor Graphics’ prior written consent shall be a material breach of this Agreement and may, at Mentor Graphics’
option, result in the immediate termination of the Agreement and/or the licenses granted under this Agreement. The terms

of this Agreement, including without limitation the licensing and assignment provisions, shall be binding upon Customer’s
permitted successors in interest and assigns.

5.4. The provisions of this Section 5 shall survive the termination of this Agreement.

6. SUPPORT SERVICES. To the extent Customer purchases support services, Mentor Graphics will provide Customer updates
and technical support for the Products, at the Customer site(s) for which support is purchased, in accordance with Mentor
Graphics’ then current End-User Support Terms located at http://supportnet.mentor.com/about/legal/.

7. AUTOMATIC CHECK FOR UPDATES; PRIVACY. Technological measures in Software may communicate with servers
of Mentor Graphics or its contractors for the purpose of checking for and notifying the user of updates and to ensure that the
Software in use is licensed in compliance with this Agreement. Mentor Graphics will not collect any personally identifiable data
in this process and will not disclose any data collected to any third party without the prior written consent of Customer, except to
Mentor Graphics’ outside attorneys or as may be required by a court of competent jurisdiction.

8. LIMITED WARRANTY.

8.1. Mentor Graphics warrants that during the warranty period its standard, generally supported Products, when properly
installed, will substantially conform to the functional specifications set forth in the applicable user manual. Mentor
Graphics does not warrant that Products will meet Customer’s requirements or that operation of Products will be
uninterrupted or error free. The warranty period is 90 days starting on the 15th day after delivery or upon installation,
whichever first occurs. Customer must notify Mentor Graphics in writing of any nonconformity within the warranty period.
For the avoidance of doubt, this warranty applies only to the initial shipment of Software under an Order and does not
renew or reset, for example, with the delivery of (a) Software updates or (b) authorization codes or alternate Software under
a transaction involving Software re-mix. This warranty shall not be valid if Products have been subject to misuse,
unauthorized modification or improper installation. MENTOR GRAPHICS’ ENTIRE LIABILITY AND CUSTOMER’S
EXCLUSIVE REMEDY SHALL BE, AT MENTOR GRAPHICS’ OPTION, EITHER (A) REFUND OF THE PRICE
PAID UPON RETURN OF THE PRODUCTS TO MENTOR GRAPHICS OR (B) MODIFICATION OR
REPLACEMENT OF THE PRODUCTS THAT DO NOT MEET THIS LIMITED WARRANTY, PROVIDED
CUSTOMER HAS OTHERWISE COMPLIED WITH THIS AGREEMENT. MENTOR GRAPHICS MAKES NO
WARRANTIES WITH RESPECT TO: (A) SERVICES; (B) PRODUCTS PROVIDED AT NO CHARGE; OR (C) BETA
CODE; ALL OF WHICH ARE PROVIDED “AS IS.”

8.2. THE WARRANTIES SET FORTH IN THIS SECTION 8 ARE EXCLUSIVE. NEITHER MENTOR GRAPHICS NOR
ITS LICENSORS MAKE ANY OTHER WARRANTIES EXPRESS, IMPLIED OR STATUTORY, WITH RESPECT TO
PRODUCTS PROVIDED UNDER THIS AGREEMENT. MENTOR GRAPHICS AND ITS LICENSORS
SPECIFICALLY DISCLAIM ALL IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NON-INFRINGEMENT OF INTELLECTUAL PROPERTY.

9. LIMITATION OF LIABILITY. EXCEPT WHERE THIS EXCLUSION OR RESTRICTION OF LIABILITY WOULD BE
VOID OR INEFFECTIVE UNDER APPLICABLE LAW, IN NO EVENT SHALL MENTOR GRAPHICS OR ITS
LICENSORS BE LIABLE FOR INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES (INCLUDING
LOST PROFITS OR SAVINGS) WHETHER BASED ON CONTRACT, TORT OR ANY OTHER LEGAL THEORY, EVEN
IF MENTOR GRAPHICS OR ITS LICENSORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. IN
NO EVENT SHALL MENTOR GRAPHICS’ OR ITS LICENSORS’ LIABILITY UNDER THIS AGREEMENT EXCEED
THE AMOUNT RECEIVED FROM CUSTOMER FOR THE HARDWARE, SOFTWARE LICENSE OR SERVICE GIVING
RISE TO THE CLAIM. IN THE CASE WHERE NO AMOUNT WAS PAID, MENTOR GRAPHICS AND ITS LICENSORS
SHALL HAVE NO LIABILITY FOR ANY DAMAGES WHATSOEVER. THE PROVISIONS OF THIS SECTION 9 SHALL
SURVIVE THE TERMINATION OF THIS AGREEMENT.

10. HAZARDOUS APPLICATIONS. CUSTOMER ACKNOWLEDGES IT IS SOLELY RESPONSIBLE FOR TESTING ITS
PRODUCTS USED IN APPLICATIONS WHERE THE FAILURE OR INACCURACY OF ITS PRODUCTS MIGHT
RESULT IN DEATH OR PERSONAL INJURY (“HAZARDOUS APPLICATIONS”). NEITHER MENTOR GRAPHICS
NOR ITS LICENSORS SHALL BE LIABLE FOR ANY DAMAGES RESULTING FROM OR IN CONNECTION WITH
THE USE OF MENTOR GRAPHICS PRODUCTS IN OR FOR HAZARDOUS APPLICATIONS. THE PROVISIONS OF
THIS SECTION 10 SHALL SURVIVE THE TERMINATION OF THIS AGREEMENT.

11. INDEMNIFICATION. CUSTOMER AGREES TO INDEMNIFY AND HOLD HARMLESS MENTOR GRAPHICS AND
ITS LICENSORS FROM ANY CLAIMS, LOSS, COST, DAMAGE, EXPENSE OR LIABILITY, INCLUDING
ATTORNEYS’ FEES, ARISING OUT OF OR IN CONNECTION WITH THE USE OF PRODUCTS AS DESCRIBED IN
SECTION 10. THE PROVISIONS OF THIS SECTION 11 SHALL SURVIVE THE TERMINATION OF THIS
AGREEMENT.

12. INFRINGEMENT.

12.1. Mentor Graphics will defend or settle, at its option and expense, any action brought against Customer in the United States,
Canada, Japan, or member state of the European Union which alleges that any standard, generally supported Product
acquired by Customer hereunder infringes a patent or copyright or misappropriates a trade secret in such jurisdiction.
Mentor Graphics will pay costs and damages finally awarded against Customer that are attributable to the action. Customer
understands and agrees that as conditions to Mentor Graphics’ obligations under this section Customer must: (a) notify
Mentor Graphics promptly in writing of the action; (b) provide Mentor Graphics all reasonable information and assistance

http://supportnet.mentor.com/about/legal/

to settle or defend the action; and (c) grant Mentor Graphics sole authority and control of the defense or settlement of the
action.

12.2. If a claim is made under Subsection 12.1 Mentor Graphics may, at its option and expense, (a) replace or modify the Product
so that it becomes noninfringing; (b) procure for Customer the right to continue using the Product; or (c) require the return
of the Product and refund to Customer any purchase price or license fee paid, less a reasonable allowance for use.

12.3. Mentor Graphics has no liability to Customer if the action is based upon: (a) the combination of Software or hardware with
any product not furnished by Mentor Graphics; (b) the modification of the Product other than by Mentor Graphics; (c) the
use of other than a current unaltered release of Software; (d) the use of the Product as part of an infringing process; (e) a
product that Customer makes, uses, or sells; (f) any Beta Code or Product provided at no charge; (g) any software provided
by Mentor Graphics’ licensors who do not provide such indemnification to Mentor Graphics’ customers; or
(h) infringement by Customer that is deemed willful. In the case of (h), Customer shall reimburse Mentor Graphics for its
reasonable attorney fees and other costs related to the action.

12.4. THIS SECTION 12 IS SUBJECT TO SECTION 9 ABOVE AND STATES THE ENTIRE LIABILITY OF MENTOR
GRAPHICS AND ITS LICENSORS FOR DEFENSE, SETTLEMENT AND DAMAGES, AND CUSTOMER’S SOLE
AND EXCLUSIVE REMEDY, WITH RESPECT TO ANY ALLEGED PATENT OR COPYRIGHT INFRINGEMENT
OR TRADE SECRET MISAPPROPRIATION BY ANY PRODUCT PROVIDED UNDER THIS AGREEMENT.

13. TERMINATION AND EFFECT OF TERMINATION. If a Software license was provided for limited term use, such license
will automatically terminate at the end of the authorized term.

13.1. Mentor Graphics may terminate this Agreement and/or any license granted under this Agreement immediately upon written
notice if Customer: (a) exceeds the scope of the license or otherwise fails to comply with the licensing or confidentiality
provisions of this Agreement, or (b) becomes insolvent, files a bankruptcy petition, institutes proceedings for liquidation or
winding up or enters into an agreement to assign its assets for the benefit of creditors. For any other material breach of any
provision of this Agreement, Mentor Graphics may terminate this Agreement and/or any license granted under this
Agreement upon 30 days written notice if Customer fails to cure the breach within the 30 day notice period. Termination of
this Agreement or any license granted hereunder will not affect Customer’s obligation to pay for Products shipped or
licenses granted prior to the termination, which amounts shall be payable immediately upon the date of termination.

13.2. Upon termination of this Agreement, the rights and obligations of the parties shall cease except as expressly set forth in this
Agreement. Upon termination, Customer shall ensure that all use of the affected Products ceases, and shall return hardware
and either return to Mentor Graphics or destroy Software in Customer’s possession, including all copies and
documentation, and certify in writing to Mentor Graphics within ten business days of the termination date that Customer no
longer possesses any of the affected Products or copies of Software in any form.

14. EXPORT. The Products provided hereunder are subject to regulation by local laws and United States government agencies,
which prohibit export or diversion of certain products and information about the products to certain countries and certain
persons. Customer agrees that it will not export Products in any manner without first obtaining all necessary approval from
appropriate local and United States government agencies.

15. U.S. GOVERNMENT LICENSE RIGHTS. Software was developed entirely at private expense. All Software is commercial
computer software within the meaning of the applicable acquisition regulations. Accordingly, pursuant to US FAR 48 CFR
12.212 and DFAR 48 CFR 227.7202, use, duplication and disclosure of the Software by or for the U.S. Government or a U.S.
Government subcontractor is subject solely to the terms and conditions set forth in this Agreement, except for provisions which
are contrary to applicable mandatory federal laws.

16. THIRD PARTY BENEFICIARY. Mentor Graphics Corporation, Mentor Graphics (Ireland) Limited, Microsoft Corporation
and other licensors may be third party beneficiaries of this Agreement with the right to enforce the obligations set forth herein.

17. REVIEW OF LICENSE USAGE. Customer will monitor the access to and use of Software. With prior written notice and
during Customer’s normal business hours, Mentor Graphics may engage an internationally recognized accounting firm to
review Customer’s software monitoring system and records deemed relevant by the internationally recognized accounting firm
to confirm Customer’s compliance with the terms of this Agreement or U.S. or other local export laws. Such review may include
FLEXlm or FLEXnet (or successor product) report log files that Customer shall capture and provide at Mentor Graphics’
request. Customer shall make records available in electronic format and shall fully cooperate with data gathering to support the
license review. Mentor Graphics shall bear the expense of any such review unless a material non-compliance is revealed. Mentor
Graphics shall treat as confidential information all information gained as a result of any request or review and shall only use or
disclose such information as required by law or to enforce its rights under this Agreement. The provisions of this Section 17
shall survive the termination of this Agreement.

18. CONTROLLING LAW, JURISDICTION AND DISPUTE RESOLUTION. The owners of certain Mentor Graphics
intellectual property licensed under this Agreement are located in Ireland and the United States. To promote consistency around
the world, disputes shall be resolved as follows: excluding conflict of laws rules, this Agreement shall be governed by and
construed under the laws of the State of Oregon, USA, if Customer is located in North or South America, and the laws of Ireland
if Customer is located outside of North or South America. All disputes arising out of or in relation to this Agreement shall be
submitted to the exclusive jurisdiction of the courts of Portland, Oregon when the laws of Oregon apply, or Dublin, Ireland when
the laws of Ireland apply. Notwithstanding the foregoing, all disputes in Asia arising out of or in relation to this Agreement shall
be resolved by arbitration in Singapore before a single arbitrator to be appointed by the chairman of the Singapore International

Arbitration Centre (“SIAC”) to be conducted in the English language, in accordance with the Arbitration Rules of the SIAC in
effect at the time of the dispute, which rules are deemed to be incorporated by reference in this section. This section shall not
restrict Mentor Graphics’ right to bring an action against Customer in the jurisdiction where Customer’s place of business is
located. The United Nations Convention on Contracts for the International Sale of Goods does not apply to this Agreement.

19. SEVERABILITY. If any provision of this Agreement is held by a court of competent jurisdiction to be void, invalid,
unenforceable or illegal, such provision shall be severed from this Agreement and the remaining provisions will remain in full
force and effect.

20. MISCELLANEOUS. This Agreement contains the parties’ entire understanding relating to its subject matter and supersedes all
prior or contemporaneous agreements, including but not limited to any purchase order terms and conditions. Some Software
may contain code distributed under a third party license agreement that may provide additional rights to Customer. Please see
the applicable Software documentation for details. This Agreement may only be modified in writing by authorized
representatives of the parties. Waiver of terms or excuse of breach must be in writing and shall not constitute subsequent
consent, waiver or excuse.

Rev. 100615, Part No. 246066

	Table of Contents
	List of Tables
	Chapter 1 HDS Library Contents API
	Introduction
	API Command Modes
	Accessing the Console
	Document Conventions

	Command Basics
	Example Scripts
	Generated HDL File Paths
	Reporting VHDL Packages Directly Referenced by a Library
	Reporting Verilog Include Files
	Simple Design Hierarchy Traversal
	Robust Design Hierarchy Traversal
	Design Hierarchy and Frames
	Design Hierarchy and VHDL Configurations
	Pruning the Hierarchy
	Finding the Compilation Order

	Chapter 2 HDS Tcl API Command Reference
	Pre-Defined Commands
	General Commands
	addLibraryMapping
	configureProperties
	getDesignUnitFiles
	getLibrarriesRootDirectory
	getLibraryMacroDefinitions
	getLibrarySearchPath
	getLibraryVerilogIncludeSearchPath
	getVerilogIncludeSearchPath
	invokeGUI ()
	setBlackBoxFile
	setDefaultView
	setDontTouchFile
	setLibrariesRootDirectory
	setLibraryMacroDefinitions
	setLibrarySearchPath
	setLibraryVerilogIncludeSearchPath
	setPolicyLocation
	setRulesetLocation
	setVerilogIncludeSearchPath
	unsetBlackBoxFile
	unsetDontTouchFile
	DesignChecker Commands
	disableDumpCodeSnippet()
	disableFilterAssocViolation()
	enableDumpCodeSnippet ()
	enableFilterAssocViolation ()
	setCheckedFileDUsReport
	setCheckedFileDUsReportContents
	setExclusionReport
	setExclusionReportContents
	setRulesCheckedReport
	setSnippetLinesAfter
	setSnippetLinesBefore
	HDL2Graphics Commands
	runH2G
	runHdlImport
	runHtmlExport
	setupH2G
	setupHdlImport
	setupHtmlExport
	Batch Mode Tasks
	runTask
	setCompileAlways (enable)
	setupTask (args)
	Generation Commands
	runConfigGenerate
	runGenerate
	setupGenerate
	Library Commands
	library names()
	library open
	Version Management Commands
	runVMChangeLock
	runVMCheckIn
	runVMCheckOut
	runVMGet
	runVMHistory
	runVMLabel
	runVMSynchronize (args)
	runVMUndoCheckOut
	setupVM
	setupVMChangeLock
	setupVMCheckIn
	setupVMCheckOut
	setupVMGet
	setupVMHierarchy
	setupVMLabel
	setupVMSynchronize

	Dynamically Created Commands
	Command Structure
	HDS objects
	Option
	Command list
	architecture object commands
	blockFrame object commands
	caseFrame object commands
	configuration object commands
	declaration object commands
	elseFrame object commands
	embeddedFrame object commands
	entity option object commands
	file object commands
	forFrame object commands
	frameConfiguration object commands
	frame object commands
	ifFrame object commands
	instance object commands
	library object commands
	machineFrame object commands
	packageHeader object commands
	packageBody object commands

	Command List

	Index
	End-User License Agreement
	Documentation Feedback

