
© 1996-2011 Mentor Graphics Corporation
All rights reserved.

This document contains information that is proprietary to Mentor Graphics Corporation. The original recipient of this
document may duplicate this document in whole or in part for internal business purposes only, provided that this entire
notice appears in all copies. In duplicating any part of this document, the recipient agrees to make every reasonable
effort to prevent the unauthorized use and distribution of the proprietary information.

Graphical Editors User Manual
for the HDL Designer Series

Software Version 2010.3

June, 2011

This document is for information and instruction purposes. Mentor Graphics reserves the right to make
changes in specifications and other information contained in this publication without prior notice, and the
reader should, in all cases, consult Mentor Graphics to determine whether any changes have been
made.

The terms and conditions governing the sale and licensing of Mentor Graphics products are set forth in
written agreements between Mentor Graphics and its customers. No representation or other affirmation
of fact contained in this publication shall be deemed to be a warranty or give rise to any liability of Mentor
Graphics whatsoever.

MENTOR GRAPHICS MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE.

MENTOR GRAPHICS SHALL NOT BE LIABLE FOR ANY INCIDENTAL, INDIRECT, SPECIAL, OR
CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING BUT NOT LIMITED TO LOST PROFITS)
ARISING OUT OF OR RELATED TO THIS PUBLICATION OR THE INFORMATION CONTAINED IN IT,
EVEN IF MENTOR GRAPHICS CORPORATION HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

RESTRICTED RIGHTS LEGEND 03/97

U.S. Government Restricted Rights. The SOFTWARE and documentation have been developed entirely
at private expense and are commercial computer software provided with restricted rights. Use,
duplication or disclosure by the U.S. Government or a U.S. Government subcontractor is subject to the
restrictions set forth in the license agreement provided with the software pursuant to DFARS 227.7202-
3(a) or as set forth in subparagraph (c)(1) and (2) of the Commercial Computer Software - Restricted
Rights clause at FAR 52.227-19, as applicable.

Contractor/manufacturer is:
Mentor Graphics Corporation

8005 S.W. Boeckman Road, Wilsonville, Oregon 97070-7777.
Telephone: 503.685.7000

Toll-Free Telephone: 800.592.2210
Website: www.mentor.com

SupportNet: supportnet.mentor.com/
Send Feedback on Documentation: supportnet.mentor.com/user/feedback_form.cfm

TRADEMARKS: The trademarks, logos and service marks ("Marks") used herein are the property of
Mentor Graphics Corporation or other third parties. No one is permitted to use these Marks without the
prior written consent of Mentor Graphics or the respective third-party owner. The use herein of a third-
party Mark is not an attempt to indicate Mentor Graphics as a source of a product, but is intended to
indicate a product from, or associated with, a particular third party. A current list of Mentor Graphics’
trademarks may be viewed at: www.mentor.com/terms_conditions/trademarks.cfm.

http://www.mentor.com
http://supportnet.mentor.com/
http://supportnet.mentor.com/user/feedback_form.cfm
http://www.mentor.com/terms_conditions/trademarks.cfm

Graphical Editors User Manual, V2010.3 3
June, 2011

Table of Contents

Chapter 1
Introduction. 17

The Design Creation Editors . 18
DesignPad Text Editor . 18
Block Diagram and IBD View Editors . 18
Component Interface Editor . 18
State Diagram and Algorithmic State Machine Editors . 18
Flow Chart Editor . 18
Truth Table Editor. 19

Editor Windows . 19
The Menu Bar . 19
Toolbars . 20

Standard Toolbar . 20
Keyboard Shortcuts. 21

Mnemonic Keys . 22
Command Auto-repeat . 22
Strokes . 22

Common Features . 23
Setting the Hardware Description Language . 23
Setting Package References . 23

Example VHDL Package List . 25
Setting Compiler Directives . 26
Formatting Text . 27

Format Text Toolbar. 27
Opening the Parent View . 28

Editing the Parent Interface . 28
Using the Same Window . 29
Saving Graphic Editor Views . 29

Automatic Backup and Recovery. 31
Saving the Window Position and Size . 32

Editing Object Properties . 32
Redrawing a Window . 32
Undo and Redo . 32
Selecting Objects . 33
Copying and Pasting Objects . 34
Deleting Objects . 34
Finding and Replacing Text Strings . 35

More Search Options . 35
Replacing a Text String . 37

Object Linking and Embedding . 38
Using Drag and Drop . 40
Opening an OLE View . 41

Table of Contents

4
June, 2011

Graphical Editors User Manual, V2010.3

Generating HDL. 41
VHDL Component Declarations. 44
Setting a Black Box for Synthesis . 44
Viewing the Generated HDL . 44

Chapter 2
Graphical Editor Windows . 47

Diagram Editor Windows . 48
Setting Preferences for Diagram Views . 48
Setting Diagram Master Preferences . 49
Setting Background Preferences . 50
Moving and Copying Diagram Objects . 51
Resizing Objects . 53
Arranging Objects. 53

Arrange Object Toolbar . 53
Aligning or Distributing Objects . 54
Rotating and Flipping Objects . 54
Layering Comment Text and Graphics . 55
Grouping Comment Text and Graphics . 55

Adding Comment Text . 56
Editing Text Properties. 58

Adding Requirement Reference Object . 59
Pasting in Editor . 61
Pasting in Design Browser . 63

Editing Text on a Diagram . 64
Text Editing Shortcuts . 65

Editing Text in the Text Editor . 66
Moving Text . 67
Changing Text Visibility . 68
Adding Comment Graphics . 72

Comment Graphics Toolbar . 72
Adding a Line or Polyline . 74
Adding an Arc . 75
Adding a Rectangle or Polygon . 75
Adding an Ellipse or Circle . 76
Adding a Bitmap. 76

Adding a Title Block. 77
Displaying Object Information . 78
Panels . 78

Adding a Panel . 79
Editing Panel Object Properties . 79
Displaying a Panel . 80
Viewing a Panel . 80
Protecting Panels . 81
Deleting a Panel . 81
Printing a Panel. 81

Editing Route Points . 82
Setting Visual Attributes. 83

Table of Contents

Graphical Editors User Manual, V2010.3 5
June, 2011

Appearance Toolbar . 84
Setting Color Attributes . 85

Toggling the Grid Visibility and Snapping. 86
Changing the Diagram View . 86

Table Editor Windows . 87
Setting Preferences for Table Views. 87
Selecting Table Cells . 88
Editing a Table Cell . 88
Changing the Table View . 89
Resizing a Column or Row. 90
Exporting a Table . 90

The Diagram Browser . 91
Browsing Diagram Structure . 92
Browsing Diagram Content . 94

Changing the Columns in the Content Pane. 96
Sorting the Content Pane . 97
Using Groups in the Content Pane . 97

Using Flow Help . 98
Signals Table . 99

Signals Table Notation . 100
Signal Declaration Columns. 101
Signals Table Toolbars . 101

Adding Port or Local Signal Declarations . 102
Adding Comments to a Port or Local Signal Declaration . 103
Resizing Columns . 104
Hiding Columns . 105
Filtering Columns . 105
Grouping Signal Rows . 105
Sorting Signal Rows . 107

Chapter 3
Block Diagram and IBD Views . 109

Editing Block Diagram and IBD Views . 110
Adding Blocks and Components . 110

Assigning Automatic Instance Names . 111
Instantiating a Block . 111
Instantiating a Component . 112

Instantiating Verilog 2005 or System Verilog3.0 Text Components 114
Instantiating a ModuleWare Component . 116
Instantiating an External HDL Model . 120
Using a Soft Pathname for External HDL . 123
Updating an External HDL Model . 124

Adding an Embedded Block . 124
Opening an Embedded View . 125
Adding Embedded HDL Text . 126

Updating an Instance. 127
Reconciling Interfaces . 128

Checking the Design . 131

Table of Contents

6
June, 2011

Graphical Editors User Manual, V2010.3

Checking Through Hierarchy . 132
Editing Object Properties. 133

Editing Component Properties . 133
Editing Component Generics and Parameters . 134
Editing Component Text Visibility . 135
Editing Component Port map Frame . 136
Setting Component Attributes and Embedded Constraints . 138
Modifying Component Appearance . 138

Editing Block Properties . 139
Editing Block Generics and Parameters . 140
Modifying Block Port Ordering . 140
Setting Block Attributes and Embedded Constraints . 141
Setting Block Appearance . 141

Editing Embedded Block Properties. 143
Editing Embedded Blocks HDL Text. 144
Modifying Embedded Blocks Text Appearance . 144
Modifying Embedded Blocks Text Box Appearance. 144
Modifying Embedded Blocks Appearance. 144

Editing ModuleWare Properties . 145
Editing Moduleware Port map Frames. 146
Setting ModuleWare Attributes and Embedded Constraints . 146

Editing External IPs Properties. 146
Editing External IP Generics . 147
Editing External IP Text Visibility. 147
Editing External IP Port map Frame . 147
Setting External IP Attributes and Embedded Constraints. 147
Modifying External IP Appearance . 148

Editing Bundle Properties . 148
Modifying Bundle Appearance . 149

Editing Signal Properties . 149
Editing VHDL Signal Declarations . 150
Editing Verilog Signal Declarations. 152
Editing Signal Text Visibility. 153
Setting Signal Attributes and Embedded Constraints . 154
Editing Signal Comments. 155
Modifying Signal Appearance . 155

Editing Port IOs Properties . 156
Editing Port IO Text Visibility . 156
Modifying Port IO Appearance . 157

Editing Frame Properties . 157
Modifying Frame Appearance . 157

Editing Comment Text Properties . 158
Modifying Comment Text Appearance . 158
Modifying Comment Text Box Appearance . 158

Editing Requirement Reference Properties. 158
Modifying Requirement Reference Text Appearance . 159

Editing Comment Graphics Properties . 160
Editing User Declarations . 161
Editing User Properties . 162

Table of Contents

Graphical Editors User Manual, V2010.3 7
June, 2011

Setting the Scope for Net Changes . 162
Adding Comments to a Signal or Port Declaration . 163
Setting Attributes and Embedded Constraints . 165

Propagating Net Changes. 166
Inserting and Removing Nets . 169

Ordering Port and Signal Declarations . 171
Adding or Removing Design Hierarchy . 172
Generics and Parameters . 174

Generics and Parameters Tables . 176
Accessing the Generics or Parameters Table . 176
Generics Table Controls . 177
Parameters Table Controls . 178
Using the Generics and Parameters Table . 179
Related Topics . 184

Defining Generics and Parameters . 184
Defining Generics for Components and Blocks. 184
Defining Parameters for Components and Blocks . 185

Editing Generics and Parameters for Instances . 186
Editing VHDL Generic Values for Instances. 187
Editing Verilog Parameter Values for Instances . 189

Generics and Parameters Synchronization . 192
Related Topics . 194

Opening Block and Component Views . 194
View Initialization . 195
Setting the Default View. 196

Mixed Language Designs . 196
VHDL Instantiation of Verilog Components . 197
Verilog Instantiation of VHDL Components . 198

Chapter 4
Block Diagram Editor. 199

Block Diagrams . 200
Block Diagram Notation . 201
Blocks and Components . 202
Embedded Blocks and Embedded Views . 203
Signals, Buses and Bundles . 204
Ports and Signals. 205
Changing the Display of Port Properties . 206
Changing the Display of Signal Properties. 208
Block Diagram Editor Toolbar . 211

Adding Nets on a Block Diagram . 212
Routing Nets . 212
Adding a Signal or Bus on a Block Diagram . 213
Ripping from a Bus. 215
Adding Signal Stubs on a Block Diagram . 217
Adding a Bundle on a Block Diagram . 217
Adding Signals to a Bundle . 218
Ripping from a Bundle . 218

Table of Contents

8
June, 2011

Graphical Editors User Manual, V2010.3

Using HDL Text to Combine or Split Signals . 220
Adding Ports on a Block Diagram . 220

Adding Ports to Existing Nets . 221
Adding Ports from a Component . 221
Changing the Mode of a Port . 221
Rotating a Port . 222
Rotating Signal Names . 222

Adding a Global Connector on a Block Diagram. 222
Connecting Overlapping Nets. 222
Connecting Nets to a Block or Component . 223

VHDL Port Mapping . 224
Connecting Nets to a Port Map Frame . 225
Highlighting a Net on a Block Diagram . 225

Logic Shape Notation . 227
Changing the Shape of a Block or Component. 228

Choosing a Standard Shape . 229
Hiding Ports on a Block or Component . 230
Indicating Not or Clocked Ports . 231

Setting Block Diagram Preferences . 231

Chapter 5
IBD View Editor . 245

Interface-Based Design . 246
New Design Creation Flow. 246
Code Re_Use Flow . 247
Design Assembly Flow. 248

IBD Working Environment . 250
IBD View Matrix . 250
IBD View Toolbar . 251

Getting Designs into IBD Editor . 252
Working on a Previously Created HDS Design . 252
Creating a New Design View . 253

Adding Design Elements . 253
Adding Components . 254
Adding Blocks . 255
Adding Embedded Blocks . 255
Adding Nets . 256

Adding a Signal or Bus. 256
Adding Ports . 257
Adding a Net Slice . 257
Adding Generate Frames . 257

Using Generate Frames for Repeating Instances . 258
Using Generate Frames for Repeating Structures . 259
Using Generate Frames for Conditional Structures . 259
Using a BLOCK Generate Frame. 259

Adding Requirements References. 259
Connecting Design Elements. 261

Connecting Nets to Component Ports. 261

Table of Contents

Graphical Editors User Manual, V2010.3 9
June, 2011

Connecting Existing Nets: Net_Centric_Connection Approach 261
Connecting Ports: Port_Centric_Connection Approach. 262

Mapping Expressions or Function Calls to Component Ports . 263
Another Port_Centric_Connection Convention . 265

Organizing View Layout . 266
Expanding and Collapsing IBD Views . 266
Moving Rows and Columns in an IBD View . 267
Sorting Rows and Columns in an IBD View . 267
Grouping IBD Rows and Columns . 267
Showing/Hiding Columns in an IBD View . 267
Adding Bundles to your IBD view . 268
Adding Net/Component Comments . 269
Adding Property Columns/Rows . 269

Creating Filtered Views of the Design. 269
Defining Filter Settings and Logic . 270
Creating Persistent Subset Views of the Design. 270
Pruning IBD Designs . 272

Filtering Nets in an IBD view . 272
Filtering Components in an IBD View . 273

Managing Design Hierarchy . 274
Adding a Level of Hierarchy . 274
Flattening Design Hierarchy . 275

Checking a Design in IBD Editor . 276
Generating HDL from IBD views . 276

Controlling the Generated HDL Code . 276
Setting Generation Order . 276
Setting the Style of the VHDL or Verilog code . 277
Setting the Generation Hierarchy Level . 277

Enforcing Generation . 278
Cross Referencing Generation Errors . 278

Setting a Black Box for Synthesis . 278
Documenting IBD Design Views . 279

Creating Visualization Views . 279
Exporting to HTML . 280
Exporting to TSV or CSV Files . 280
Compiler Directives . 281

Setting IBD Preferences. 281

Chapter 6
Port Map and Generate Frames . 283

Port Map Frames . 283
Adding a Port Map Frame. 283
Editing a Port Map . 284

VHDL Port Map Example . 285
Verilog Port Map Example. 286

Generate Frames . 287
Adding a Generate Frame . 288
Using Generate Frames for Repeating Instances . 289

Table of Contents

10
June, 2011

Graphical Editors User Manual, V2010.3

Using Generate Frames for Repeating Structures. 291
Using Generate Frames for Conditional Structures . 292
Using a BLOCK Generate Frame. 296
Using Nested Generate Frames. 298
Editing Generate Frame Properties. 302

Chapter 7
Component Interface Views. 305

Opening a Component Interface . 305
Tabular IO and Symbol Views . 306

Tabular IO Notation. 307
Hiding Columns . 308
Filtering Columns . 309
Tabular IO Toolbar . 310
Sorting the Rows in a Tabular IO View . 311
Adding Ports in the Tabular IO View. 311
Grouping Port Rows . 312
Setting Visual Attributes in the Tabular IO View . 314

Symbol Notation . 315
Symbol Toolbar . 315
Adding Ports in the Symbol View . 316
Customizing a Symbol . 317

Editing Port Declarations. 318
Changing the Port Declaration Order . 319
Propagating Port Changes. 320
Updating Instances . 320
Adding Attributes to a Port Declaration . 321
Adding Comments to a Port Declaration . 321
Editing Symbol Generic or Parameter Declarations. 322

Editing Symbol/Interface Object Properties . 324
Editing Symbol User Declarations . 324
Editing Symbol Body Properties . 325

Setting Interface Preferences . 327

Chapter 8
Flow Chart Editor. 339

Flow Chart Notation . 340
Flow Chart Toolbar . 342
Adding Objects on a Flow Chart . 343

Adding a Start Point . 345
Adding an Action Box . 346
Adding a Decision Box. 347
Adding a Wait Box . 348
Adding a Loop . 348

Breaking Out of a Loop . 349
Adding a Case Box . 349
Adding a Flow. 351
Adding an End Point. 352

Table of Contents

Graphical Editors User Manual, V2010.3 11
June, 2011

Adding Other Objects on a Flow Chart . 352
Hierarchical Flow Charts . 352
Concurrent Flow Charts. 354

Adding a Concurrent Flow Chart . 355
Opening a Concurrent Flow Chart . 355
Renaming a Concurrent Flow Chart . 355
Deleting a Concurrent Flow Chart . 356

Editing Flow Chart Object Properties . 356
Editing Action Box Object Properties . 356
Editing Decision Box Object Properties . 358
Editing Wait Box Object Properties . 360
Editing Loop Object Properties . 362
Editing Case Object Properties . 363

Setting Flow Chart Properties . 364
Setting Flow Chart Generation Properties . 365

Sequential and Combinatorial Diagrams . 366
Clock Signal . 367
Reset Signal . 367
Sensitivity List . 367
Block Type . 368
Animation . 368

Editing Architecture or Module Declarations. 369
Editing Concurrent Statements . 370
Editing Process or Local Declarations . 372

Setting Flow Chart Preferences . 373

Chapter 9
Truth Table Editor . 377

Truth Table Notation . 379
Truth Table Toolbars . 380
Editing a Truth Table Cell . 380

Comparison Operators . 380
Adding a Column or Row . 381
Deleting a Column or Row . 381
Setting Truth Table Properties . 381

Setting Truth Table Generation Properties . 382
Sequential and Combinatorial Diagrams . 383
HDL Style. 383
Clock Signal . 384
Reset Signal . 384
Sensitivity List . 385
Full/Parallel Case . 385
Assignment Type . 385

Editing Architecture or Module Declarations. 386
Editing Concurrent Statements . 387
Editing Process or Local Declarations . 387
Editing Global Actions . 388

Case and IF Style Truth Tables . 389

Table of Contents

12
June, 2011

Graphical Editors User Manual, V2010.3

Case Style with a Single Input Expression . 390
Case Style with Multiple Input Expressions. 390

Setting Truth Table Preferences. 391

Chapter 10
Graphical Rendering . 395

Design Extraction. 395
Recovering Design Structure . 396

Recovering Verilog Parameters . 398
Recovering State Machines. 398

Recognizing State Machines . 399
Recovering Flow Charts . 399
Incremental Recovery . 401

Using the Convert to Graphics Wizard . 401
Setting Convert to Graphics View Styles . 402
Setting Libraries for Black Box Components. 403
Setting Convert to Graphics Wizard Options . 404

Setting Convert to Graphics Options . 405
Block Diagram Options . 406
Routing Options . 407
Placement Options . 408

Updating a Graphics View from Generated HDL . 409
Visualizing HDL Text as Graphical Views . 409
Block Diagram Layout and Routing . 409

Changing the Layout of a Block Diagram . 410
Automatic Routing . 410

Autoroute . 411
Autoconnect . 411
Autobundle . 411
Connect by Name . 412
Bus Reconstruction. 412

Chapter 11
Simulation and Animation . 415

Simulator Cross-Probing . 415
Simulation Toolbar . 416
Adding Signals to Simulator Windows . 418
Removing Signals from Simulator Windows . 418
Adding Signals to the Simulator Log . 419
Highlighting Signals in the Simulator . 419
Reporting Signal Information . 419
Adding and Removing Breakpoints . 419
Enabling and Disabling Breakpoints . 420
Reporting Breakpoint Status . 420
Adding and Removing Simulation Probes . 421

Setting Probe Properties . 423
Forcing Signal Values . 423

Choosing the Simulation Instance . 424

Table of Contents

Graphical Editors User Manual, V2010.3 13
June, 2011

Setting the Simulator Environment. 425
Running the Simulator . 426

Running a Simulation . 426
Stepping Through a Simulation . 426

Displaying Simulator Windows . 427
Restarting the Simulator . 427
Using the ModelSim Source Window . 427
Cross-Probing from ModelSim. 428

State Diagram and Flow Chart Animation. 431
Animation Toolbar . 432
Enabling Data Capture . 433
Setting the Activity Trail . 434
Graphical Highlighting . 435
Reviewing Animation . 436
Linking Diagrams for Animation . 437
Mixed Language Animation . 437

Chapter 12
Using a Test Bench . 439

Test Benches . 439
Creating a Test Bench . 440
Defining Stimulus . 441

Using ModuleWare Stimulus Generator Parts . 441
Defining Stimulus on a Flow Chart . 441

Wait Statements . 442
Loop Statements . 443
Case Statements . 443

Defining Stimulus using Lookup Tables . 443
Defining Stimulus using TextIO. 444
Defining Stimulus using a State Machine. 446
Generating a Clock using HDL Statements . 446

Analyzing Results . 447
Re-using a Test Bench . 448

Glossary

Index 475

Index

End-User License Agreement

Graphical Editors User Manual, V2010.3 14
June, 2011

List of Tables

Table 1-1. Standard Toolbar . 20
Table 1-2. Format Text Toolbar . 27
Table 2-1. Arrange Object Toolbar . 53
Table 2-2. Text Editing Shortcuts . 65
Table 2-3. Comment Graphics Toolbar . 72
Table 2-4. Comment Graphics Palettes . 72
Table 2-5. Comment Graphics Menu Commands . 73
Table 2-6. Appearance Toolbar . 84
Table 2-7. Appearance Palettes . 85
Table 2-8. Structure Navigator Notation — Block Diagram . 92
Table 2-9. Structure Navigator Notation — State Machine, ASM, Flow Chart 93
Table 2-10. Structure Navigator Notation — Symbol . 93
Table 2-11. Structure Navigator Notation — Text Objects . 94
Table 2-12. Content List Notation — Block Diagram, IBD . 95
Table 2-13. Content List Notation — Flow Chart . 95
Table 2-14. Content List Notation — State Diagram . 96
Table 2-15. Content List Notation — ASM . 96
Table 2-16. Flow Help Notation . 98
Table 2-17. Signals Table Toolbar . 101
Table 2-18. Tabular IO View Commands for Adding Port or Local Signal Declarations . . 102
Table 3-1. Block Diagram/ IBD Commands for Adding Blocks and Components 110
Table 3-2. Supported Verilog2001/System Verilog 3.0 Types . 114
Table 3-3. Generics Toolbar . 177
Table 3-4. Generics Table Content . 178
Table 3-5. Parameters Toolbar . 178
Table 3-6. Parameters Table Content . 178
Table 3-7. Object Properties — Parameters Page Controls . 191
Table 4-1. Graphical Editor and HDL Text Views Notation . 202
Table 4-2. Block Diagram Editor Toolbar . 211
Table 4-3. Block Diagram Commands for Adding Nets . 212
Table 5-1. IBD View Toolbar . 251
Table 7-1. Tabular IO Toolbar . 310
Table 7-2. Tabular IO View Commands for Adding Ports . 311
Table 7-3. Symbol Toolbar . 315
Table 7-4. Symbol View Commands for Adding Ports . 316
Table 8-1. Flow Chart Notation . 340
Table 8-2. Flow Chart Toolbar . 342
Table 8-3. Verilog Declarations . 369
Table 11-1. Simulation Toolbar Commands in State Diagram and Flow Chart Views 416
Table 11-2. Simulation Toolbar Commands in Block Diagram Views 417

List of Tables

Graphical Editors User Manual, V2010.3 15
June, 2011

Table 11-3. Simulation Toolbar Additional Commands in State Diagram 417
Table 11-4. ModelSim Main Window Commands . 428
Table 11-5. ModelSim Source Window Commands . 428
Table 11-6. ModelSim Wave Window Commands . 428
Table 11-7. ModelSim Structure Window Commands . 428
Table 11-8. ModelSim List Window Commands . 429
Table 11-9. ModelSim Signals Window Commands . 429
Table 11-10. Animation Toolbar . 432

List of Tables

16
June, 2011

Graphical Editors User Manual, V2010.3

Graphical Editors User Manual, V2010.3 17
June, 2011

Chapter 1
Introduction

This chapter introduces the HDL Designer Series graphical design creation editors, their basic
user interface and features that are common to all of the graphical editors.

The Design Creation Editors. 18
DesignPad Text Editor . 18
Block Diagram and IBD View Editors . 18
Component Interface Editor . 18
State Diagram and Algorithmic State Machine Editors . 18
Flow Chart Editor . 18
Truth Table Editor. 19

Editor Windows . 19
The Menu Bar . 19
Toolbars . 20
Keyboard Shortcuts. 21

Common Features . 23
Setting the Hardware Description Language . 23
Setting Package References . 23
Setting Compiler Directives . 26
Formatting Text . 27
Opening the Parent View . 28
Using the Same Window . 29
Saving Graphic Editor Views . 29
Editing Object Properties . 32
Redrawing a Window . 32
Undo and Redo . 32
Selecting Objects . 33
Copying and Pasting Objects . 34
Deleting Objects . 34
Finding and Replacing Text Strings . 35

Object Linking and Embedding . 38
Using Drag and Drop . 40
Opening an OLE View . 41

Generating HDL. 41
VHDL Component Declarations. 44
Setting a Black Box for Synthesis . 44
Viewing the Generated HDL . 44

Graphical Editors User Manual, V2010.318

Introduction
The Design Creation Editors

June, 2011

The Design Creation Editors
All of the HDL Designer Series tools include an integrated language sensitive HDL text editor
and may also include one or more graphical editors for opening diagram editor and table editor
views.

DesignPad Text Editor
The built-in DesignPad HDL text editor can be used for editing and viewing HDL text views
(or viewing the HDL generated from the graphical views). This editor is described in a separate
DesignPad Text Editor User Guide.

Block Diagram and IBD View Editors
The block diagram editor represents the design structure by blocks and re-usable components
connected by signals, buses or bundles. The tabular IBD view editor represents the design
structure by describing the signal interfaces between the blocks and components in the design.
Blocks and components can be defined using state diagram, ASM chart, flow chart or truth
table or HDL text views and HDL generated or compiled for individual views or hierarchies.

Component Interface Editor
The tabular IO view can be used to define component interfaces in the form of a table showing
its inputs and outputs. The symbol diagram view can be used for creating and updating the
graphical symbol used for a component on a block diagram.

State Diagram and Algorithmic State Machine Editors
The state diagram editor can be used to describe the behavior of a block or component view as a
number of states and the transitions between them. The ASM chart editor describes an
algorithmic state machine (ASM) in terms of a sequence of operations represented by flow chart
style notation. Hierarchical or concurrent state machines are supported and HDL can be
generated for the active state machine. These editors are described in a separate State Machine
Editor User Manual.

Flow Chart Editor
The flow chart diagram editor can be used to describe a block or component view in terms of
standard flow chart symbols including action boxes, decision boxes, loops, wait and case boxes.
Hierarchical or concurrent flow charts are supported and HDL can be generated for the active
flow chart.

Introduction
Editor Windows

Graphical Editors User Manual, V2010.3 19
June, 2011

Truth Table Editor
A tabular truth table editor which can be used to represent a block or component view as a
spreadsheet defining output actions as a function of input conditions or expressions. Sequential
or combinatorial HDL can be generated for the truth table using Case or If-then-else style HDL.

Editor Windows
A new window is opened for each new graphical block diagram, IBD view, state diagram, ASM
chart, flow chart, truth table or symbol including separate windows for hierarchical, concurrent
or embedded views.

Each window can be moved, resized or iconized and has its own menu bar, one or more toolbars
and a status bar. Refer to the HDL Designer Series User Manual for general information about
the graphical user interface.

You are prompted to save any changes to the active view when you close a window which is the
last open view of a diagram or table and prompted to exit from the tool if the window is the last
open window.

The Menu Bar
The following pulldown menus are provided in most graphical editor windows although some
menus or commands may not always be available:

Note
The Diagram menu is available in a diagram editor or the Table editor in a table editor.

A short message describing the associated command is displayed in the status bar when the
cursor is moved over any pulldown menu item or toolbar button. When tooltips are enabled, the
command name appears in a small window beneath the button if the cursor is held over a toolbar
button.

Many commands are also available in a context-sensitive popup menu which is displayed when
you press and release the Right mouse button.

All menu items can be accessed by a keyboard shortcut using the F10 key and the underlined
mnemonic letter. For example, to save the current view, you can use the keyboard shortcut: F10
F10 + F + S.

There are additional keyboard shortcuts defined for standard commands (such as saving a view)
using the Ctrl and Shift keys.

Graphical Editors User Manual, V2010.320

Introduction
Editor Windows

June, 2011

Commands which add an object normally repeat for you to add another similar object until you
select another command or use the Right mouse button (or the Esc key) to terminate the
command. However, you can set a preference in the General tab of the Main settings dialog box
to remain active or activate only once or you can toggle this mode for the current command by
holding down the Ctrl key while selecting the button or menu option.

Toolbars
The most commonly used commands are available from toolbars. The toolbars are normally
docked against the upper or lower edge of the active window but each toolbar can be moved
independently to an alternative edge or allowed to float freely.

Refer to “Toolbars” in the HDL Designer Series User Manual for general information about the
toolbars including procedures for “Docking and Undocking Toolbars”.

Additional toolbars are defined for tasks, HDL tools, version management and for commands
specific to each editor window. Special simulation and animation toolbars are available in the
graphical editors when a supported simulator is invoked. Refer to the HDL Designer Series
User Manual for information about the tasks, HDL tools and version management toolbars. The
other toolbars which are available in each graphical editor are described later in this manual.

Standard Toolbar
The standard toolbar in the graphical editors typically includes the buttons shown below:

The following commands are usually available from the standard toolbar which is displayed in
the block diagram, IBD view, state diagram, flow chart, truth table, tabular IO and symbol
windows:

Table 1-1. Standard Toolbar

Icon Description

Create a new view

Display the previous window when in same window mode

Display the next window when in same window mode

Introduction
Editor Windows

Graphical Editors User Manual, V2010.3 21
June, 2011

The button discloses a menu which allows you to choose the type of view to create. The
 button is available in a state diagram or flow chart window only. The , , and
 buttons are not available in truth table, tabular IO or IBD view windows.

Keyboard Shortcuts
Many commands are also available using keyboard shortcuts. Refer to “Keyboard Shortcuts” in
the HDL Designer Series User Manual for general information about keyboard shortcuts
including menu accelerator keys, dialog box shortcuts and mouse buttons.

Refer to the Quick Reference Index in the Help and Manuals tab of the HDS InfoHub for lists
of the keyboard shortcuts supported in each window. To open the InfoHub, select Help and
Manuals from the Help menu.

Open the parent view

Save all changes made to the current view

Print the current window

Export the current view to create a website

Move selection to the clipboard

Copy selection to the clipboard

Paste the contents of the clipboard

Display the Object Properties dialog box

Build a VHDL or Verilog expression

Undo the last command

Redo the last undo command

Find a specified text string

Increase the magnification of the active diagram

Decrease the magnification of the active diagram

View a specified diagram area

View the entire diagram

Table 1-1. Standard Toolbar (cont.)

Icon Description

Graphical Editors User Manual, V2010.322

Introduction
Editor Windows

June, 2011

Mnemonic Keys
Single-press keys (which correspond to the underlined mnemonic character in the menu
command) are defined to add specific objects in diagram editor windows.

Note
Note that mnemonic keys and shortcuts using the Shift key with an alphabetic character
are not available in the table editors where these keys are used to enter characters in a
table cell.

Command Auto-repeat
After adding an object in a graphical editor window using a toolbar or menu command, the
command normally repeats until you use the Esc key (or Right mouse button) to terminate the
repeating command. However, you can set a preference for the command to Remain active or
Activate only once in the General tab of the Main Settings dialog box which is displayed when
you choose Main from the Options menu.

Alternatively, you can toggle this mode for the current command by using the Ctrl key. For
example, you can use Ctrl+ to add a single panel on a diagram when auto-repeat mode is on
or to add multiple panels when auto-repeat mode is off.

Strokes
You can execute a command in a diagram editor using a stroke by simply holding the Middle
mouse button down and dragging across the window. The command to be executed is shown on
the screen while the mouse button is held down and executed when you release the button.

A further set of strokes can be performed by holding down the Shift key while dragging the
Middle mouse button.

You can cancel a stroke by returning to the starting position before releasing the Middle mouse
button or by using the Esc key.

Strokes can be enabled or disabled by setting an option in the Main Settings dialog box as
described “Setting Preferences for Diagram Views” on page 48.

Refer to the Quick Reference Index in the Help and Manuals tab of the HDS InfoHub for lists
of the supported strokes. To open the InfoHub, select Help and Manuals from the Help menu.

Note
If you use a mouse that has a wheel scrolling device, it may be necessary to modify the
mouse setup to allow use of the wheel for strokes.

Introduction
Common Features

Graphical Editors User Manual, V2010.3 23
June, 2011

Common Features
This section describes features that are available in all of the graphical editors.

Setting the Hardware Description Language
You can set the default hardware description language (VHDL or Verilog) used for new
graphical editor views from the General tab of the Main Settings dialog box which can be
displayed by choosing Main from the Options menu.

You can also override the default language by choosing VHDL or Verilog in the File Creation
wizard when you create a new graphic editor view.

Refer to “Using the Design Content Creation Wizard” in the HDL Designer Series User Manual
for information about creating design views.

When VHDL is selected, a default package list is shown on all graphical diagrams and VHDL
syntax is used in port and signal declarations. VHDL generics can be defined on a symbol or
tabular IO interface and individual generic values set for each instance in a block diagram, IBD
view, state diagram, flow chart and truth table.

When Verilog is selected, default compiler directives are shown and Verilog syntax is used in
port and signal declarations. Verilog parameters can be defined on a symbol or tabular IO
interface and individual parameter values set for each instance in a block diagram, IBD view,
state diagram, flow chart and truth table.

Setting Package References
When you are creating VHDL based designs, you can reference VHDL packages that define
VHDL types subtypes, functions, procedures or constants. These packages can be referenced at
any level of the design hierarchy and may be standard library packages containing pre-defined
VHDL type definitions or user-defined packages in your design data libraries.

The default shared project file (shared.hdp) contains mappings for all the standard packages
supplied with the HDL Designer Series tool.

You can also define your own standard packages or use an existing package supplied by another
vendor. You can create your own local packages as HDL views stored with other block or
component design unit views in a design data library or by referencing an existing external
package.

Graphical Editors User Manual, V2010.324

Introduction
Common Features

June, 2011

You can set package references for a graphic editor view by double-clicking over the package
list on a diagram, or by choosing Package References from the Diagram, Table or popup
menu to display the Package List dialog box.

The dialog box displays any existing package references that are set for the current view (or the
default packages references set in your preferences for a new view).

You can add references by selecting from the available libraries and choosing any of the
packages contained in them. The supplied package libraries include all the standard types
supported by ModelSim. Any packages contained in the currently mapped user-defined libraries
will also be available.

Library and use statements for the selected package are added to the list of package references
when you use the Add button and the updated list of references is applied to the active view
when you choose the Ok button.

You can also add packages by entering any valid library or use statements in the list or by
editing an existing library or use statement. For example, you could add a reference to the
package ieee.std_logic_unsigned then replace the suffix .all by a function name (such as
CONV_INTEGER) to explicitly add a reference:

USE ieee.std_logic_unsigned.CONV_INTEGER

You can remove references from the package list by simply deleting the reference in the dialog
box.

Introduction
Common Features

Graphical Editors User Manual, V2010.3 25
June, 2011

The package list can also be edited by direct text entry and may optionally include comments or
pragmas entered using the standard VHDL comment characters (--). The syntax is automatically
checked on entry in a diagram editor unless syntax checking has been disabled in the master
diagram preferences.

Note
Default package references can be set by choosing VHDL from the Options menu and
selecting the Default Package References tab of the VHDL Options dialog box. The
default packages are available on all editor views unless you have explicitly removed
them.

The referenced packages are parsed during VHDL generation to verify the type definitions used
in your design views.

Refer to “Setting Default Package References” in the HDL Designer Series User Manual for
information about setting default package references. The default references are included for all
views unless you have explicitly removed them.

Example VHDL Package List
The VHDL package list can be edited to include any valid LIBRARY and USE statements of
the form:

LIBRARY <library_name>;
USE <library_name>.<package_name>.<item_name>;
USE <library_name>.<package_name>.all;
USE <library_name>.all;

The package list can also include pragmas or comments prefixed by the VHDL comment
characters (--).

For example:

LIBRARY ieee;
-- Use the definition of std_logic from IEEE std_logic_1164
USE ieee.std_logic_1164.std_logic;

-- Use all contents of the IEEE std_logic_arith package
USE iee.std_logic_arith.all

-- Ignore the following package references for synthesis
-- pragma synthesis_off
LIBRARY std_developerskit;
USE std_developerskit.mempak.all;
-- pragma synthesis_all

LIBRARY my_parts; -- declare my library

Graphical Editors User Manual, V2010.326

Introduction
Common Features

June, 2011

Setting Compiler Directives
When you are creating Verilog based designs, you can insert compiler directives for the HDL
generated from any graphic editor view.

In general, a compiler directive passes information to the Verilog compiler or other downstream
tool and any directive recognized by your tools can be entered.

You can set Verilog compiler directives by double-clicking over the compiler directives list on a
diagram or by choosing Compiler Directives from the Diagram, Table or popup menu to
display the Verilog Compiler Directives dialog box listing any existing compiler directives that
are set for the current view.

Note
The Diagram menu is available in a diagram editor or the Table editor in a table editor.

The dialog box allows you to enter pre-module directives which are included in the generated
Verilog before the module keyword, post-module directives which are included after the module
keyword and end-module directives which are included at the end of the Verilog module.

The compiler directives list can also be edited by direct text entry and may optionally include
comments entered using the standard Verilog comment characters (//).

Introduction
Common Features

Graphical Editors User Manual, V2010.3 27
June, 2011

The directive syntax is automatically checked on entry in a diagram editor unless syntax
checking has been disabled in the master diagram preferences.

Refer to “Setting Default Compiler Directives” in the HDL Designer Series User Manual pr for
information about setting default compiler directives. The default directives are included for all
views unless you have explicitly removed them.

Formatting Text
You can format text in the block diagram, state diagram, flow chart, symbol and truth table
editors using the Format Text toolbar.

Format Text Toolbar
The following commands are available from the Format Text toolbar or as shortcut keys:

Note
The , and buttons are disabled in multi-line truth table cells.
The and buttons are not available in a truth table.

If multiple cells are selected in a table, the formatting for each cell is toggled when you use the
, or buttons.

The , and buttons are available to align the text when one or more cells are selected
in a table editor view and when embedded or comment text is selected on a diagram.

You can increase the font size used for the selected text by using the button or decrease the
font size using the button. When scalable fonts are selected, the size is increased (or
decreased) by one point size. For non-scalable fonts the next available font size is used.

Table 1-2. Format Text Toolbar

Button Shortcut Description

Ctrl + B Applies bold formatting to text

Ctrl + I Applies italic formatting to text

Ctrl + U Underlines selected text

none Left aligns text

none Centers text in cell

none Right aligns text

none Increases size of the selected text

none Decreases size of the selected text

Graphical Editors User Manual, V2010.328

Introduction
Common Features

June, 2011

You can change the text color used for any selected text object in a diagram editor window by
using the button in the Appearance toolbar.

The toolbar can be displayed or hidden by setting the Format Text option in the Toolbars
cascade of the View menu.

Refer to “Toolbars” on page 20 for more information about toolbars.

Opening the Parent View
You can open up into the parent view using the button, Ctrl + Shift + o shortcut or by
choosing Open Up from the popup menu or the Open cascade of the File menu in any graphic
editor window.

If the active window is a view of a block, the parent block diagram or IBD view is opened. If it
is a view of a component, the component interface is opened in the symbol or tabular IO editor.

Note
You can choose whether the tabular IO or symbol editor is used to open the component
interface by setting a preference in the Miscellaneous tab of the Symbol Master
Preferences dialog box.

In a hierarchical state machine or hierarchical flow chart, the parent state diagram or flow chart
is opened, unless you are already at the top level when the parent block diagram, IBD view,
tabular IO or symbol editor view is opened.

You cannot open up from a symbol although you can use the popup menu to open down into
any of its child views.

Editing the Parent Interface
You can edit the parent interface for any graphic editor view by choosing Interface from the
Open cascade of the File menu.

If the view in the active window has a parent block diagram or IBD view, this view is opened.

If the parent view is a block diagram it is opened with the block representing the interface to the
child view in the middle of the window.

If the view in the active window describes a component, the component interface is opened in
the symbol or tabular IO editor.

Introduction
Common Features

Graphical Editors User Manual, V2010.3 29
June, 2011

Using the Same Window
You can re-use the current window when you open up or open down into an existing view from
a graphic editor by setting the Use Same Window option in the Window menu. When this
option is checked, the related diagram or table is opened in the same window without changing
its position or size.

If the previous window has been edited and is the last open view of the diagram or table, you are
prompted whether to save your changes before the view is closed. Note however, that a new tab
is always opened when you create a concurrent view or hierarchical view for a state diagram or
flow chart.

A new tab is also used when you display alternative block diagram and IBD views (or symbol
and tabular IO views).

The window mode is saved as a preference and used as your default mode the next time you
invoke a HDL Designer Series tool.

Tip: You can temporarily change the window mode by holding down the Ctrl key when
you open the related view.
For example, Ctrl + to open up, Ctrl +double-click on object to open down or Ctrl +
menu option.

When same window mode is set, you can use the button to go back to the previous window
or the button to go forward to the next window (if a forward travel log exists).

Travel log information is only recorded when a view has been named. Therefore, if you create a
hierarchical state machine or flow chart and navigate around it without saving, no travel log
information is recorded.

If you have renamed a design unit or design unit view since it was last traversed, the travel log
will reference the old name and an error message is issued when you attempt to navigate into the
diagram or table.

Saving Graphic Editor Views
You can save the active graphic editor view by using the button, choosing Save from the
File menu or using the Ctrl + S shortcut.

If the view has not been previously saved the Save As Design Unit View dialog box is displayed
for you to enter a library name, design unit name and design unit view name. You can save an
existing view with a new library, unit or view name, by using the Save As command. However,
this option is not available in a block diagram or IBD view.

Graphical Editors User Manual, V2010.330

Introduction
Common Features

June, 2011

The current default library is automatically selected or you can choose from a list of other
Regular libraries in the active project.

You can choose from the existing design units within a library or the existing views of each
design unit. Alternatively, you can enter a new design unit or view name.

You can use any name for a library, design unit or view name but all names must be valid
identifiers for the hardware description language you are using. A two or three character
extension (.bd for a block diagram, .ibd for an IBD view, .sm for a state machine, .fc for a flow
chart or .tt for a truth table) is added automatically to identify the type of view you are saving.
For example: struct.bd or flow.fc.

If you do not specify a view name, the default names struct (for a block diagram or IBD view)
or fsm (for a state machine view), flow for a flow chart view or tbl for a truth table view are
used. These defaults can be changed by setting preferences.

The library, design unit and view name of the view is shown in the title bar (or untitled for a
new view which has not been saved). An asterisk (*) after the name in the title bar indicates that
there are changes which need to be saved.

When you save a hierarchical state machine or flow chart, child views are named after the
parent diagram and the hierarchical state that represents the child on its parent diagram.

Many hierarchical operations (for example, opening a child view or generating HDL)
automatically perform a save on the parent design unit.

Introduction
Common Features

Graphical Editors User Manual, V2010.3 31
June, 2011

Automatic Backup and Recovery
You can set preferences to control whether backup and recovery files are saved for graphic
editor views. These preferences can be set from the Save tab of the Main Settings dialog box
which is displayed when you choose Main from the Options menu in any window.

You can choose to automatically save a recovery file (for example: struct.bd.$rec) at saved at a
specified time interval (minimum one minute) if the file has been edited since it was last saved.

Note
On a Windows workstation, you can also check an option to prompt before performing an
automatic save.

You can choose to create a backup file by saving the existing version of each view (for example:
struct.bd.bak) when the view is edited. The backup files are not deleted but are overwritten each
time a view is explicitly saved.

You should not normally need to access a backup file, but it is possible to open these files after
renaming the normal file and removing the .bak extension from the backup file.

The temporary recovery files are automatically deleted when a view is saved or closed
normally. However, in the event of a power interruption or other system crash, the recovery file
is detected when you attempt to re-open the view and you can choose to open the recovery file
or to open the last normally saved file. (The unopened file is saved as a backup file in case the
chosen file has been corrupted and cannot be opened.)

Autosave for a block diagram or IBD view does not update related interface data on disk and
you may need to reconcile interfaces after recovering these views.

Graphical Editors User Manual, V2010.332

Introduction
Common Features

June, 2011

The save options are ignored for HDL text views. Save options for these views are determined
by the preferences or defaults set in the text editor. However, when a text view containing HDL
interface information exists, you can control whether the interface definition is updated when a
symbol is edited by setting Update HDL view when symbol is saved.

Unsetting this option may be useful if your text editor is not sensitive to an open file being
updated by another application. It can also be used to ensure that comments or code in the HDL
text view header are not overwritten when the symbol is saved. However, if this option is unset,
any interface changes must be made in the text file and propagated to the parent view by
updating the component instances on the parent view.

These options are saved in the master preferences file when you confirm the dialog box and are
used as default settings for the current and later sessions.

Note
Note that no backup or recovery files are written until a view has been saved.

Saving the Window Position and Size
When you save any graphic editor view, the current view, window position and size is also
saved and used when the view is next opened.

Editing Object Properties
You can edit the properties for objects in a block diagram, IBD view, state diagram, flow chart,
symbol, or tabular IO view by using the button, Alt + shortcut or by choosing
Object Properties from the Edit or popup menus when one or more objects is selected.

An Object Properties dialog box is displayed which allows you to modify the properties of the
selected objects in the diagram. Objects that do not exist in the selection set are disabled.

The Object Properties Dialog box pages or tabs are described in the appropriate sections for
each editor later in this manual.

Redrawing a Window
A graphic editor window may sometimes become cluttered after moving text objects or when
the window has been partially obscured by another application. If this occurs, you can redraw
the window by choosing Refresh from the View menu.

Undo and Redo
At any time during an edit, you can reverse the previous command by using the Undo command
in the Edit menu, the toolbar button or the Ctrl + Z shortcut. The last command which can

Introduction
Common Features

Graphical Editors User Manual, V2010.3 33
June, 2011

be undone is shown on the menu (for example, after completing a move operation, the menu
option Undo (Move) is available.

If any command cannot be undone you are warned before it is executed.

The Redo command (which also available from the Edit menu, using the toolbar button or
the Ctrl + V shortcut) allows you to restore the most recent ‘undo’ command.

Successive commands can be used to undo or redo any previous operations since the application
was invoked.

Selecting Objects
You can select objects in a diagram editor or table editor window by clicking the Left mouse
button with the cursor over the object and extend the current selection set using Shift + Left or
add objects to (or remove objects from) the selection by using Ctrl + Left.

When an object is selected, small "handles" are displayed at each vertex. Solid handles are used
for resizable objects or unfilled handles for non-resizable objects.

When there are several objects near the cursor in a diagram editor, the default select mode
selects the closest object. Typically, this means that when you click over an object with
associated text (for example, a block), the text (in this case the name text) is selected. To select
an object and its associated text, hold the Left mouse button and drag a select rectangle around
one or more objects. Any objects within (or partially within) the rectangle are included in the
select set.

Note
When you click over a signal, bus or bundle in a block diagram (or a transition in a state
diagram) the connector line is preferentially selected unless you explicitly click directly
over the associated name text.

All objects in the active graphic editor window can be selected by choosing Select All from the
Edit menu or using the Ctrl + A shortcut.

Three different selection modes are available in a diagram editor window. The default mode
(indicated by the toolbar button and cursor) selects any object.

You can change the selection mode by using the button to display a menu which allows you
to select text only (the button changes to and the cursor to) or select shapes only (the
button changes to and the cursor to).

In a block diagram or flow chart, you can use the Alt + Left keys to select an individual
segment of a net or flow. This combination can also be used with the Shift and Ctrl keys to
select multiple segments. The selected segments can then be moved or deleted independently
from other connected segments.

Graphical Editors User Manual, V2010.334

Introduction
Common Features

June, 2011

Copying and Pasting Objects
You can copy any graphic or text object in a graphic editor using the toolbar button, the
Copy command from the Edit menu or the Ctrl + C shortcut.

Alternatively, use the toolbar button, the Cut command from the Edit menu or the Ctrl + X
shortcut to move the object to the clipboard.

If any graphics objects are copied, an internal paste buffer is used. However, if any text objects
are copied (or only text objects) they are copied to the system clipboard and can be pasted into
an external application.

On a Windows PC, you can also use the Copy Picture command from the Diagram or Table
menu to copy the entire window view into the system clipboard. This command can be used to
copy a diagram or table into an external application as a Windows bitmap or enhanced metafile.

Note
The Diagram menu is available in a diagram editor or the Table editor in a table editor.

You can paste any graphic or text object that has been cut or copied to another position on the
same graphic editor view (or in another window of the same type) using the toolbar button,
the Ctrl + V shortcut or the Paste command from the Edit menu or popup menu.

Graphic objects cannot be pasted using this command to diagrams of a different type or to
another application. However, text objects can normally be pasted into any other window.

You can also use the Paste from system clipboard option which is available as a cascade from
the Paste Special option in the popup menu to explicitly paste text objects into another text
object, ignoring any graphic objects in the internal paste buffer.

When you paste a named object (such as a block or state) and the name already exists in the
diagram, the new object is given a unique name by adding an integer to the object name. (For
example: Block, Block1, Block2…). In a diagram editor, a ghosted image of the pasted object is
attached to the cursor and can be placed by dragging the mouse and clicking at the required
location.

You can also copy an object (or objects) by using the Ctrl key and dragging with the Left
mouse button or by dragging with the Right mouse button and using the Copy Here option
from the popup menu to paste a copy at the position of the cursor.

Deleting Objects
You can delete an object (or set of selected objects) from a diagram editor or table editor
window by using the Del key or choosing the Delete command from the Edit or popup menus.

Introduction
Common Features

Graphical Editors User Manual, V2010.3 35
June, 2011

Unlike the Cut command, the erased objects are not copied to the clipboard but the delete
operation can be undone during the current editing session.

When used in the All tab of an IBD view, the Del key deletes the selected row, column or text in
all tabs. When used in a partial interconnect table, it deletes the selected objects from the active
tab only. Alternatively, you can use the explicit Delete from this table or Delete from all
tables commands.

Finding and Replacing Text Strings
You can search for a text string by using the toolbar button, choosing Find from the Edit
menu or using the Ctrl + F shortcut in any graphical window. The Find and Replace dialog box
is displayed for you to specify a search string or choose from a dropdown list of text strings you
have searched for in the current session.

If a text string is selected, it is used as the default search string in the dialog box. If the text has
multiple lines, the first line is used. If the text string exceeds 40 characters, the search string is
ended by the last space character inside this limit.

When you use the Find Next button or the Enter key, the next visible or hidden text object
containing the specified string is selected.

More Search Options
Additional search options are disclosed when you use the More >> button on the dialog box or
can be hidden by using the << Less button.

You can choose the search depth from the pulldown options Current, Hierarchically or
Through Components, specify the search direction by choosing Up or Down and choose
whether to search Embedded Views.

These options apply to your design hierarchy. If a flow chart or state machine in the search
extent has hierarchical or concurrent views these are always searched. The Up or Down options
are only available when you have chosen to search Hierarchically. If you choose to search up,
the search stops when a symbol is reached.

Graphical Editors User Manual, V2010.336

Introduction
Common Features

June, 2011

You can choose to limit the search to one or more types of object by selecting from a list in the
dialog box. (Use the Clear Constraints button to clear all selections from the object list.)

If you choose to search hierarchically, the constraints list includes all possible object types. For
a non-hierarchical search, only object types for the active window are listed.

If you set the Match case option in the dialog box, a case-sensitive search is performed. For
example, if you specified the string Clk, occurrences of CLK or clk would not be found.
However, words containing Clk (such as SysClk) would be found.

You can also choose Match whole words only to restrict the search to occurrences where the
search string is a complete word.

Note
The Match whole word option is not available when the Regular Expression option is
set.

If you set the Wrap search option in the dialog box, the search repeats once all occurrences
have been found. If unset, an "End of search" message indicates when all occurrences have been
visited.

If you are searching hierarchically with wrap enabled, higher level views cannot be searched
and once the bottom level view has been reached, wrap will be performed within the leaf level
view only.

Find normally operates on simple text strings. However, if the Regular expression option is
set, you can search for a regular or class expression instead of a text string. For example, the
regular expression \<Clk_ would find all strings starting with the characters Clk_.

Introduction
Common Features

Graphical Editors User Manual, V2010.3 37
June, 2011

You can display information about the supported regular expression and class expression syntax
by using the Reg exp Syntax button.

If you set the Select related object option, the object related to the search string is selected
instead of the text string itself. For example, the signal which matches a specified search string
or the object associated with a comment text string.

When you use the Find All button, a scrollable list of matching text strings including the view
and object name is displayed in a preview window. The status indicates whether the view is
available for edit, read-only or locked by another user. You can select the actual string by
double-clicking in the preview window and automatically opening the hierarchical view if
necessary.

You can use the Select All button to select all the strings matching the specified string in the
current view. The preview window is not updated when you use this button and the search
hierarchically option is ignored.

If the search string is found outside the current window view, the window is panned so that the
object containing the string is in the middle of the window. However, no panning is performed
when the string is found within the current window view.

If the search string is not currently visible, it is made visible. If the search string is an editable
characteristic which is not normally displayed (for example, the clock signal for a state
machine), a Found dialog box is displayed indicating the text and location where it can be
edited.

Replacing a Text String
You can replace a text string by choosing Replace from the Edit menu or using the Ctrl + H
shortcut in any editor window. The Replace tab of the Find and Replace dialog box is displayed
for you to specify the search string and a new string to replace it with.

You can choose from a drop down list of previous text strings you have searched for or replaced
in the current session.

Graphical Editors User Manual, V2010.338

Introduction
Object Linking and Embedding

June, 2011

The Replace tab provides similar facilities to the Find tab with additional controls for replacing
text strings. However, it only operates for replaceable text strings and any non-replaceable
strings are ignored.

Always use the Find tab if you want to search for all occurrences of a text string. In general, any
string that can be edited in place or by using a dialog box can be replaced.

You can choose to Replace the currently selected string or Replace All strings which match the
current search constraints.

Note
Although you can choose to search for any GNU regular expression, only a literal text
string or tagged expression can be entered in the Replace With box.

If the search string is an editable characteristic which is not normally displayed (for example,
the clock signal for a state machine), a Found dialog box is displayed indicating the text and
location where it can be edited.

When the Found dialog is displayed as a result of a replace operation, you can use the Confirm
button to confirm the replacement or Cancel button to leave it unchanged.

Object Linking and Embedding
The HDL Designer Series diagram editor views (block diagram, state diagram and flow chart)
support the Windows OLE (Object Linking and Embedding) standards and can be imported into
any OLE compatible PC documentation tool including the Microsoft Office applications and
Adobe FrameMaker.

Note
The table editor views (truth table, tabular IO and IBD view) support OLE only for
documentation tools which recognize enhanced metafiles. These include the Microsoft
Office XP tools but not older versions of Word or FrameMaker. Enhanced metafiles are
also required to display vertical text in diagram editor views. If your documentation tool
does not support enhanced metafiles, you may want to rotate any vertical text in diagram
editor views to ensure that it will be correctly displayed in the documentation tool.

The interface used for importing OLE objects may vary between tools but is usually achieved
by an Insert Object or Import Object command. Most OLE compatible tools also support
direct import by "drag-and-drop". Refer to the user documentation for your documentation tool
for information about importing OLE objects into your application.

If the diagram contains panels or multiple views (such as concurrent or hierarchical state
machines) you are prompted which panel or view to insert.

Introduction
Object Linking and Embedding

Graphical Editors User Manual, V2010.3 39
June, 2011

The normal File menu and toolbar buttons for file operations are disabled when a diagram is
edited as an OLE object from within the documentation tool. These are replaced by options to
save a copy or return to the host document.

In order to import a design object using OLE, the hds.hdp project file which is used for library
mapping information must be saved in a standard location which can be accessed from the
documentation tool.

The default location is a user directory created beneath your Profiles directory. For example:

Caution
Initialization and preferences files saved in a working directory or at locations specified
by the HDS_LIBS and HDS_USER_HOME environment variables cannot be used when
you use the OLE facility.

If the embedded diagram is on a remote disk drive, you must ensure that full UNC pathnames
are used in the project file. Pathnames using a mapped external drive are not supported when
using OLE.

If a document containing an embedded or linked diagram is moved or copied to another
workstation, the diagram can only be opened if a suitably licensed HDL Designer Series
installation is available. If the document contains a linked diagram, the library containing the
diagram must be defined in the hds.hdp project file on both workstations.

C:\Winnt\Profiles\<username>\Application Data\HDL Designer Series\
C:\Windows\Profiles\<username>\Application Data\HDL Designer Series\
C:\Documents and Settings<username>\Application Data\HDL Designer Series\

Graphical Editors User Manual, V2010.340

Introduction
Object Linking and Embedding

June, 2011

Using Drag and Drop
If your documentation tool supports OLE using drag and drop (for example, Microsoft Word or
Adobe FrameMaker) you can import a diagram editor view from a graphical editor window by
simply dragging and dropping it into the documentation tool window.

Click on the vertical blue drag bar at the left of the graphic editor window using the Left mouse
button and drag with the button held down. The cursor changes to .

Introduction
Generating HDL

Graphical Editors User Manual, V2010.3 41
June, 2011

When you move over a valid destination in the documentation tool it changes to and the
graphic is inserted as an embedded object when you release the mouse button.

The entire diagram is inserted at the cursor location and may be clipped if it is larger than the
document page size. However, you can resize the diagram by dragging its resize handles within
the document window.

If the diagram contains panels (for example, Panel0 in the example below) you can choose
which panel to drag by clicking the Right mouse button over the gray border and selecting the
required panel name from the Set Drag Panel cascade of the popup menu before performing the
drag. You can also choose Set Drag Panel or reset Set Drag All from the OLE menu. The OLE
drag bar can be shown or hidden by toggling View Drag Bar in the OLE menu.

Opening an OLE View
You can open a diagram or table view from within the document tool by double-clicking on the
embedded OLE object. The normal editing capabilities are available if you have write
permissions to the source files.

If a diagram contains multiple views (such as concurrent and hierarchical flow charts or state
machines) or multiple panels you are prompted which view to edit.

If you open a tabular IO view from the OLE object, the port declaration table is normally
displayed. You can access the generics table (in a VHDL view) by using the button or
choosing Toggle Ports/Generics from the Table menu. Similarly, you can access the
parameters table (in a Verilog view) by using the button or choosing Toggle
Ports/Parameters from the Table menu. These commands are only available when the table is
opened as an OLE object.

Generating HDL
You can generate HDL from graphical views by using the button or by choosing one of
the Generate options from the Tasks menu in any window.

Graphical Editors User Manual, V2010.342

Introduction
Generating HDL

June, 2011

You can use the button to display a pulldown palette with options to run the task on a single
design level, the hierarchy through blocks, the hierarchy through component or the hierarchy
through components from the design root:

Corresponding commands are provided in the Tasks menu.

HDL is generated for any graphical views in the specified design hierarchy which have changed
since HDL was last generated. However, you can force generation by setting Set Generate
Always or Generate All (One Shot) in the Tasks menu.

Note
The generate always option remains set for the duration of the current work session
(unless unset). The one shot option takes effect on the next generate command and is then
automatically unset.

The design can include VHDL and Verilog views. Corresponding VHDL architecture and
Verilog module files are generated in a single operation.

When a design explorer window is active, you can generate HDL for the selected object (or
objects) or for the specified hierarchy of current views beneath the selected object(s).

When a block diagram or IBD view is active, you can choose to generate HDL for the hierarchy
of current views beneath the active view. If a block or component is selected, the generation
command operates on the selected object (or objects).

When a state diagram, flow chart or truth table is active, HDL is generated for the active view
only unless you choose to generate from the design root.

If you choose to generate hierarchy from the design root, HDL is generated for all objects in the
hierarchy below the design root. However, if no design root is set, HDL is generated for the
hierarchy beneath the selected or active view.

Refer to “Setting the Design Root” in the HDL Designer Series User Manual for more
information about the design root.

If no views have been defined for any block in the design hierarchy, a dummy HDL file is
generated.

Run Single

Run Through Blocks

Run Through Components

Run Through Components from the Design Root

Introduction
Generating HDL

Graphical Editors User Manual, V2010.3 43
June, 2011

If a generated file would have the same name as an existing source HDL file, a Generation File
Clash dialog box is displayed. You can choose to continue or cancel the HDL generation until
you have checked whether both files are required. If you choose to continue, the existing HDL
file is renamed with a .replaced suffix to ensure that no data is lost.

Note
A file name clash may occur when you migrate a pre-2003.1 design or if you have
converted a HDL text view to graphics and made it the default view.

The HDL is created in the generated library directory specified by the library mapping which
must exist for each library referenced by your design. Generated HDL files are given the
extension specified as a preference in the File tab of the VHDL or Verilog Options dialog box.

The VHDL entity declaration and the VHDL architecture body can be generated as a combined
file or you can choose to generate them as separate files by setting a preference in the File tab of
the VHDL Options dialog box.

When the active view is a symbol and you have chosen to combine architectures and entities in
a single file, the current view architecture is included when you generate HDL. If you have
chosen separate files, only the entity is generated. The whole module is generated if you are
using Verilog.

Refer to “Setting HDL File Options” of the HDL Designer Series User Manual for more
information about VHDL and Verilog options.

Any generation errors are reported in the Task Log window. All views in the hierarchy to be
generated must have been saved and you are prompted if any views need to be saved. Views
which have not been changed since they were last generated are not generated unless you have
set the HDL generation run options to force regeneration.

If no views need to be generated, a single dot is displayed for each processed hierarchy with a
row of dashes to represent each selected hierarchy followed by a generation completed
message.

You can set preferences to enable (or disable) HDL generation checks which carry out a full
semantic error check on the generated code and optionally also report any warnings that are
encountered.

Note
If an error is encountered during bulk parsing, the timestamp for the generated file is set
to the oldest date allowed by the system. (January 1st 1970 on UNIX or January 1st 1980
on a PC). This ensures that the generated HDL file is retained with an older timestamp
than the graphical view.

Graphical Editors User Manual, V2010.344

Introduction
Generating HDL

June, 2011

You can automatically display the generated HDL or graphics corresponding to an error
message in the Task Log window by double-clicking on the message (or by explicitly clicking
the or button).

Refer to “Task Log” in the HDL Designer Series User Manual for more information about the
Task Log window.

If your design references a user-defined VHDL package, the application checks whether it has
been compiled and compiles the package if required. Any package compilation errors are
reported in the Task Log window and must be corrected before generation can be completed
successfully.

VHDL Component Declarations
You can choose whether component declarations are created in the generated VHDL by setting
Create component declarations in the HDL menu for block diagram and IBD views.

Refer to “Setting HDL Style Options” in the HDL Designer Series User Manual for information
about using this option and setting its default.

Setting a Black Box for Synthesis
You can make the active block diagram IBD view, state diagram, flow chart or truth table a
black box for synthesis by setting the Black box for Synthesis option in the HDL menu. When
this option is set, synthesis control pragmas are included in the generated HDL so that the view
is available for simulation but is ignored for synthesis.

For Verilog, the synthesis off pragma is inserted after the input/output statements and after any
Verilog parameters declared in the symbol but before the type declarations. The synthesis on
pragma is inserted immediately before the end module statement.

For VHDL, the synthesis off pragma is inserted after the architecture header and the synthesis
on pragma after the end of the architecture.

Downstream operations (including synthesis) can also be disabled for a VHDL architecture
view by using the "don't touch" property. However, "don't touch" cannot be used for Verilog or
a combined VHDL entity and architecture view since the interface is included in the same
generated HDL file. Refer to “Disabling Downstream Operations” in the HDL Designer Series
User Manual for information about setting "don't touch" properties.

Viewing the Generated HDL
You can view the generated HDL for the active window by using the button, Ctrl + G
shortcut or choosing View Generated HDL from the HDL menu in any window. The text

Introduction
Generating HDL

Graphical Editors User Manual, V2010.3 45
June, 2011

editor is opened to display read-only views of the generated VHDL entity and architecture (or
Verilog module) for the selected object.

In a block diagram or IBD view, the generated HDL for the active window is displayed if no
blocks or components are selected. However, if one or more blocks or components are selected,
the HDL for the current views of these design units is displayed.

If an object is selected and your text editor recognizes line number arguments, the generated
HDL is opened at the line corresponding to the object. For example, if an embedded block is
selected on a block diagram, the Source window is opened to display the corresponding code in
the generated HDL for the block diagram.

You can also view the generated HDL files in the design explorer as described in the “HDL File
Modes” section of the HDL Designer Series User Manual.

Note
You should not normally edit the generated HDL since any changes will be overwritten
the next time you generate HDL for the source design unit.

Graphical Editors User Manual, V2010.346

Introduction
Generating HDL

June, 2011

Graphical Editors User Manual, V2010.3 47
June, 2011

Chapter 2
Graphical Editor Windows

This chapter describes features that are available in the diagram and table editors. Later chapters
describe features that are implemented in a particular editor.

Diagram Editor Windows . 48
Setting Preferences for Diagram Views . 48
Setting Diagram Master Preferences . 49
Moving and Copying Diagram Objects . 51
Resizing Objects . 53
Arranging Objects. 53
Adding Comment Text . 56
Adding Requirement Reference Object . 59
Editing Text on a Diagram . 64
Editing Text in the Text Editor . 66
Moving Text . 67
Changing Text Visibility . 68
Adding Comment Graphics . 72
Adding a Title Block. 77
Displaying Object Information . 78
Panels . 78
Editing Route Points . 82
Setting Visual Attributes. 83
Toggling the Grid Visibility and Snapping. 86
Changing the Diagram View . 86

Table Editor Windows. 87
Setting Preferences for Table Views. 87
Selecting Table Cells . 88
Editing a Table Cell . 88
Changing the Table View . 89
Resizing a Column or Row. 90
Exporting a Table . 90

The Diagram Browser . 91
Browsing Diagram Structure . 92
Browsing Diagram Content . 94

Signals Table . 99
Signals Table Notation . 100
Adding Port or Local Signal Declarations . 102
Adding Comments to a Port or Local Signal Declaration . 103
Resizing Columns . 104

Graphical Editors User Manual, V2010.348

Graphical Editor Windows
Diagram Editor Windows

June, 2011

Hiding Columns . 105
Filtering Columns . 105
Grouping Signal Rows . 105
Sorting Signal Rows . 107

Diagram Editor Windows
This section describes features that are available in the block diagram, flow chart, state
diagram, ASM chart and symbol diagram editors.

Setting Preferences for Diagram Views
You can set the preferences used for new diagram editor views in the Diagrams tab of the Main
Settings dialog box which is displayed when you choose Main from the Options menu in any
window.

You can change the default font by using the Set... button to choose from the fonts available on
your system.

 Scalable fonts are normally used. However, you can unset this option to use fixed size bitmap
fonts on UNIX systems or true type fonts on PC systems.

Graphical Editor Windows
Diagram Editor Windows

Graphical Editors User Manual, V2010.3 49
June, 2011

You can also choose to match the default font specified in your preferences or in saved
diagrams to the closest font available on your workstation.

You can specify the minimum number of pixel height for text visibility; if the text is less than
the specified number, then it is not visible. Similarly, you can specify the minimum number of
pixel height for text selectability; if the text is less than the specified number, then it cannot be
selected. Note that the text selectability settings apply to the selection of single lines; in case of
multiple lines, the pixel height you specified is automatically decreased by one pixel.

You can specify the location of the template used when you add a title block to a diagram and
choose whether a title block is automatically included on new views. For more information
about title blocks, refer to “Adding a Title Block” on page 77.

You can choose whether visible anchors are displayed connecting movable text selected on the
diagram to its associated object.

You can also enable the stroke shortcuts which are described in “Strokes” on page 22.

Setting Diagram Master Preferences
You can change the master preferences for a block diagram, symbol, flow chart, state diagram
or truth table editor view by choosing Master Preferences from the Options menu in the
design manager window.

Note
The table editors for tabular IO do not have their own master preferences but use the
same default values that are set for the symbol and block diagram.

You can change preferences for the active diagram by choosing Diagram Preferences from the
Options menu in any diagram editor or truth table window.

Separate dialog boxes are used to set preferences for each editor but usually provide separate
pages for setting the visual appearance of each graphical object, the default values used by new
objects, the visual attributes of the background grid and other miscellaneous preferences for
each editor.

State machine, flow chart and truth table preferences are described in the help topics that can be
displayed by using the Help buttons which are available on each dialog box.

When you edit preferences for the active view, the dialog box allows you to choose whether the
preferences are applied to new objects or to both new and existing objects in the diagram.

Graphical Editors User Manual, V2010.350

Graphical Editor Windows
Diagram Editor Windows

June, 2011

Note
You can change appearance preferences in the active view but you cannot change
preferences for default values, grid attributes or for many of the miscellaneous options.
These preferences can only be accessed when you are editing master preferences from the
design manager.

The Master Preferences cascade menu in the graphic editor windows provides options to
Apply to New Objects or to Apply to New and Existing Objects in the active diagram view.
You can also choose Update from Diagram to update the master preferences using the current
preferences from the active view. You are prompted for confirmation before the master
preferences file is updated.

Refer to the “Default Preferences” appendix in the HDL Designer Series User Manual for lists
of default preferences.

Setting Background Preferences
You can set preferences which control the background used for each diagram editor by using the
Background page which is available in the master preferences dialog box for each editor.

You can choose whether the background grid is displayed or hidden.

Graphical Editor Windows
Diagram Editor Windows

Graphical Editors User Manual, V2010.3 51
June, 2011

Tip: You can also toggle the Grid display option for the active diagram from the View
menu.

You can change the grid color by clicking on the button to display a palette which allows you
to choose from a set of 25 standard colors. You can also use the Other option on the palette to
set color attributes using any of the colors available on your system.

The background grid is permanently set to 1000x1000 points. Grid snapping is always enabled
for a symbol, block diagram or flow chart and cannot be unset. In a state diagram you can
choose to unset the Snap to Grid option in the View menu.

You can choose a different granularity for the display of horizontal and vertical grid points. For
example, setting the display factors to 10 would display every tenth grid point. The default
display granularity is 1 in both the horizontal and vertical directions.

The background preferences can be set as defaults in the diagram master preferences dialog box
or can be applied to the active diagram when accessed from the diagram preferences dialog box.

Moving and Copying Diagram Objects
You can move an object (or group of selected objects) in a diagram editor by simply pressing
down the Left mouse button and dragging the selected objects to a new position.

You can move a object to the next grid space by using the , , or keys with the
Ctrl key.

You can move a single segment of a net or flow in a block diagram or flow chart while retaining
connectivity with adjacent orthogonal segments. You can also move a group of selected
segments in different nets or flows while retaining the same relative separation and connections
to unselected objects. Any attached ports in a block diagram are automatically moved with the
selected segment.

Orthogonal routing is preserved when you move an object and route points added to nets or
flows where necessary to preserve connectivity. Ports attached to an object are not moved but a
dangling net connector will move with the attached net.

Graphical Editors User Manual, V2010.352

Graphical Editor Windows
Diagram Editor Windows

June, 2011

For example, the following picture shows the effect of moving a block in a block diagram.

In a state diagram, you can change the shape of a transition arc by dragging an individual route
point to a new position with the Left mouse button.

You can also move an object (or objects) by dragging with the Right mouse button and
choosing the Move Here option from the popup menu to move the object to the position of the
cursor. The popup menu also provides an option to Copy Here which creates a copy of the
selected objects at the new position and a Cancel option to abort the copy or move operation.

You can use the Shift key with the Left or Right mouse button to constrain the movement to
horizontal or vertical directions. For example, to prevent accidentally changing the length of a
net during a horizontal or vertical move.

In a block diagram or flow chart, you can use the Alt key with the Left or Right mouse buttons
to select an individual segment of a net or flow (or Alt+Shift or Ctrl and Left or Right to select
multiple segments) and then drag the selected segments. Any connected but unselected
segments are not moved but may be stretched to maintain connectivity.

Graphical Editor Windows
Diagram Editor Windows

Graphical Editors User Manual, V2010.3 53
June, 2011

Resizing Objects
Any diagram editor object can be resized by selecting the object and dragging one of its resize
handles. However, an object which includes text cannot be resized to be smaller than the text it
encloses.

When you resize a circular object (such as the state shown above) the shape is preserved.

When you resize any other shape (such as a rectangle or polygon) you can use the middle
handles to resize horizontally or vertically and the corner handles to resize in both directions
simultaneously. You can also use the Shift + Left mouse button to preserve the aspect ratio
while resizing.

Comment text or comment graphics (or grouped comment text and graphics) can be resized, but
the resize may be constrained by the grouped objects. For example, the aspect ratio of a circular
comment graphics object must be preserved and the aspect ratio of group containing a circle is
therefore constrained to preserve the aspect ratio of all objects in the group.

Arranging Objects
Any diagram object (or group of objects) can be aligned, distributed, rotated, flipped, layered or
grouped with other diagram objects.

Arrange Object Toolbar
The following commands are available from the Arrange Object toolbar in the block diagram,
state diagram, flow chart and symbol editor:

Table 2-1. Arrange Object Toolbar

Icon Description

Aligns the selected objects

Distributes the selected objects

Flips the selected objects horizontally about a vertical axis

Flips the selected objects vertically about a horizontal axis

Rotates the selected objects 90 degrees clockwise

Rotates the selected objects 90 degrees anti-clockwise

Graphical Editors User Manual, V2010.354

Graphical Editor Windows
Diagram Editor Windows

June, 2011

The and buttons perform a default command or you can use the button to
display a pulldown palette and choose the required operation. This choice then becomes the
default operation (indicated by the icon shown on the button) until another operation is chosen.

The toolbar can be displayed or hidden by setting the Arrange Object option in the Toolbars
cascade of the View menu.

Refer to “Toolbars” on page 20 for more information about toolbars.

Aligning or Distributing Objects
You can align the currently selected objects using the button or by choosing Align from
the Edit menu in a block diagram, state diagram or flow chart. The toolbar palette or cascade
menu provides options to Align Left, Align Center, Align Right, Align Top, Align Middle or
Align Bottom.

For example, if you choose from the palette or Align Left from the menu all objects in the
current selection set are aligned with the left edge of the left-most object. If you choose or
Align Center the selected objects are moved horizontally and aligned vertically about their
vertical axis or if you choose or Align Middle, the selected objects are moved vertically
and aligned horizontally about their horizontal axis.

In general, text is moved with its associated object although selectable text groups (such as the
signal name and type on a block diagram or actions text on a state diagram) can be aligned
separately from their associated objects.

The Align cascade menu also includes options to Distribute Horizontally or Distribute
Vertically which can be used to arrange the selected objects so they are equal distances from
each other in the vertical or horizontal direction. These options are also available by using the

 button and choosing or from its pulldown palette.

Rotating and Flipping Objects
When any non-symmetrically shaped object (or objects) is selected, the Edit and popup menus
include a Rotate cascade which allows you to rotate the shape clockwise by 90, 180 or 270
degrees. However the menu options are not available for symmetrical shapes such as circles.

Brings the selected objects to the front

Brings the selected objects to the front

Groups the selected objects

Ungroups the selected objects

Table 2-1. Arrange Object Toolbar (cont.)

Icon Description

Graphical Editor Windows
Diagram Editor Windows

Graphical Editors User Manual, V2010.3 55
June, 2011

You can also use the button to rotate the selected objects by 90 degrees clockwise or the
 button to rotate them by 90 degrees anti-clockwise.

Note
You cannot rotate any objects (other than comment text) on a flow chart and you cannot
rotate the package list, compiler directives list or declarations text on any diagram.

You can flip an object horizontally about its vertical axis by using the button or choosing
Horizontal from the Flip cascade in the Edit or popup menus.

You can flip an object vertically about its horizontal axis by using the button or choosing
Vertical from the Flip cascade menu.

Layering Comment Text and Graphics
In general, if you add an object overlapping another object the new object is added over the
existing object. However, you can change the layer of the selected comment graphics or
comment text (or grouped comment text and graphics).

You can bring an object to the front using the button or by choosing Bring to front from
the Layer cascade of the popup menu. You can also push an object to the back using the
button or by choosing Send to back from the Layer cascade menu.

Only two layers are supported. If more than one object is overlapped, sending an object to the
back may cause an overlapped object to be brought in front of other objects it previously
overlapped.

If you send comment text to the back, the background color is moved behind any overlapping
object but the text always remains in the foreground. Similarly, although you can place
comment graphics in front of another diagram object (such as a block or component), the text
associated with the object (for example, the name of the block) is always on the top layer.

Grouping Comment Text and Graphics
You can group one or more selected comment text or comment graphics objects using the
button or by choosing Group from the Group cascade of the popup menu.

Once grouped, all text and graphics in the group can be cut, copied, pasted, aligned, moved,
hidden or deleted as one object.

Grouped comment graphics can also be resized, rotated or flipped although the aspect ratio must
be preserved if the group contains circular objects. Grouped comment text can still be edited
individually but a group containing comment text cannot be rotated.

Graphical Editors User Manual, V2010.356

Graphical Editor Windows
Diagram Editor Windows

June, 2011

Grouped objects do not need to be adjacent. For example, you could define a title block by
grouping a heading comment text at the top of your diagram with a footer comment text
containing version information near the bottom of the diagram.

You can ungroup objects by selecting the group and using the button or by choosing
UnGroup from the Group cascade of the popup menu. All comment text and graphics text
objects are ungrouped although the group may have been created by grouping several existing
groups.

Note
You cannot attach grouped comment text to another diagram object, although you can
choose to include the group at the file start, in the file header or at the end of file in the
generated HDL.

Adding Comment Text
You can use the text tool button, the Ctrl + F1 shortcut or choose Comment Text from
the Add menu to add comment text as annotation on a block diagram, flow chart, state diagram
or symbol.

The cursor changes to a cross-hair which allows you to open a text entry box by clicking at an
empty location anywhere on the diagram and enter free-format text. Any line feeds or blank
lines you enter are preserved on the diagram.

The text edit box has its own scroll bars which allow the text to be scrolled horizontally or
vertically while editing.

To complete the text edit and return to the normal select mode, click the Left mouse button
outside the text object. The text is drawn using the default font and can be moved, copied or
resized in the same way as any other diagram object.

If the text is larger than can be displayed in the default box, this is indicated by the label <<--
more -->>, However, you may want to resize the text object in order to fully display the
enclosed text.

You can abort text mode without saving the text by clicking the Right mouse button or using
the button to return to the normal select mode.

Graphical Editor Windows
Diagram Editor Windows

Graphical Editors User Manual, V2010.3 57
June, 2011

You can change the appearance of comment text by setting visual attributes for the selected text
or change the default appearance by setting default visual attributes for comment text in the
diagram master preferences.

You can edit comment text directly, send it to the text editor or use the Comment Text page of
the Object Properties dialog box which can be displayed using the button, Alt+ Enter
shortcut or by choosing Object Properties from the Edit menu when the text annotation is
selected on the diagram.

When a comment text object is selected, you can attach it to any diagram object by choosing
Include in HDL from the popup menu and selecting the Before Object, After Object or End
of Line cascade option. An anchor is attached to the cursor which you can terminate on any
other diagram object by clicking the Left mouse button over the required object. Comment text
attached in this way is included as comments in the generated HDL next to the appropriate HDL
for the associated object.

Note
You can attach separate comment texts containing synthesis pragmas before and after an
object to include the pragmas in the generated HDL and turn synthesis processing off for
the object.

You can associate comment text with the interface to a block by selecting the In Block
Interface cascade option and attaching the anchor to a block. When this option is used, the note
is included as comments in the generated VHDL entity or Verilog module for the block.

If the block is subsequently converted to a component, any block interface comments are moved
into the symbol for the component. Any comments added before or after a block object are
included before or after the instantiation statement for the parent diagram.

You can also associate comment text with the diagram itself by selecting the At File Start,
After File Header or At File End cascade option. Comment text attached in this way is
included as comments at the specified position in the generated HDL for the diagram.

You can detach comment text from an object by selecting the text and choosing Do Not Include
in HDL from the popup menu. Detached comment text is ignored by HDL generation.

Note
In a flow chart, comment text attached to the start point is included at the beginning of the
generated HDL and comment text attached to the end point at the bottom. Comment text
associated with a child diagram in a hierarchical flow chart can be used to label the HDL
generated from the diagram. However, comment text in a state machine associated with a
child state diagram is always added at the top of the generated HDL because the state
machine is flattened before generation.

Graphical Editors User Manual, V2010.358

Graphical Editor Windows
Diagram Editor Windows

June, 2011

You can hide the selected comment text (or comment graphics) object by choosing Hide from
the popup menu or from the Comment Graphics cascade in the Diagram menu and show all
hidden comment text or graphics objects by choosing Show All.

Editing Text Properties
You can edit existing comment text by using the button, Alt + Enter shortcut or choosing
Object Properties from the Edit menu. If a single comment text object is selected on the
diagram, the Comment Text node of the Object Properties dialog box is enabled and the
Comment text page is displayed showing the existing text.

The Comment Text page allows you to resize the bounding box to fit the text and choose the
text position from a pulldown list.

Any free-format text can be entered in the dialog box. Comment text can optionally be
associated with the document header or attached to any diagram object and included as
comments when HDL is generated for the diagram.

If the popup option to include the text comment After File Header is set, you can choose
whether to Add comment characters before the text strings. If this option is unset, the text is
treated as a HDL statement in the generated HDL.

You can include internal or user-defined variables (which are interpreted when the text is
applied and automatically updated when you save the diagram). When you enter text using the
dialog box or text editor, the text may also include any special characters (including for
example, Kanji characters) if they are available on your system.

Graphical Editor Windows
Diagram Editor Windows

Graphical Editors User Manual, V2010.3 59
June, 2011

Note
The %(d), %(f), %(p), %(library), %(unit) and %(view) variables are only interpreted
after the diagram has been saved and are shown as <TBD> in unsaved views.

Refer to “Using Internal Variables” in the HDL Designer Series User Manual for more
information about internal variables.

You can protect a comment text (or grouped comment text) from changes to the diagram or
master visual attribute preferences by unsetting the Allow Visual Change menu option in the
popup menu (or Text cascade in the Diagram menu). This can be useful when you have saved
comment text as a title block with different visual attributes from other comment texts on the
diagram.

You can use the Modify check box to apply the new text to all selected comment text or
embedded HDL text views on the diagram.

The Text page can also be used to edit an embedded HDL text view on a block diagram. When
used to edit HDL text, and the syntax checking preference is enabled for block diagrams, the
text is automatically syntax checked for the current hardware description language.

Caution
Internal variables are not interpreted when the Text page is used to enter HDL text. For
example, %d is treated as an internal variable (translated as the current design unit) in
comment text but as a Verilog variable (translated as a decimal value) in a Verilog HDL
text view.

Adding Requirement Reference Object
This feature is disabled by default (along with all the features related to requirements tracing).
You can add or paste a requirement reference only by enabling requirements referencing in the
Requirements Referencing Settings dialog box which can be accessed by choosing
Requirements Referencing menu item from the Options menu in the Design Manager of the
HDL Designer Series. Refer to the Enabling Requirements Referencing in HDS in the HDL
Designer Series User Manual for details on enabling requirements referencing.

There are different ways for adding requirements references to the design in one of the graphical
editors (Symbol, Block Diagram, Finite State Machine, Algorithmic State Machine and Flow
Chart excluding IBD which has a different approach and the Truth Table which doesn’t support
adding requirements). There are mainly two methods: Adding and Pasting the requirement
reference object.

The Requirement Reference object is similar to the Comment Text box. Requirements
references are written inside it and generated as comments. You can attach this object to any
object in the diagram that can have a requirement associated with it.

Graphical Editors User Manual, V2010.360

Graphical Editor Windows
Diagram Editor Windows

June, 2011

To do this, choose Add > Requirement Reference.

The cursor changes into a cross and you can click anywhere on the diagram to add the
Requirement Reference object.

Write down the requirement reference into the displayed object. The requirement reference
object has its own scroll bars which allow the text to be scrolled horizontally or vertically while
editing.

To finish and return to the normal select mode, click the Left mouse button outside the
requirement reference object.

You still have to attach the created object to any object in the diagram or in a specific location in
the generated HDL file which is done by right clicking on the requirement reference object and

Graphical Editor Windows
Diagram Editor Windows

Graphical Editors User Manual, V2010.3 61
June, 2011

choosing an option from the cascade menu of the Include in HDL menu item in the popup
menu.

There are other ways by which requirement references can be added to your design; namely,
Pasting in Editor and Pasting in Design Browser.

Pasting in Editor
This method enables you to add requirement references to your graphical editor by copying the
requirement from ReqTracer and pasting it onto a specific object in your design.

To copy the requirement from ReqTracer, do the following:

1. RMB on the requirement.

2. Choose Copy For > My_VHDL Reference from the popup menu.

Graphical Editors User Manual, V2010.362

Graphical Editor Windows
Diagram Editor Windows

June, 2011

To paste the requirement reference onto a specific object in your design in HDS, do the
following:

1. RMB on the desired object.

2. Choose Paste Requirement Reference from the popup menu.

The Requirement Reference object is added to your design next to the object you pasted it onto.
Actual text of the requirement reference is shown under the Requirement Reference object.

Graphical Editor Windows
Diagram Editor Windows

Graphical Editors User Manual, V2010.3 63
June, 2011

Furthermore, it you hover with the mouse over the requirement reference object, the text is
shown in the tooltip. The actual text is also visible in the Content Pane.

When the file is generated, the requirement references are shown as comments. The location
where they appear in the generated file is specified in the Object Default Generation Location
section of the “Requirements Referencing Settings Dialog Box” which is displayed by choosing
Options > Requirements Referencing from the standard toolbar of the Design Manager.

Related Topics

• Adding Requirement Reference Object

• Enabling Requirements Referencing in HDS

Pasting in Design Browser
This method enables you to add requirements references to your design by copying the
requirement from ReqTracer and pasting it into the design file from the Design Explorer
without actually opening the file.

To copy the requirement from ReqTracer, do the following:

1. RMB on the requirement.

2. Choose Copy For > My_VHDL Reference from the popup menu.

To paste the requirement reference into the design file from the Design Explorer in HDS, do the
following:

Graphical Editors User Manual, V2010.364

Graphical Editor Windows
Diagram Editor Windows

June, 2011

1. RMB on any design object (design unit, view, file...) that can have requirements
associated with it.

2. Choose Paste Requirement Reference from the popup menu.

The requirement reference object is added to the file of the selected object without the file being
opened.

When the file is generated, the requirements references are shown as comments. The location
where they appear in the generated file is specified in the File Default Generation Location
section of the “Requirements Referencing Settings Dialog Box” which is displayed by choosing
Options > Requirements Referencing from the standard toolbar of the Design Manager..

Related Topics

• Adding Requirement Reference Object

• Enabling Requirements Referencing in HDS

Editing Text on a Diagram
The text associated with any graphic object can be edited directly on the diagram in the
following way:

1. Click on the text to select it.

Graphical Editor Windows
Diagram Editor Windows

Graphical Editors User Manual, V2010.3 65
June, 2011

2. Click on the selected text again. The selected text is highlighted and can be replaced by
overwriting with new text. If you click again, the cursor changes to an I-beam and you
can edit the existing text.

3. After editing, click outside the text to return to select mode.

There may be more than one text element associated with a graphic object and each text element
can be edited separately. For example, a signal has a name and type; a block has a library name,
a block name and an instance name; a transition may have condition and actions text.

Some text elements (such as the text in a comment text object, the HDL text for an embedded
block on a block diagram or actions text in a state diagram) are multi-line objects. When one of
these objects is edited, a popup text edit box allows you to enter free-format text.

Note
Tab characters are interpreted as spaces using the current setting of the tab width
preference used for VHDL or Verilog views.

After editing, click with the Left mouse button outside the text object (or click anywhere with
the Right mouse button) to return to select mode.

Text Editing Shortcuts
The following standard keyboard shortcuts are defined for in-place text editing:

Table 2-2. Text Editing Shortcuts

Shortcut Description

Double-click Left
button

Selects the word under the cursor

 + Selects all text in the selected object

 + or Copy selected text to the clipboard

 + or Paste text from the clipboard

 + + Move selected text to the clipboard

Graphical Editors User Manual, V2010.366

Graphical Editor Windows
Diagram Editor Windows

June, 2011

The , and keys are only available on Sun workstations.

Editing Text in the Text Editor
You can send multi-line text such as comment text or embedded HDL text on a block diagram
to the current text editor (or the current HDL viewer in a read-only diagram) by choosing Send
to Editor from the popup menu or from the Text cascade of the Diagram menu.

If the ModelSim simulator is invoked, this command is replaced by Send to Source which
opens the temporary HDL text file in the ModelSim Source window instead of using the current
text editor.

The text is exported to a temporary location in the temporary directory specified by the TMP
(Windows) or TMPDIR (UNIX) variable. (If these variables are not set, the root directory of the

Delete selection or delete next character if none selected.

Delete selection or delete previous character if none selected.

Move one character to left

Move one character to right

Move up one line

Move down one line

 + Move one word to left

 + Move one word to right

 + Go to end of text box

 + Go to beginning of text box

 + Extend selection by one character to left

 + Extend selection by one character to right

 + + Select to beginning of word

 + + Select to end of word

 + Extend selection to next line above

 + Extend selection to next line below

 + Extend selection to beginning of line

 + Extend selection to end of line

Terminate edit

Table 2-2. Text Editing Shortcuts (cont.)

Shortcut Description

Graphical Editor Windows
Diagram Editor Windows

Graphical Editors User Manual, V2010.3 67
June, 2011

current drive is used on Windows or /usr/tmp on UNIX.). All exported text files for the current
session are saved in a temporary subdirectory which is deleted when the session is exited.

Text which has been exported to the text editor shown as dark gray text with a light gray
background and cannot be edited directly (or from the Object Properties dialog box) until you
save any changes in the text editor and choose Finish Edits from the menu to re-import the
modified text.

If more than one text element is exported to the text editor, you can choose Finish All Edits to
re-import all changed text.

If you save the diagram editor view while any text is exported, the tool will attempt to import
the edited text automatically.

The syntax of Imported text is checked for the current diagram language unless the syntax
checking preference has been unset in the diagram master preferences.

Moving Text
Many text elements (or grouped text elements such as the name, bounds and type of a net) can
be moved independently from their associated object.

For example, block or component name text can be moved outside the object and transition or
signal text can be moved from its default position.

The text is connected to its associated object by an anchor. The anchor is visible when the text
is selected unless this preference is unset in the Diagrams tab of the Main Settings dialog box
as described in “Setting Preferences for Diagram Views” on page 48.

If the associated object is moved, the text is also moved maintaining the same offset position
from the object.

Graphical Editors User Manual, V2010.368

Graphical Editor Windows
Diagram Editor Windows

June, 2011

The following anchored text elements can be moved in this way:

Changing Text Visibility
You can change the visibility of multi-line text objects in a diagram editor using the Object
Visibility Settings dialog box.

The dialog box is displayed when you choose Object Visibility from the background popup
menu by using the mouse button when nothing is selected.

Block Diagram

block block, library and instance name

component component, library and instance names
port name, bounds and type
VHDL generic or Verilog parameter values

signal signal name, type and initial value or delay

bus bus name, slice, type, bounds, initial value (or delay)

bundle bundle name

embedded block name, number and HDL text

Symbol

body symbol name
port name, slice, type, bounds, initial value (or delay)
VHDL generic declarations, Verilog parameter declarations

State Diagram

state state actions

transition transition text (including conditions and actions)

link link name

Flow Chart

action box name
actions

decision box name
condition

case box name
expression
port name

wait box name
statement

loop name (anchored to start loop object)

Graphical Editor Windows
Diagram Editor Windows

Graphical Editors User Manual, V2010.3 69
June, 2011

For example, the Object Visibility Settings dialog box in a VHDL state machine:

Note
The comment text option is available in the dialog box only when visible or hidden
comment text exists in the diagram.

The Object Visibility Settings dialog box controls whether the following multi-line text objects
are displayed on a graphical diagram:

Many diagram objects have associated text which can be optionally hidden or displayed. You
can hide individual text elements by choosing Hide Text from the popup menu (or from the
Text cascade of the Diagram menu).

You can make all text elements associated with an object (including text that is hidden by
default) visible by choosing Show Text from the menu when the object is selected. For
example, you can choose a component and make all associated text visible.

VHDL Verilog

Block Diagram Package List
Port and Signal Declarations
Comment Text

Compiler Directives
Port and Signal Declarations
Comment Text

State Diagram Package List
Architecture Declarations
Global Actions
Concurrent Statements
State Register Statements
Process Declarations
Comment Text

Compiler Directives
Module Declarations
Global Actions
Concurrent Statements
State Register Statements
Comment Text

Flow Chart Package List
Architecture Declarations
Concurrent Statements
Sensitivity List
Process Declarations
Comment Text

Compiler Directives
Module Declarations
Concurrent Statements
Sensitivity List
Local Declarations
Comment Text

Graphical Editors User Manual, V2010.370

Graphical Editor Windows
Diagram Editor Windows

June, 2011

You can hide or show associated text for the following objects on a block diagram:

See also “Changing the Display of Port Properties” on page 206 and “Changing the Display of
Signal Properties” on page 208.

You can hide or show associated text for the following objects on a symbol:

Object Associated Text Element

external port name
type (and bounds)
initial value (VHDL) or delay (Verilog)

signal or bus name (and slice)
type (and bounds)
initial value (VHDL) or delay (Verilog)

bundle name
signal names (and slices)

component library name
component name
instance name
port name (and slice)
port type (and bounds)
port initial value (VHDL) or delay (Verilog)
VHDL generic or Verilog parameter mapping
port mapping assignments

block library name
block name
instance name
VHDL generic or Verilog parameter declarations
VHDL generic or Verilog parameter mapping

embedded block name
number
HDL text statements

generate frame frame declarations

declarations port declarations
pre-s
signal declarations
post-s

Object Associated Text Element

declarations port declarations
s

symbol library name
cell name
VHDL generic or Verilog parameter declarations

Graphical Editor Windows
Diagram Editor Windows

Graphical Editors User Manual, V2010.3 71
June, 2011

You can also change the visibility of the text associated with ports by using the Port Display
Control dialog box as described in “Changing the Display of Port Properties” on page 206.

You can hide or show associated text for the following objects on a state diagram:

Note
You cannot hide the name of a state.

You can also change the visibility of the following text objects on a state diagram:

You cannot hide the titles for these text elements from the popup menu but you can hide the
entire text block by clearing the corresponding Visible check box in the State Machine
Properties or the Object Visibility dialog boxes.

You can hide or show associated text for the following objects on a flow chart:

Object Associated Text Element

state actions

transition condition, actions and transition priority

Global Actions
Concurrent Statements
Architecture Declarations (VHDL)
Module Declarations (Verilog)
Signals Status

Process Declarations (VHDL)
State Register Statements
Package List (VHDL)
Compiler Directives (Verilog)

Object Associated Text Element

action box name
actions

decision box name
condition statement

wait box name
wait statement

loop name
control statement

case name
expression

Graphical Editors User Manual, V2010.372

Graphical Editor Windows
Diagram Editor Windows

June, 2011

You can also change the visibility of the following text objects on a flow chart:

You cannot hide the titles for these text elements from the popup menu but you can hide the
entire text block by clearing the corresponding Visible check box in the Flow Chart Properties
or the Object Visibility dialog boxes.

Adding Comment Graphics
You can add comment graphics on a block diagram, flow chart, state diagram or symbol by
using the Comment Graphics toolbar or choosing Comment Graphics from the Add menu.

Comment Graphics Toolbar
The following commands are available from the Comment Graphics toolbar in the block
diagram, state diagram, flow chart and symbol editor:

The and buttons perform a default command or you can use the button to
display a pulldown palette and choose the required operation. This choice becomes the default
operation (indicated by the icon on the button) until another operation is chosen. The palettes
are shown below:

Architecture (VHDL)
Module Declarations (Verilog)
Concurrent Statements
Sensitivity List

Process Declarations (VHDL)
Local Declarations (Verilog)
Package List (VHDL)
Compiler Directives (Verilog

Table 2-3. Comment Graphics Toolbar

Icon Description

Add a rectangle, ellipse, circle or polygon

Add a line, polyline or arc

Add a bitmap

Table 2-4. Comment Graphics Palettes

Shapes Operation Lines Operation

Add a rectangle

Add an ellipse

Add a circle

Add a polygon

Add a line

Add a polyline

Add an arc

Graphical Editor Windows
Diagram Editor Windows

Graphical Editors User Manual, V2010.3 73
June, 2011

The toolbar can be displayed or hidden by setting the Comment Graphics option in the
Toolbars cascade of the View menu.

Refer to “Toolbars” on page 20 for more information about toolbars.

Corresponding commands are also available from the Comment Graphics cascade of the Add
menu:

When you use any of these commands, the cursor changes to a cross-hair which allows you to
add the graphics object by clicking and dragging at the required location on the diagram.

For example, you can add a polyline by clicking the Left mouse button at a number of route
points and clicking twice to terminate the polyline or you can add a rectangle by dragging across
the diagonal of the required shape.

Comment graphics can be cut, copied, pasted, aligned, moved, resized, rotated, flipped, hidden
or deleted in a similar way to other diagram objects.

You can reshape a comment graphics object by choosing Edit Vertices from the popup menu to
display its vertices which can then be dragged to change the shape or you can add an additional
vertex by clicking anywhere between the existing vertices. You can remove a vertex by moving
it onto an existing vertex.

Note
Adding vertices to a line converts it into a polyline. You can also change a rectangle into
a polygon (or a polygon into a rectangle). However, you cannot edit the vertices of a arc,
circle or an ellipse.

Comment graphics can be grouped with other comment graphics or comment text by choosing
Group (or UnGroup) from the Group cascade of the Edit or popup menu.

Table 2-5. Comment Graphics Menu Commands

Command Description

Line Add a line

Polyline Add a multi-segment line

Polygon Add a polygon

Arc Add an arc

Rectangle Add a rectangle

Ellipse Add an ellipse

Circle Add a circle

Bitmap Add a bitmap

Graphical Editors User Manual, V2010.374

Graphical Editor Windows
Diagram Editor Windows

June, 2011

You can hide an individual comment graphics (or comment text) object by choosing Hide from
the popup menu or from the Comment Graphics cascade in the Diagram menu and show all
hidden comment text or graphics objects by choosing Show All.

You can hide a group of comment text and graphics object by choosing Hide Group from the
popup menu.

You can change the appearance of comment graphics by using the Appearance toolbar or
choosing Appearance from the popup or Edit menu to set visual attributes for the selected
graphics or you can change the default appearance by setting default visual attributes for the
object in the diagram master preferences.

Adding a Line or Polyline
You can add a comment graphics line on a block diagram, flow chart, state diagram or symbol
by using the button or by choosing Line from the Comment Graphics cascade in the
Add menu.

The cursor changes to a cross-hair and you can start the line by pressing down the Left mouse
button and dragging to the required destination. The line is completed when you release the
mouse button.

You can choose an alternative button operation by using the button to display a palette. After
choosing an operation from the palette, the new default is indicated by the icon on the button.
For example, the button changes to when you choose from the palette.

You can add a polyline by using the button or by choosing Polyline from the Comment
Graphics cascade in the Add menu. The cursor changes to a cross-hair and you can start the
line by pressing down or clicking the Left mouse button and dragging to a required vertex. A
vertex is added each time you click the mouse button and the line is completed when you
double-click the mouse button at the last vertex.

Note
You can change a line to a polyline (and add or remove vertices to a polyline) by
choosing Edit Vertices from the popup menu. If you end a polyline at its starting point
the enclosed area automatically becomes a filled polygon.

You can add (or remove) arrowheads on a line or polyline by using the button in the
Appearance toolbar and choosing an arrowhead style from the pulldown palette to set
arrowheads at the beginning, end, neither or both ends of the selected line. After choosing an
operation from the palette, this becomes the default operation for the button.

You can also change the color, style and width for the selected line by using the ,
and buttons in the Appearance toolbar to display a palette of alternative choices. After
choosing an operation from the palette, this becomes the default operation for the button.

Graphical Editor Windows
Diagram Editor Windows

Graphical Editors User Manual, V2010.3 75
June, 2011

Adding an Arc
You can add a comment graphics arc on a block diagram, flow chart, state diagram or symbol
by using the button and choosing from the pulldown palette or by choosing Arc from
the Comment Graphics cascade in the Add menu.

After choosing an operation from the palette, the new default is indicated by the icon on the
button. For example, the button changes to when you choose from the palette.

The cursor changes to a cross-hair and you can start the arc by pressing down the Left mouse
button and dragging to the end of the required arc. A ghosted line is drawn between these two
points and becomes an arc when you release the mouse button and move the cursor to either side
of the arc. The arc is completed when you click the mouse button to specify a vertex on the
required arc.

Note
All arcs are circular although you can change the radius by editing the start end or
intermediate vertices.

Adding a Rectangle or Polygon
You can add a comment graphics rectangle on a block diagram, flow chart, state diagram or
symbol by using the button or by choosing Rectangle from the Comment Graphics
cascade in the Add menu.

The cursor changes to a cross-hair and you can draw the rectangle by pressing down the Left
mouse button and dragging across the diagonal of the required rectangle. A ghosted rectangle is
drawn between these two points and becomes a filled rectangle when you release the mouse
button.

You can choose an alternative button operation by using the button to display a palette. After
choosing an operation from the palette, the new default is indicated by the icon on the button.
For example, the button changes to when you choose from the palette.

You can add a polygon by using the button or by choosing Polygon from the Comment
Graphics cascade in the Add menu.

The cursor changes to a cross-hair and you can start the polygon outline by pressing down or
clicking the Left mouse button and dragging to a required vertex. A ghosted connection to the
starting point indicates the outline of the polygon which can be completed by double-clicking at
the last of any number of vertices.

You can change the fill color and pattern for the selected rectangle or polygon by using the
 and buttons from the Appearance toolbar.

Graphical Editors User Manual, V2010.376

Graphical Editor Windows
Diagram Editor Windows

June, 2011

An existing rectangle can be converted into a polygon by choosing Edit Vertices from the
popup menu to add or move vertices.

Adding an Ellipse or Circle
You can add a comment graphics ellipse on a block diagram, flow chart, state diagram or
symbol by using the button and choosing from the pulldown palette or by choosing
Ellipse from the Comment Graphics cascade in the Add menu.

The cursor changes to a cross-hair and you can draw the ellipse by pressing down the Left
mouse button and dragging across the diagonal of the required ellipse. A ghosted ellipse is
drawn between these two points and becomes a filled ellipse when you release the mouse
button.

After choosing an operation from the palette, the new default is indicated by the icon on the
button. For example, the button changes to when you choose or to when you
choose .

You can add a circle by using the button or by choosing Circle from the Comment
Graphics cascade in the Add menu.

The cursor changes to a cross-hair and you can draw the circle by pressing down the Left mouse
button and dragging across the radius of the required circle. A ghosted circle is drawn between
these two points and becomes a filled circle when you release the mouse button.

Adding a Bitmap
You can add a comment graphics bitmap on a block diagram, flow chart, state diagram or
symbol by using the button or by choosing Bitmap from the Comment Graphics cascade
in the Add menu.

A file browser is displayed for you to locate a bitmap file. This can be any standard windows
bitmap (.bmp), portable network graphics (.png) or portable bitmap (.pbm) image.

Note
You are advised to use bitmaps which have been saved using 256 or less colors. Although
any valid bitmap can be added, images containing more than 256 colors may cause color
flashing problems unless you are using a high performance graphics card.

The cursor changes to a cross-hair and you can add the image on your diagram by pressing
down the Left mouse button and dragging across the diagonal of the required image size. The
image can be resized at any time by dragging its resize handles. If you use Shift + Left mouse
button, the aspect ratio is preserved as you drag the image.

You can cut, copy, paste, align, move, group, layer, hide or delete a bitmap in a similar way to
other comment graphics objects but you cannot flip or rotate a bitmap.

Graphical Editor Windows
Diagram Editor Windows

Graphical Editors User Manual, V2010.3 77
June, 2011

Bitmaps are included by reference and you can specify the pathname of the bitmap by browsing
or by entering a hard or soft pathname. If you open a diagram which references a bitmap that
cannot be found, a cross is displayed. You can change the pathname for an existing bitmap by
selecting the bitmap and choosing Load Bitmap from the popup menu.

Adding a Title Block
You can add a title block by choosing Title Block from the Add menu in a block diagram, flow
chart, state diagram or symbol. The cursor changes to a cross-hair which allows you to place the
template title block defined in your preferences by clicking at a location anywhere on the
diagram.

The template title block is read from the file specified in the Diagrams tab of the Main Settings
dialog box. Refer to “Setting Preferences for Diagram Views” on page 48.

The current template title block is automatically included at the lower right side on a new
diagram (including concurrent and hierarchical diagrams) when you create a new graphic editor
view unless this option is unset in the General tab of the Main Settings dialog box.

The title block text can be included in the generated HDL by choosing Include in HDL from
the popup menu.

You can create your own title block template by grouping one or more comment texts (which
may optionally include internal or user-defined variables) and choosing Save Title Block from
the File menu to save the title block at the location specified in your preferences.

For example, the default title block comprises ten grouped comment texts and substitutes the
internal variables %(project_name), %(library), %(unit), %(view), %(user), %(dd), %(month)
and %(year) by the project name, library, design unit, design unit view, username and modified
date.

Refer to “Using Internal Variables” in the HDL Designer Series User Manual for more
information about internal variables.

The %(project_name), %(user), %(dd), %(month) and %(year) variables are interpreted when
the text is applied to the diagram. (examples, joans, 31, Mar and 2003 in this example) but the
%(library), %(unit) and %(view) variables are shown as <TBD> until you save the diagram.

Although you cannot apply different formatting to individual words or characters in a comment
text, you can apply different formatting to each separate comment text in the group (such as the
<company name> text in the above example).

Graphical Editors User Manual, V2010.378

Graphical Editor Windows
Diagram Editor Windows

June, 2011

Displaying Object Information
When you move the cursor over any object in a diagram editor, summary information about the
object is displayed in a popup object tip window. The tip remains displayed for approximately
five seconds or until the cursor is moved to another object.

This feature can be disabled or enabled by setting the Object Tips option in the View menu.

You can set preferences for the maximum number of characters and the maximum number of
lines displayed for multi-line text in the popup information box.

These preferences can be set in the Diagrams tab of the Main Settings dialog box as described
in “Setting Preferences for Diagram Views” on page 48.

If these limits are exceeded (for example, a state with multiple actions), an ellipsis is added to
the end of each long line or to indicate that a multi-line field has more than three lines.

The object tips can be useful to identify objects on a diagram after you have used
HDL2Graphics to convert a large design or when you have deliberately hidden text elements on
the diagram.

The following example shows a tip for a component output port count connected to a VHDL
bus named high with type unsigned and bounds 3 DOWNTO 0.

Note
The slice, bounds and initial value (or delay) for a signal or bus are shown if they exist.

Panels
A panel is a defined and named area on a block diagram, flow chart, state diagram or symbol
which facilitates viewing or printing the enclosed area.

Panels can be moved, copied or re-sized (by dragging their resize handles) and may partially or
completely overlap other panels. You can also change the appearance of a panel by setting
visual attributes for the panel box or name text.

Graphical Editor Windows
Diagram Editor Windows

Graphical Editors User Manual, V2010.3 79
June, 2011

Adding a Panel
You can add a panel to a block diagram, flow chart, state diagram or symbol by using the
button, or by choosing Panel from the Add menu.

The cursor changes to a cross-hair and is attached to a ghosted panel which you can place
anywhere on the diagram by clicking with the Left mouse button or you can hold down the Left
mouse button and drag the cursor to resize the panel.

Editing Panel Object Properties
You can change the name of a panel by clicking on the panel name to select the text and clicking
again to edit the text. Alternatively, you can double-click on the panel, use the button, Alt +
Enter shortcut or choose Object Properties from the Edit menu or popup menu, to display the
Panel Object Properties dialog box.

If you do not change the name of a panel, each new panel is given a unique name by adding an
integer to the default name (for example: Panel0, Panel1, Panel2…).

The dialog box can also be displayed when a panel is not selected by choosing Object
Properties from the Panels cascade of the Diagram menu. (This can be useful when panels
exist but are not visible in the current diagram view.)

The dialog box displays a list of all the panels that exist on the diagram. You can select one or
more Specified panels or choose to edit the properties for All panels on the diagram. When a
single panel is selected, you can use the dialog box to rename the panel by typing in a new panel
name.

Graphical Editors User Manual, V2010.380

Graphical Editor Windows
Diagram Editor Windows

June, 2011

New panels are created as Regular panels but you can change any panel into a Sheet or Non-
autoroute panel.

Note
A Sheet panel defines a diagram area and is used to support multi-sheet designs imported
using guided HDL2Graphics placement. A Non-autoroute panel defines a diagram area to
be excluded from autorouting operations.

Any panel can also be Anchored. An anchored panel cannot be moved or re-sized and defines a
fixed area of the diagram. An anchored panel may typically be used to define a page boundary
or border. An unanchored panel can be freely moved around a diagram or re-sized to enclose
other diagram objects.

You can also choose to Show or Hide the selected panels or to Show outline only (hiding the
panel name).

Displaying a Panel
You can hide a panel by choosing Hide from the popup menu when a panel is selected or hide
the panel name by choosing Hide Text from the popup menu or Text tab of the Diagram menu
when the name is selected.

You can make a hidden panel visible by choosing Show Panel in the Panels cascade of the
Diagram menu. If more than one panel exists on the diagram, the Choose Panel to Show dialog
box is displayed for you to select the panel to make visible.

Viewing a Panel
You can change a diagram editor view to a named panel by choosing View Panel from the
View menu or from the popup menu when a panel is selected.

If a panel is not selected and more than one panel exists on the diagram, the Choose Panel to
View dialog box is displayed for you to select a panel. When you execute the dialog box, the
diagram view is zoomed in or out to the extent of the specified panel.

Graphical Editor Windows
Diagram Editor Windows

Graphical Editors User Manual, V2010.3 81
June, 2011

The diagram view is also moved to the middle of the selected panel if you use the Zoom In or
Zoom Out commands when a panel is selected.

Protecting Panels
You can protect all the existing panels on a diagram editor view by choosing Protect All Panels
from the Panels cascade of the Diagram menu or from the popup menu when a panel is
selected.

A protected panel cannot be selected, moved, copied re-sized or deleted (unless you use the
explicit Delete Panel command).

Note
If you create another panel it is not automatically protected until you toggle protection to
unprotect and then protect all panels on the diagram. You cannot explicitly protect or
unprotect a single panel.

Deleting a Panel
You can delete an unprotected panel using the Del or key but you cannot delete a
protected panel in this way. However you can delete a protected or unprotected panel by
choosing Delete Panel from the Panels cascade of the Diagram menu.

If no panels are selected when you choose this command and more than one panel exists on the
diagram, the Choose Panel to Delete dialog box is displayed for you to choose which panel to
delete.

Printing a Panel
You can print any named panel by using the button, choosing Print from the File or popup
menu or by using the Ctrl + P shortcut and selecting the required panel name in the Print dialog
box.

You can also print the area within an unprotected panel by selecting the panel and choosing
Print from the popup menu or from the Panels cascade of the Diagram menu. This can be

Graphical Editors User Manual, V2010.382

Graphical Editor Windows
Diagram Editor Windows

June, 2011

useful when you have added a temporary panel to define a print area. However, protected panels
(which are not selectable) cannot be printed using this command.

The panel is printed using the current scaling specified in the Page Setup dialog box. However,
page breaks are not automatically calculated when you print a panel and unsatisfactory breaks
may be imposed if your panel is larger than the current page size.

You can set the panel visibility in the Page Setup dialog box. For example, you can choose
Show Specified Panel to print the specified panel as a border around the print area.

Editing Route Points
Signals, buses and bundles (in a block diagram), transition arcs (in a state diagram) or flows (in
a flow chart) may have any number of route points.

When a net is selected, a filled square handle is displayed showing the position of each route
point. These handles can be moved by dragging with the Left mouse button or deleted by
moving the handle over another route point.

You can also remove route points by clicking on a route with the Right mouse button. A popup
menu allows you to Remove Route or Remove All Routes.

If the cursor is further from a route point than the current grid spacing interval, the Add Route
option allows you to add a new route point.

Route points are added when you single-click the Left mouse button while adding a signal, bus,
bundle, transition arc or flow.

You can delete the last route point added while routing by using the Del key. The route is
completed when you click over a destination object.

Tip: You can terminate a signal, bus or bundle without a destination object on a block
diagram by double-clicking the Left mouse button.

Graphical Editor Windows
Diagram Editor Windows

Graphical Editors User Manual, V2010.3 83
June, 2011

When a route is connected using a curved spline (for example, the default type for a transition
arc in a state diagram), you can also add a route point by dragging one of the unfilled diamond
shaped handles which as shown midway between each route point when the spline is selected.

Transition arcs in a state diagram are drawn (by default) as splines but signals, buses and
bundles in a block diagram or flows in a flow chart are drawn as orthogonal polylines.

The default drawing style and other attributes can be changed by setting diagram master
preferences.

Existing orthogonal lines on a diagram can be made into diagonals by creating, dragging or
deleting route points.

Setting Visual Attributes
Visual attributes can be set for individual elements of each diagram object. For example,
separate visual attributes can be set for the name, shape, outline and actions text that comprise
the symbol for a state.

You can set visual attributes for one or more objects in a diagram editor by selecting the
required objects and using the Appearance toolbar or by choosing Appearance from the Edit or
popup menu to display the Edit Appearance dialog box.

The dialog box indicates the current setting when a single object (or multiple objects with the
same attribute) is selected.

Graphical Editors User Manual, V2010.384

Graphical Editor Windows
Diagram Editor Windows

June, 2011

When a single object is selected in a graphic editor, the dialog box shows the current
Foreground and Background colors for the selected object. When a cell is selected in the
interface editor, the dialog box shows the Font and Background cell colors.

You can click on the button adjacent to each button to display a palette which allows you to
choose from a set of 25 standard colors or use the Other option on the palette to set color
attributes using any of the colors available on your system.

You can choose the Line Color used for object outlines, nets on a block diagram, transition arcs
on a state machine or flows on a flow chart.

You can choose from a palette of nine alternative Fill Style patterns which combine the current
foreground and background colors or choose the fill pattern to make an object transparent.

You can also choose the Line Style and Line Width used for object outlines, nets, transition
arcs and flows on a graphical diagram. The line widths include a no line option which
makes the line transparent.

In the interface editor, you can also set the alignment of text in the table cells.

You can set alternative text display fonts by using the Set button to choose from the fonts
available on your window system. The available font sizes usually include the range 6 to 14
point in normal, bold, italic and bold italic typeface for a variety of font families.

The modified attributes are applied to all objects in the current selection set when you confirm
the dialog box.

Appearance Toolbar
You can also set visual attributes using the following commands which are available from the
Appearance toolbar in the block diagram, state diagram, flow chart and symbol editor:

Table 2-6. Appearance Toolbar

Button Description

Applies a logical symbol shape to the selected object

Changes the foreground color of the selected object

Changes the color of the selected text string

Changes the color of the selected line or object outline

Changes the line style used for the selected object

Changes the line width used for the selected object

Changes the fill pattern style used for the selected object

Changes the arrowhead style used for the selected line or polyline

Graphical Editor Windows
Diagram Editor Windows

Graphical Editors User Manual, V2010.3 85
June, 2011

Note
The button is not available in the state diagram and flow chart editors.

Each of these buttons performs a default command or you can use the button to display a
pulldown palette and choose the required operation. This choice becomes the default operation
until another operation is chosen.

For example, the foreground, text font and line color buttons display a color choice palette and
the last selected color becomes the default for the button. The palettes are shown below:

The toolbar can be displayed or hidden by setting the Appearance option in the Toolbars
cascade of the View menu.

Refer to “Toolbars” on page 20 for more information about toolbars.

Setting Color Attributes
You can use the Other option on the color palette to display a Color selection dialog box which
allows you to set any other color which is supported on your workstation.

On PC systems, the Other option displays a Color dialog box which provides a palette of 48
basic colors and an option to Define Custom Colors by setting red green blue (RGB), or hue,
saturation and luminosity values. Up to sixteen custom colors can be defined and are saved as
preferences.

On UNIX systems, the Color chooser dialog box provides slider controls to set colors using red,
green, blue (RGB) or hue, saturation and value (HSV) color models. Alternatively, you can use
the Color Names button to choose from a selection list of the named colors defined for your
window system or display a Color Disk and gray scale which can be used to pick any available
color.

Table 2-7. Appearance Palettes

Logical Shapes Foreground, Text
or Line Color

Line
Style

Line
Width

Fill Pattern Arrow
Style

Graphical Editors User Manual, V2010.386

Graphical Editor Windows
Diagram Editor Windows

June, 2011

Toggling the Grid Visibility and Snapping
You can toggle the grid visibility for the active block diagram, flow chart, state diagram or
symbol by setting (or unsetting) the Grid option in the View menu.

You can also set the default grid visibility and snapping for each type of diagram by setting a
preference.

Note
Grid snapping is always enabled for a block diagram or symbol and cannot be unset.

You can toggle grid snapping for the active state diagram by setting (or unsetting) the Snap to
Grid option in the View menu.

Changing the Diagram View
You can change the view of the active diagram editor window by using the button, the
Shift + shortcut or by choosing Zoom In from the View menu or popup menu to increase
the magnification of the diagram and the button, Shift + shortcut or Zoom Out from
the menu to decrease the magnification of the diagram.

You can restore the view before the last zoom command by choosing Zoom Last from the View
menu. You can view the entire diagram by using the button, the shortcut key or
choosing View All from the View menu.

Note
You can display popup information about the object under the cursor even if you have
zoomed out and text elements are not visible.

You can choose an area to view using the button, the Shift + Home shortcut or View Area
menu option. When you choose one of these options, the cursor changes to a cross-hair and you
can drag select the required area to view.

You can scroll the active diagram by using the vertical scroll bars and keys or in
smaller increments by using the and keys. You can pan the diagram using the
horizontal scroll bars or the and keys.

You can also scroll and pan the active diagram by using the button and holding down the
Left mouse button. In this mode, the cursor changes to and the diagram moves with the
cursor which changes to until the mouse button is released.

The button is shown pressed while in panning mode until you return to normal select mode by
using the button or cancel the command using the Esc key.

Graphical Editor Windows
Table Editor Windows

Graphical Editors User Manual, V2010.3 87
June, 2011

If you have a three-button mouse, you can also scroll and pan by holding down Ctrl + Middle
mouse button.

Table Editor Windows
This section describes features that are available in the truth table, tabular IO and IBD view
table editors. Later chapters describe features that are implemented in a particular editor.

Setting Preferences for Table Views
You can set the preferences used for new tabular IO and IBD views in the Tables tab of the
Main Settings dialog box which is displayed when you choose Main from the Options menu in
any window.

You can change the default font for IBD by using the Set... button to choose from the fonts
available on your system.

You can enable automatic completion of cell values for both IBD and Tabular IO views. When
this option is set and you enter the initial characters for a existing or previously entered string,
the entry is completed automatically.

Graphical Editors User Manual, V2010.388

Graphical Editor Windows
Table Editor Windows

June, 2011

You can use the ModuleWare Params Display button to display the ModuleWare Parameters
Object Tips Visibility dialog box and set the default object tips displayed in an IBD view:

Note
These preferences are used for tabular IO and IBD views only.
The default font for the text in truth tables can be set in the Truth Table Master
Preferences dialog box.

Selecting Table Cells
You can select a single table editor cell by clicking with the Left mouse button or select
multiple cells by clicking on a cell and dragging to extend the selection.

You can also extend the selection set in the tabular IO or IBD view editor by holding down the
Shift key to add a range of cells to the existing selection or the Ctrl key to add individual cells
to the selection.

Alternatively, you can use the Shift + , Shift + , Shift + or Shift + shortcuts to
extend the selected range using the arrow keys.

Note
These shortcuts are not available in the truth table editor.

You can select an entire row or column by clicking on the first cell in the row or column. You
can select multiple rows or columns by selecting multiple cells in the first row or column.

Editing a Table Cell
You can add text to a table editor cell by simply selecting the cell and typing the required
expression. Any existing text is overwritten or you can double-click in a cell to explicitly add
new or edit existing text characters.

Graphical Editor Windows
Table Editor Windows

Graphical Editors User Manual, V2010.3 89
June, 2011

The text is entered when you click in another cell or you can use the key (which also
selects the cell below), the Shift + keys (which select the cell above), the key
(which selects the cell to the right) or the Shift + keys (which select the cell to the left).

You can move to the first column in the current row by using the Home key, the first column in
the first row by using the Ctrl + Home keys or the last column in the last row by using Ctrl +
End.

You can also use the End key with the Home, , , or keys to move between
cells. Unlike other key modifiers, End is followed by the key and the keys do not need to be
pressed together.

You can Cut, Copy, Delete or Paste text to or from one or more cells using the Cut, Copy, Del
or Paste keys or the corresponding commands available from the Edit or popup menus. You
can also clear the text from one or more selected cells by choosing Clear from the Table or
popup menu.

You can use Ctrl with the Left mouse button to add cells to a selection set, or Shift to add all
cells between the selected cell and the current cursor cell. You can select all cells in a column or
row by clicking the Left mouse button in the ruler or select all cells in the table by clicking the
origin cell in the top left corner of the table.

You can use the Alt + shortcut in a tabular IO or IBD view cell to display a list of choices
for the cell which match the entered characters. For example, if the Bounds column already
contains: (0 to 9), (1 DOWNTO 0), (11 TO 16), (32 TO 64) and (100 DOWNTO 33) and you
enter a 1 character followed by Alt + , the list of choices includes: (1 DOWNTO 0), (11 TO
16) and (100 DOWNTO 33).

Changing the Table View
You can scroll a table editor window using the vertical scroll bars or the and keys
and pan the window using the horizontal scroll bars.

In a truth table editor window, you can also scroll the window using the Shift + or Shift +
 keys and pan the window using the Shift + or Shift + keys.

Note
These shortcuts are not supported in the tabular IO or IBD view editors.

Graphical Editors User Manual, V2010.390

Graphical Editor Windows
Table Editor Windows

June, 2011

Resizing a Column or Row
You can change the width of a column or row in a truth table, tabular IO or IBD view by
dragging the sash in the horizontal or vertical ruler.

You can automatically fit a column (or columns) to the width of the text contained in the
selected cell (or cells) by using the button or by choosing Autofit from the Table menu. If
no cells are selected, then all columns in the table are re-sized.

Note
This command is not available in the truth table editor.

Exporting a Table
You can export the current table editor view as a tab-separated value (TSV) or comma-
separated value (CSV) format file by choosing TSV or CSV from the Export cascade of the
Table menu.

The currently displayed tab is exported in an IBD view. The All tab should be selected if you
want to export all interface information for the current design unit view.

If you do not specify a file extension, .csv is used when you export a comma-separated value file
or .txt when you export a tab-separated value file.

TSV and CSV files can be useful to preserve the column layout when you transfer tabular
information into external documentation tools such as Adobe FrameMaker and Microsoft Word
or Excel.

Graphical Editor Windows
The Diagram Browser

Graphical Editors User Manual, V2010.3 91
June, 2011

The Diagram Browser
The diagram browser is a sub-window that appears on the right of a graphical editor view. The
sub-window is divided into two vertical panes.The upper pane displays the Structure Navigator
and the lower pane displays either the Content List tab or the Flow Help tab.

You can hide the diagram browser by clicking on the right arrow icon in the window border or
show the diagram browser by clicking on the left arrow icon. You can also hide or show the
diagram browser by setting Diagram Browser in the View menu.

Graphical Editors User Manual, V2010.392

Graphical Editor Windows
The Diagram Browser

June, 2011

The diagram browser and main graphical editor panes can be resized by dragging the resize
sashes between the panes. Horizontal or vertical scroll bars are automatically displayed when
the contents of a browser are larger than its current size. The diagram browser panes are
normally tiled to share the available window area but you can use the following buttons to
change the layout:

Browsing Diagram Structure
The Structure Navigator pane shows the structure of the active diagram view including any
embedded blocks on a block diagram or concurrent and hierarchical views on a flow chart,
ASM chart or state diagram view and the Signals table.

The following icons are used to identify views in the Structure Navigator pane for a block
diagram:

When the design unit is selected, the contents of the diagram are shown in the Content List pane
as described in “Browsing Diagram Content” on page 94. You can also access the diagram
properties and package list or set object visibility on the diagram by using the Right mouse
button to display a popup menu. When an individual embedded view, declaration or package list
is selected, the diagram is panned and centered on the selected object.

When the signals table is selected, it becomes the active view in the diagram window.

The following icons are used to identify views in the Structure Navigator pane for a state
machine, ASM chart, flow chart or for these views when they are embedded on a block
diagram:

Expand pane vertically to full height of window

Return pane to normal horizontal tiling

Table 2-8. Structure Navigator Notation — Block Diagram

Icon Description

Block diagram design unit

IBD view design unit

Embedded diagrams or tables on a block diagram or IBD view

Individual embedded block on a block diagram

Signals table

Graphical Editor Windows
The Diagram Browser

Graphical Editors User Manual, V2010.3 93
June, 2011

When one of the diagram views is selected, it becomes the active diagram and the contents of
the diagram are shown in the Content pane as described in “Browsing Diagram Content” on
page 94. You can also access the diagram properties and package list, rename a concurrent view
or set object visibility on the diagram by using the Right mouse button to display a popup
menu.You can also create new Concurrent views by selecting New Concurrent Machine from
the popup menu of a concurrent machine.

When the signals table is selected, it becomes the active view in the diagram window.

The following icons are used for to identify views in the Structure pane for a symbol:

You can toggle between the tabular interface, graphical symbol and VHDL generics or Verilog
parameters view.

Table 2-9. Structure Navigator Notation — State Machine, ASM, Flow Chart

Icon Description

State diagram view

Concurrent state diagram view

ASM chart view

Concurrent ASM chart view

Flow chart view

Concurrent flow chart view

Truth table view (when embedded on a block diagram or IBD view)

Signals table

Table 2-10. Structure Navigator Notation — Symbol

Icon Description

Tabular interface view

Graphical symbol view

Generic declaration table (VHDL only)

Parameter declaration table (Verilog only)

Graphical Editors User Manual, V2010.394

Graphical Editor Windows
The Diagram Browser

June, 2011

The Structure Navigator pane also shows text objects such as the package list or compiler
directives. The following icons are used for text objects in the Structure Navigator pane:

An icon is overlaid on any text object shown in the Structure Navigator pane of the diagram
browser which is currently hidden on the graphical diagram. You can control which text objects
are shown or hidden in the diagram browser by choosing Show Object from the popup menu
for the design unit icon in the diagram browser.

When you select one of the text objects, the diagram is panned and centered on the selected
object. You can use the Right mouse button to choose from a context-sensitive popup menu of
available commands. For example, you can hide or show declarations text on the diagram or
open an object properties dialog box to edit the declarations. If there is only one command
available, it is automatically performed when you select the object. For example, the s dialog
box is opened when you select a s object.

Declarations and statement blocks which apply to the whole diagram are shown in the hierarchy
below the design unit icon. Declarations and statement blocks which apply to a concurrent
diagram are shown in the hierarchy below the concurrent view icon.

Browsing Diagram Content
The Content list pane is displayed when the design unit or a concurrent state diagram, ASM
chart or flow chart is selected in the Structure Navigator pane. The Content List pane lists all the
design objects contained in the view.

When you select an icon in the Content List pane, the corresponding object is selected on the
diagram. The diagram may be panned and centered if the selected object is not within the
current diagram view.You can choose to autozoom on selected object by choosing Auto Zoom
on Select from the popup menu to display.

Table 2-11. Structure Navigator Notation — Text Objects

Icon Description

Package list

Compiler directives

Signal, port and s, architecture or module declarations

Process declarations

Local declarations

Concurrent statements

Sensitivity list or state register statements

Recovery state settings

Global actions

Graphical Editor Windows
The Diagram Browser

Graphical Editors User Manual, V2010.3 95
June, 2011

You can edit the properties of a selected object in the Content List pane by choosing Object
Properties from the popup menu to display the Object Properties dialog box.

The following icons are used in the Content List pane for a block diagram or IBD view

The following icons are used in the Content pane for a flow chart:

Table 2-12. Content List Notation — Block Diagram, IBD

Icon Description

Block

Component

External IP component

ModuleWare component

Embedded block

Input port

Output port

Bidirectional port

Buffer port

Generate frame

Panel

Requirement Reference

Table 2-13. Content List Notation — Flow Chart

Icon Description

Action box

Hierarchical action box

Decision box

Wait box

Start point

End point

Start loop

End loop

Case box

Panel

Requirement Reference

Graphical Editors User Manual, V2010.396

Graphical Editor Windows
The Diagram Browser

June, 2011

The following icons are used in the Content pane for a state diagram:

The following icons are used in the Content pane for an ASM chart:

Changing the Columns in the Content Pane
You can change the columns displayed in the Content pane by checking options in the Columns
cascade of the popup menu which is displayed if you click the Right mouse button over any
column heading.

New columns are displayed in the order they are added. However, you can change the column
display order by dragging the column header with the Left mouse button.

Table 2-14. Content List Notation — State Diagram

Icon Description

Interrupt point

State

Hierarchical state

Wait state

Panel

Requirement Reference

Table 2-15. Content List Notation — ASM

Icon Description

Interrupt point

Reset point

Enable point

Action box

Hierarchical action box

State box

Hierarchical state box

Link

Case box

If decode box

Panel

Requirement Reference

Graphical Editor Windows
The Diagram Browser

Graphical Editors User Manual, V2010.3 97
June, 2011

You can change the width of the columns by dragging the sashes between each column or
automatically resize a column to fit its contents by double-clicking on the sash.

Sorting the Content Pane
The order of the objects Content pane can be changed by choosing Sort Ascending or Sort
Descending from the popup menu over any column header to re-order the objects in ascending
or descending order for the selected column.

The new sort order is indicated by a or indicator in the column header.

Tip: You can quickly toggle the existing order by clicking the Left mouse button in any
column header.

Using Groups in the Content Pane
You can group design objects in the Content List pane by choosing Group by this column from
the popup menu for a column header.

If you choose more than one column to group by, the groups are nested in the order that you
selected them.

You can use the icons to expand any group and reveal the objects it contains. The following
example shows the fibgen block diagram in the Sequencer_vhd example design grouped by
object type with the block and input port groups expanded:

You can choose Ungroup from the popup menu to remove all column groups.

Graphical Editors User Manual, V2010.398

Graphical Editor Windows
The Diagram Browser

June, 2011

Using Flow Help
The Flow Help pane provides you with a set of demos and instructions that guide you in using
the active graphical editor and in navigating through the design.

The following icons are used in the Flow Help pane:

To use flow help:

1. Make sure you have a web browser configured to display Macromedia Flash
applications installed on your system.

2. Click on any of the topic links in the Flow Help pane.

Table 2-16. Flow Help Notation

Icon Description

Move back to previously visited pages

Move forward to recently visited pages

Return to the home page

Refresh the active page

Graphical Editor Windows
Signals Table

Graphical Editors User Manual, V2010.3 99
June, 2011

3. A new page is displayed showing a list of demonstrations. Each topic is demonstrated by
either self-running demos or a set of manual instructions.

4. Click on any of the demonstrations to view in your default web browser

Signals Table
The signal declarations associated with each graphical view can be displayed in a tabular view
by selecting the Signals page in the diagram browser. Refer to “The Diagram Browser” for
information about browsing diagram structure and content.

The table is synchronized to show only the signals for the active graphical view including any
ports which have been added to the symbol (if it exists). Any redundant ports are removed and
the type, bounds and other properties updated from the symbol.

If you have edited the signals table, the graphical view is synchronized with the signal status.
The table has a separate row for each signal defined in the interface plus additional rows for any
locally defined signals.

Graphical Editors User Manual, V2010.3100

Graphical Editor Windows
Signals Table

June, 2011

The following example shows the signals table for a block diagram view of the cpu_interface
design unit in the UART example design.

Signals Table Notation
Vertical and horizontal scroll bars are available if the signals table does not fit in the current
window. However, the header row and the Group, Name and Mode columns are non-scrolling
and are always shown.

Refer to “Grouping Signal Rows” on page 105 for information about using the Group column.

Note
Note that you can select an entire row by clicking the row number or an entire column by
clicking the column letter. You can also select the entire table by clicking on cell A1.
You can resize any cell by dragging the sashes between the columns.

Graphical Editor Windows
Signals Table

Graphical Editors User Manual, V2010.3 101
June, 2011

Signal Declaration Columns
The signal declarations for interface ports are displayed in the Name, Mode, Type, Bounds,
Delay or Initial and Comment columns.

New signal declarations can be added using an empty row at the bottom of the table.

Refer to the “Component Interface Views” chapter for more information about port signal
declarations.

Signals Table Toolbars
The following commands are available from the Graphical Editors Tools toolbar in the signals
table:

Name Port or locally declared signal name.

Mode Signal mode: input, output, bi-directional, buffer (VHDL only) or local.

Type VHDL type definition or Verilog net type.

Bounds Range of the specified type (may use short or long format for VHDL).

Delay Delay value for a Verilog signal.

Initial Initial value of a VHDL signal.

Comment Comment appended to a signal declaration.

Table 2-17. Signals Table Toolbar

Icon Description

Add an input port

Add an output port

Add a bidirectional (inout) port

Add a buffer port (VHDL only)

Add a local signal

Group the selected rows or add a group (in hierarchical mode)

Ungroup

Expand all groups

Collapse all groups

Toggle Filter

Fit the cell width to the contents of the selected cell

Sort in ascending order

Graphical Editors User Manual, V2010.3102

Graphical Editor Windows
Signals Table

June, 2011

The Standard, HDL Tools and Tasks toolbars are also available in the signals table window.
Refer to“Toolbars” on page 20 in the Graphical Editors User Manual for information about the
Standard graphical editors toolbar. Refer to “Toolbars” in the HDL Designer Series User
Manual for information about the HDL Tools and Tasks toolbars.

Adding Port or Local Signal Declarations
You can add ports to a component interface using the Add menu or the following buttons in the
tabular IO view:

The port is added in the next available row with default name, type and bounds.

Alternatively, you can add ports by entering a declaration directly into the next row of Name,
Mode, Type and Bounds cells. The mode defaults to the last mode used or you can choose from
a list of available modes: input, output, bidirectional (inout) or buffer (VHDL only).

If you do not change the name of a port, each new port name is made unique by adding an
integer to the default name. (For example: In0, In1, In2…).

If you add a port whose name suggests it might be a clock, reset, or enable, the port type, mode
and category columns are populated with the signal default values. You can add a declaration
for a local signal by using the button or choosing Local Signal from the Add menu. A new
declaration is added at the bottom of the table with the default name Local or LocalN (where N
is automatically incremented if it exists).

You can also add a local signal declaration by entering the new signal name directly in the
Name column of the empty row at the bottom of the signals table.

Sort in descending order

Toggle between grouped and ungrouped mode

Table 2-18. Tabular IO View Commands for Adding Port or Local Signal
Declarations

Button Function Key Description

F8 Add an input port

F9 Add an output port

F11 Add a bidirectional (inout) port

F12 Add a buffer port (VHDL only)

Table 2-17. Signals Table Toolbar (cont.)

Icon Description

Graphical Editor Windows
Signals Table

Graphical Editors User Manual, V2010.3 103
June, 2011

The port or local signal type defaults to the last type used or you can choose from a dropdown
list of available types in the Type column. The bounds defaults to the last range used or you can
choose from a dropdown list of recently entered ranges in the Bounds column.

A VHDL bounds can be entered in long or short format. The display format can be set by setting
or unsetting the Short Form option in the Table menu.

If you enter a port or signal name followed by a valid bounds constraint, for example, myport(7
DOWNTO 0), the constraint is automatically moved to the Bounds column.

Tip: You can automatically complete a row with default properties by using the
key after entering a port name to move to the name cell in the next row.

You can optionally enter a value in the Initial (VHDL) or Delay (Verilog) and Comment
columns. The delay or initial value can be chosen from a dropdown list of recently entered
values.

If you enter characters that match characters in an existing entry of the same column, the
remaining characters are entered automatically.

If you have changed port declarations to the signal table, the interface is automatically
synchronized when you save the state machine view and any new ports added to the parent
view.

Adding Comments to a Port or Local Signal Declaration
You can add comments to a port or local signal declaration by choosing Comments from the
popup menu when the declaration row is selected.

Graphical Editors User Manual, V2010.3104

Graphical Editor Windows
Signals Table

June, 2011

A free-format entry Comments dialog box is displayed which allows you to add a single line
comment at the end of the declaration or you can enter a multi-line comment to be included
before or after the declaration.

Comment characters for the current hardware description language (VHDL or Verilog) are
automatically inserted if the Add comment characters check box is set.

When this option is unset, the comments must be valid HDL statements and are automatically
syntax checked if checking is enabled.

If a declaration is deleted, the corresponding comments are also deleted.

Although multi-line comments can be added using the dialog box, these comments are not
displayed in the table. However, end-of-line comments can be edited directly in the Comment
column for the local signal declaration row.

Resizing Columns
You can automatically fit a column (or columns) to the width of the text contained in the
selected cell (or cells) by using the button or by choosing Autofit from the Table or popup
menu. If no cells are selected, then all columns in the table are re-sized.

Graphical Editor Windows
Signals Table

Graphical Editors User Manual, V2010.3 105
June, 2011

Hiding Columns
You can hide and show columns in the signals table by choosing Hide Column from the popup
menu or the Columns cascade of the Table or menu.

If one or more columns are hidden, you can display a dialog box listing the hidden columns by
choosing Show Columns from the popup or Table menu.

Refer to “Hiding Columns” in the Graphical Editors User Manual for more information.

Filtering Columns
You can filter the content of columns in the signals table by using the button or setting the
Filter option in the Table menu. When this option is set, an additional row is added in the non-
scrolling area and a dropdown filter menu is available in each column.

You can apply filters to more than one column or set options to match case, match whole words
or use regular expressions by choosing Filter Settings from the Table or popup menu to display
the Filter Controls dialog box.

Refer to “Filtering Columns” in the Graphical Editors User Manual for more information.

Grouping Signal Rows
You can group rows in the signals table by selecting a row or rows and using the button or
choosing Group from the Add menu.

The selected rows are added to a new group with the default name SmGroupN or AsmGroupN
(where N is automatically incremented if it already exists).

You can also add a group or create a new group by entering a name in the Group column for the
ports you want to group.

Note
You can choose from a dropdown list of existing groups. If you type a partial string that
matches the name of an existing group the name is automatically completed.

You can remove a group name by selecting a row (or rows) and using the button or by
deleting the name from the Group cell.

If you rename or remove an existing group cell and the group is no longer referenced, you are
prompted to delete the old group name.

When the signals table includes one or more groups, you can use the button or set Show
Grouped in the Table menu to toggle between grouped and ungrouped mode.

Graphical Editors User Manual, V2010.3106

Graphical Editor Windows
Signals Table

June, 2011

All rows are displayed normally in flat mode but rows in the same group are shown as a single
(but expandable) group in hierarchy mode.

You can expand all the group rows by using the button or choosing Expand All Groups
from the Ports cascade in the Table menu. Alternatively, you can expand an individual group
by clicking on the icon.

You can collapse all the group rows by using the button or choosing Collapse All Groups
from the Ports cascade in the Table menu.

When grouped mode is set, you can enter a comment in the group row as shown for the Inputs
and Outputs groups in the example below. The Inputs and Outputs groups are both shown
expanded but the Locals group is shown collapsed:

Note
Groups added in the signals table may be discarded and replaced by the groups defined in
the tabular IO view when the table is synchronized with an updated symbol view.

If you delete a group which contains local signals only, they are deleted. If you delete a group
which includes ports, only the local signals in the group are deleted.

You can also allow or disallow signals sorting within a group by choosing Allow Sort/Disallow
Sort from the group popup menu or the Group cascade of the Table menu. Unsortable groups
do not get sorted when you sort signals and have the [SORT PROTECTED] label displayed
beside their name.

Graphical Editor Windows
Signals Table

Graphical Editors User Manual, V2010.3 107
June, 2011

Sorting Signal Rows
You can sort the rows in a selected column of the signals table in ascending alphanumeric order
of the cell data by using the button or choosing Sort Ascending from the popup menu or
the Columns cascade of the Table menu.

Alternatively, you can sort the data in descending order by using the button or by choosing
Sort Descending from the popup menu or the Columns cascade of the Table menu.

Note
Signals in Sort Protected Groups will not be sorted, but rather the group itself is placed
among other signals or groups according to its name.

Graphical Editors User Manual, V2010.3108

Graphical Editor Windows
Signals Table

June, 2011

Graphical Editors User Manual, V2010.3 109
June, 2011

Chapter 3
Block Diagram and IBD Views

This chapter describes how the structure of a design can be represented using a graphical block
diagram or tabular IBD view.

Editing Block Diagram and IBD Views . 110

Adding Blocks and Components . 110
Assigning Automatic Instance Names . 111
Instantiating a Block . 111
Instantiating a Component . 112
Adding an Embedded Block . 124
Updating an Instance. 127
Reconciling Interfaces . 128

Checking the Design . 131
Checking Through Hierarchy . 132

Editing Object Properties . 133
Editing Component Properties . 133
Editing Block Properties . 139
Editing Embedded Block Properties. 143
Editing ModuleWare Properties . 145
Editing Bundle Properties . 148
Editing Signal Properties . 149
Editing External IPs Properties. 146
Editing Port IOs Properties . 156
Editing Frame Properties . 157
Editing Comment Text Properties . 158
Editing Requirement Reference Properties. 158
Editing Comment Graphics Properties . 160

Propagating Net Changes . 166
Inserting and Removing Nets . 169

Ordering Port and Signal Declarations . 171

Adding or Removing Design Hierarchy. 172

Generics and Parameters . 174
Generics and Parameters Tables . 176
Defining Generics and Parameters . 184
Editing Generics and Parameters for Instances . 186
Generics and Parameters Synchronization . 192

Opening Block and Component Views . 194
View Initialization . 195

Graphical Editors User Manual, V2010.3110

Block Diagram and IBD Views
Editing Block Diagram and IBD Views

June, 2011

Setting the Default View. 196

Mixed Language Designs. 196
VHDL Instantiation of Verilog Components . 197
Verilog Instantiation of VHDL Components . 198

Editing Block Diagram and IBD Views
You can edit a graphical view describing the structural interfaces between design units using the
block diagram or IBD view editors. These views are saved as the same design unit view
(struct.bd if it is created as a block diagram or struct.ibd if it is created as an IBD view).

This chapter describes procedures that are common to block diagram and IBD views. Refer to
Chapter 4, Block Diagram Editor or Chapter 5, IBD View Editor for procedures that are specific
to each editor.

You can display an IBD view by using the button or by choosing Show IBD from the
Diagram menu in the block diagram editor.

When you display an IBD view from a block diagram, some objects (for example, bundles) will
not be displayable and an ! is displayed in the Instance Ref row of the interface column in the
IBD view.

Note
When you select a net or net declaration on a block diagram, the net name is selected on
the IBD view.
When you select a net row on an IBD view, the net and the net declaration are selected on
the block diagram. However, if you select a net name cell, only the net declaration is
selected on the block diagram.

Adding Blocks and Components
You can add a block or component instance on a block diagram or IBD view by using the Add
menu or by using one of the buttons in the block diagram or IBD view toolbars. Some objects
can also be added using a shortcut or mnemonic key as shown in the following tab:

Table 3-1. Block Diagram/ IBD Commands for Adding Blocks and
Components

Button Shortcut Mnemonic Description

Ctrl + F3 B Add a block

F3 C Add a component

none none Add a ModuleWare component

none none Add an external HDL (IP) model

Block Diagram and IBD Views
Adding Blocks and Components

Graphical Editors User Manual, V2010.3 111
June, 2011

Note
The mnemonic shortcut keys are not supported in an IBD view.

Assigning Automatic Instance Names
The instance names for blocks and components are normally derived from a base name
specified in your block diagram preferences.

The base name can be a simple string (such as the default characters U_) which can be manually
edited on a block diagram or IBD view.

Alternatively, you can use an automatic name derived from the design unit name which cannot
be edited once you have created the design unit.

You can set automatic instance names for the active view by choosing Automatic Instance
Names from the Diagram menu on a block diagram or the Table menu in an IBD view.

Instantiating a Block
When you add a block on a block diagram, a ghosted rectangle is attached to the cursor and can
be placed on the diagram by clicking the Left mouse button at the required location. The block
is added with a default size or you can hold down the mouse button and drag across the diagonal
for a required size.

When you add a block on an IBD view, a new instance column is added to the table matrix.

The block has a library name, block name and instance name. You can change any of these
names individually on a block diagram (or the instance name on an IBD view) by double-
clicking on the name.

You can edit the name or library name (if the library row is displayed) of a block in an IBD view
by choosing Rename from the popup menu.

You can also edit the library name, block name or instance name by using the Blocks page in
the Object Properties dialog box which is displayed when you by use the button or choose
Object Properties from the Edit menu.

F4 E Add an embedded block

Table 3-1. Block Diagram/ IBD Commands for Adding Blocks and
Components (cont.)

Button Shortcut Mnemonic Description

Graphical Editors User Manual, V2010.3112

Block Diagram and IBD Views
Adding Blocks and Components

June, 2011

If you do not change the library name for a block on an untitled view, it is automatically given
the same library name as the parent view when the view is saved. Once a view has been saved,
its library is used as the default library for new blocks added to the view.

Note
Each block must have a unique block name and instance name. The block and instance
name cannot be the same when you are using VHDL but can be given the same name if
you are using Verilog.

If you do not change the instance name, each new block is given a unique instance name by
adding an integer to the default name (for example: U_0, U_1, U_2, U_3…).

The name text can be moved independently away from (or into) the block on a block diagram. If
you want to contain the text inside the block outline, it may be necessary to resize the object.

Instantiating a Component
When you add a component, the component browser is displayed which allows you to choose a
component (including ModuleWare components and components you have created) from an
existing library and drag an instance of the component on to a block diagram or IBD view.

Note
The component browser can also be displayed by choosing Component Browser from
the Window menu in a graphical editor window or from the Tools menu in the design
manager. Refer to “Using the Component Browser” in the HDL Designer Series User
Manual for more information.

You can instantiate a component by selecting the required design unit or view and holding
down the Left mouse button to drag the cursor over a block diagram or IBD view.

Block Diagram and IBD Views
Adding Blocks and Components

Graphical Editors User Manual, V2010.3 113
June, 2011

For example, the following picture shows the dialog box used to instantiate the truth table view
of the accumulator component in the Sequencer_vhd library:

The cursor changes to when you move over a valid destination and is added when you
release the mouse button.

If you drag a component design unit, the default view is instantiated. If you use the + icon to
expand the design unit and drag a design unit view of a VHDL design unit, it is instantiated as a
named view.

Note
You can instantiate a Verilog component in a VHDL design or a VHDL component in a
Verilog design.

You can also add a component by copying or dragging a design unit or design unit view from a
library displayed in a design explorer window.

When you add a component on a block diagram, a ghosted rectangle is attached to the cursor
and can be placed on the diagram by clicking at the required location. The component shape and
port positions on the block diagram are defined by its symbol.

When you add a component on an IBD view, a new instance column is added to the table
matrix.

The component is added with its existing object name and a unique instance name. If you have
selected a named VHDL view, the view name (for example: struct.bd) is shown after the
instance name. You can change the instance name on a block diagram by double-clicking on the
name.

Graphical Editors User Manual, V2010.3114

Block Diagram and IBD Views
Adding Blocks and Components

June, 2011

You can also edit the instance name and other component properties by using the Components
page in the Object Properties dialog box as described in “Editing Component Properties” on
page 133.

If the component references any VHDL packages which are not already referenced in the
package list, you are prompted whether to add them.

If you do not change the instance name, each new component is given a unique instance name
by adding an integer to the default name (for example: U_0, U_1, U_2, U_3…).

The instance name can be automatically derived from the design unit name or it can be an
editable string derived from a base name specified in your preferences as described in
“Assigning Automatic Instance Names” on page 111.

The name text can be moved independently away from (or into) the component on a block
diagram. If you want to contain the text inside the component outline, it may be necessary to
resize the object.

You can move ports around the component symbol on a block diagram by dragging them with
the mouse. (If you select more than one port, their relative separation is preserved.)

You can also space all the ports on each edge of a component evenly by choosing Equidistant
Ports from the popup menu or Ports cascade of the Diagram menu when the component is
selected.

Instantiating Verilog 2005 or System Verilog3.0 Text Components
A Verilog 2005 or System Verilog 3.0 text component can be instantiated in a Block diagram or
IBD design if the component interface is logically compatible with the language of the diagram.

Tip: A logically compatible interface is one whose port types can be mapped to Verilog
95 port types.

For compatibility reasons a level of type substitution will be provided. Following the type
substitution, if the component interface is still logically incompatible i.e one or more port types
failed to map to Verilog 95 port types, a message is issued and the operation is aborted.

Examples of port types that would fail to map are types void or enum.

The table below shows a list of Verilog2001/System Verilog 3.0 types that are supported as
Verilog 95 compatible ones.

Table 3-2. Supported Verilog2001/System Verilog 3.0 Types

Type Size

logic 1

Block Diagram and IBD Views
Adding Blocks and Components

Graphical Editors User Manual, V2010.3 115
June, 2011

For Verilog 95 diagrams, any type from the above table will be mapped to reg or wire of the
corresponding size depending on the following

Mode of the Declaration to be Substituted

• Output ports are substituted with "reg"

• Input/Inout ports are substituted with "wire"

Type of Diagram

Verilog 95 structural diagrams override type of nets according to diagrams' master
preferences while symbol types are not changed.

For VHDL diagrams, ports map to std_logic or std_logic_vector depending only on the size.

For BD/IBD, type substitution is applied to the newly created nets connected to a Verilog 2001
or System Verilog 3.0 instance. As for symbols created for Verilog 2001/System Verilog 3.0
text, type substitution is applied to the module ports themselves i.e. they would be replaced by
Verilog 95 compatible types in the symbol.

Note
Verilog 2000/System Verilog 3.0 synchronization occurs only from text to graphics, any
changes in the graphics are not reflected in the text.

Synchronization occurs between the instantiated component and the underlying text view
according to the following rules:

bit 1

byte 8

char 8

shortint 16

shortreal 32

integer 32

int 32

longint 64

time 64

real 64

realtime 64

Table 3-2. Supported Verilog2001/System Verilog 3.0 Types (cont.)

Type Size

Graphical Editors User Manual, V2010.3116

Block Diagram and IBD Views
Adding Blocks and Components

June, 2011

• Graphical components with no symbols are updated only when you manually update
them by choosing Component>Update>Interface from the component popup menu.

• Symbols of graphical components are updated on saving there underlying text
components.

• A mixed design symbol is updated when changing the default view to Verilog 2005/
System Verilog3.0

Tip: Symbol/ Interface updating can be allowed/disallowed through Options>Main>Save
tab in the Design Explorer window or from the symbol properties dialog incase of mixed
designs.

In all of the above cases the tool checks if the Verilog 2000 /System Verilog types in the text are
logically compatible with the language of the diagram and updates the graphical interface doing
any needed type substitution.

Instantiating a ModuleWare Component
HDL Author and HDL Designer include a parameterizable ModuleWare library which can be
used to instantiate language-independent component parts representing a wide range of logic
and arithmetic functions.

The moduleware library is automatically pre-selected in the component browser when you use
the button or choose ModuleWare from the Add menu.

When the moduleware library is displayed in the component browser, you can choose from a
number of categories which each contain parts supporting a family of functions. Each category
is displayed as an expandable folder.

Block Diagram and IBD Views
Adding Blocks and Components

Graphical Editors User Manual, V2010.3 117
June, 2011

For example, the Arithmetic folder contains parts which can be used to implement arithmetic
functions.

You can edit the instance name or other object properties for a ModuleWare part in the same
way as any other component by using the Components tab in the Object Properties dialog box
as described in “Editing Component Properties” on page 133.

Editing ModuleWare Parameters

You can edit ModuleWare parameters by using the ModuleWare page in the Object Properties
dialog box.

Graphical Editors User Manual, V2010.3118

Block Diagram and IBD Views
Adding Blocks and Components

June, 2011

For example, the following picture shows the ModuleWare Parameters dialog box for the
Accumulator arithmetic function:

You can also display the ModuleWare Parameters dialog box by double-clicking on a
ModuleWare component instance or by selecting Parameters from the ModuleWare cascade
in the popup menu.

You can edit the ModuleWare parameters by entering the required values in the table or (for
enumerated parameters) by choosing from a dropdown list.

You can preview the parameter settings and the generated HDL (or the error and warning
messages that would be issued when HDL is generated) by using the Preview button to display
the ModuleWare Preview dialog box.

You can also display the ModuleWare Preview dialog box by choosing Preview from the
ModuleWare cascade of the popup menu when a ModuleWare instance is selected.

You can optionally display ModuleWare parameters in a comment text box when a part is
instantiated on a block diagram and set the parameters which are displayed by using the Params
Display button as described in “Setting the Visibility of ModuleWare Parameters” on page 120.

You can restore all parameters to their default values by using the Restore Defaults button.

Block Diagram and IBD Views
Adding Blocks and Components

Graphical Editors User Manual, V2010.3 119
June, 2011

You can also choose whether HDL for the ModuleWare instance is generated in-line or to a
separate file. When set to in-line, the generated HDL is embedded in the HDL for the parent
diagram. When the in-line option is unset, the generated HDL is written to a separate file with
the name shown in the dialog box. (This name is a unique signature derived by adding a unique
32-bit hexadecimal number to the part name.)

Refer to the ModuleWare Parameters dialog box description for more information about setting
ModuleWare parameters.

Note
Signals and buses can be connected to a ModuleWare instance in the same way as any
other component. Note that the port size parameters default to Automatic and will be
automatically set to the width of the connected net.
Note also, that you can connect bus slices directly to the bit manipulation models but not
to any other type of ModuleWare or component instance.

Refer to the ModuleWare Reference Guide for more information about using the ModuleWare
library including full descriptions of each supported function.

Note that the relevant page in a HTML version of the reference guide can be accessed by using
the Details button in the ModuleWare Parameters dialog box or by choosing Details from the
popup menu in the component browser.

Using Dynamic ModuleWare Components

A number of dynamic ModuleWare components (and, nand, nor, or, sand, sor, sxor, xnor, xor,
mux, omux, merge, and split) are available. These components have two input or output ports
when they are instantiated but can be extended to support any number of ports by resizing the
instance to disclose the required number of ports or by setting the required number of ports in
the ModuleWare Parameters dialog box.

To resize an instance, select the component by clicking with the left mouse button then drag on
the top or bottom resize button as shown below until the required number of ports are available.

Additional port polarity parameters are available in the ModuleWare Parameters dialog box for
each port.

Graphical Editors User Manual, V2010.3120

Block Diagram and IBD Views
Adding Blocks and Components

June, 2011

You can also change the polarity by selecting a port and choosing Active High or Active Low
from the Port Type cascade of the popup menu.

When a ModuleWare instance is selected, you can often change the function by choosing one of
the Change to options from the ModuleWare cascade in the popup menu. For example, if an
and gate is selected, you can change it to an or or xor gate with the same number of ports. The
logical shape is automatically updated to represent the new function.

Setting the Visibility of ModuleWare Parameters

You can set the visibility of the ModuleWare parameters on a block diagram by using the
Params Display button in the ModuleWare Parameters dialog box to display the Moduleware
Parameters Visibility dialog box:

The dialog box can also be displayed by double-clicking on an existing ModuleWare
Parameters text box.

The selected parameters are shown in a text box on the diagram which is usually displayed by
default but can be hidden by choosing Hide Text from the popup menu for the text box. If not
shown the text box can displayed by choosing Show Text from the popup menu for the
ModuleWare component.

You can set the default visibility of ModuleWare parameters on a block diagram and the
properties which are shown in the object tips for a Moduleware instance using the ModuleWare
Params page of the Block Diagram Master Preferences dialog box.

These preferences can also be accessed in an existing diagram to change the visibility for new
and existing instances in the same diagram. Refer to “Setting Block Diagram Preferences” on
page 231 for more information.

Instantiating an External HDL Model
Any existing external HDL model can be instantiated by reference as a component in a block
diagram or IBD view. The HDL Designer Series installation includes HDL for Inventra,
Seamless CVE and speedCHART models (in the hdl_libs/src subdirectory).

Block Diagram and IBD Views
Adding Blocks and Components

Graphical Editors User Manual, V2010.3 121
June, 2011

VHDL and Verilog source for synthesizable Inventra system level building blocks is provided
in the hdl_libs/src/inventra installation subdirectory as two files:

inventra_soft_cores.vhd (VHDL entities)
inventra_soft_cores.v (Verilog modules)

These models are based on soft cores distributed by the Inventra Intellectual Properties (IP)
business unit of Mentor Graphics Corporation.

More information including descriptions of all the currently available models can be obtained
from the Inventra worldwide web site at:

http://www.mentor.com/inventra/index.html

VHDL 87 source for using the following Seamless CVE models is provided in the
hdl_libs/src/cve_qhdl_vhdl installation subdirectory:

Refer to the Seamless CVE documentation for a full description of these models.

Note
Seamless expects these models to be compiled into the library:
cve_qhdl_vhdl.lib at $CVE_HOME/cve_qhdl_vhdl_87_lib
where the CVE_HOME environment variable specifies the location of the Seamless
software. You should add this library to your library mapping and enter cve_qhdl_vhdl as
the compiled library in the Add Instance dialog box when instantiating a CVE model.

Please contact Mentor Graphics customer support for information about the latest available
CVE models for other compilers (including Verilog language models) or visit the Seamless
worldwide web site at:

http://www.mentor.com/codesign/main-f/index.htm

VHDL source for the following speedCHART component libraries can be found in the
hdl_libs/src/spdch/vhdl installation subdirectory:

spdch_components.vhd
spdch_entities.vhd
spdch_configurations.vhd

The following Verilog file can be found in the hdl_libs/src/spdch/verilog installation
subdirectory:

spdch_comp_lib.v

arm7tdmi.vhd
dpram.vhd

dram.vhd
fifo.vhd

mc68040.vhd
ppc603e.vhd

register_mem.vhd
sram.vhd

http://www.mentor.com/inventra/index.html
http://www.mentor.com/codesign/main-f/index.htm

Graphical Editors User Manual, V2010.3122

Block Diagram and IBD Views
Adding Blocks and Components

June, 2011

Note
The models defined in these files are provided for users transitioning from speedCHART
Project Designer to the HDL Designer Series and can be instantiated as external HDL
models or converted using HDL import.

Any other models defined in a VHDL entity declaration, component definition in a VHDL
package or Verilog module description on your file system can also be instantiated. For
example, FPGA or 3Soft models.

Note that an external HDL model can be defined using a different language to the view it is
instantiated in. VHDL models can be re-used in a Verilog block diagram or Verilog models in a
VHDL diagram.

The Add External IP dialog box is displayed when you use the button or choose IP from the
Add menu:

You can enter (or browse for) the pathname of an existing HDL file which contains a VHDL
entity declaration or Verilog module and browse a list of the entities (or modules) contained in
the file.

Note
If the file extension is not recognized as one of those specified in the File tab of the
VHDL or Verilog Options dialog box, it is assumed to be VHDL.

You can optionally enter a soft pathname which is defined as an environment variable or (on
UNIX systems) in a location map. However, the full expanded pathname is shown when you
use the Browse button.

For an external VHDL file, you can browse for the name of a separate architecture file and
architecture name. (You can optionally omit the architecture name or enter a name which is not
yet defined.) However, you must specify the downstream library which contains (or will

Block Diagram and IBD Views
Adding Blocks and Components

Graphical Editors User Manual, V2010.3 123
June, 2011

contain) the compiled object. This library can be set by choosing from a drop down list of
currently mapped Downstream Only libraries.

The library name, entity name and an automatically generated unique instance name are shown
on the component.

For an external Verilog file, you can optionally use a library to contain the compiled object. The
Verilog module name, filename and an automatically generated unique instance name are
shown on the component.

Caution
External VHDL or Verilog models must be compiled outside the HDL Designer Series
tool.

The external HDL file is parsed to extract information about the interface including contained
VHDL entities, VHDL architectures or Verilog modules, VHDL package references and VHDL
generic or Verilog parameter declarations.

If the specified file contains a single HDL model (described by a VHDL entity, VHDL
architecture or Verilog module) this model is automatically selected. An error message is issued
if a parse error is encountered.

If a VHDL model requires any VHDL packages which are not already referenced, you are
prompted whether to add them.

A symbol is automatically created and the external HDL model is added on a block diagram as
a component instance with input ports automatically placed on the left, output ports on the right,
bidirectional ports on the top and buffer ports on the bottom.

The default values of any VHDL generic or Verilog parameter declarations are shown on a
block diagram and can be edited using the Object Properties dialog box.

Using a Soft Pathname for External HDL
If you want your design to be portable, it is advisable to specify the location of external HDL
models using a soft pathname.

The soft pathname can be an environment variable or on UNIX systems a soft prefix defined in
a location map.

The Browse buttons on the Add Instance and Update dialog boxes do not allow you to browse
soft pathnames. However, you can enter a soft pathname directly or use the browser to locate
the external HDL file and then substitute the appropriate prefix.

A leading $ must be included when you are using an environment variable or location map
prefix. For example, you could enter $External in the file name entry box, then use the Browse

Graphical Editors User Manual, V2010.3124

Block Diagram and IBD Views
Adding Blocks and Components

June, 2011

button to navigate below this location and select an external HDL file. Then substitute
$External in the hard pathname before confirming the dialog box.

Updating an External HDL Model
You can update or replace an external HDL model by choosing From HDL from the Update
cascade in the popup menu when an external IP component is selected on a block diagram or in
an IBD view.

The Update/Replace Foreign Component dialog box is displayed which allows you to update
the pathnames for the external HDL source files or replace the name of the VHDL entity,
VHDL architecture or Verilog module.

For example, the following dialog box is displayed when the external HDL is VHDL:

You can also change the downstream library for an external HDL model. However, the
language can not be updated. If you want to replace an external HDL model by one of a
different language, it must be deleted and re-instantiated in order to update the interface
correctly.

Note
You do not need to update the pathnames if you used a soft pathname which is defined as
an environment variable or (on UNIX systems) in a location map. The references are
retained if the definition of the soft pathname changes.

Adding an Embedded Block
When you add an embedded block on a block diagram, a ghosted rectangle is attached to the
cursor and can be placed on the diagram by clicking the Left mouse button at the required
location.

Block Diagram and IBD Views
Adding Blocks and Components

Graphical Editors User Manual, V2010.3 125
June, 2011

The embedded block is added with a default size or you can hold down the mouse button and
drag across the diagonal for a required size. When you add an embedded block on an IBD view,
a new instance column is added to the table matrix.

The embedded block is added with a default name and instance number. The default name can
be set as a preference but is made unique by adding a numeric suffix if the name already exists
on the diagram.

The instance number controls the ordering of the HDL code describing the embedded view in
the generated HDL when there are multiple embedded views in the same diagram.

You can edit the name or instance number of the embedded block on a block diagram (or the
instance name on an IBD view) by direct text editing. You can edit the name of an embedded
block in an IBD view by choosing Rename from the popup menu.

You can also edit the name and number by using the Embedded Blocks page in the Object
Properties dialog box which is displayed when you by use the button or choose Object
Properties from the Edit menu.

Opening an Embedded View
You can open the existing embedded view of an embedded block by choosing Open from the
popup menu or by double-clicking over the embedded block on the block diagram or IBD view.
If no view exists, the Create Embedded View dialog box is displayed.

The dialog box allows you to create an embedded flow chart, state machine, truth table or HDL
text view. However, each embedded block can have only one view.

Note
A flow chart, state machine or truth table created in this way is saved as part of the same
design unit and not as a child hierarchical design unit. The embedded view shares the
same undo log as the parent view and any Undo (or Redo) command will perform the last
command executed in either view.

Graphical Editors User Manual, V2010.3126

Block Diagram and IBD Views
Adding Blocks and Components

June, 2011

If an embedded block has an existing view, you can choose Change Embedded View from the
popup menu. You are prompted whether to delete the existing view and the Create Embedded
View dialog box is displayed for you to open a new view.

When you create an embedded flow chart, state machine or truth table, the embedded view is
named by adding the embedded block name to the parent view name separated by a colon and
displayed in a new tab added to the active window.

For example, if the block diagram TEST\Counter\Struct contains an embedded block named
Decode which is defined by a truth table, the truth table is titled TEST\Counter\Struct:Decode.

An embedded state machine or flow chart can also include hierarchical or concurrent diagrams
which are named in the usual way (by appending the object name in square brackets). However,
if more than one embedded state machine block is included on any view, the state vector is not
written and only one ENUM attribute is declared.

VHDL architecture declarations or Verilog module declarations are disabled in an embedded
flow chart, state diagram or truth table. However, these can be entered on the parent view
containing the embedded block.

Adding Embedded HDL Text
When you create an embedded HDL text view on a block diagram, a default text object
containing the embedded view name and number as comment text is added on the diagram.

This object is associated to the embedded block by an anchor but can be moved independently
by dragging with the mouse. You can resize the text object by dragging its resize handles or
change the visibility of the text to hide or show it on the diagram.

You can edit the HDL text by direct text editing on a block diagram or by using the Text page
of the Object Properties dialog box which is displayed when you use the button or choose
Object Properties from the Edit menu.

Refer to “Editing Text Properties” on page 58 for more information about the Text tab of the
Object Properties dialog box.

You can also open an embedded HDL text view in the text editor by selecting the text object (or
the embedded block instance in an IBD view) and choosing Send To Editor from the popup
menu, by choosing Open from the popup menu or by double-clicking on the embedded block
instance.

Note
If you double-click on an embedded block when the HDL text view is already open in the
editor, you are prompted whether to finish the edits.

Block Diagram and IBD Views
Adding Blocks and Components

Graphical Editors User Manual, V2010.3 127
June, 2011

Any valid HDL statements for the current hardware description language can be entered in free
format (including line breaks and indentation which are preserved when the text is displayed on
a diagram) but each statement must be terminated by a semi-colon.

The syntax is automatically checked for the hardware description language of the active view.
However, syntax checking can be disabled by unsetting a preference. If you change the
language for the current view, syntax errors are reported when you close the HDL text view.

The HDL code is inserted after the first BEGIN statement in the generated HDL for the block
diagram or IBD view. When there are more than one embedded HDL text views in the same
view, they are treated as concurrent statements.

Updating an Instance
You can know the instances that need to be updated in IBD editor, by choosing Instance
Interface Consistency from the Table menubar option. Instances that need to be updated will
be highlighted in red. You will be prompted if all instances are up-to-date. If any instances are
out-of-date, the following dialog box appears.

You can update instances later by clicking No. If you choose to update instances now, instances
are updated but the red highlight will continue to appear until you clear it by clicking Clear Net
Highlight from the menu bar.

Note
If you try generating an IBD that has out-of-date instances, an error message appears in
the Log window listing the instances that need to be updated.

You can update a component instance with the latest interface defined by its symbol by
choosing one of the options from the Update cascade of the Diagram or popup menu when the
component is selected.

If you choose Interface, the Reconcile Interface dialog box is displayed as described in
“Reconciling Interfaces” on page 128. This command examines the interface defined in the
child view and allows you to reconcile any differences by updating either the child or parent
views.New ports added in the graphics or text will be synchronized (i.e. added to the other
description). Deleted ports will be synchronized (i.e. removed form the other description)

Graphical Editors User Manual, V2010.3128

Block Diagram and IBD Views
Adding Blocks and Components

June, 2011

Note
Type differences (e.g. wire/reg etc.) are not updated in either direction for Verilog
designs with text leaf-level descriptions.

You can choose Interface and Graphics when the symbol defining the interface to a
component has changed and you want to update its instantiation on the block diagram or IBD
view. This command attempts to preserve the instance size and port positions.

Alternatively, you can choose to update From Symbol when you want to replace the selected
component including any graphical layout changes specified in the symbol. The connectivity is
preserved although nets may have to be moved if the port positions have changed on the
symbol.

You can also choose Graphics To Symbol when you want to update the symbol with changes
to the layout, appearance, port placement or visibility from the component instance. You must
have write permissions to the component to use this command. If there are any interface
differences on the symbol, you are prompted to resolve them.

Similarly, you can update a block instance with the interface information from a child HDL text
view by choosing From HDL from the Update cascade in the popup menu.

If any of the interface ports have been renamed, the port is disconnected when you update the
instance but the overlapping ports and signals can be reconnected using the Connect option
which is available from the Diagram menu or popup menu in a block diagram.

Note that Verilog is case sensitive but VHDL is case insensitive, therefore port names will be
disconnected if you change the case of a Verilog port name but not if you change the case of a
VHDL port name.

If VHDL generic or Verilog parameter declarations are defined on the symbol, their values are
not updated on the component and may need to be edited using the Object Properties dialog
box.

Reconciling Interfaces
When you create a new block diagram or IBD view its external ports are defined by the parent
view. These ports are defined by the symbol for a component or by the connections to the parent
view for a block. However, the interfaces may become inconsistent and need to be reconciled
after a diagram has been edited.

Note
You are automatically prompted to update the interface when you save or close a block
diagram or IBD view after changing the port declarations.

Block Diagram and IBD Views
Adding Blocks and Components

Graphical Editors User Manual, V2010.3 129
June, 2011

You can reconcile interfaces by choosing Interface from the Update cascade of the Diagram
menu in a block diagram or from the Table menu in an IBD view to display the Reconcile
Interface dialog box.

If no block or component instance is selected, this command reconciles interfaces with the
parent view.

If a block or component instance is selected, the command is also available from the popup
menu and you can reconcile the interface to the selected child view.

You can also compare the interface of a component representing external IP with the interface
defined in the external HDL file. However, in this case only the instance can be updated.

If more than one block or component instance is selected, all the views are listed and can be
reconciled by selecting an instance name from the list.

Graphical Editors User Manual, V2010.3130

Block Diagram and IBD Views
Adding Blocks and Components

June, 2011

By default, reconcile interface ignores any differences due to inconsistent case or port ordering
but you can set Enforce consistent case or Enforce consistent port ordering by using the
Options button to display the Reconcile Interface Options dialog box.

If you change either of these options, the new default is saved as a preference.

Inconsistent case or port ordering is not reported until all other inconsistent interfaces have been
successfully reconciled.

Note
If there are any changes to the ports defined in the symbol, any comments added in the
symbol are reconciled. However, changes to the comments in the symbol are ignored if
there are no changes to the interface declarations.

You can use reconcile interfaces to add or remove ports or propagate changes to signal
properties between views. However, you cannot use reconcile interfaces to propagate changes
to signal names. Refer to “Propagating Net Changes” on page 166 for information about
propagating a signal change through hierarchical views.

If you change a signal name and reconcile the interfaces, a port and stub signal are added to the
related view for the new name and the old signal is disconnected.

Any inconsistencies are reported and you can choose to automatically apply changes to make
either the current view or the related (parent or child) interface consistent.

Block Diagram and IBD Views
Checking the Design

Graphical Editors User Manual, V2010.3 131
June, 2011

Checking the Design
You can set options for checking the connections in a block diagram or IBD view by choosing
Design Checking Options from the Diagram menu in a block diagram or the Table menu in an
IBD view to display the Design Checking Options dialog box:

You can check the connections in the design by using the button or choosing Check Design
from the Diagram menu in a block diagram or from the Table menu in an IBD view.

This command issues a report to the log window listing any mismatch with the interface and any
nets which have no drivers (source is unconnected) or no loads (destination is unconnected).
For example:

Graphical Editors User Manual, V2010.3132

Block Diagram and IBD Views
Checking the Design

June, 2011

An error message is issued in the log window if the option to check the interface is set and the
view has not been saved. If the view has been saved, any inconsistencies with the interface are
reported.

You can check the block diagram or IBD view for unconnected (dangling) nets or ports and for
any nets connected to ports with a different width or type. These checks include unconnected
nets contained in a bundle or connected only to a global connector or ripper.

You can set strict type comparison to report any unmatched types or unset this option to allow
nets connections with a related type (for example: std_ulogic and std_logic).

You can also check for nets that are driven by multiple ports.

Note that you can click on the net names reported in the log window to cross-reference to the
nets on the block diagram or IBD view.

Checking Through Hierarchy
You can check all block diagram and IBD views hierarchically by selecting any design unit in
the design explorer and choosing Check BD/IBD Through Hierarchy from the Tools or
popup menu.

If any of the block diagrams or IBD views in the hierarchy violate the current design checking
options, a report window is displayed in the design explorer showing these views in an
expandable list.

Note
If no violations are detected, a message is raised informing you that the check is complete
without any failures found as shown in the figure below.

You can open any of these views by double-clicking or choosing Open File from the popup
menu. The design check violations for each view are shown in the Log window when they are
opened.

Block Diagram and IBD Views
Editing Object Properties

Graphical Editors User Manual, V2010.3 133
June, 2011

Editing Object Properties
You can display and edit properties for objects in a Block Diagram or IBD view through the
Object Properties dialog box.

To display the Object Properties dialog box:

1. Select an object in the Block Diagram or IBD view.

2. Do one of the following:

o Click the button on the shortcut bar.

o Use the Alt + shortcut.

o Choose Object Properties from the Edit menu.

o Choose Object Properties from the cascade popup menu.

The left pane of the dialog box displays a list of the block diagram objects. These include
Components, Blocks, Embedded blocks, Moduleware. External IPs, Signals, Bundles, PortIOs,
Frames, Comment Text, Comment Graphics and User Declarations. You can use + to expand or
collapse an object list.

Note
The Generics Sub-page is available for Components, Blocks and External IPs if you are
using VHDL or the Parameters page if you are using Verilog. The Bundles, PortIO,
Comment Text and Graphics pages are not available in an IBD view.

Selected objects are displayed in black and their corresponding pages are enabled. Objects not
in the selection set are displayed in grey and their corresponding pages are disabled.

The right pane of the dialog box displays the selected object properties page.

Editing Component Properties
The Components object is selected if you display the Object Properties dialog box when one or
more component is selected on a block diagram or IBD view.

Graphical Editors User Manual, V2010.3134

Block Diagram and IBD Views
Editing Object Properties

June, 2011

The components page of the BD Object Properties dialog box allows you to specify the library,
component name and Instance name.

For a VHDL component, you can also change the instantiated view. This can be the default
view or any other named view which exists for the component. If you choose the default view, it
can optionally be included with no architecture reference. When you are using Verilog, the
default view is always used and the Architecture options are not available.

Editing Component Generics and Parameters
The Generics page for the Component Object of the BD Object Properties dialog box allows
you to override the default Generics that have been already defined on the component symbol
using the Symbol editor. In addition it allows you to specify HDL Generation Settings.

The same applies to the Parameters page which is available if you are using Verilog as your
design language.

Block Diagram and IBD Views
Editing Object Properties

Graphical Editors User Manual, V2010.3 135
June, 2011

Refer to “Defining Generics and Parameters” on page 184 and “Editing Generics and
Parameters for Instances” on page 186 for more information.

Editing Component Text Visibility
The Text Visibility page for the Component Object of the BD Object Properties dialog box
allows you to set the visibility of VHDL generic or Verilog parameters and also allows you to
modify port display properties for the selected component instance. Refer to “Changing the
Display of Port Properties” on page 206 for more information.

Graphical Editors User Manual, V2010.3136

Block Diagram and IBD Views
Editing Object Properties

June, 2011

.

Editing Component Port map Frame
The Port Map Frame page for the Component Object of the BD Object Properties dialog box
allows you to enable (or disable) a port map frame and edit the mapping between formal ports
on the component and the actual signals.

When Enable Port Map Frame is set, mapping generated automatically by direct connections
is shown in read-only list with a separate editable list where you can explicitly map the ports
and signals. When Connection by Name is set, any signal connected to the frame with the same
name as a component port is implicitly connected.

When you enable a port map frame, a template port map for all unconnected component ports is
shown as an editable comma separated list in the dialog box. For example:

VHDL Verilog

portA => , .portA(),

portB =>, .portB(),

Block Diagram and IBD Views
Editing Object Properties

Graphical Editors User Manual, V2010.3 137
June, 2011

You can enter actual VHDL signal names after the => operator or actual Verilog signal names
inside the parentheses (). Ensure that you remove any duplicate entries from the editable list if
they already exist in the automatically generated list before attempting to generate HDL.

Refer to “Port Map Frames” on page 283 for more information about using port map frames.

portC => .portC()

VHDL Verilog

Graphical Editors User Manual, V2010.3138

Block Diagram and IBD Views
Editing Object Properties

June, 2011

Setting Component Attributes and Embedded Constraints
The Attributes page for the Component Object of the BD Object Properties dialog box allows
you to set attributes and embedded constraints for the selected components. Refer to “Setting
Attributes and Embedded Constraints” on page 165 for more information.

Modifying Component Appearance
The Appearance page for the Component Object of the BD Object Properties dialog box allows
you to set visual attributes for the selected components.

The attributes include the foreground, background and line color, the line style, fill style, line
width. You can set the font used. You can also change the appearance of a component by
choosing Appearance from the popup menu.

You can change the shape of the selected blocks by choosing a standard logic shape from a
drop-down list or by choosing Autoshape from the popup cascade menu to choose from a list of
standard shapes. You can also define your own shape by selecting Editing Shape from the
popup cascade menu.

Block Diagram and IBD Views
Editing Object Properties

Graphical Editors User Manual, V2010.3 139
June, 2011

Refer to “Changing the Shape of a Block or Component” on page 228 for more information.

Editing Block Properties
The Blocks object is selected if you display the Object properties dialog box when a block is
selected on a block diagram or IBD view.

The Blocks page of the BD Object Properties dialog box allows you to specify the Library,
Block name and Instance name.

Note
The block and instance name cannot be the same when you are using VHDL but can be
given the same name if you are using Verilog.

You can change the library for all the selected blocks but the instance name and block name
must be unique HDL identifiers and can only be edited if a single block is selected.

Graphical Editors User Manual, V2010.3140

Block Diagram and IBD Views
Editing Object Properties

June, 2011

When the dialog box is displayed from a block diagram, you can choose whether the library and
instance name are visible on the diagram.

You can also set the visibility of the declarations and values for VHDL generics or verilog
parameters on the diagram and choose whether ports are shown for nets connected to the block.

Refer to “Opening Block and Component Views” on page 194 for more information.

Editing Block Generics and Parameters
The Generics page for the Block Object of the BD Object Properties dialog box allows you to
specify HDL Generation Settings.

The dialog box also lists any existing VHDL generic declarations and allows you to change the
values mapped for each instance. The same applies to the Parameters page which is available if
you are using Verilog as your design language.

Refer to “Defining Generics and Parameters” on page 184 and “Editing Generics and
Parameters for Instances” on page 186 for more information.

Modifying Block Port Ordering
The Port Ordering page for the Block Object of the BD Object Properties dialog box allows
you to modify the port ordering by choosing the Manual option to disclose an ordered list. The
list shows how the port declarations will be ordered in the generated HDL for the block

One or more port declarations can be selected and moved up and down the list by using the
and buttons. If you choose Automatic the list is ordered alphanumerically.

You can modify the port ordering for a block by choosing the Manual option in the dialog box
to disclose an ordered list showing how the port declarations will be ordered in the generated
HDL for the block.

Note
If a block has been set to use manual port ordering, then manual ordering is used when
you create a child block diagram or IBD view. Consistent port ordering can optionally be
enforced when you reconcile interfaces.

Block Diagram and IBD Views
Editing Object Properties

Graphical Editors User Manual, V2010.3 141
June, 2011

Setting Block Attributes and Embedded Constraints
The Attributes page for the Block Object of the BD Object Properties dialog box allows you to
set attributes and embedded constraints for the selected blocks. Refer to “Setting Attributes and
Embedded Constraints” on page 165 for more information.

Setting Block Appearance
The Appearance page for the Block Object of the BD Object Properties dialog box allows you
to set visual attributes for the selected blocks.

The attributes include the foreground, background and line color, the line style, fill style, line
width. You can set the font used.

Graphical Editors User Manual, V2010.3142

Block Diagram and IBD Views
Editing Object Properties

June, 2011

You can also change the shape of the selected blocks by choosing a standard logic shape from a
drop-down list.

Refer to “Changing the Shape of a Block or Component” on page 228 for more information.

Block Diagram and IBD Views
Editing Object Properties

Graphical Editors User Manual, V2010.3 143
June, 2011

Editing Embedded Block Properties
The Embedded Blocks page is selected if you display the Object Properties dialog box when an
embedded block is selected on a block diagram or IBD view.

The Embedded Blocks page allows you to specify the name and number of the embedded block.
The name must be a unique HDL identifier in the view. The number must also be unique and
determines the order in which the HDL for unconnected embedded blocks is included in the
HDL for the view.

If you enter a number which is already used by another embedded block in the same design unit
view, the numbers are swapped. The name and number can only be edited if a single block is
selected.

When the dialog box is displayed from a block diagram, you can choose whether the name and
number are visible on the diagram and choose whether ports are shown when nets are connected
to the embedded block on the diagram.

Graphical Editors User Manual, V2010.3144

Block Diagram and IBD Views
Editing Object Properties

June, 2011

Editing Embedded Blocks HDL Text
The HDL Text page for the Embedded Block Object of the BD Object Properties dialog box
allows you to edit the existing HDL text.

Any valid HDL statements for the current hardware description language can be entered in free
format (including line breaks and indentation) but each statement must be terminated by a semi-
colon.

The syntax is automatically checked for hardware description language of the active view.
However, syntax checking can be disabled by unsetting a preference.

You can use the modify check box to apply the new text to all the selected embedded HDL text
views on the diagram.

You can also modify the text position in the bounding box.

Modifying Embedded Blocks Text Appearance
The Text Appearance page for the Embedded Block Object of the BD Object Properties dialog
box allows you to modify the font of the comment text.

Modifying Embedded Blocks Text Box Appearance
The Text Box Appearance page for the Embedded Block Object of the BD Object Properties
dialog box allows you to set visual attributes for the selected blocks text box.

The attributes include the foreground, background and line color, the line style, fill style, line
width.

Modifying Embedded Blocks Appearance
The Appearance page for the Component Object of the BD Object Properties dialog box allows
you to set visual attributes for the selected embedded blocks.

The attributes include the foreground, background and line color, the line style, fill style, line
width. You can set the font used.

You can also change the shape of the selected blocks by choosing a standard logic shape from a
drop-down list.

Refer to “Changing the Shape of a Block or Component” on page 228 for more information.

Block Diagram and IBD Views
Editing Object Properties

Graphical Editors User Manual, V2010.3 145
June, 2011

Editing ModuleWare Properties
The ModuleWare object is selected if you display the Object properties dialog box when a
moduleware is selected on a block diagram.

The Moduleware page of the BD Object Properties dialog box allows you to specify the
Moduleware Instance name.The library and the component name fields can not be modified.

You can choose to display the library and instance name on the moduleware symbol.

You can use the Moduleware parameters button to display the ModuleWare Parameters dialog
box. Refer to “Editing ModuleWare Parameters” on page 117 for more information.

Graphical Editors User Manual, V2010.3146

Block Diagram and IBD Views
Editing Object Properties

June, 2011

Editing Moduleware Port map Frames
The Port Map Frame page for the Moduleware Object of the BD Object Properties dialog box
allows you to enable (or disable) a port map frame and edit the mapping between formal ports
on the Moduleware and the actual signals.

When Enable Port Map Frame is set, mapping generated automatically by direct connections
is shown in read-only list with a separate editable list where you can explicitly map the ports
and signals. When Connection by Name is set, any signal connected to the frame with the same
name as a component port is implicitly connected.

When you enable a port map frame, a template port map for all unconnected ModuleWare ports
is shown as an editable comma separated list in the dialog box. For example:

You can enter actual VHDL signal names after the => operator or actual Verilog signal names
inside the parentheses (). Ensure that you remove any duplicate entries from the editable list if
they already exist in the automatically generated list before attempting to generate HDL.

Refer to “Port Map Frames” on page 283 for more information about using port map frames.

Setting ModuleWare Attributes and Embedded Constraints
The Attributes page for the Moduleware Object of the BD Object Properties dialog box allows
you to set attributes and embedded constraints for the selected ModuleWare components. Refer
to “Editing ModuleWare Parameters” on page 117 for more information.

Editing External IPs Properties
The External IPs object is selected if you display the Object properties dialog box when an
External IP is selected on a block diagram or IBD view.

The External IPs page of the BD Object Properties dialog box allows you to specify the Instance
name.

For a VHDL component, you can also change the instantiated view. This can be the default
view or any other named view which exists for the External IP. If you choose the default view,
it can optionally be included with no architecture reference. When you are using Verilog, the
default view is always used and the view options are not available.

You can use the + to expand the objects list.

VHDL Verilog

portA => , .portA(),

portB =>, .portB(),

portC => .portC()

Block Diagram and IBD Views
Editing Object Properties

Graphical Editors User Manual, V2010.3 147
June, 2011

Editing External IP Generics
The Generics page for the External IP Object of the BD Object Properties dialog box allows
you to specify HDL Generation Settings.

Editing External IP Text Visibility
The Text Visibility page for the External IP Object of the BD Object Properties dialog box
allows you to set the visibility of VHDL generic or Verilog parameters.

The dialog box also allows you to modify port display properties for the selected External IP
instance. Refer to “Changing the Display of Port Properties” on page 206 for more information.

Editing External IP Port map Frame
The Port Map Frame page for the External IP Object of the BD Object Properties dialog box
allows you to enable (or disable) a port map frame and edit the mapping between formal ports
on the External IP and the actual signals.

When Enable Port Map Frame is set, mapping generated automatically by direct connections
is shown in read-only list with a separate editable list where you can explicitly map the ports
and signals. When Connection by Name is set, any signal connected to the frame with the same
name as a component port is implicitly connected.

When you enable a port map frame, a template port map for all unconnected component ports is
shown as an editable comma separated list in the dialog box. For example:

You can enter actual VHDL signal names after the => operator or actual Verilog signal names
inside the parentheses (). Ensure that you remove any duplicate entries from the editable list if
they already exist in the automatically generated list before attempting to generate HDL.

Refer to “Port Map Frames” on page 283 for more information about using port map frames.

Setting External IP Attributes and Embedded Constraints
The Attributes page for the External IP Object of the BD Object Properties dialog box allows
you to set attributes and embedded constraints for the selected External IPs. Refer to “Setting
Attributes and Embedded Constraints” on page 165 for more information.

VHDL Verilog

portA => , .portA(),

portB =>, .portB(),

portC => .portC()

Graphical Editors User Manual, V2010.3148

Block Diagram and IBD Views
Editing Object Properties

June, 2011

Modifying External IP Appearance
The Appearance page for the External IP Object of the BD Object Properties dialog box allows
you to set visual attributes for the selected External IP.

The attributes include the foreground, background and line color, the line style, fill style, line
width. You can set the font used.

You can also change the shape of the selected External IP by choosing a standard logic shape
from a drop-down list.

Editing Bundle Properties
The Bundle object is selected if you display the Object properties dialog box when a Bundle is
selected on a block diagram.

The Bundle page allows you to specify the Bundle name. If you change the bundle name all
occurrences of the name on the diagram are updated. The visible check allows you to choose
whether the bundle name is displayed or hidden on the diagram.

A list of the bundle contents is normally shown on the diagram as a single line below the bundle
name but you can check the wrap contents option to list each signal on a separate line.

Block Diagram and IBD Views
Editing Object Properties

Graphical Editors User Manual, V2010.3 149
June, 2011

A list of declared nets is displayed on the left hand side of the page, and a list of the bundle
contents is displayed on the right hand side. You can add a declared net to the bundle by
selecting nets from the left hand side list and clicking “Add”. You can remove a net from the
bundle declaration by selecting it from the right hand side list and clicking “Remove”. You can
clear all the bundle signals by clicking on “Remove All” button.

You can add a new signal to the bundle contents by clicking the Add Signal button to display
the Add Signal dialog box.

Modifying Bundle Appearance
The Appearance page for the Bundle Object of the BD Object Properties dialog box allows you
to set visual attributes for the selected bundle.

The attributes include the line color, line style and line width.

Editing Signal Properties
The Signals page is selected if you display the Object properties dialog box when a Signal is
selected on a block diagram or IBD view.

The Signal page allows you to edit the declarations of all the signals on a block diagram or IBD
view.

Graphical Editors User Manual, V2010.3150

Block Diagram and IBD Views
Editing Object Properties

June, 2011

Editing VHDL Signal Declarations
The following page is available when you edit signal declarations for a VHDL view:

If you edit the net name, it is changed wherever it is used in the view and must be a valid VHDL
identifier.

You can change the type by choosing from a pulldown list of VHDL types or by entering any
other valid type. The type must be defined in a VHDL package referenced in the package list or
be one of the standard predefined types.

Note
The pulldown list includes all the most commonly used types and any other types which
have already been used in the active view. However, you may need to add a new package
reference if you choose a type which is not in the currently referenced packages. For
example, if you want to use the signed or unsigned types, the ieee.numeric_std package
should be referenced.

Block Diagram and IBD Views
Editing Object Properties

Graphical Editors User Manual, V2010.3 151
June, 2011

The bounds can be used to specify the indexes for the elements in an array or the range for a
scalar type (for example: 15 DOWNTO 0 or 0 TO 7).

You can also use the first bounds entry box to enter a user specified range constraint such as an
enumerated or integer type name or you can enter an array name or type name of the form:

<array>’RANGE or <array>’REVERSE_RANGE

You can also add the VHDL keywords BUS or REGISTER to the net declaration by choosing
Bus or Register kind. (If not specified, the default is None.)

Note
Setting initial values for signals can be useful for simulation but may hide the behavior of
a circuit that would be in an arbitrary state at power up.

Using 2D Signal Types

You can use the 2D bounds and 2D slice fields of the Object Properties dialog box when you
have specified an unconstrained two dimensional array type. This type must be specified in a
VHDL package referenced on the block diagram or IBD view or be defined in the user
declarations for the view.

For example:

type my2dtype is array(natural range <>, natural range <>) of std_logic;

You can also define a two-dimensional "vector of vectors" by defining an array of a vector type.

For example:

type my_vtype is array(natural range <>) of std_logic_vector(3 downto 0);

A two dimensional bounds for signals using this type can then be entered in the dialog box.

Note
If you use a std_logic_vector signal and try to define a two dimensional bounds for this
signal using the Object Properties dialog, HDL generation issues an error message of the
form:
Error, std_logic_vector requires 1 index values.

This is because std_logic_vector is a one dimensional unconstrained array and cannot be
given two ranges.

Graphical Editors User Manual, V2010.3152

Block Diagram and IBD Views
Editing Object Properties

June, 2011

Editing Verilog Signal Declarations
The following page box is available when you edit net declarations for a Verilog view.

If you edit the signal name, it will be changed wherever it is used in the view and must be a
valid Verilog identifier.

You can change the type by choosing from a pulldown list of supported Verilog types.

The vector bounds can be used to enter an expression specifying the index of an element in an
array or to specify a range of values (for example: 15:0 or 0:7).

You can specify the vector bounds for a wire, tri, wor, trior, wand, triand, tri0, tri1, supply0,
supply1, reg or trireg type. For signals which connect between embedded blocks, you can
specify the array bounds for integer or time types and for a reg type you can specify both a
vector and array bounds.

You can specify expansion and charge strength options:

You can choose whether the expansion options are scalered, vectored or not set. The delay and
expansion options are not available when reg, integer, time, real or realtime type is selected.

Block Diagram and IBD Views
Editing Object Properties

Graphical Editors User Manual, V2010.3 153
June, 2011

When the trireg type is selected, you can choose the charge strength from small, medium,
large or not set.

Verilog Arrays

Although Verilog does not support multi-dimensional arrays, it does distinguish between
vectors (single elements which are n bits wide) and arrays (multiple elements which are 1 or n
bits wide). For example:

Arrays can be defined for reg, integer, time and vector register data types and do not typically
appear in the signal declarations although they may sometimes be required to connect between
embedded blocks.

Arrays of registers are typically used to represent memories. The following example shows an
array of eight five-bit vectors connected to an embedded block:

HDL2Graphics automatically adds the vector and array bounds to net declarations on a block
diagram or IBD view when a vector with an array declaration and reg type is detected in the
source Verilog. A vector bounds is recovered for an array of integer or time. If an array element
is accessed in a Verilog instantiation, then a corresponding slice is added to the signal on the
block diagram or IBD view.

You can also add the VHDL keywords Bus or Register to the net declaration by choosing bus or
register kind (if not specified the default is none)

Editing Signal Text Visibility
The Text Visibility page for the Signal Object of the BD Object Properties dialog box allows
you to modify the signal display properties.

integer count[0:7] an array of 8 count variables

reg bool[31:0] an array of 32 1-bit register variables

time t_chk[1:100] an array of 100 time variables

reg [4:0] port_id[0:7] an array of 8, 5-bit port_id vectors

Graphical Editors User Manual, V2010.3154

Block Diagram and IBD Views
Editing Object Properties

June, 2011

Refer to“Changing the Display of Signal Properties” on page 208

Setting Signal Attributes and Embedded Constraints
The Attributes page for the Signal Object of the BD Object Properties dialog box allows you to
set attributes and embedded constraints for the selected signals. Refer to“Setting Attributes and
Embedded Constraints” on page 165.

Block Diagram and IBD Views
Editing Object Properties

Graphical Editors User Manual, V2010.3 155
June, 2011

Editing Signal Comments
The Comments page for the Signal Object of the BD Object Properties dialog box allows you to
add comments to a signal. Refer to “Adding Comments to a Signal or Port Declaration” on
page 163.

Modifying Signal Appearance
The Appearance page for the Signal Object of the BD Object Properties dialog box allows you
to set visual attributes for the selected bundle.

Graphical Editors User Manual, V2010.3156

Block Diagram and IBD Views
Editing Object Properties

June, 2011

The attributes include the line color, line style and line width.

Editing Port IOs Properties
The Port IO object is selected if you display the Object properties dialog box when a Port is
selected on a block diagram.

The Port IO page allows you to specify the port mode settings as In, Out. InOut or Buffer in
VHDL designs and In, Out or InOut in verilog designs.

Editing Port IO Text Visibility
The Text Visibility page for the Port IO Object of the BD Object Properties dialog box allows
you to modify the Port IO display properties.

Refer to“Changing the Display of Port Properties” on page 206.

Block Diagram and IBD Views
Editing Object Properties

Graphical Editors User Manual, V2010.3 157
June, 2011

Modifying Port IO Appearance
The Appearance page for the Port IO Object of the BD Object Properties dialog box allows you
to set visual attributes for the selected Port.

The attributes include the foreground, background and line color, the line style, fill style, line
width.

Editing Frame Properties
The Frames page is enabled if you display the Object properties dialog box when a frame is
selected on a block diagram or an IBD view.

The Frames page of the BD Object Properties dialog box allows you to display and edit generate
frames.

You can choose the frame style from a pulldown list that includes FOR, IF and ELSE when
using Verilog or FOR, IF and BLOCK when using VHDL.

You can change the label, number and frame expression. When you are using VHDL, a Preview
field in the dialog box shows the current frame expression. You can set the visibility of the
frame title (label and expression) and the frame number.

When you are using VHDL, you can enter a Parameter and range for a FOR frame, a Condition
for an IF frame or an optional Guard expression for a BLOCK frame.

When you are using Verilog, you can enter the Range for a repeating instance in a For frame or
the Macroname for an IF frame

The syntax of the expression is checked on entry and the Generate Keyword is automatically
included in VHDL FOR and IF expressions.

When the Declarations button is selected a free-format entry dialog box is displayed which
allows you to specify local declarations which apply only within the frame. You can also choose
whether these declarations are Visible on the diagram. The syntax of the declarations is checked
on entry. For more information refer to “Editing Generate Frame Properties” on page 302.

Modifying Frame Appearance
The Appearance page for the Frame Object of the BD Object Properties dialog box allows you
to set visual attributes for the selected frames.

The attributes include the line color, style and line width.

Graphical Editors User Manual, V2010.3158

Block Diagram and IBD Views
Editing Object Properties

June, 2011

Editing Comment Text Properties
The Comments object is selected if you display the Object properties dialog box when a
Comment is selected on a block diagram.

The Comment Text page allows you to modify the existing comment text and position.

You can also choose to resize the bounding box to fit the comment text.

Modifying Comment Text Appearance
The Comment Text Appearance page for the Comment Text Object of the BD Object
Properties dialog box allows you to set visual attributes for the selected comment text

The attributes include the text color and font.

Modifying Comment Text Box Appearance
The Comment Text Box Appearance page for the Comment Text Box of the BD Object
Properties dialog box allows you to set visual attributes for the selected comment text boxes.

The attributes include the foreground, background and line color, line style, fill style and line
width.

Editing Requirement Reference Properties
The Requirement Reference object is selected if you display the Object Properties dialog box
when a requirement reference object is selected on a block diagram.

Block Diagram and IBD Views
Editing Object Properties

Graphical Editors User Manual, V2010.3 159
June, 2011

The Requirement Reference page allows you to modify the existing requirement reference
object’s text by typing in the Requirement Reference pane in the dialog box.

Modifying Requirement Reference Text Appearance
The Requirement Reference Text Appearance page for the Requirement Reference Object of
the BD Object Properties dialog box allows you to set visual attributes for the selected
Requirement Reference.

Graphical Editors User Manual, V2010.3160

Block Diagram and IBD Views
Editing Object Properties

June, 2011

The attributes include the text color and font.

Editing Comment Graphics Properties
The Comments Graphics object is selected if you display the Object properties dialog box
when a Comment Graphic is selected on a block diagram.

The Comment Graphics page allows you to set visual attributes for the selected comment
graphics.

The attributes include the foreground, background and line color, line style, fill style and line
width.

Note
The embedded VHDL style option to Include View Name in Embedded
Configurations must be set if you want to instantiate a specified view.

Block Diagram and IBD Views
Editing Object Properties

Graphical Editors User Manual, V2010.3 161
June, 2011

Editing User Declarations
The User Declaration page of the BD Object Properties dialog box allows you to add or edit
user-defined declarations for a block diagram or IBD view. You can enter free-format
declarations before or after the signal declarations.

You can access the User Declarations dialog box directly in an IBD view by choosing User
Declarations from the Table menu in an IBD view.

You can edit the declaration statements directly on a block diagram by clicking to select the text
on the diagram and clicking again to edit the text.

Pre user declarations can be referenced by signal declarations or by post user declarations. For
example, you could use a pre user declaration for a bus width constant which is referenced by a
graphically defined signal declaration.

Similarly a post user declaration can reference a signal declared in the graphically defined or pre
user declarations.

The syntax is automatically checked when you confirm the dialog box. However, syntax
checking can be disabled by unsetting a block diagram preference.

Graphical Editors User Manual, V2010.3162

Block Diagram and IBD Views
Editing Object Properties

June, 2011

Editing User Properties
The User Properties page of the BD Object Properties dialog box allows you to define internal
variables as a property of a selected design object. The defined Internal variables are described
by Class and Name attributes to which values are then assigned for the selected design object.

Setting the Scope for Net Changes
When you edit a signal declaration on a block diagram or IBD view, you can choose whether
the changes are applied only on the active view or are propagated to other design unit views in
the hierarchy.

You can set the scope in a block diagram by choosing Scope For Changes from the popup
menu or from the Signals cascade of the Diagram menu.

Note
You can also set the scope for changes in the Signals tab of the block diagram Object
Properties dialog box.

You can choose Joined Wires in this diagram to apply changes to the explicitly joined net
segments only (excluding any net segments connected by name), Entire Net in diagram to
change all segments in the same net on the active diagram, or Entire Net in hierarchy to apply
the net changes to all views in the hierarchy.

Block Diagram and IBD Views
Editing Object Properties

Graphical Editors User Manual, V2010.3 163
June, 2011

You can set the scope in an IBD view by choosing Scope For Changes from the popup menu or
from the Nets cascade of the Table menu. For an IBD view, you can choose Non Hierarchical
or Hierarchical scope.

The scope is saved as a preference and is used as the default until the next time a signal
declaration is edited.

When you edit a net declaration and the scope for changes includes hierarchical views, a dialog
box is displayed to control how changes are propagated to nets in the hierarchy.

Refer to “Propagating Net Changes” on page 166 for more information about propagating new
signals and changes to the properties of a net.

Adding Comments to a Signal or Port Declaration
You can add comments to a signal or port declaration on a block diagram by choosing Edit
from the Comments cascade for Ports or Signals in the Diagram menu or by choosing
Comments from the popup menu when the net or its declaration is selected.

You can add comments to a signal declaration in an IBD view by choosing Comments from the
Nets cascade in the Table menu or by choosing Comments from the Add or popup menu when
one or more signal rows are selected in the table matrix.

A free-format entry Comments dialog box is displayed which allows you to add a single line
comment at the end of the declaration or you can enter a multi-line comment to be included
before or after the declaration.

Comment characters for the current hardware description language (VHDL or Verilog) are
automatically inserted if the Add comment characters check box is set. When this option is
unset, the comments must be valid HDL statements and are automatically syntax checked if
checking is enabled.

The comments are displayed in the port or signal declarations list on a block diagram. If a
declaration is deleted, the corresponding comments are also deleted.

Graphical Editors User Manual, V2010.3164

Block Diagram and IBD Views
Editing Object Properties

June, 2011

You can control the display of comments on a block diagram by choosing Show or Hide from
the Comments cascade of the popup menu (or Ports cascade of the Diagram menu) when the
port or signal declaration is selected.

Although multi-line comments can be added to an IBD view using the dialog box, these
comments are not displayed in the table. However, end-of-line comments can be edited directly
in the Comment column for the port or signal declaration row.

Comments added to internal signals on a block diagram or IBD view are included in the
generated HDL.

Comments added to port declarations are ignored when HDL is generated since the interface
information is generated from the symbol. If you want to include comments in the generated
HDL for interface ports, these should be added using the symbol or tabular IO editor.

Note
A special font is required to display Kanji characters in the dialog box. If Kanji characters
are required in comment text, this font can be enabled by setting the
“HDS_KANJI_DIALOG” environment variable.

Block Diagram and IBD Views
Editing Object Properties

Graphical Editors User Manual, V2010.3 165
June, 2011

Setting Attributes and Embedded Constraints
You can add embedded constraints or other attributes to a net or port declaration in a block
diagram by choosing Edit from the Attributes cascade for Ports or Signals in the Diagram
menu or by choosing Attributes from the popup menu when the net or its declaration is
selected.

You can add attributes to a signal declaration in an IBD view by choosing Attributes from the
Nets cascade in the Table menu or by choosing Attributes from the Add menu or popup when
one or more signal rows are selected in the table matrix.

A free-format entry dialog box is displayed containing any existing attributes for the selected
object. If no attributes have been set, the dialog box contains the template attributes and
embedded constraints defined in your preferences.

You can add attributes to a port declaration in the symbol editor by choosing Attributes from
the popup menu when the port or its declaration is selected.

You can add attributes to a port or locally declared signal declaration in a tabular IO view by
choosing Attributes from the popup when one or more signal rows are selected in the table
matrix.

You can also set attributes by using the Block, Component, Signals, Bundles or Declarations
attributes pages of the block diagram or IBD view Object Properties dialog box.

The default template includes template begin and end pragmas which can be used to enclose
embedded commands for the downstream tool. For example:

Graphical Editors User Manual, V2010.3166

Block Diagram and IBD Views
Propagating Net Changes

June, 2011

-- pragma dc_script_begin
-- set_max_area 2500.0
-- set_drive -rise 1 port_b
-- pragma dc_script_end

Note
Default embedded constraints can be set as VHDL or Verilog preferences from the
Headers tab of the VHDL and Verilog Options dialog boxes.

The dialog box also contains a default template for in-line signal attributes. For example, having
declared a signal int_signal you could add VHDL attributes such as:

attribute preserve_signal of int_signal:signal is TRUE ;
attribute modgen_sel of int_signal:signal is FAST ;

Attributes and embedded constraints are not normally shown on a block diagram. However, you
can choose Show or Hide from the Attributes cascade of the popup menu (or Ports cascade of
the Diagram menu) when a port or signal declaration is selected.

When shown, the attributes are displayed below the declaration of the corresponding port or
signal in the Declarations list.

Note
You can change the default visibility by setting Show Signal Attributes in the
Miscellaneous tab of the Block Diagram Preferences dialog box.

The contents of the edit box are associated with the selected signal declaration when you
confirm the dialog box and will be included in the generated HDL for the view.

Attributes added to internal signals are included in the generated HDL. Although attributes can
be added to a port declaration, these are ignored when HDL is generated since the interface
information is generated from the symbol.

If you want to associate attributes to a port (for example, a pin number attribute) these should be
added to the port declaration in the symbol or tabular IO editor.

Propagating Net Changes
By default, changes to nets are made non-hierarchically to the active view only.

However, you can set the scope for changes to include connected or hierarchical nets as
described in “Setting the Scope for Net Changes” on page 162.

If a net property is changed when a hierarchical scope is set, the Net Propagation Options dialog
box is displayed for you to choose how the changes are propagated to nets in other views.

Block Diagram and IBD Views
Propagating Net Changes

Graphical Editors User Manual, V2010.3 167
June, 2011

Note
The dialog box is also displayed when you change the properties of a port in the symbol
or tabular IO editor and the scope is set to apply the changes hierarchically.

All changes to the net or port properties (including any comments and attributes) can be
propagated.

You can choose whether net changes are applied Up or Down the hierarchy and whether to
propagate the changes Through Components or Include Embedded Blocks.

If you choose to propagate through components, an extra option controls whether the change is
propagated Through ports where port name differs from the net.

If this option is set and you have write permission to any connected component, the port names
in the component symbol are changed.

You can choose whether changes are made to Declarations, Comments and Attributes, net
Style (represented as a signal or bus) or the Mode (in, out, bidirectional or buffer).

You can also choose to Include design objects in Protected libraries, Apply changes to leaf-
level views, Stop at read-only diagrams or Highlight the net.

Graphical Editors User Manual, V2010.3168

Block Diagram and IBD Views
Propagating Net Changes

June, 2011

You cannot propagate up through components since the design traversal will stop when a
symbol is reached.

You cannot propagate through a text view.

When you confirm your choices in the Net Propagation Options dialog box, the Net Propagation
progress window is displayed which lists all the occurrences of the net in the specified
hierarchy.

The progress is indicated in the dialog box and a complete indicator displayed when all views in
the hierarchy have been traversed.

If an Error or Warning is encountered, these are indicated in the Status column and the full
message appears in the Status box when the view name is selected. For example, a text or read-
only view cannot be updated.

Note
Note that propagation will stop if an error is encountered to avoid creating an incorrect
design.

You can display any view listed in the progress window by double-clicking on its name in the
progress window.

You can use the Update button to change any of the net propagation options and update the
preview window for changes made to any of the views in the hierarchy. For example, if you
have made a read-only view available for edit.

Block Diagram and IBD Views
Propagating Net Changes

Graphical Editors User Manual, V2010.3 169
June, 2011

The changes are made when you confirm the preview window using the Apply button. The
status column shows Modified for all views which have been changed.

Inserting and Removing Nets
You can propagate signals or buses on a block diagram or IBD view and ports on a symbol or
tabular IO view to other views in the hierarchy by selecting the net and choosing Single Level
Up, Single Level Down or Hierarchical from the Insert Net cascade in the popup menu.

The Insert Net cascade is also available in the Signals cascade of the Diagram menu in a block
diagram, the Ports cascade of the Diagram menu in the symbol editor, the Nets cascade of the
Table menu in an IBD view or the Ports cascade of the Table menu in a tabular IO view.

If you choose Hierarchical, the Net Insert Options dialog box is displayed.

If you choose the Up option in the dialog box and a net is connected to an external port, you can
propagate the net up through the hierarchy to the top level symbol or until a connection can be
made to an existing net with the same name and bounds.

If you choose the Down option and a net is connected to an instance of a block or component,
you can choose to propagate the net Through Components in the hierarchy.

Graphical Editors User Manual, V2010.3170

Block Diagram and IBD Views
Propagating Net Changes

June, 2011

You can also choose to Autoroute nets or to Add nets to global connectors. Global
connectors can be added when you propagate down an input net and will be added to all blocks
in the hierarchy.

If the global connectors and through components options are set, net stubs are added to each
component in the hierarchy.

You can also choose whether to Propagate through text views, Include design objects in
Protected libraries, Stop at read-only diagrams or Highlight the net.

If you select a net that is not connected to any instances on the active view, a Net Insert/Remove
Parameters dialog box is displayed which allows you to choose the port mode and select one or
more instances to traverse:

If there are more than one instances in the hierarchical view, you can choose whether the new
net is connected to All instances or to Selected instances only.

You can remove signal or bus nets from related views in the hierarchy using the Remove Net
cascade in the popup menu.

The Remove Net cascade is also available in the Signals cascade of the Diagram menu in a
block diagram, the Ports cascade of the Diagram menu in the symbol editor, the Nets cascade
of the Table menu in an IBD view or the Ports cascade of the Table menu in a tabular IO view.

Block Diagram and IBD Views
Ordering Port and Signal Declarations

Graphical Editors User Manual, V2010.3 171
June, 2011

If you choose Hierarchical, the Net Remove Options dialog box provides options to remove
nets Up or Down and Through Components in the hierarchy.

When you remove nets through components, you can choose whether the change is propagated
Through ports where port name differs from net. If this option is set and you have write
permission to the component symbol, the ports are removed from the component.

The Net Remove options dialog boxes also allows you to Propagate through text views,
Include design objects in Protected libraries, Stop at read-only diagrams or Highlight the
net.

When you choose one of the single level options (or confirm the hierarchical options), the Net
Propagation progress window is displayed which lists all the occurrences of the net in the
specified hierarchy.

You can use the progress window to display views, update the net propagation options and
apply changes in the same way as described in “Propagating Net Changes” on page 166.

Ordering Port and Signal Declarations
The declarations of signals and external ports are normally ordered automatically by mode (in,
out, inout or buffer) and alphanumeric name as they are added in the block diagram or IBD
view. However, you can enable manual ordering by choosing Manual from the popup or
Diagram menu.

Note
This command is available from the Ordering cascade of the popup menu or Ports and
Signals cascades of the Diagram menu in a block diagram or directly from the popup
menu for the Order column in an IBD view.

Graphical Editors User Manual, V2010.3172

Block Diagram and IBD Views
Adding or Removing Design Hierarchy

June, 2011

When manual ordering is enabled in the block diagram, you can re-arrange the port or signal
declarations by dragging one or more declarations with the Left mouse button. Any number of
adjacent declarations can be moved in this way but you cannot mix port or signal declarations
with user declarations (or port and signal declaration on a block diagram). The new order is
preserved on the diagram and in the generated HDL.

When manual ordering is enabled in the IBD view, the Order column displays numbers which
indicate the order used for the port and signal declarations in the HDL code. You can choose
Show Order to re-order the table rows in declaration order.

You can re-order port rows in the IBD view by selecting an entire row and dragging it with the
Right mouse button. However, you cannot update the declaration order from the IBD view.

Manual ordering is automatically set if you synchronize component interface ports with a text
view to preserve the port ordering specified in the text view.

Manual port and signal ordering is normally used when diagrams are created by HDL2Graphics
in order to preserve the order (and any in-line comments) from the source HDL code. If you
choose Automatic, the original ordering is discarded and the declarations sorted by mode and
alphanumeric name.

You can modify the port ordering for a block instance by editing the object properties for the
block as described in “Editing Block Properties” on page 139.

Adding or Removing Design Hierarchy
You can re-level a block diagram or IBD view by choosing the Add Hierarchy or Remove
Hierarchy command from the Re-level cascade in the block diagram Diagram menu, IBD
view Table menu or the popup menu in either view.

Adding hierarchy replaces the selected objects by a new block or component and moves the
selected objects into the new design unit view.

When this command is used in a block diagram, a child block diagram view is created and the
new block or component is attached to the cursor so that you can place it on the parent diagram.
Any signals connected to the new object are automatically re-routed.

When used in an IBD view, a child IBD view is created and the objects replaced by a single new
instance on the parent table.

Block Diagram and IBD Views
Adding or Removing Design Hierarchy

Graphical Editors User Manual, V2010.3 173
June, 2011

The Add Hierarchy dialog box is displayed for you to specify the name of the new design unit
containing the selected objects and whether to create it as a block or component.

You can also choose to automatically update the block diagram layout for the existing view and
for the new hierarchy view. When these options are not set, the layout is preserved.

Any package references or compiler directives are copied to the new design unit. Global
connectors are automatically included on the new view if any blocks or embedded blocks are
selected.

If any of the selected objects are connected using a bundle and you choose to create a
component, a port map frame is automatically added.

Removing hierarchy deletes the selected block or component instance and replaces it by the
objects in the child hierarchical view.

If the parent and child views are block diagrams, the relative placement of the new objects is
preserved and a ghosted view is attached to the cursor so that you can place it on the parent
diagram.

If the parent view is a block diagram and the child view an IBD view, the new objects are
automatically connected and the routing is completed when you place the ghosted objects on the
diagram.

If the child view included other hierarchical views, their hierarchy is retained but can be
removed by another re-level operation.

Graphical Editors User Manual, V2010.3174

Block Diagram and IBD Views
Generics and Parameters

June, 2011

You are prompted to confirm a list of design objects which will be deleted by the re-level
operation. For example:

If a component is deleted, you may need to manually update any other views that referenced the
deleted component.

If there are global connectors in the child view, these become global connectors in the merged
parent view and are connected to all blocks and embedded blocks in the parent view.

The package references or compiler directives for the child view are merged with those defined
for the parent view.

If removing hierarchy replaces a component with port map frame expressions, these mapping
expressions are preserved as an embedded HDL text view.

An error message is issued if you attempt to remove hierarchy for an instance which is not
described by a block diagram or IBD view or which has a different language.

Generics and Parameters
Generics and Parameters are constants that you declare graphically and give a default value;
they are later included in the generated HDL code. VHDL generics are a VHDL feature used to
pass information to an instance of an entity. Verilog parameters can be used in a similar way
when you are using the Verilog language.

Using generics and parameters involve the following two main procedures:

1. Generics and Parameters are primarily declared for the components symbols and blocks.
Refer to “Defining Generics and Parameters” on page 184 for details.

Block Diagram and IBD Views
Generics and Parameters

Graphical Editors User Manual, V2010.3 175
June, 2011

2. Subsequently, the declared generics and parameters are edited on the level of the
individual instances of the component or block. Refer to “Editing Generics and
Parameters for Instances” on page 186.

Note
Note that you can also declare generics/parameters through the default view of the
component and it will synchronize with the symbol. See “Generics and Parameters
Synchronization” on page 192 for information.

Typical uses for VHDL generics and Verilog parameters include:

• Substitution in place of an integer value for the least or most significant field of a signal
bounds specification.

• Declaration of a delay that can be varied on each instance of a re-usable component.

The following example illustrates the use of VHDL generics:

library ieee ;
use ieee.std_logic_1164.all;

entity xorx is
generic(width : integer; delay : time);
port(x1, x2 : in std_logic_vector(width DOWNTO 0);

xout : out std_logic_vector(width DOWNTO 0));
end xorx;
architecture generic_xorx of xorx is

begin
xout <= xin1 xor xin2 after delay;

end generic_xorx;

-- Test bench for instance generic xor
library ieee ;
use ieee.std_logic_1164.all;

entity testbench is
generic(tb_width : integer := 4; tb_delay : time := 5 ns);
port(ina, inb : in std_logic_vector(tb_width DOWNTO 0);

outa : out std_logic_vector(tb_width DOWNTO 0));
end testbench;

architecture tb_arch of testbench is
component xorx
generic(width : INTEGER;

delay : TIME);
port(x1, x2 : in std_logic_vector(width DOWNTO 0);

xout : out std_logic_vector(width DOWNTO 0));
end component;

begin
U1 : xorx generic map (tb_width, tb_delay)

port map (ina, inb, out);
end tb_arch;

The following example illustrates the use of Verilog parameters:

Graphical Editors User Manual, V2010.3176

Block Diagram and IBD Views
Generics and Parameters

June, 2011

module xorx(xout, xin1, xin2);
parameter width = 4,

delay = 10;
output [1:width] xout;
input [1:width] xin1, xin2;
assign #delay xout = xin1 ^ xin2;

endmodule
// Testbench for instance xor
module testbench;

parameter tb_width = 4,
tb_delay = 5;

wire [1:tb_width] out1;
reg [1:tb_width] in1, in2;
xorx #(tb_width, tb_delay) U1(out1, in1, in2);

endmodule

Generics and Parameters Tables
The Generics Table and Parameters Table allow you to declare VHDL generics and Verilog
parameters respectively. The Generics Table is available if you are designing using VHDL and
the Parameters Table is available if you are using Verilog.

Accessing the Generics or Parameters Table
The Generics and Parameters Tables are found within any view window; for components, they
can be mainly accessed through the symbol or the view. To open the Generics or Parameters
Table, do one of the following:

• In the Structure Navigator pane of the Diagram Browser, click Generics Table to
declare VHDL generics or click Parameters Table to declare Verilog parameters.

• From the Diagram menu, select Generics to declare VHDL generics or Parameters to
declare Verilog parameters.

Generics Table:

Block Diagram and IBD Views
Generics and Parameters

Graphical Editors User Manual, V2010.3 177
June, 2011

Parameters Table:

Generics Table Controls
You can manage the Generics Table using the generics toolbar which consists of the following
buttons.

To declare VHDL generics through the Generics Table, you have to enter the following
information:

Table 3-3. Generics Toolbar

Button Description

Add Generic

Group selected rows

Ungroup selected rows

Expand All Groups

Collapse All Groups

Toggle Filter

Autofit column size to contents

Sort column in ascending order

Sort column in descending order

Toggle show grouped rows

Toggle between Ports/Generics table

Graphical Editors User Manual, V2010.3178

Block Diagram and IBD Views
Generics and Parameters

June, 2011

Parameters Table Controls
You can manage the Parameters Table using the parameters toolbar which consists of the
following buttons.

To declare Verilog parameters through the Parameters Table, you have to enter the following
information:

Table 3-4. Generics Table Content

Column Description

Group Specify a group name to categorize the VHDL generic if necessary.

Name Specify the name of the VHDL generic.

Type Choose a the type of the VHDL generic.

Value Specify the default value of the generic.

Pragma Choose whether to enclose the VHDL generic in pragmas or not.

Comment Enter a general comment if necessary.

Table 3-5. Parameters Toolbar

Button Description

Add Parameter

Group selected rows

Ungroup selected rows

Expand All Groups

Collapse All Groups

Toggle Filter

Autofit column size to contents

Sort column in ascending order

Sort column in descending order

Toggle show grouped rows

Toggle between Ports/Parameters table

Table 3-6. Parameters Table Content

Column Description

Group Specify a group name to categorize the Verilog parameter if necessary.

Block Diagram and IBD Views
Generics and Parameters

Graphical Editors User Manual, V2010.3 179
June, 2011

Using the Generics and Parameters Table
This section describes the different operations that can be performed in the Generics/Parameters
Table.

Add Generics/Parameters

To declare new generics or parameters, do the following:

1. Add the generic or parameter through one of these methods:

o Click Add Generic in the toolbar if you are using VHDL or Add Parameter if you
are using Verilog.

o Choose Add > Generic in case of VHDL or Add > Parameter in case of Verilog.

o Choose Generic or Parameter from the Add cascade of the popup menu.

A row is added with a default Name and Type in case of VHDL generics, or with a
default Name only in case of Verilog parameters.

2. In the added row, insert the Name and Value of the generic/parameter, in addition to a
Type in case of the generic.

3. Click Save.

Another method to add a generic/parameter is by typing the information directly in an empty
row.

Grouping Generics/Parameters

Grouping enables you to organize the content of the generics/parameters table. You can specify
a group for each generic/parameter declaration, and then different groups can be assembled and
individually collapsed or expanded.

To group generics/parameters, select one row or more and then do one of the following:

• Click Group in the toolbar.

• Choose Add > Group.

• Choose Table > Group > Group.

Name Specify the name of the Verilog parameter.

Value Specify the default value of the parameter.

Comment Enter a comment if necessary.

Table 3-6. Parameters Table Content (cont.)

Column Description

Graphical Editors User Manual, V2010.3180

Block Diagram and IBD Views
Generics and Parameters

June, 2011

• Choose Group from the popup menu.

The selected rows are added to a new group with the default name GroupN (where N is a
number automatically incremented if it already exists).

• You can also enter a name directly in the Group column for the generic/parameter.

Note
You can choose from a dropdown list of existing groups. If you type a partial string that
matches the name of an existing group, the name is automatically completed.

To remove a group for a generic or parameter, select the relevant row (or rows) and then do one
of the following:

• Click UnGroup in the toolbar.

• Choose Table > Group > UnGroup.

• Choose UnGroup from the popup menu.

• You can also delete the name from the Group cell.

If you rename or remove an existing group cell and the group is no longer referenced, you are
prompted to delete the old group name as shown in the figure below.

To assemble similar groups as collapsible and expandable groups, do one of the following:

• Click Toggle Show Grouped in the toolbar.

• Choose Table > Show Grouped.

By that, you have moved from the flat mode to the group mode. Rows in the same group are
shown as a single (but expandable) group in hierarchy mode.

Block Diagram and IBD Views
Generics and Parameters

Graphical Editors User Manual, V2010.3 181
June, 2011

To expand all groups and display their rows, do one of the following:

• Click Expand All Groups in the toolbar.

• Choose Table > Group > Expand All Groups.

• Click on the plus icon in the group row. This method enables you to expand an
individual group.

On the other hand, to collapse all groups and hide their rows, do one of the following:

• Click Collapse All Groups in the toolbar.

• Choose Table > Group > Collapse All Groups.

• Click on the minus icon in the group row. This method enables you to collapse an
individual group.

Note
When grouped mode is set, you can enter a comment in the group row.

Filtering Generics/Parameters

You can filter the content of any column, that is display specific data, by doing the following:

1. Turn on the filtering feature by doing one of the below steps:

o Click Toggle Filter in the toolbar.

o Set the Filter option in the Table menu.

o Choose Filter from the popup menu.

Consequently, a drop-down menu is displayed in each column through an additional
filter row.

2. Through the drop-down menu of the column you want to filter, select the filter value.
For example, if you choose integer in the Type column for a Verilog view, only the
parameters of type integer are displayed.

You can also enter a simple match string in the filter cell to display only matching
generics/parameters. For example, you can enter param* in the Name column to display
only parameters starting with the characters param as shown in the below figure.

Graphical Editors User Manual, V2010.3182

Block Diagram and IBD Views
Generics and Parameters

June, 2011

You can apply filters to more than one column or set options to match case, match whole words
or use regular expressions by choosing Filter Settings from the Table or popup menu to display
the Filter Settings dialog box:

The filter settings are applied to the currently selected columns or to all columns if none is
selected.

Sorting Generics/Parameters

You can arrange the rows in a selected column in ascending or descending alphanumeric order
by either:

• Using the Sort in ascending order or Sort in descending order button in the toolbar.

• Choosing Table > Columns > Sort Ascending or Table > Columns > Sort
Descending.

• Choosing Sort Ascending or Sort Descending from the selected column’s popup menu.

Block Diagram and IBD Views
Generics and Parameters

Graphical Editors User Manual, V2010.3 183
June, 2011

You can also sort by clicking the triangular icon on the right side of the column header cell as
shown in the following figure.

Hiding Columns

To hide columns, select one column or more and then do one of the following:

• Choose Table > Columns > Hide Column.

• Choose Hide Column from the popup menu.

To show the hidden columns, do one of the following:

• Choose Table > Columns > Show Columns.

• Choose Show Columns from the popup menu.

Consequently, a dialog box is displayed listing the hidden column (or columns). Select which
columns you need to show again in the table and click OK.

Resizing Columns

To resize columns to the width of the text contained in the selected cell (or cells), do one of the
following:

• Click Autofit in the toolbar.

• Choose Table > Autofit.

• Choose Autofit from the popup menu.

Note that if you have not selected any cells, then all the columns in the table are resized.

Note
You can also resize a column by dragging its vertical borders with your left mouse button
and adjusting its width as required.

Graphical Editors User Manual, V2010.3184

Block Diagram and IBD Views
Generics and Parameters

June, 2011

Related Topics
• Defining Generics and Parameters

• Editing Generics and Parameters for Instances

Defining Generics and Parameters
As mentioned earlier, VHDL generics can be declared for both components and blocks if you
are using the VHDL language; the same applies to Verilog parameters if you are using the
Verilog language.

Defining Generics for Components and Blocks
Defining generics for components and blocks is done through the Generics Table which is a
tabular view similar to the Signals Table; refer to “Generics and Parameters Tables” on
page 176 for information. In case of components, the declaration of VHDL generics takes place
on the level of the symbol which defines the interface to the component.

Follow this procedure to declare generic values whether for component symbols or for blocks.

Procedure

1. Open the symbol of the VHDL component for which you need to declare generic values.
In case you are declaring generic values for blocks, open the block view.

2. In the Structure Navigator, click on Generics; the Generics table is displayed.

3. Click Add Generic in the toolbar; note that a row is added in the Generics table with a
default Name and Type. Refer to “Generics Table Controls” on page 177 for
information on the generics toolbar.

4. In the added row, insert the generic’s Name, Type and Value. Use the Group column to
categorize your generics if necessary.

Block Diagram and IBD Views
Generics and Parameters

Graphical Editors User Manual, V2010.3 185
June, 2011

5. Repeat the above steps to add more generics for the component or block as required.

6. Click Save.

By that, you have declared generic values for the component or block. You can now use
these generic values with individual instances; refer to “Editing VHDL Generic Values
for Instances” on page 187.

Related Topics

• Generics and Parameters Tables

• Editing VHDL Generic Values for Instances

Defining Parameters for Components and Blocks
As the case is with VHDL generics, defining Verilog parameters for components and blocks is
done through the Parameters Table which is a tabular view similar to the Signals Table; refer to
“Generics and Parameters Tables” on page 176 for information. Note that in case of
components, the declaration of Verilog parameters takes place on the level of the symbol which
defines the interface to the component.

Follow this procedure to declare parameters whether for component symbols or for blocks.

Procedure

1. Open the symbol of the Verilog component for which you need to declare parameters. In
case you are declaring parameters for blocks, open the block view.

2. In the Structure Navigator, click on Parameters; the parameters table is displayed.

Graphical Editors User Manual, V2010.3186

Block Diagram and IBD Views
Generics and Parameters

June, 2011

3. Click Add Parameter in the toolbar; note that a row is added in the Parameters table
with a default Name. Refer to “Parameters Table Controls” on page 178 for information
on the parameters toolbar.

4. In the added row, insert the parameter’s Name and Value. Use the Group column to
categorize your parameters if necessary.

5. Repeat the above steps to add more parameters for the component or block as required.

6. Click Save.

By that, you have declared parameters for the component or block. You can now use
these parameters with individual instances; refer to “Editing Verilog Parameter Values
for Instances” on page 189.

Note
It is worth mentioning that another method for defining verilog Parameters is through
User Declarations. For information, refer to “Editing User Declarations” on page 161.

Related Topics

• Generics and Parameters Tables

• Editing Verilog Parameter Values for Instances

Editing Generics and Parameters for Instances
Having defined generics/parameters on the component or block level, you can now override
these declarations for the instance through editing its Object Properties.

Block Diagram and IBD Views
Generics and Parameters

Graphical Editors User Manual, V2010.3 187
June, 2011

Editing VHDL Generic Values for Instances
Follow this procedure to edit VHDL generic declarations on the level of instances.

Prerequisites

• You must have the VHDL generic declarations preset for the component or block; if not,
refer to “Defining Generics for Components and Blocks” on page 184.

Procedure

1. Open the top-level design of the component instance or block; that is, the component or
block for which you previously declared VHDL generics. Refer to “Defining Generics
for Components and Blocks” on page 184 for information on declaring VHDL generics.

For example, if you have defined generic values for the symbol of the uart_top
component, open the top-level uart_tb where an instance of uart_top is available with
the name U_1.

2. Right-click on the instance and choose Object Properties from the popup menu.

Following the example in step 1, right-click on the U_1 instance in the top-level uart_tb.

3. Open the Generics page and then click Update List.

The generics currently declared for the symbol of the component or for the block are
consequently listed in the table as object properties of the instance as shown in the below
figure.

Graphical Editors User Manual, V2010.3188

Block Diagram and IBD Views
Generics and Parameters

June, 2011

Note that any changes made to the generic declarations of the component symbol or
block are reflected on the Object Properties of the instance through clicking the Update
List button. Any declarations that are no longer defined in the symbol or block are
removed from the list and any new declarations are added. However, values that are
already set on the instance for existing declarations are preserved.

Note
The Generics page of the Object Properties dialog box is available if the language of the
selected instance is VHDL or the Parameters page if it is a Verilog instance.

4. Use the Value column to override the default declarations of the generics with mapped
values. Type a new value or edit the existing value by double-clicking or using the F2
key.

It is worth noting that this table is entirely read-only except for the Value column, that is,
you cannot add generics through the Object Properties dialog box.

5. Set the following HDL Generation options as required:

o Generate Generic Mappings for this instance — Setting this option leads to
including the generic mappings in the generated HDL (that is, the mapped values
inserted in the dialog box to override the default generic declarations).

For example, you can unset this option, when instantiating components (such as
VITAL models) which have many generics but normally use the default values and
the generics need to be omitted for efficient synthesis.

o Generate Generic Declarations in the Component Declaration — Setting this
option leads to including the generic declarations in the generated component
declarations.

o Add Off/On pragmas around Generic Declarations and Mappings — Setting
this option leads to enclosing the generic declarations and generic mappings with
translate_off and translate_on pragmas in the generated HDL.

6. Click OK to execute your settings.

In the diagram, if you right-click on the instance and select Show Text from the popup
menu, the generic mappings are consequently shown as text objects on the diagram. The
current dialog box settings are also shown in the object tips of the mappings text.

Note
You can set the visibility of VHDL generic values from the block or component Text
Visibility pages of the Object Properties dialog box.

In the following example, the value of width is used to specify the upper bounds for the output
bus and has been changed to 7 for this instance of the multiplier component. The declaration for

Block Diagram and IBD Views
Generics and Parameters

Graphical Editors User Manual, V2010.3 189
June, 2011

delay specifies a variable value for an internal signal used inside the component which has been
set to the value 10 ns for this instance.

The mapping can be set to discrete value or an expression. For example, you could set width in
the example above to the value breadth where breadth is declared as a VHDL generic for the
parent design unit.

Tip: If you select more than one instance in a VHDL design unit, open the Generics page
in the Object Properties dialog box and then click Update List, the table displays all the
generics of all the selected instances.

In case of mixed-language designs, if you select a VHDL instance and a Verilog instance
and invoke the Object Properties dialog box, the tool checks whether the language of the
parent view is VHDL or Verilog and displays either the generics or parameters
respectively. Also, a message is raised in the Log Window stating that you cannot view
both VHDL generics and Verilog parameters simultaneously.

Related Topics

• Generics and Parameters Tables

Editing Verilog Parameter Values for Instances
Follow this procedure to edit Verilog parameter declarations on the level of instances.

Prerequisites

• You must have the Verilog parameter declarations preset for the component or block; if
not, refer to “Defining Parameters for Components and Blocks” on page 185.

Procedure

1. Open the top-level design of the component instance or block; that is, the component or
block for which you previously declared Verilog parameters. Refer to “Defining
Parameters for Components and Blocks” on page 185 for information on declaring
Verilog parameters.

Graphical Editors User Manual, V2010.3190

Block Diagram and IBD Views
Generics and Parameters

June, 2011

For example, if you have defined parameter values for the tester block, open the top-
level uart_tb where an instance of tester is available with the name U_0.

2. Right-click on the instance and choose Object Properties from the popup menu.

Following the example in step 1, right-click on the U_0 instance in the top-level uart_tb.

3. Open the Parameters page and then select one of the following options to update the list
of parameters: Symbol parameters only or All Parameters.

This means you can choose either to update the list from the Verilog parameters
previously declared in the Parameters Table of the symbol only, or to include all
parameters previously declared in the Parameters Table in addition to those defined in
the User Declarations. The latter option may take several seconds to retrieve all the
parameters for a large module.

According to the selected option, the corresponding parameters are displayed in the list
along with their default declarations.

Note
The Parameters page of the Object Properties dialog box is available if the language of
the selected instance is Verilog or the Generics page if it is a VHDL instance.

Block Diagram and IBD Views
Generics and Parameters

Graphical Editors User Manual, V2010.3 191
June, 2011

4. Select the parameter you need to override and then click Add. If you want to override all
the parameter values, click Add All directly (you can also add all parameters by
pressing the Shift key with the Add button). Consequently, the parameters along with
their values are moved to the right-hand-side table.

You can control which parameters to override through the following buttons:

Note
Any Verilog parameters with already overridden values are listed in the table.

5. In the table, use the Value column to insert the mapped value which shall override the
parameter’s default declaration.

Apply step 4 and 5 to all parameters you need to override for the instance.

6. Click OK to execute your settings.

In the diagram, if you right-click on the instance and select Show Text from the popup
menu, the parameter mappings are consequently shown as text objects on the diagram.
The current dialog box settings are also shown in the object tips for the mappings text.

Note
You can set the visibility of Verilog parameter values from the block or component Text
Visibility pages of the Object Properties dialog box.

In the following example, the value of width is used to specify the upper bounds for the output
bus and has been changed to 7 for this instance of the multiplier component. The declaration for
delay specifies a variable value for an internal signal used inside the component which has been
set to the value 10 ns for this instance.

Table 3-7. Object Properties — Parameters Page Controls

Button Description

Add selected parameter to the table

Add all parameters to the table

Remove selected parameter from the table

Clear all parameters from the table

Graphical Editors User Manual, V2010.3192

Block Diagram and IBD Views
Generics and Parameters

June, 2011

The mapping can be set to discrete value or an expression. For example, you could set width in
the example above to the value breadth where breadth is declared as a Verilog parameter for the
parent design unit.

Tip: If you select more than one instance in a Verilog design unit, and then open the
Parameters page in the Object Properties dialog box, the table displays all the
overridden parameters that are common to all the selected instances.

In case of mixed-language designs, if you select a Verilog instance and a VHDL instance
and invoke the Object Properties dialog box, the tool checks whether the language of the
parent view is VHDL or Verilog and displays either the generics or parameters
respectively. Also, a message is raised in the Log Window stating that you cannot view
both VHDL generics and Verilog parameters simultaneously.

Related Topics

• Generics and Parameters Tables

Generics and Parameters Synchronization
VHDL Generics and Verilog Parameters are declared through the Generics Table and the
Parameters Table respectively; refer to “Generics and Parameters Tables” on page 176.

The standard usage method is to declare generics/parameters first in the component symbol or
block view, and then update the generics/parameters on the level of instances and override the

Block Diagram and IBD Views
Generics and Parameters

Graphical Editors User Manual, V2010.3 193
June, 2011

preset generics/parameters declarations with mapped values. Refer to “Defining Generics and
Parameters” on page 184 and “Editing Generics and Parameters for Instances” on page 186.

Nevertheless, the Generics and Parameters Tables are available in all views of all types (block
diagram, IBD view, state diagram, flow chart, truth table), thus enabling you to declare generics
and parameters not only through the component symbol or block view, but also through other
views of the design unit, whether default or non-default views.

For example, the following figure illustrates the accumulator component (in the Sequencer_vlg
library) and its different graphical views; as shown in the figure, the accumulator component

1

2

Graphical Editors User Manual, V2010.3194

Block Diagram and IBD Views
Opening Block and Component Views

June, 2011

has a symbol view, in addition to the default view flow and the non-default view tbl. According
to the standard usage method, parameters would be declared through the Parameters table in the
symbol view; however, a Parameters table is also available in the default and non-default view.

On declaring generics/parameters in one of the design unit views, the declarations are reflected
on the rest of the views in most cases. This synchronization between views depends on the type
of the view in which the declarations occurred as follows:

• If declarations are made in a component symbol, it automatically synchronizes with both
the default and non-default views of the design unit on saving.

• If declarations are made in a default view, it automatically synchronizes with both the
symbol and non-default views on saving.

• If declarations are made in the non-default view, no automatic synchronization occurs
whether in the symbol or the default view on saving.

Related Topics
• Generics and Parameters Tables

• Defining Generics and Parameters

• Editing Generics and Parameters for Instances

Opening Block and Component Views
You can open down into a child view of a symbol or tabular IO view (or of a block, embedded
block or component on a block diagram or IBD view) by using the Right mouse button to
display an Open As popup menu for the selected object. The menu allows you to choose any
existing views that exist for the object or open down to create a new child view.

If the selected object is a component, you can also choose Symbol to open the graphical symbol
editor or Interface to open the component interface in the tabular IO editor.

Block Diagram and IBD Views
Opening Block and Component Views

Graphical Editors User Manual, V2010.3 195
June, 2011

If one or more views already exist, double-clicking on the parent object opens the current view
without displaying the menu. However, you can open any of the other existing views (or create
a new view) from the menu.

When, you create a new view, the File Creation Wizard is displayed. The wizard allows you to
choose a graphical view, HDL view (with the same language as the parent view), registered
view or text file. You can optionally select a template for a HDL text, registered or text file and
specify the new view name.

Refer to “Using the Design Content Creation Wizard” in the HDL Designer Series User Manual
for more information.

If you open down from a new unnamed block, the Name Block dialog box is displayed for you
to enter the name for the block.

Once you have named the new block, the File Creation Wizard is displayed to create the new
view.

View Initialization
When you create a new block diagram or IBD view by opening down from an existing block
diagram the new view is initialized with the interface ports defined on the parent view.

In general, these ports have the same properties as the ports on the parent view. However, if you
open down into a block diagram or IBD view from a Verilog symbol or tabular IO view, the reg
type output ports on the symbol are automatically initialized as wire type ports on the child
view.

Note
Reconcile interface ignores reg and wire differences between Verilog ports in the parent
and child diagram.
Nets connected to ports in the child diagram can be explicitly changed to reg. Such a
change is preserved even if the symbol port is a wire and other port changes are
propagated from the symbol to the child diagram.

Graphical Editors User Manual, V2010.3196

Block Diagram and IBD Views
Mixed Language Designs

June, 2011

Setting the Default View
You can set the default view of a block or component instance by selecting Change Default
View from the popup menu and selecting the required view from the list of available views in
the cascade menu.

Mixed Language Designs
In HDS a design unit can be created as a block or a component. Any design unit whether a block
or a component can be described as a state diagram, truth table, flow chart or HDL text view
using the VHDL or Verilog language.

Tip: You cannot create VHDL and Verilog views for the same design unit.

You can create an unlimited number of component instances in block diagram and IBD views
while you can only create a single instance of a block. The language of instanced components
can be different from that of their parent views. That is, you can instance a Verilog component
in a VHDL block diagram view or the opposite. Blocks can only be added to parent views of the
same language.

If you are using a single kernel simulator (such as ModelSim), the entire design can be compiled
and simulated in a single operation. For other tools, you can compile the design for one
language, then change the downstream tool to compile the remaining components which are
described using the other language.

In general, VHDL and Verilog data types are automatically mapped.

A VHDL instantiation of a Verilog component associates VHDL signals and values with the
Verilog ports or Verilog parameters.

Similarly, a Verilog instantiation of a VHDL component associates Verilog signals and values
with the VHDL ports and VHDL generics.

If a Verilog view is used in a VHDL design, the component declaration in the VHDL structural
code is created using the following rules:

• The name of the port comes from the component symbol but the VHDL type comes
from the connected signal. If no signal is connected, then the default signal or bus type is
used.

• VHDL generics are given the type string if the first non-whitespace character is a quote
character ", integer if it can be converted to an integer (for example: 3, 10) or real if it
can be converted to a real (for example: 3.2, 2.1).

Block Diagram and IBD Views
Mixed Language Designs

Graphical Editors User Manual, V2010.3 197
June, 2011

Refer to the "Mixed VHDL and Verilog Designs" section in the ModelSim Users Manual for
more information about compiling mixed language HDL models.

Tip: In mixed-language designs, if you select a VHDL instance and a Verilog instance
and then open the Object Properties dialog box, the tool checks whether the language of
the parent view is VHDL or Verilog and displays either the generics or parameters
respectively. Also, a message is raised in the Log Window informing you that you cannot
view both VHDL generics and Verilog parameters simultaneously.

VHDL Instantiation of Verilog Components
The following VHDL types can be connected to Verilog ports:

The bit and std_logic types are sufficient for most applications, but the vl_logic type is provided
as a pre-compiled protected library (verilog) in case you need access to the full Verilog state set.

The vl_logic type is an enumeration that defines the full state set for Verilog nets, including
ambiguous strengths.

A VHDL generic is generated for each Verilog parameter in the Verilog module which has an
initial value that does not depend on any other parameters.

The VHDL generic type is determined by the Verilog parameter's initial value as follows:

The default value of the VHDL generic is the same as the Verilog parameter's initial value. For
example:

A VHDL port clause is generated for each Verilog port. The VHDL port type can be bit,
std_logic, and vl_logic. If the Verilog port has a range, then the VHDL port type can be

bit
bit_vector

std_logic
std_logic_vector

vl_logic
vl_logic_vector

Verilog Parameter VHDL Generic

integer integer

real real

string literal string

Verilog Parameter VHDL Generic

parameter p1 = 1 -3; p1 : integer := -2;

parameter p2 = 3.0; p2 : real := 3.000000;

parameter p3 = "Abc"; p3 : string := "Abc";

Graphical Editors User Manual, V2010.3198

Block Diagram and IBD Views
Mixed Language Designs

June, 2011

bit_vector, std_logic_vector, or vl_logic_vector. If the range does not depend on Verilog
parameters, then the vector type is constrained accordingly, otherwise it is unconstrained.

Verilog Instantiation of VHDL Components
You can reference a VHDL entity or VHDL configuration from Verilog as though the design
unit is a Verilog module of the same name (in lower case).

A VHDL view can be instantiated in Verilog if it meets the following criteria:

• The design unit has an entity and architecture or is a configuration declaration.

• The entity ports have any mix of the types: bit, bit_vector, std_ulogic,
std_ulogic_vector, vl_ulogic, vl_ulogic_vector or their subtypes.

• VHDL generics are of type integer, real, time, physical, enumeration or string. (String is
the only composite type allowed.)

Port associations may be named or positional. Use the same port names and port positions that
appear in the entity.

Graphical Editors User Manual, V2010.3 199
June, 2011

Chapter 4
Block Diagram Editor

This chapter describes how the structure of a design can be represented using a graphical block
diagram.

Block Diagrams . 200
Block Diagram Notation . 201
Blocks and Components . 202
Embedded Blocks and Embedded Views . 203
Signals, Buses and Bundles . 204
Ports and Signals. 205
Changing the Display of Port Properties . 206
Changing the Display of Signal Properties. 208
Block Diagram Editor Toolbar . 211

Adding Nets on a Block Diagram . 212
Routing Nets . 212
Adding a Signal or Bus on a Block Diagram . 213
Ripping from a Bus. 215
Adding Signal Stubs on a Block Diagram . 217
Adding a Bundle on a Block Diagram . 217
Adding Signals to a Bundle . 218
Ripping from a Bundle . 218
Using HDL Text to Combine or Split Signals . 220
Adding Ports on a Block Diagram . 220
Adding a Global Connector on a Block Diagram. 222
Connecting Overlapping Nets. 222
Connecting Nets to a Block or Component . 223
Connecting Nets to a Port Map Frame . 225
Highlighting a Net on a Block Diagram . 225

Logic Shape Notation. 227
Changing the Shape of a Block or Component. 228
Hiding Ports on a Block or Component . 230
Indicating Not or Clocked Ports . 231

Setting Block Diagram Preferences . 231

Refer to the Block Diagram and IBD Views chapter for information about procedures which are
common to the block diagram and IBD view editors.

Graphical Editors User Manual, V2010.3200

Block Diagram Editor
Block Diagrams

June, 2011

Block Diagrams
A block diagram represents a design as a number of functional blocks connected by signals. For
example, the top level block diagram for the TIMER_Vhdl design:

Each functional block may be defined by a state machine, flow chart, truth table or HDL text
view, or be decomposed into a hierarchy of lower level blocks.

A block or embedded block with an interface defined by the connected signals can be created on
the diagram or an existing component which has a fixed interface can be instantiated. A block
can be converted to a component and re-used any number of times in the same (or different)
designs.

A signal can be added as a thin polyline with a name and type representing a scalar connection
(for example, the signal start in the picture has type std_logic) or as a thick polyline
representing a vector bus with a name, type and bounds (for example, the bus dat_in has type
unsigned and bounds 3 DOWNTO 0).

If hierarchical operations are performed on signals connected to a block, the block interface is
automatically modified.

A component has a fixed interface which can only be changed by editing its symbol or if the
component is itself defined by a block diagram by editing this block diagram.

Note
Mapping between actual signals on the block diagram and formal ports on a component
with different properties can be achieved by using a port map frame.

Block Diagram Editor
Block Diagrams

Graphical Editors User Manual, V2010.3 201
June, 2011

Block Diagram Notation
A block diagram is constructed from the following graphical objects:

A newly added block has no input or output ports. Its
interface is defined by the connections on the block
diagram.

A component has fixed input and output ports which are
shown on the symbol and can be used to connect signals
and buses which have compatible properties.

An embedded block can be used to add concurrent HDL
to a block diagram without creating hierarchy. Its
interface is defined by the connections on the block
diagram.

Groups of signals or buses can be combined into a bundle
which can be connected to a block or be unconnected.

External connections are represented by input and output
ports. Bidirectional signals are connected using an inout
or buffered signals using a buffer port.

Signals connected to a global connector are implicitly
connected to every block on the diagram.

A net connector joins together signals or buses with the
same properties. An explicit connection is shown as a
filled dot or a “dangling” net connector shown as an
unfilled dot .is an implicit on-page connection to other
signals or buses with the same name and type on the
diagram.

A ripper splits or combines slices or elements of a net
which have the same name and type. It can also be used to
add or remove nets from a bundle.

Graphical Editors User Manual, V2010.3202

Block Diagram Editor
Block Diagrams

June, 2011

Blocks and Components
When you add a new block it has no ports (unlike a component which has fixed port interfaces
defined by its symbol). Ports are automatically added when you connect signals and a connected
block on a block diagram looks similar to a component (although they are normally drawn in a
different default color).

An icon indicating the type of view is displayed by default. A icon is displayed if the view
type is unrecognized.You can choose to remove this icon by unsetting a display setting
preference. Refer to “Setting Block Diagram Preferences” on page 231 for information about
changing the display setting preferences.

For example, the following picture shows two blocks. BlockA is defined by a block diagram
(indicated by the icon); BlockB is defined by a state diagram (indicated by the icon):

The following icons are used to identify graphical editor and HDL text views:

If the default view is any other registered view, the appropriate icon is displayed.

Refer to “File Registration” in the HDL Designer Series User Manual for information about
registered view types.

Table 4-1. Graphical Editor and HDL Text Views Notation

Icon Description

Block diagram view

IBD view

State diagram view

ASM chart view

Flow chart view

Truth table view

VHDL file

Verilog file

Block Diagram Editor
Block Diagrams

Graphical Editors User Manual, V2010.3 203
June, 2011

A block can be converted into a re-usable component but a component cannot be converted
back to a block. The interface for a block can be edited dynamically by adding or deleting the
connected signals.

Note
You must rename a block before converting it to a component if it was under version
management control. A prompt message will appear if you attempted converting blocks
to components without renaming them while using RCS or Super CVS version
management interfaces.

The interface for a component that is defined by a child block diagram can be edited by editing
that diagram. Otherwise the symbol must be explicitly edited using the symbol editor.

The interface to a block is defined by its connections and all signals have the same names in its
child views. The interface to a component is defined by its symbol and signals can be connected
to ports with a different name provided that they have compatible properties. You can also
connect to ports indirectly by using a port map frame.

A block or component can have one or more child block diagram, IBD view, flow chart, state
diagram, truth table, HDL text or other registered views. When there is more than one child
view, you can change the current view by setting the default view or by using a VHDL
configuration.

Embedded Blocks and Embedded Views
An embedded view is saved as part of the block diagram or IBD view on which it is instantiated
and does not create a separate design unit. When HDL is generated, concurrent code is
generated for the embedded view in the same files (VHDL entity and VHDL architecture or
Verilog module) as the structural description of the design unit.

An embedded view has an interface described by the signals connected to the embedded block
which represents it on the block diagram or IBD view.

An embedded block looks very similar to a block (although they are normally drawn in a
different default color) but has no library name since it is always in the same name space as the

Graphical Editors User Manual, V2010.3204

Block Diagram Editor
Block Diagrams

June, 2011

view. However, it does have a unique name and a number which determines the relative
ordering when there are multiple unconnected embedded blocks in the generated HDL.

An embedded view can be used to represent a VHDL process, procedure or function, Verilog
always or initial code, Verilog task or any other concurrent statements and is typically described
by HDL text. The concurrent HDL can also be represented by a graphical state diagram, flow
chart or truth table view which is normally hidden but can be displayed in an editor window by
double-clicking on the embedded view.

Signals, Buses and Bundles
Connections can be added between objects on a block diagram using signals, buses or bundles.
The only semantic difference between a signal and bus is the polyline style and you can change
the style used at any time by editing the signal properties. Signal style is typically used to
represent scalar information and bus style to represent a composite array.

A new signal (or bus) is automatically declared when it is added to a diagram and the
declaration is stored as a property of the net. However, you can specify a slice or index for each
segment of a net (for example, when slices are ripped from a bus). The declarations for each
named net are shown as text Declarations on the diagram and the visibility of properties
displayed for each net segment can be individually set.

You can optionally set a preference which displays a width label on bus nets. When enabled, the
width is shown independently from the bounds which can be optionally displayed in the signal
properties. The following example shows two bus nets with bounds (7 DOWNTO 0) and a
width label indicating that the buses are 8 bit wide:

Refer to “Setting Block Diagram Preferences” on page 231 for information about setting this
preference.

A bundle is a composite grouping of connections which may include any number of signals and
buses and is normally shown on the diagram as a dotted line.

Block Diagram Editor
Block Diagrams

Graphical Editors User Manual, V2010.3 205
June, 2011

The following pictures illustrate how a default signal (sig0), bus (dbus0) and bundle (bundle0)
are shown in VHDL and Verilog syntax. Notice how the name, type and bounds are shown for
the first use of a bus. Only the name is initially shown for subsequent segments but the slice (or
element) is shown if defined. The bundle shows the names (and slices if defined) of the signals
it contains.

Refer to “Changing the Display of Port Properties” on page 206 and “Changing the Display of
Signal Properties” on page 208 for more information about the properties displayed on ports
and signals.

Ports and Signals
A port on a block or an external port on a block diagram has the same name and properties as
the connected signal (or bus).

A port on a component has a name defined by its symbol and may be connected to a signal with
a different name on the block diagram provided the port and signal have compatible properties.

VHDL Verilog

Graphical Editors User Manual, V2010.3206

Block Diagram Editor
Block Diagrams

June, 2011

For example, the signals sens, select, reject, disp and dispense_drink are connected to the ports
sensor, selection, refuse, display and dispense in the following example:

You can also connect actual signals on a block diagram to formal ports on a component which
have different properties by using a port map frame.

For more information about using port map frames, refer to “Port Map Frames” on page 283.

Changing the Display of Port Properties
You can change the properties that are displayed for any selected input/output (IO) port or
component port on a block diagram.

Note
Refer to “Setting Block Diagram Preferences” on page 231 for information about setting
default port display properties.

You can change the visibility of the properties for an input or output port on a block diagram by
selecting the port and choosing PortIO Text Visibility from the popup menu to display the
PortIO Display Control dialog box.

A similar dialog box is displayed when one or more component instances are selected and you
choose Port Visibility from the popup menu.

Block Diagram Editor
Block Diagrams

Graphical Editors User Manual, V2010.3 207
June, 2011

This Port Display Control dialog box sets the properties displayed for all ports on the selected
instance.

The same dialog box is also displayed when you choose Port Display from the Diagram or
popup menu in the symbol editor or use one of the Port Display buttons in the Symbol tab of
the Object Properties dialog box.

Note
Note that you can set separate port properties for ports displayed in the symbol editor and
the default port properties displayed when the symbol is instantiated on a block diagram.

You can choose to display the port name, type constraint (including the type name and bounds if
defined) and VHDL initial value (if set) or Verilog delay (if set). Only the port name is shown
by default but you can choose to display the type constraint and initial value (or delay).

The name and type constraints are usually shown on a single line (separated by a colon) with the
initial value or delay on a separate line. For example, a VHDL port In0 with type unsigned,
bounds (7 DOWNTO 0) and initial value "01010101" would be shown as:

Graphical Editors User Manual, V2010.3208

Block Diagram Editor
Block Diagrams

June, 2011

You can choose to display the port name and declaration information on separate lines and use
short format (which omits the VHDL keywords DOWNTO or TO). For example, the example
above becomes:

Verilog signals are similar except that the bounds is always shown with short format. For
example, a Verilog bus In0 with type wire, bounds [15:0] and delay #3 would be shown as:

or with the signal and declaration on separate lines as:

You can choose whether to display the port name, type constraint, type name and initial value or
delay for the selected ports by setting a tri-state check box.

When multiple ports which have different display properties are selected, the check box is
dimmed and no changes are made for that property when you execute the dialog box.

Note
The full port declarations are available in the IBD view or (when object tips are enabled)
in the object information displayed when the cursor is moved over a port in the block
diagram editor.

If the Selectable Text option is set, the properties text strings can be individually selected when
the symbol is instantiated as a component on a block diagram but if this option is unset, the
properties cannot be selected. If selectable text is enabled, the port text can be moved
independently but you cannot change the visibility of an individual port property. This option is
not present when an external port is selected.

You can also hide any of the port properties by selecting the text and choosing Hide Text from
the popup menu.

You can make all properties currently set in the port display properties visible by choosing
Show Text from the popup menu when the port is selected.

Changing the Display of Signal Properties
You can change the properties that are displayed for any selected signal or bus on a block
diagram.

Block Diagram Editor
Block Diagrams

Graphical Editors User Manual, V2010.3 209
June, 2011

Note
Refer to “Setting Block Diagram Preferences” on page 231 for information about setting
default signal display properties.

You can change the visibility of the properties for the selected segment of a signal or bus net on
a block diagram by choosing Signal Visibility from the popup menu.The Signal Display
Control dialog box is displayed:

You can also set the signal visibility by displaying the Text Visibility page of the Object
Properties dialog box when a signal is selected.

You can choose to display the signal (or bus) name (including the slice or element if defined),
type constraint (including the type name and bounds if defined) and VHDL initial value (if set)
or Verilog delay (if set).

The name and type constraints are usually shown on a single line (separated by a colon) with the
initial value or delay on a separate line.

For example, a VHDL bus dbus0 with slice (7 DOWNTO 0), type unsigned, bounds (15
DOWNTO 0) and initial value "01010101" would be shown as:

Graphical Editors User Manual, V2010.3210

Block Diagram Editor
Block Diagrams

June, 2011

You can choose to display the signal name and declaration information on separate lines and use
short format (which omits the VHDL keywords DOWNTO or TO). For example, the example
above becomes:

Verilog signals are similar except that the bounds is always shown with short format. For
example, a Verilog bus dbus0 with slice [7:0], type wire, bounds [15:0] and delay #3 would be
shown as:

or with the signal and declaration on separate lines as:

You can choose whether to display the signal name and slice, type constraint, type name and
initial value or delay for the selected signals by setting a tri-state check box. When multiple
signals which have different display properties are selected, the check box is dimmed and no
changes are made for that property when you execute the dialog box.

Note
The full signal declarations are available in the IBD view or (when object tips are
enabled) in the object information displayed when the cursor is moved over a signal or
bus.

You can display different properties against each net segment on the diagram. Typically, the full
properties are shown for the first use of a signal or bus but only the name and slice (or element)
on ripped signals. For example:

You can also hide any of the signal properties by selecting the text and choosing Hide Text
from the popup menu. You can make all text elements associated with a signal visible by
choosing Show Text from the popup menu when the object is selected.

Block Diagram Editor
Block Diagrams

Graphical Editors User Manual, V2010.3 211
June, 2011

Block Diagram Editor Toolbar
The following commands are available from the Block Diagram Tools toolbar:

Note
Some buttons (for example,) have a pulldown palette which allows you to change
the command as shown in the table. The button has a pulldown menu which allows
you to choose a FOR, IF, BLOCK (VHDL only) or ELSE (Verilog only) generate frame.

The toolbar can be displayed or hidden by setting the Block Diagram Tools option in the
Toolbars cascade of the View menu.

Table 4-2. Block Diagram Editor Toolbar

Icon Description

Select text or object

Select text only

Select object only

Add or modify comment text

Pan the window

Highlight all segments of the selected net on the block diagram

Highlight all segments of the selected net in the hierarchy

Clear net highlighting

Add a block

Add a component

Add a ModuleWare component

Add an external HDL (IP) model

Add an embedded block

Add a FOR, IF, ELSE or BLOCK generate frame

Add a signal

Add a bus

Add a bundle

Add a port

Add a global connector

Add a panel

Show the block diagram as an IBD view

Graphical Editors User Manual, V2010.3212

Block Diagram Editor
Adding Nets on a Block Diagram

June, 2011

Refer to “Toolbars” on page 20 for more information about toolbars including the standard
toolbar buttons which are available in more than one editor.

Adding Nets on a Block Diagram
You can add signal or bus nets, bundles, ports and global connectors on a block diagram by
using the Add menu or by using one of the block diagram toolbar buttons.

Note

The , , and buttons have a pulldown palette which allows you to
change the command as shown in the table below.

Some objects can also be added using a shortcut or mnemonic keys shown in the table below:

Routing Nets
A net can be routed as a simple signal, vector bus or as a bundle which groups signals and buses
together.

A net connection (shown as a filled dot) can be made by terminating a signal, bus or bundle
on an existing net. When a junction between buses is made using a net connector in this way, all
net segments have the same properties and only the net name is shown on the new net segment.

Table 4-3. Block Diagram Commands for Adding Nets

Button Shortcut Mnemonic Description

F7 S Add a signal net

none none Add a signal net with a port

Shift + F7 U Add a bus net

none none Add a bus net with a port

none none Add a bus net with a ripper

Ctrl + F7 N Add a bundle

none none Add a bundle with a ripper

F8 I Add an input port

F9 O Add an output port

F11 T Add a bidirectional (inout) port

F12 F Add a buffer port (VHDL only)

F5 G Add a global connector

Block Diagram Editor
Adding Nets on a Block Diagram

Graphical Editors User Manual, V2010.3 213
June, 2011

You can also rip an index or slice from a bus by using a ripper. For example, bits 15 and 14 are
ripped from the 16-bit bus outbus1 in the picture on the next page.

An input or output port is implicitly added to the symbol for a block when you connect a signal
or bus to or from the block.

You can change the port direction (in, out, bidirectional or buffer) by selecting the port and
choosing Change Mode from the popup menu which can be displayed using the Right mouse
button.

Any signal, bus or buffer connected to a global connector is implicitly connected to every block
in the block diagram. For example, clk is a clock signal connected to Block0, Block1 and Block2
in the picture.

A net connector can also be used to implicitly connect by name separate segments of a signal,
bus or bundle which have the same name. For example, reset is a reset signal connected by
name to Block1 and Block2 (but not Block0) although it not explicitly connected to Block2.

Adding a Signal or Bus on a Block Diagram
When you add a signal or bus, the cursor changes to a cross-hair which allows you to specify a
source, destination and any number of route points by clicking the Left mouse button.

The source and destination can be a block, embedded block, port or port map frame on a
component. You can also connect to an existing signal, bus, bundle or global connector on the
block diagram.

If the source is in open space on the diagram or the signal is terminated by double-clicking in
open space, a dangling net connector is created. However, you can use the pulldown menus
to change the default buttons to or and automatically create an input port if the
source is an open space or an output port if a signal is terminated in open space.

Graphical Editors User Manual, V2010.3214

Block Diagram Editor
Adding Nets on a Block Diagram

June, 2011

Note
If the source object is an input, output, buffer or bidirectional port on a component, the
default endpoint has the same mode.

If you add a signal or bus without a port, the name, type and bounds properties are displayed on
the signal. However, if you add a signal or bus with a port, the signal properties are hidden and
the properties are shown on the port.

If the source is over an existing signal or bus, the source name, type and bounds are used.
However only the name is shown on the diagram for the new net segment. If the source is over a
component port, the signal will have the same properties as the port (except in a Verilog
diagram when wire type is used when connected to a port with reg type).

If the source is unconnected and the destination is over an existing signal, bus or component
port, the destination name, type and bounds are used.

If both ends are connected, the source and destination must have compatible properties.

If neither end is connected, a signal is added with a default name and scalar type or a bus is
added with a default name, vector type and bounds.

If the source of a signal is over a bus or if you connect a bus to an existing bus using the
button, the connection is made using a ripper and a dialog box is displayed for you to choose the
required element index or slice. Refer to “Ripping from a Bus” on page 215 for more
information.

If the source of a signal or bus is over a bundle, a dialog box is displayed for you to choose the
required signal, bus and optionally an element index or slice. If the destination is over a bundle,
the signal or bus is added to the bundle. Refer to “Ripping from a Bundle” on page 218 for more
information.

You can change the name, type and bounds by clicking on the text to select it and clicking again
to edit the text. The text is normally placed midway along the route but can be moved to any
other position by dragging it with the mouse.

You can also edit the name, type, bounds and other properties by using the Signals tab in the
Object Properties dialog box which is displayed when you by use the button or choose
Object Properties from the Edit menu.

The signal style (scalar signal or vector bus) can be changed in the Object Properties dialog box
or you can change the appearance by setting its visual attributes.

If you do not change the name, each new signal or bus is given a unique name by adding an
integer to the default name (for example: sig1, sig2… for a signal; or dbus1, dbus2… for a bus).
The default signal and bus name, type and bounds can be set by preferences.

Block Diagram Editor
Adding Nets on a Block Diagram

Graphical Editors User Manual, V2010.3 215
June, 2011

The name and type constraints text (if visible) are aligned with the net orientation. Thus the
name is horizontal for a horizontal net segment and vertical for a vertical net segment. However,
the text can be rotated independently by choosing Rotate Text from the popup menu.

Ripping from a Bus
You can rip a single element of a bus by using the button to connect a signal starting from
any point on the bus using a ripper.

The Rip Element From Bus dialog box is displayed which allows you to specify the required
slice. For example, the following dialog box is displayed when you are using VHDL:

The dialog box allows you to enter or select the index for the required element.

Alternatively, you can use the button to rip a slice from the bus using the Rip Slice From
Bus dialog box:

You can choose from a pulldown list of existing slices ripped from the net. You can also use
separate pulldown lists to compose the required slice.

The following examples show a two-bit slice 7 DOWNTO 5 (VHDL) or [7:5] (Verilog) ripped
from dbus0 which has 15-bit bounds 15 DOWNTO 0 (VHDL) or [15:0] (Verilog). A one-bit
slice dbus0(1) or dbus0[1] has also been ripped from the bus and drawn as a signal.

Graphical Editors User Manual, V2010.3216

Block Diagram Editor
Adding Nets on a Block Diagram

June, 2011

VHDL

Verilog

All other properties for the new net segment are the same as the source bus.

Do not attempt to change the name of a ripped signal or connect a slice or element of a bus
directly to an output port. However, you can use embedded HDL text to assign the slice or
element to an alternative output signal. In the example, bit 1 of dbus0 is assigned to the control
output and the slice to the newbus output.

Note
The embedded view containing HDL text can optionally be connected to the signals or
buses or you can use connection by name as shown for the control signal in the example.
You can also map ripped slices or elements of a bus to the ports on a component by using
a port map frame.

Note that you can choose Change to Junction from the popup menu to replace a ripper by a net
connector representing an unripped junction. You can also choose Change to Ripper from the
popup menu to replace a net connector by a ripper. After using these commands, the signal
properties for each net segment may need to be edited using the Object Properties dialog box.

You can flip the direction of a ripper joining two nets on a block diagram by using the and
 buttons in the Arrange Object toolbar or by choosing Flip Ripper from the popup menu

when the ripper is selected.

Block Diagram Editor
Adding Nets on a Block Diagram

Graphical Editors User Manual, V2010.3 217
June, 2011

Adding Signal Stubs on a Block Diagram
You can add signals and buses corresponding to the ports on a component by choosing Add
Signal Stubs from the Diagram or popup menu.

If the component is selected, the Add Signal Stubs dialog box allows you to choose whether to
add signal stubs on Input, Output, InOut or Buffer (VHDL only) ports. Signal stubs are added to
all unconnected ports of the specified type.

If one or more ports are selected on a block diagram, signal stubs are added to the selected ports
and any unselected ports are left unconnected.

Signal stubs are added with properties corresponding to the ports defined on the symbol for the
component.

If the component has a different language from the parent view (for example, a Verilog
component instantiated in a VHDL view) the signal properties are automatically mapped to the
language of the parent view.

The signal stubs are implicitly connected by name to nets with the same name on the diagram
and you are warned if any of the net names already exist.

Adding a Bundle on a Block Diagram
Bundles can be useful to connect a group of signals to different parts of a diagram without the
need for long connecting nets.

A bundle allows a number of nets to be grouped as a single line on a block diagram.
Unconnected bundle segments with the same name are implicitly connected.

When you add a bundle, the cursor changes to a cross-hair which allows you to specify a
source, destination and any number of route points by clicking the Left mouse button.

The source can be a signal, bus, bundle, block, port map frame, global connector, embedded
view or unconnected. The destination can be any object except a signal, bus or port but can also
be left unconnected by double-clicking the Left mouse button to complete the route.

Although you cannot connect a bundle to a component port, you can connect a bundle to a port
map frame and set Connection By Name in the object properties for the component to connect
signals in the bundle to corresponding component ports with the same name.

A new bundle initially has no content (unless originated on an existing signal, bus or bundle)
but you can add signals or buses to a bundle (which is then displayed with the constituent parts
after the bundle name) by terminating them over any point on the bundle.

You can then rip signals or buses from the bundle by starting a new net at any point over the
bundle.

Graphical Editors User Manual, V2010.3218

Block Diagram Editor
Adding Nets on a Block Diagram

June, 2011

If any signal or buses are selected when you add a new bundle, the selected signals are
automatically included in the bundle. However, the signal names in the bundle are not updated
if the discrete signal name is changed unless the signal is explicitly connected to the bundle.

If you connect a bundle to a block, then all of the constituent signals or buses in the block are
connected to the block and are represented by separate ports in a child block diagram. Similarly,
if you connect a bundle to a global connector, all of the signals and buses it contains are
considered to be connected to every block on the diagram.

You can change the bundle name by clicking on the text to select it and clicking again to edit the
text. The text is normally placed midway along the route but can be moved to any other position
by dragging it with the mouse.

You can also edit the bundle name by using the Bundles tab in the Object Properties dialog box
which is displayed when you use the button or choose Object Properties from the Edit
menu.

If you do not change the bundle name, each new bundle is given a unique name by adding an
integer to the default name (for example: Bundle1, Bundle2…). The default bundle name can be
set by a preference.

Adding Signals to a Bundle
If existing signals or buses are selected when you add a new bundle, they are automatically
included in the bundle.

You can add signals or buses to a bundle by dragging the dangling net connector at the
destination end of the existing net onto the bundle or by terminating a new signal or bus on the
bundle.

Note
Signals or buses with the same properties are implicitly connected by name and need not
be graphically connected.

Ripping from a Bundle
You can rip a signal (or element of a bus) from a bundle by using the button to connect a
signal starting from any point on the bundle using a ripper.

The Rip Signal/Element From Bundle dialog box is displayed which allows you to choose from
a drop down list of signals and buses in the bundle and (when a bus is selected) specify the
required element.

Block Diagram Editor
Adding Nets on a Block Diagram

Graphical Editors User Manual, V2010.3 219
June, 2011

For example, the following dialog box is displayed when you are using VHDL:

You can rip a bus (or slice of a bus) from a bundle by using the button to connect a bus
starting from any point on the bundle.

The Rip Bus/Slice From Bundle dialog box is displayed which allows you to choose from a
drop down list of buses in the bundle and (optionally) specify the required slice.

For example, the following dialog box is displayed when you are using VHDL:

You can use the button to rip a secondary bundle. The Rip New Bundle dialog box is
displayed which allows you to select one or more signals and buses to include in the new
bundle.

For example, the two buses dbus0 and dbus1 are being ripped to create a new bundle in the
picture below:

A bundle can be directly connected to a block (but not to a component) and all the nets in the
bundle will be available as individual signals and buses in child views of the block.

Graphical Editors User Manual, V2010.3220

Block Diagram Editor
Adding Nets on a Block Diagram

June, 2011

Using HDL Text to Combine or Split Signals
An Embedded HDL text view can be used to combine or split signals which have different
properties by using simple HDL assignment statements.

For example, the following picture shows embedded HDL text used on a block diagram as a
splice to combine the signals sig0, sig1 and sig3 into signal sigout. The signals do not need to be
explicitly connected to the embedded block and the same signal combination can be achieved
with implicit connection as shown by the second example:

Note
If the text does not fit in the default size text box on a block diagram, the additional text is
indicated by the word <<.. more ..>>. This text can be displayed by resizing the box.

You can hide the HDL text box on a block diagram by selecting the text and choosing Hide
Text from the popup menu or re-display the text by choosing Show Text when the embedded
block is selected.

You can also change the shape of an embedded block. For example, an embedded HDL text
view which performs a logical OR or AND function can be represented by a corresponding
logic shape.

Refer to “Logic Shape Notation” on page 227 for information about changing the shape of an
embedded block.

Adding Ports on a Block Diagram
When you add an external interface port on a block diagram, the cursor changes to a cross-hair
which allows you to add the port by clicking to drop the port at the required location on the
diagram.

Note
Buffer ports are not available when the hardware description language is set to Verilog.

Block Diagram Editor
Adding Nets on a Block Diagram

Graphical Editors User Manual, V2010.3 221
June, 2011

A port represents a connection for signal paths in or out of the block diagram and can be
connected to a signal or bus. An unconnected port has no name, but when connected it is
identified by the name of the connected signal or bus and this name is used as the port name on
the default symbol for the block diagram.

If a port is added over the dangling net connector on an existing signal or bus, it is automatically
connected to the net.

Adding Ports to Existing Nets
You can also add external interface ports to dangling net connectors by choosing Add Port I/O
from the popup menu (or the Signals cascade of the Diagram menu) when one or more nets are
selected. Appropriate ports are added for the signal properties. For example, an output port is
added to an output signal or a buffer port to buffered signal. If both ends of a net are
unconnected, an input port is connected to the source end.

Adding Ports from a Component
You can add external interface ports connected to signal stubs from the ports on a component by
choosing Add PortIO from the Diagram or popup menu in a block diagram.

If the component is selected, the Add Signal Stubs dialog box allows you to choose whether to
add signal stubs on Input, Output, InOut or Buffer (VHDL only) ports. Signal stubs are added to
all unconnected ports of the specified type.

If one or more component ports are selected on a block diagram, signal stubs with ports are
added to the selected ports and any unselected ports are left unconnected.

The signal stubs are added with properties corresponding to the ports defined on the symbol for
the component. If the component has a different language from the parent view (for example, a
Verilog component instantiated in a VHDL view) the properties are automatically mapped to
the language of the parent view.

The signal stubs are implicitly connected by name to signals with the same name on the view
and you are warned if any of the signal names already exist on the diagram.

Changing the Mode of a Port
When one or more ports are selected on a block diagram or in the symbol editor, the popup
menu and the Ports cascade of the Diagram menu include a Change Mode cascade which
allows you to change the mode (In, Out, InOut or Buffer) of the ports.

This option can be used for external ports defining the interface or ports on a block which define
the interface to a child view.

Graphical Editors User Manual, V2010.3222

Block Diagram Editor
Adding Nets on a Block Diagram

June, 2011

Note
If you change the mode of a port to or from an input port, it is rotated automatically by
180 degrees.

Rotating a Port
When an external interface port on a block diagram is selected, the Edit and popup menus
include a Rotate Port cascade which allows you to rotate the port clockwise by 90, 180 or 270
degrees.

Rotating Signal Names
You can rotate a signal name (or a port name in the symbol editor) by choosing Rotate Text
from the popup menu to rotate the text clockwise by 90, 180 or 270 degrees.

Adding a Global Connector on a Block Diagram
You can add a global connector on a block diagram using the button or G shortcut key or
by choosing Global Connector from the Add menu.

The cursor changes to a cross-hair which allows you to add the global connector by clicking at
the required location on the diagram. A global connector represents a common connection to all
blocks in the diagram. Any number of signals, buses or bundles can be connected to the same
global connector. This does not imply any connection between them.

Note
A global connector connects the attached net (or nets) to all blocks on the diagram but
does not connect to components or ModuleWare instances.

Connecting Overlapping Nets
A net can be individually connected to another net or other object by dragging with the Left
mouse button over the net or object. You can also make a connection to one or more nets by
overlapping the dangling net connectors and choosing Connect from the Diagram or popup
menus.

When you connect nets in this way, the new net adopts the properties of the selected net. For
example, the following nets become signalX, signalY and signalZ if the Connect command is
used when signalX, signalY and signalZ are selected.

Block Diagram Editor
Adding Nets on a Block Diagram

Graphical Editors User Manual, V2010.3 223
June, 2011

You can connect dangling net connectors to a bundle by drawing a bundle to overlap the net
connectors and then choosing Connect. For example, after adding signal stubs to a component
you can group the output signals into a single bundle for easy routing to another area of the
diagram.

Similarly, if the dangling connectors represent slices of a bus, they can be connected to a single
bus although the net properties may need to be edited to ensure that all connected net segments
have the same name.

For example, in the following picture, dbus2 has been connected and then edited to have the
same name (and compatible range) as the slices dbus1(0) to dbus1(3).

Connecting Nets to a Block or Component
Signals or buses can be individually connected to a block or component by dragging with the
Left mouse button over the body of a block or over an existing port or port map frame on a
component.

You can also make a connection by overlapping a block or component with the dangling net
connectors on the end of existing signals or buses and then choosing Connect from the
Diagram or popup menus.

This can be useful when you have created a new child block diagram and want to add a block or
component connected to the nets created when the child diagram is initialized.

Graphical Editors User Manual, V2010.3224

Block Diagram Editor
Adding Nets on a Block Diagram

June, 2011

When you are using this method to connect a component port, the port must be fully
overlapping as shown below:

VHDL Port Mapping
If a signal has no slice or element, then the port has the type and range (if any) of the signal. All
other declarations are the same except that initial values on signals are not propagated to the
port. The type and range are different if slices or elements are used.

If the signal has a slice, then the port has the type and the range of the slice. However, the type
must be one of the following:

If not one of these types, for example, a subtype defined in a VHDL package such as slv7d0 IS
std_logic_vector(7 DOWNTO 0), an error is issued. To use such a type, you should either
change the block to a component or assign the slice to an intermediate signal.

If the signal is an element of a bus, and the bus array type is one of those in the following list,
then the corresponding port scalar type is used:

If not one of the above types, an error is issued and you should either change the block to a
component or assign the element to an intermediate signal.

std_logic_vector
std_ulogic_vector
bit_vector
signed
unsigned

integer
natural
positive
real
string

Bus Array Type Port Scalar Type

std_logic_vector
std_ulogic_vector
bit_vector
signed
unsigned
integer
natural
positive
real
string

std_logic
std_ulogic
bit
std_logic
std_logic
integer
natural
positive
real
character

Block Diagram Editor
Adding Nets on a Block Diagram

Graphical Editors User Manual, V2010.3 225
June, 2011

A signal is regarded as an element if the slice bounds is specified in a single field and is either
an integer or a valid identifier. For two dimensional arrays, each array is treated accordingly,
whether a slice or an element.

Connecting Nets to a Port Map Frame
If a port map frame is enabled and the nets or the component body are selected, then
overlapping net connectors are connected to the frame unless they also overlap a port with
compatible properties on the body of the component.

Note
If the port map frame is selected, all overlapping nets are connected to the frame.

Highlighting a Net on a Block Diagram
Any set of signals or buses which are connected explicitly or implicitly connected by name form
a net.

You can highlight an entire net by selecting any net segment, port declaration or signal
declaration on the block diagram and choosing Highlight Net from the popup menu or from the
Signals cascade of the Diagram menu.

A cascade menu allows you to highlight all routes in the selected nets for a Single Level block
diagram or to highlight the nets in any open Hierarchical diagram. These options are also
available using the and buttons.

If multiple nets are selected, four different highlight colors are used. However, the colors may
be repeated when more than four nets are selected and bundles are always highlighted in red.

If you choose the single level option, all segments on the active diagram in the selected net are
highlighted even if they are connected only by name including any bundles which contain the
net.

Graphical Editors User Manual, V2010.3226

Block Diagram Editor
Adding Nets on a Block Diagram

June, 2011

If a bundle is selected, any nets contained in the bundle are highlighted even if they are not
graphically connected to the bundle.

If you choose the Hierarchical option, the Net Highlighting Options dialog box is displayed.

You can choose whether the highlighting is applied Up and Down the hierarchy and whether it
should be traced Through Components. If you choose to highlight through components, an
extra option controls whether the highlighted net is traced Through ports where the port
name differs from the net.

When you confirm your choices in the Net Highlighting Options dialog box, the net is
highlighted on the active diagram and a progress window is displayed which lists all the
occurrences of the net in the specified hierarchy.

Block Diagram Editor
Logic Shape Notation

Graphical Editors User Manual, V2010.3 227
June, 2011

The progress is indicated in the dialog box and a complete indicator displayed when all views in
the hierarchy have been traversed.

If any errors or warnings are encountered, these are indicated in the Status column and the full
message appears in the Status box when the view name is selected.

You can display any view listed in the preview window by double-clicking on its name in the
preview window. If the view is a block diagram, all occurrences of the net are highlighted and
the window is zoomed to view the entire net.

You can clear all net highlighting by using the button or by choosing Clear All from the
menu.

Logic Shape Notation
The standard block diagram notation uses simple rectangular shapes for blocks, embedded
blocks and components connected by directed lines representing signals, buses or bundles.

This notation allows the designer to focus on the high level behavior of the design without
prematurely committing to implementation details. However, there are many cases particularly
in low level design or where existing components are being re-used when it is useful to use gate-
level logic notation.

You can choose from a set of alternative standard shapes representing standard data path
functions including multiplexer, buffer, AND, OR, XOR, arithmetic logic unit, ground, supply,
pulldown and pullup.

These shapes can be used to represent inverted logic (including NAND, NOR, NXOR) by
adding an active low (Not) indicator to the port or you can add a clock indicator to an edge-
triggered input port.

Graphical Editors User Manual, V2010.3228

Block Diagram Editor
Logic Shape Notation

June, 2011

For example, clock and active low indicators have been applied to the clock and out2
ports on the DFF component in the picture below.

The shapes can also be applied to any block or embedded block and you can choose to hide the
block ports when the flow is implied by using these logical shapes. For example, the ports have
been hidden on the embedded blocks AND1 and BUF in the picture.

Changing the Shape of a Block or Component
You can change the shape of the selected block, embedded block or component instance on a
block diagram by choosing the Shape cascade of the Diagram or popup menu.

Note
Note that you can create a custom shape for a component symbol which will be applied to
all instances of the component by using the symbol editor as described in “Customizing a
Symbol” on page 317.

You can check Edit Shape from the Shape cascade menu to edit the existing shape directly or
choose Autoshapes to choose from a palette of standard shapes.

If you choose Edit Shape, the block, embedded block or component is replaced by a resizable
rectangular boundary enclosing the default shape. A customized shape can be created by adding
comment graphics within this boundary.

The default shape can be deleted or you can superimpose any number of comment graphics
objects. Alternatively, you can use the Edit Vertices command from the popup menu to modify
shapes.

Block Diagram Editor
Logic Shape Notation

Graphical Editors User Manual, V2010.3 229
June, 2011

Any comment graphics or comment text added completely within the boundary is considered
part of the customized shape. The block boundary is drawn in red while in edit mode and
existing comment graphics or text can be moved inside the boundary.

When you uncheck Edit Shape in the menu, the boundary is redrawn in gray and all comment
graphics or text within the boundary become part of the customized shape.

The cascade menu also includes an option to add autowhiskers. If Autowhisker is checked in
the menu, whiskers are automatically added as orthogonal lines between the ports on the block
boundary and the contained comment graphics shape. However, no whiskers are added if the
line would not intersect with a graphics object.

Choosing a Standard Shape
You can apply a standard shape to the selected block, embedded block or component by
choosing Autoshapes from the Shape cascade of the Diagram or popup menu or by using the
Change Shape button in the block diagram Object Properties dialog box.

You can change the shape of a component symbol which will be applied to all instances of the
component by choosing Autoshapes from the Diagram or popup menu when the body of the
symbol is selected in the symbol editor or by using the Change Shape button in the Symbol tab
of the Object Properties dialog box.

The Choose Shape dialog box allows you to change the default rectangle shape.

 The following alternative standard shapes are available:

Name Shape Function Name Shape Function

Mux Multiplexer Gnd Ground

Graphical Editors User Manual, V2010.3230

Block Diagram Editor
Logic Shape Notation

June, 2011

You can also apply these shapes using a pulldown palette accessed from the button in the
Appearance toolbar.

You can use these shapes to represent other logic functions (such as NAND, NOR and NXOR
gates) by setting an active low indicator for any selected port.

For example, an invertor can be represented by a buffer shape with a Not port:

Hiding Ports on a Block or Component
Ports are normally added automatically when a signal is connected to a block or embedded
block. However, you can clear the Show ports when connected option in the Blocks or
Embedded Blocks tab of the Object Properties dialog box to hide the ports. This can be useful
when you have changed the shape of a block to represent a standard logic function.

For example, the following picture shows an how an embedded block representing a logical
AND function would be displayed with the ports displayed or hidden:

You can also choose whether connected ports are displayed on a component by setting the
Show ports when connected option in the Symbol tab of the Object Properties dialog box in
the symbol editor.

Buf Buffer Vcc Supply

And AND gate Pd Pull down

Or OR gate Pu Pull up

XOr Exclusive OR gate circle Circle

Alu Arithmetic logic unit doubleCircle Double circle

Block Diagram Editor
Setting Block Diagram Preferences

Graphical Editors User Manual, V2010.3 231
June, 2011

Note
Unconnected component ports are always displayed.

Indicating Not or Clocked Ports
You can choose whether a selected port (or ports) on a block or embedded block in a block
diagram is shown with active low (Not) polarity (indicated by) by choosing On from the
Not cascade in the popup menu (or Ports cascade of the Diagram menu) when the port is
selected. Choose Off from the cascade menu to set active high polarity and remove the
indicator.

If a port on a ModuleWare component which supports polarity control is selected, you can
choose Active High or Active Low from the Port Type cascade of the popup menu or you can
set the port type parameter in the ModuleWare Parameters dialog box. Many of the
ModuleWare components also provide synchronous (Sync) and asynchronous (Async) polarity
and Rising or Falling clock options.

You cannot directly change a regular component port but you can set an active low indicator by
using the popup menu (or Ports cascade of the Diagram menu) in the symbol editor.

You can also choose whether a selected input port (or ports) is shown as an edge triggered clock
signal (indicated by) by choosing On from the Clock cascade in the Diagram or popup
menu.

You can also choose to hide connected ports when you want to represent a standard data path
logic function. For example, the following picture shows a component representing a flip-flop
with an edge triggered clock and active low reset:

Setting Block Diagram Preferences
You can set block diagram preferences by choosing Structural Diagram from the Master
Preferences cascade of the Options menu in the design manager to display the Structural
Diagram Master Preferences dialog box.

Graphical Editors User Manual, V2010.3232

Block Diagram Editor
Setting Block Diagram Preferences

June, 2011

The dialog box has separate pages for setting General preferences, Default Settings,
ModuleWare preferences, Block Diagram preferences (which include Display Settings,
Appearance and Background preferences), in addition to IBD preferences.

You can set the block diagram appearance, display setting and background preferences (but not
default values) for the active diagram by choosing Diagram Preferences from the Options
menu in the block diagram editor to display the Block Diagram Preferences dialog box.

When you edit these preferences for the active diagram, the dialog box allows you to choose
whether the preferences are applied to new objects or to both new and existing objects in the
diagram.

Refer to “Setting Diagram Master Preferences” on page 49 for information about applying
master preferences to existing views and updating the master preferences from the active view.

The General page allows you to set general preferences for the block diagram.You can set an
option to check the HDL syntax of declarations and embedded HDL text objects on entry.
Checks are also performed for unsynthesizable constructs if the common synthesis checks
option is set in the Checks tab of the Main Settings dialog box.

You can choose whether in-line or separate HDL code is generated by default for any
instantiated ModuleWare components.

Block Diagram Editor
Setting Block Diagram Preferences

Graphical Editors User Manual, V2010.3 233
June, 2011

You can control whether the tasks are invoked on the selected instances or on the diagram itself.

You can specify the default save name used for new block diagrams.

You can also specify whether port declaration ordering is automatic (by mode and alphanumeric
name) or if manual ordering is allowed.

The Default Settings page allows you to set the default names used for the signal, bus and
bundle name, embedded block name and global connector name.

You can also choose whether the instance name for a block or component is derived from a
specified root name or from the design unit name.

When set to Manual, the specified string is used as the root of the instance name. The default
name can be changed or the instance name can be edited on a block diagram or IBD view and
replaced by any other valid HDL identifier.

The internal variable %(unit) can be included to insert the design unit name and the instance
name can be edited on a block diagram or IBD view.

When set to Automatic, the internal variable %(unit) is used. The default name can be modified
but must always include the %(unit) variable. The variable is automatically replaced by the
design unit name and the instance name cannot be edited on a block diagram or IBD view.

Graphical Editors User Manual, V2010.3234

Block Diagram Editor
Setting Block Diagram Preferences

June, 2011

Separate VHDL and Verilog sub-pages can be used to set default types, constraints and bounds
for VHDL and Verilog signals. For example, the following picture shows the VHDL sub-page:

The bounds can be entered as a range (for example, 15 DOWNTO 0 or 0 TO 75 in VHDL or 0:7
in Verilog) or you can use the first bounds entry box as an index for a single element in an array
leaving the second entry empty.

Note that for VHDL, you can use the first bounds entry box to enter a user specified constraint
such as an enumerated or integer type name or you can enter an array name or type of the form:

<array>'RANGE or <array>'REVERSE_RANGE

The following picture shows the options on the Verilog sub-page

Block Diagram Editor
Setting Block Diagram Preferences

Graphical Editors User Manual, V2010.3 235
June, 2011

You can use the Default Properties sub-page to define default user properties for block
diagram views.

Refer to the HDL Designer Series User Manual for information about “Using View Property
Variables”.

Note
The default values take effect on the next block diagram you open and can only be edited
from the Master Preferences cascade in the design manager Options menu.

Graphical Editors User Manual, V2010.3236

Block Diagram Editor
Setting Block Diagram Preferences

June, 2011

The ModuleWare page allows you to set the default visibility for the content of the object tip
displayed when the cursor is over a ModuleWare instance in a block diagram or IBD view.

Tip: When these settings are accessed from the editor, you can choose whether to apply
the display settings to new objects only or to all new and existing objects on the diagram.

Block Diagram Editor
Setting Block Diagram Preferences

Graphical Editors User Manual, V2010.3 237
June, 2011

The Block Diagram page enables you to set general block diagram options in addition to
routing preferences.

As part of the Block Diagram General Options, you can choose to automatically modify the
width of an instance in a Block Diagram, on using the Update Interface option. This is
applicable when you have added a port with a long name to a Symbol and then saved;
subsequently, on right-clicking on the symbol’s corresponding instance in the Block Diagram
and choosing Update Interface from the popup menu, the width of the component is increased
to accommodate the width of the added port name.

On the other hand, if the option “Modify instance width on update” is not selected, then on
updating the interface, the component width shall not be increased to contain the long port
name.

Note
You must set the Port Name option in the Port Visibility settings of the component, in
order to have the name text visible on the component ports.

In the Interactive Routing Options section, you have the ability to set the default routing method
as well as the stub routing options as follows:

1. You can set the Default Mode for net routing as Diagonal, Dog Leg, River, or
Avoidance. The default routing mode is Avoidance.

Graphical Editors User Manual, V2010.3238

Block Diagram Editor
Setting Block Diagram Preferences

June, 2011

o Diagonal: allows routing in a straight-line mode.

o Dog Leg: allows routing in an angular mode with the ability to create overlapping
between nets.

o River: allows routing in an angular mode with the ability to create net loops.

o Avoidance: does not allow any cross-overs of objects; that is, this mode avoids the
overlapping of any existing objects.

Through the Real-time Keys section, you can specify a key through which you can
toggle between the above mentioned routing modes while routing (by pressing the key
you specified).

2. In the Port IO Stub Routing section, you can choose one of two options. First, you can
allow stub routing only if the stub exceeds a specific length of your definition; that is to
say, if the stub length is more than the number of grid units that you define, only then it
will be routed.

On the other hand, you can choose not to route the stub, but rather to re-locate it directly
on moving its relevant object.

Block Diagram Editor
Setting Block Diagram Preferences

Graphical Editors User Manual, V2010.3 239
June, 2011

The Display Settings sub-page contains options which control how objects are displayed on a
diagram.

You can choose whether to use the symbol visual attributes when a symbol is instantiated in a
block diagram as a component and whether to take display settings from component ports. This
option makes the visibility of properties on a new net the same as the visibility of properties on
the connected component port. Otherwise, the default signal display properties are used.

You can choose whether attributes added to port and signal net declarations are shown on the
block diagram. You can choose whether to display an optional net width label and whether the
signal style (signal or bus) is automatically updated when you change the bounds of a net. You
can also choose to wrap the contents of bundles and show each signal on a single line or display
all the signals on the same line below the bundle name.

You can also enable or disable an icon which indicates the default view of a block or component
and specify where this icon is displayed on the instance.

Graphical Editors User Manual, V2010.3240

Block Diagram Editor
Setting Block Diagram Preferences

June, 2011

Note
Many of the display settings can only be set in the master preferences and are
permanently dimmed when the dialog box is accessed from the editor.

An Object Visibility sub-page is available in the Structural Diagram Master Preferences dialog
box which allows you to set the default object visibility for multi-line text objects on the
diagram.

Refer to “Changing Text Visibility” on page 68 for more information about the objects which
can be displayed or hidden on a block diagram.

Block Diagram Editor
Setting Block Diagram Preferences

Graphical Editors User Manual, V2010.3 241
June, 2011

Separate VHDL Signal, Verilog Signal, Verilog 2005 Signal, VHDL PortIO, Verilog
PortIO or Verilog 2005 sub-pages can be opened to set the default display properties for signal
nets and external ports. For example, the following picture shows the VHDL Signals page:

Note
The display properties can be set separately for VHDL and Verilog when you edit the
master preferences or for the language used by the active diagram when accessed from
the editor. When accessed from the editor, you can choose whether to apply the signal
and port display changes to new signals and ports only or to all new and existing signals
and ports on the diagram.

Refer to “Changing the Display of Signal Properties” on page 208 and “Changing the Display
of Port Properties” on page 206 for more information about the signal and port properties.

A ModuleWare Display sub-page allows you to set the visibility of the ModuleWare
parameters that can be displayed as comment text adjacent to a ModuleWare instance on a block

Graphical Editors User Manual, V2010.3242

Block Diagram Editor
Setting Block Diagram Preferences

June, 2011

diagram. Note that the settings in the ModuleWare Display sub-page apply to block diagrams
only, whereas the settings in the ModuleWare page apply to structural diagrams in general.

When this page is accessed from the Structural Diagram Master Preferences dialog box, you can
choose whether the text box is displayed by default.

Tip: When accessed from the editor, you can choose whether to apply the display settings
to new objects only or to all new and existing objects on the diagram.

Refer to “Setting the Visibility of ModuleWare Parameters” on page 120 for more information
about displaying ModuleWare parameters.

Block Diagram Editor
Setting Block Diagram Preferences

Graphical Editors User Manual, V2010.3 243
June, 2011

The Appearance page allows you to set visual attributes for individual block diagram objects.

These attributes include the foreground and background colors, line color, fill style, line style,
line width and text font. Some attributes may not be available for all objects (for example, the
line style, width and color attributes are not available for a text object).

Refer to “Setting Visual Attributes” on page 83 for more information about visual appearance
attributes.

Graphical Editors User Manual, V2010.3244

Block Diagram Editor
Setting Block Diagram Preferences

June, 2011

The Background page allows you to control the diagram background color and grid attributes
used by the block diagram editor.

These preferences are described in “Setting Background Preferences” on page 50.

Refer to the “Default Preferences” appendix in the HDL Designer Series User Manual for lists
of the default preferences set when you invoke a HDL Designer Series tool for the first time.

Graphical Editors User Manual, V2010.3 245
June, 2011

Chapter 5
IBD View Editor

This chapter describes how the structure of a design can be represented using a tabular IBD.

Refer to the Block Diagram and IBD Views chapter for information about procedures which are
common to the block diagram and IBD view editors.

Interface-Based Design . 246
New Design Creation Flow. 246
Code Re_Use Flow . 247
Design Assembly Flow. 248

IBD Working Environment . 250
IBD View Matrix . 250
IBD View Toolbar . 251

Getting Designs into IBD Editor. 252
Working on a Previously Created HDS Design . 252
Creating a New Design View . 253

Adding Design Elements . 253
Adding Components . 254
Adding Blocks . 255
Adding Embedded Blocks . 255
Adding Nets . 256
Adding Ports . 257
Adding a Net Slice . 257
Adding Generate Frames . 257
Adding Requirements References. 259

Connecting Design Elements. 261
Connecting Nets to Component Ports. 261
Mapping Expressions or Function Calls to Component Ports . 263
Another Port_Centric_Connection Convention . 265
Expanding and Collapsing IBD Views . 266
Moving Rows and Columns in an IBD View . 267
Sorting Rows and Columns in an IBD View . 267
Grouping IBD Rows and Columns . 267
Showing/Hiding Columns in an IBD View . 267
Adding Bundles to your IBD view . 268
Adding Net/Component Comments . 269

Creating Filtered Views of the Design . 269
Defining Filter Settings and Logic . 270
Creating Persistent Subset Views of the Design. 270

Graphical Editors User Manual, V2010.3246

IBD View Editor
Interface-Based Design

June, 2011

Pruning IBD Designs . 272

Managing Design Hierarchy . 274
Adding a Level of Hierarchy . 274
Flattening Design Hierarchy . 275

Generating HDL from IBD views. 276
Controlling the Generated HDL Code . 276
Enforcing Generation . 278
Cross Referencing Generation Errors . 278

Setting a Black Box for Synthesis . 278

Documenting IBD Design Views. 279
Creating Visualization Views . 279
Exporting to HTML . 280
Exporting to TSV or CSV Files . 280

Setting IBD Preferences . 281

Interface-Based Design
The Interface Based Design methodology represents the structure of a design by a tabular
description of the interfaces between the lower level blocks, embedded blocks and components
in a design. It enables you to manage the finest details of FPGA and ASIC SOC designs while
still visualizing the big picture i.e you can see both the forest and the trees.

The methodology makes use of the editing and filtering mechanisms of tabular represented data
thus giving you ultimate control over your design elements: Design blocks and nets are easily
managed and organized: Specific areas and elements of the design can be fully explored and
focused on: Connectivity problems can be easily detected.

The IBD editor is empowered with a synchronization feature by which you can smoothly move
from an interface-based view to a block diagram view without losing any of your developed
design features.

Whether you are using an old piece of code to build upon or you intend to specify a new design
or even willing to assemble designs from diverse teams the simplicity and clarity of the IBD
editor can make your job easy by following a series of defined steps.

IBD is tightly integrated with leading synthesis, analysis, verification and design creation
solutions for advanced FPGA and ASIC design.

New Design Creation Flow
Starting a large design in the IBD editor can mean saving yourself a huge amount of time you
would have otherwise wasted working on connecting design instances instead of focusing on
design definition. The tabular representation of blocks and nets gives you visibility and control

IBD View Editor
Interface-Based Design

Graphical Editors User Manual, V2010.3 247
June, 2011

over your design. The probability of wrong connections or undesired open ports leading to
malfunction of the circuit and days of function debugging is aggressively reduced.

All you have to do is create a new graphical IBD view, add your blocks and stubs, interconnect
your blocks then prune your design to focus on areas of interest. Once you are done, you can
quickly check your design for any inconsistencies. A more complex design check can be
configured through the invocation of the integrated DesignChecker tool.

On completing your design you are ready to generate HDL code. IBD gives you full control
over the style, order and scope of the generated code.

The documentation options available act as an excellent mechanism by which designs can be
further analyzed and reviewed.

Code Re_Use Flow
Starting a new project with an old piece of code can be a very challenging job. Entangling the
design complexities, filtering elements of interest, detecting connectivity problems and

Graphical Editors User Manual, V2010.3248

IBD View Editor
Interface-Based Design

June, 2011

checking for certain constraints are all obstacles that may hinder and delay the actual design
development process.

IBD offers a series tools by which you can quickly and smoothly permeate the old design and
fully understand it. Once you have done that you can then start customizing it to fulfill your
requirements.

The illustration below defines a re-use flow approach that can be followed when dealing with
previously developed designs.

Design Assembly Flow
Diversity of teams while being potentially beneficial or even in some cases a necessity due to
the large size, complexity and sophistication of a project can sometimes lead to problems in the
assembly stage.

The probability of signal mismatches, connectivity problems, interface gaps in addition to the
need to fully understand each area of the assembled design are all problems that are can be
tackled and resolved by the IBD editor.

IBD editor gives designers the tools to detect assembly problems as well as the tools to solve
these problems.

IBD View Editor
Interface-Based Design

Graphical Editors User Manual, V2010.3 249
June, 2011

.

Graphical Editors User Manual, V2010.3250

IBD View Editor
IBD Working Environment

June, 2011

IBD Working Environment

IBD View Matrix

Net declarations are represented horizontally and are described by the Name, Slice, Type,
Bounds, Delay, Initial and Comment columns.

Blocks, Embedded Blocks, Components and IPs are represented vertically and are described by
the Name, Library, Instance Ref and Port Map (incase of components) rows.

The cells interconnecting net declarations with block, component and embedded block columns
show the interface connections.

IBD View Editor
IBD Working Environment

Graphical Editors User Manual, V2010.3 251
June, 2011

IBD View Toolbar

Note
The button has a pulldown menu which allows you to choose a FOR, IF, BLOCK
(VHDL only) or ELSE (Verilog only) generate frame.

The toolbar can be displayed or hidden by setting the IBD Tools option in the Toolbars cascade
of the View menu.

Table 5-1. IBD View Toolbar

Icon Description

Add a component

Add a block

Add moduleware component

Add an external HDL (IP) model

Add an embedded block

Add a FOR, IF, ELSE or BLOCK generate frame

Add a signal

Add a bus

Add a bundle

Add a port map expression

Add a property column

Toggle filter

Create viewpoint

Add a net slice

Fit the cell width to the contents of the selected cell

Sort in ascending order

Sort in descending order

Clear net highlighting

Edit BD

Visualize as BD

Requirement References (hidden by default and only visible when the
requirement referencing is enabled).

Graphical Editors User Manual, V2010.3252

IBD View Editor
Getting Designs into IBD Editor

June, 2011

Getting Designs into IBD Editor

Working on a Previously Created HDS Design
You can get previously created HDL or block diagram HDS views into the IBD editor. Doing so
you will be able to focus on areas of interest in your design using the different filtering
mechanisms available. Refer to Creating Filtered Views.You will also easily spot any
unconnected ports.

To get an HDL view into IBD editor:

1. Do one of the following to display the Convert to Graphics wizard:

o Select an HDL view in the Design Manager window and choose Convert to
Graphics from the popup menu or the HDL menu.

o Open an HDL view in DesignPad and choose Convert to Graphics from the
Graphics menu.

2. Choose IBD from the hierarchy description options and click finish.

Movie
How do I create an IBD using “Convert to Graphics”

To get a block diagram view into IBD editor:

1. In the BD editor window click on the Edit as IBD icon in the toolbar or choose Edit
as IBD from the Diagram menu. A synchronized IBD view is created.Synchronized BD
and IBD views are actually two representations of the same design in which saved
changes in one view automatically appear in the other.

On choosing to create a synchronized view the title bar of the created view shows
“Synchronized-View”. The next time you open your BD view and click the Edit as IBD
icon your synchronized view will be automatically opened.

../animations/IBD/Demos/flash/h2g.htm
../animations/IBD/Demos/flash/h2g.htm

IBD View Editor
Adding Design Elements

Graphical Editors User Manual, V2010.3 253
June, 2011

In the Design Manager synchronized views appear with a chain beside their icons.

Creating a New Design View
You can start creating a new design using the IBD editor.

To create a new IBD view using the Design Content Creation wizard:

1. Invoke the Design Content Creation Wizard by doing one of the following:

o Choose Design Content from the New cascade of the File menu or click the
icon in the Explore tab of the Design Manager left side bar.

o Click the icon in the toolbar to display a menu and choose Design Content.

2. Choose Graphical View from the Categories pane and IBD from the File Type pane and
click Next.

3. Specify view name and location and click Next to specify view interface or click Finish.

You can refer to Design Content Creation Wizard.

Tip: You can click the icon in the Design Explorer toolbar and choose IBD from the
Graphical View cascade menu.

Adding Design Elements
Now that you have a design in the IBD editor the next step is to start working on this design.
You can add new design elements, edit their properties, organize elements into groups and
bundles or sort them.

Graphical Editors User Manual, V2010.3254

IBD View Editor
Adding Design Elements

June, 2011

Adding Components
You can instance components that are in an HDS library or you can choose to instance an
external IP. You can also instance a component from a text file.

Movie
How to add components to an IBD

To add a component from an HDS library:

1. Select the Add Component icon from the toolbar or Component from the Add menu to
display the component browser.

2. Add the library containing the component to the component browser then drag the
required component to the IBD table.

You can also add components from the Design explorer.

1. Select one or more component from the Design Explorer window and choose Copy
from the Edit or popup menu.

2. In the IBD Editor choose Paste from the Edit or popup menu.

You can simply drag a component from the Design explorer window to the IBD editor window.

To add a moduleware component:

1. You can do one of the following to display the component browser showing the
ModuleWare library:

o Click the ModuleWare icon in the IBD editor toolbar.

o Select the Add Component icon from the shortcut bar or Component from the Add
menu to display the component browser and click the ModuleWare icon.

2. Drag the selected component to the IBD editor window.

To add a component from an HDL text file:

You will first have to import your component into an HDS library.

1. In the Design Explorer select the library you would like to import your design file to.

2. Choose File from the Import cascade of the File menu to display the File Import dialog.
Browse for your file, select Import and click OK.

Importing your design to an HDS library, allows you to deal with it as any HDS
component. Refer to To add a component from an HDS library:

../animations/IBD/Demos/flash/add_components.htm
../animations/IBD/Demos/flash/add_components.htm

IBD View Editor
Adding Design Elements

Graphical Editors User Manual, V2010.3 255
June, 2011

To add an external IP:

Use the button or choose IP from the Add menu to display the Add External IP dialog.

Note
When adding a component to your design a row is added to the IBD matrix to show the
number of unconnected ports. On expanding this row the unconnected ports’ details are
displayed.

To filter unconnected ports:

Choose a filter value from the component port column drop down list of the unconnected port
group.

Adding Blocks
Use the button or choose Block from the Add menu. You can then define the required view
type.

To define the view type:

1. Select New View from the Open As cascade of the component popup menu to display
the Open Down File Creation wizard.

2. Specify the new view type and click Next.

3. Type the view name and click finish.

Adding Embedded Blocks
Use the button or choose Embedded Block from the Add menu.

Graphical Editors User Manual, V2010.3256

IBD View Editor
Adding Design Elements

June, 2011

Adding Nets

Adding a Signal or Bus

To add a signal or bus do one of the following:

1. Select Signal or Bus from the Add menu.

o When you add a signal, a net declaration row is added to the table with a default
name and scalar type while when you add a bus a net declaration row is added with a
default name, vector type and bounds.

o Each new signal or bus is given a unique name by adding an integer to the default
name. (For example: sig1, sig2… for a signal or dbus1, dbus2… for a bus.)

You can change the default signal and bus name, type and bounds through the
Default Settings page of the Structural Diagram Master Preferences Dialog. Refer to
Setting IBD Preferences.

2. Type a net declaration directly into the Name, Bounds and Type cells for the empty row
at the bottom of the table.

 The following hints can help you enter signal and bus details:

o If you enter characters that match characters in an existing entry of the same column,
the remaining characters are entered automatically.

o If you enter a net name followed by a valid bounds constraint, for example: mynet(7
DOWNTO 0), the constraint is automatically moved to the Bounds column.

o Using the key after entering a signal name automatically completes the row
with default properties and moves the cursor to the name cell in the next row.

Note
Net declarations are automatically added to your design when you choose to connect
unconnected ports. Refer to Connecting Ports.

Movie
How do I create Nets, Slices and Bundles

To edit a signal or bus do one of the following:

1. Click once and edit the cell contents. Note that you can choose from a pulldown list of
standard types by clicking in a Type cell and using the button. The current type or the
type that most closely matches the current string is preselected in the list. For example, if
the characters st are entered in a VHDL view, the std_logic type is selected.)

../animations/IBD/Demos/flash/add_signal_bus_bundle.htm
../animations/IBD/Demos/flash/add_signal_bus_bundle.htm

IBD View Editor
Adding Design Elements

Graphical Editors User Manual, V2010.3 257
June, 2011

2. Use the button or choose Object Properties from the Edit menu or popup menu to
display the Object properties dialog box.

You can create a port on a block or embedded block by entering an I, B, O or U in the
interconnect cell for the signal row and block instance column.

Tip: The direction indicator (I, B, O or U) can also be selected from a drop down list.

Adding Ports
Enter an I (input), B (Bidirectional), O (Output) or U (Buffer for VHDL only) in the
interconnect cell for the external interface column.

Tip: The direction indicator (I, B, O or U) can also be selected from a drop down list.

You can add net declarations with external interface ports for all unconnected ports on a
component. New net declaration rows are added with properties corresponding to the ports
defined on the symbol for the component.

Adding a Net Slice
Select a net row and add one or more net slices by using the button or by choosing Net
Slice from the Add menu.

Specify the required index or slice range in the Slice column of the expanded net row. You can
slice a net with no bounds to be able to connect it to more than one port.

Adding Generate Frames
A generate frame can be used around one or more instances (including blocks, components and
embedded blocks) on an IBD view to represent repeated, conditional or alternative structures in
the HDL code.

For example, a FOR frame can be used to replicate a component which uses VHDL generics or
Verilog parameters to define its interface or an IF frame may be used to implement the

Graphical Editors User Manual, V2010.3258

IBD View Editor
Adding Design Elements

June, 2011

contained instances only when the generate expression is true. IF and ELSE frames can be used
to define alternative structures in a Verilog design.

The frame is added around the selected instances with a default title (comprising a label and
expression). The label must be a valid HDL identifier. Example:

 g0: FOR i IN 0 TO n GENERATE

The frame can be expanded and collapsed using the + and - buttons.

If you do not change the label, each new frame is given a unique label by adding an integer to
the default name (for example: g0, g1, g2…). However, if you add an ELSE frame to a Verilog
view and there is only one existing IF frame on the view, then the ELSE frame is given the same
label.

Using Generate Frames for Repeating Instances
A FOR generate frame can be used in VHDL or Verilog to replicate a component where the
relationship between the ports on the instances of the component and signals on the diagram can
be described by an expression. For example, a number of instances attached to each element of
a multi-bit bus where an instance is required connected in parallel for each element or group of
elements.

To add a generate frame:

1. Select one or more instance
columns.

2. Use the or choose
Frame from the Add menu to
display the Frame options
cascade menu.

3. Choose one of the following
frame options

FOR A FOR frame can be used around a block or component to
define a repeating instance.

IF An IF frame can be used to define a conditional
diagram area.

ELSE An ELSE frame can be used with an IF frame which has
the same label to define an alternative diagram.

BLOCK A BLOCK frame can be used (in VHDL only) to define an
area containing objects to be generated as concurrent
HDL statements using the BLOCK keyword.

IBD View Editor
Adding Design Elements

Graphical Editors User Manual, V2010.3 259
June, 2011

Using Generate Frames for Repeating Structures
When you are using VHDL, it is possible to use a FOR generate frame around a diagram area
containing a number of existing block and component objects.

Using Generate Frames for Conditional Structures
An IF generate frame can be used in Verilog to describe conditional structures. An alternative
structure can be defined by using an ELSE frame which must have the same label as the
corresponding IF frame.

Using a BLOCK Generate Frame
When you are using VHDL, a BLOCK generate frame can be used to cluster related concurrent
statements in the generated HDL. All the HDL statements generated for the objects contained in
a BLOCK frame are executed concurrently.

In the following example, separate BLOCK frames and frame declarations have been used to
specify delay constants for the ipdelay and opdelay embedded blocks. The main functionality is
implemented by two instantiations of subcircuit which are contained within a third BLOCK
frame.

Adding Requirements References
IBD supports Requirements Referencing by a new dedicated row. The Requirement References
row is hidden by default and is only shown when Requirement Referencing is enabled in the
“Requirements Referencing Settings Dialog Box” (which is accessed by choosing Options >
Requirements Referencing from the Design Manager’s toolbar) and HDS is reinvoked. Refer
to Enabling Requirements Referencing in HDS in the HDL Designer Series User Manual for
more information on the Requirements Referencing Settings dialog box.

A Requirement References button is added in the toolbar to toggle the display of the
Requirement References row. Like the row, the button is hidden by default and is only shown
when Requirement Referencing is enabled.

Graphical Editors User Manual, V2010.3260

IBD View Editor
Adding Design Elements

June, 2011

Figure 5-1. Requirement References Row And Button In IBD

For an IBD, a requirement reference can only be added/pasted to columns (components, blocks
and embedded blocks) as well as the interface column. Adding a requirement reference is
simply done by clicking on the required cell and typing in the requirement reference. Pasting is
available through the Paste Requirement Reference menu item of the Edit menu or through
the RMB context menu of the supported columns.

Adding more than one requirement reference is possible only by inserting a space between
them. If a requirement reference’s name contains a space, then you need to enclose this
requirement reference with quotation marks.

IBD View Editor
Connecting Design Elements

Graphical Editors User Manual, V2010.3 261
June, 2011

Like other graphical editors, generation and refreshing should follow for the requirements
coverage information to be visible in the Requirements References Column of different
containers of the Design Manager.

Connecting Design Elements
Having added your design elements to the IBD matrix, you can now start connecting nets, net
slices and HDL expressions to blocks and components.

Connections are created either through direct connection of nets to ports or through port
mapping. If you are using VHDL 93, you can map a function call or other valid HDL
expression. If you are using Verilog, arbitrary expressions are allowed on inputs but outputs
must be directly connected to nets.

Connecting Nets to Component Ports
You can connect nets and components using one of two approaches. The first approach is to
connect existing nets to selected component ports i.e net-centric approach. The second approach
is to select component ports then connect, add signals or add portIOs. This will create new
signals connected to the selected component ports.ie port-centric approach.

Connecting Existing Nets: Net_Centric_Connection Approach

To connect an existing net to a component port do one of the following:

• Click in the interconnect cell for the component and enter a direction indicator, the first
available matching port with the specified direction is entered in the Port column.

• Use the + button to expand the Port column and click the interconnect cell to choose
from a drop down list of available ports.

Graphical Editors User Manual, V2010.3262

IBD View Editor
Connecting Design Elements

June, 2011

You can connect to the full range of the port or enter the port name with an index or range, for
example: addr(5:4).

To connect an existing net to one or more component ports in one step:

1. Select a net, press the Ctrl key and select one or more unconnected ports.

2. Choose Connect from the popup menu of the last unconnected port.

Movie
Signal Centric Connectivity

Connecting Ports: Port_Centric_Connection Approach
In this approach, new net declarations are added to the IBD matrix with properties
corresponding to the ports defined on the symbol of the component.

If the component has a different language from the parent view (for example, a VHDL
component instantiated in a Verilog view) the signal properties are automatically mapped to the
language of the parent view.

You are warned if any of the net names already exist in the IBD view and you can choose to
create unique net names or connect the component to the existing net.

Movie
Quickly Connect Ports Across Multiple Instances

To connect unconnected component ports together:

Select one or more unconnected ports and choose Connect from the popup menu. The first
chosen port is used to add a net of the same name, the subsequent ports are then connected to
this net.

To connect unconnected component ports to new signals do one of the
following:

1. Select the unconnected ports and choose Add Signal from the popup menu.

../animations/IBD/Demos/flash/signal_centric.htm
../animations/IBD/Demos/flash/signal_centric.htm
../animations/IBD/Demos/flash/port_centric_quick_connect.htm
../animations/IBD/Demos/flash/port_centric_quick_connect.htm

IBD View Editor
Connecting Design Elements

Graphical Editors User Manual, V2010.3 263
June, 2011

2. Select the component with unconnected ports. The Add Signals dialog box is displayed.
Choose whether to add signals on Input, Output, InOut or Buffer (VHDL only) ports.

Mapping Expressions or Function Calls to Component
Ports

Examples on Expressions:

Example 1: You can apply logical operations on signals or certain bits of a bus. For example,
you can AND two signals and invert the result:

!(sig0 & sig1)

You can also OR bits in buses:

dbus0[3] | dbus5[3]

Example 2: You can also apply arithmetic operations, for example:

a + b

Example 3: You can use power. The expression below shows 2 raised to power in_a:

2**in_a

Example 4: You can call functions in expression rows. For example, the expression below calls
a multiplier function:

mult(in_a,in_b)

To map an expression to a component port:

1. Choose Expression Row from the Add menu or use the button and enter the
expression in the Name column e.g 1’b1.

Graphical Editors User Manual, V2010.3264

IBD View Editor
Connecting Design Elements

June, 2011

2. Use the + button to expand the Port column and click the interconnect cell to choose
from a drop down list of available ports.

You can also use the + button to expand the Actual column and enter the expression. A star sign
* appears in the component interconnect cell to indicate that an expression is mapped to the
port. Note that actuals take precedence over formal ports.

In some cases you may need to connect one expression to more than one port on the same
component. Adding a slice to the expression will enable you to do that.

To connect an expression row to more than one port on the same
component:

1. Select expression row and choose Slice from the Add menu.

2. Use the + button to expand the Port column of each expression row slice and click the
interconnect cell to choose from a drop down list of available ports.

IBD View Editor
Connecting Design Elements

Graphical Editors User Manual, V2010.3 265
June, 2011

Movie
How do I create an expression to define complex port connections in IBD

To add ports from a component refer to “Adding Ports” on page 257.

Another Port_Centric_Connection Convention
In some cases it may be more convenient to connect a port by choosing from a dynamic list of
design nets and expressions. A dynamic net/expression list is one that gives you the option to
add new entries. The net /expression you select or add is automatically connected to your
selected port.

To connect a single port by choosing from a dynamic list of design
nets/expressions:

1. Expand the Unconnected Port Filters row. A list of unconnected ports appears in the
component port column.

2. Click the actual column cell of the port you wish to connect. A dropdown list box is
displayed.The content of the list box is sensitive to the type/range of the selected
unconnected port.

3. According to what you select from the dropdown list the following occurs:

o If you choose to create a new net, a net declaration row is added to the IBD matrix
with properties corresponding to the selected port defined on the symbol of the
component and is connected to that port.

o If you choose to add a new expression, an expression row is added where you can
type in your expression. The expression is automatically connected to the selected
port.

Another important feature of this functionality is that it will automatically create child
expression rows. That is to say, if you wanted to tie many unconnected ports on the same
component high with the same expression '1'b1'. then after the first port, you will notice that
child expression rows are added automatically.

VHDL Scalar Ports VHDL Vector Ports

<New Net>
<------------->
<New Expression>
OPEN
'0'
'1'
List of the existing expression
List of existing nets

<New Net>
<------------->
<New Expression>
OPEN
(OTHERS => '0')
(OTHERS => '1')
List of the existing expression
List of existing nets

../animations/IBD/Demos/flash/expressions.htm
../animations/IBD/Demos/flash/expressions.htm

Graphical Editors User Manual, V2010.3266

IBD View Editor
Organizing View Layout

June, 2011

Movie
Port-Centric Connectivity through Dynamic List of Nets/Expressions

Organizing View Layout

Expanding and Collapsing IBD Views
You can expand and collapse columns and rows in an IBD view by using the and
buttons. Alternatively, you can use the following commands from the Expand/Collapse
Columns and Expand/Collapse Rows cascades in the Table menu:

A visible component is one which is already visible in the table.

Verilog Scalar Ports Verilog Vector Ports

<New Net>
<------------->
<New Expression>
OPEN
'0'
'1'
List of the existing expression
List of existing nets

<New Net>
<------------->
<New Expression>
OPEN
(OTHERS => '0')
(OTHERS => '1')
List of the existing expression
List of existing nets

Expand/Collapse Columns

Expand All Expand all components and generate frames

Collapse All Collapse all components and generate frames

Expand All Frames Expand all generate frames

Collapse All Frames Collapse all generate frames

Expand Visible Components Expand all visible components

Collapse Visible Components Collapse all visible components

Expand/Collapse Rows

Expand All Expand all rows

Collapse All Collapse all rows

../animations/IBD/Demos/flash/port_centric_manual.htm
../animations/IBD/Demos/flash/port_centric_manual.htm

IBD View Editor
Organizing View Layout

Graphical Editors User Manual, V2010.3 267
June, 2011

Moving Rows and Columns in an IBD View
You can move a net row or instance column in an IBD view by clicking the row number or
column letter and then dragging with the Left mouse button over the row number or column
letter.

Sorting Rows and Columns in an IBD View
You can sort the rows in a selected column or columns in a selected row of an IBD view in
ascending or descending alphanumeric order by either:

• Using the / button.

• Choosing Data>Sort>Ascending or Data>Sort>Descending.

• Choosing Sort Ascending or Sort Descending from the row/column popup menus.

You can also sort by clicking the triangular icon on the right side of the column header cell.

Grouping IBD Rows and Columns
You can group rows/columns by selecting a row or rows/column or columns and using the
button or choosing Data>Group>Group.

The selected rows/columns are added to a new group with the default name GroupN (where N is
automatically incremented if it already exists).

Showing/Hiding Columns in an IBD View

To hide a column:

Select the required column and choose Hide Column from the popup menu.

To show a hidden column:

1. Choose Data>Show/Hide> Show Columns to display the Show Columns dialog box.

Graphical Editors User Manual, V2010.3268

IBD View Editor
Organizing View Layout

June, 2011

2. Select the columns to show and click OK.

Adding Bundles to your IBD view
A bundle is a collection of logical signals. Connecting a bundle to a block or an embedded block
will connect all the signals contained in that bundle to the specified block or embedded block.
Changing the connectivity properties of the bundle changes the connectivity of the contained
signals.

There are several way of creating a bundle and adding content to it.

1. Select a set of signals which you want in a Bundle. Then click the Bundle toolbar icon.A
new collapsible bundle frame is created around the selected signals with a bundle name.
Each new bundle is made unique by adding an integer to the default name. (For
example: bundle0, bundle1, bundle2…). You can choose to edit the bundle name.

2. If you already have an existing Bundle, you can:

o Select the bundle, and hit the Add Signal or Add Bus toolbar icons.

o Drag existing signals into the bundle. Note that the connectivity of the signals has to
be consistent with that of the bundle.

3. If you wish to define bundle connections enter the connection mode in the bundle
interconnect cells.

Notice that the signals’ interconnect cells are populated accordingly. If one of the
signals is already connected you will receive an error.

To delete a bundle signal select the signal bundle row and delete the signal. To delete a
bundle select the bundle frame row and press delete.

IBD View Editor
Creating Filtered Views of the Design

Graphical Editors User Manual, V2010.3 269
June, 2011

In the following example the created bundle includes the signals sig2 and sig3 that are inputs to
Block1 and outputs to Block2.

Adding Net/Component Comments

To add a comment:

1. Choose Comments from the popup menu of the selected net or component to display
the Comments dialog box.

2. Enter End of line, Before or After comments.

Movie
Adding comments for the inclusion in the generated HDL

Adding Property Columns/Rows
You can add property rows/columns as additional comments or as sort/filter keys.

Movie
Adding Property Rows/Columns

Creating Filtered Views of the Design
Large designs can often be very difficult to manage and deal with. You may need to focus and
work on a subset of the design data. IBD filters enable you to display and work on only design
data of interest.

�bd�emos�ash\properties.htm
../animations/IBD/Demos/flash/add_comments.htm
../animations/IBD/Demos/flash/add_comments.htm
../animations/IBD/Demos/flash/properties.htm
../animations/IBD/Demos/flash/properties.htm

Graphical Editors User Manual, V2010.3270

IBD View Editor
Creating Filtered Views of the Design

June, 2011

You may find it handy to be able to refer to your filtered views: IBD viewpoints provide
persistent views of filtered data that are easily retrievable.

Defining Filter Settings and Logic

To specify filter settings and logic do the following:

1. Choose Data>Filters>Filter Settings. The Filter Settings dialog is displayed.

Tip: You can display the Filter Settings dialog by choosing Filter Settings from the
popup menu of the design filter row/column. If the filter row and/or column are not
displayed toggle the filter icon in the design explorer toolbar.

2. In the General group box specify whether you want to match case and/or match whole
word.

3. Choose the type of filter expression to be used (simple or regular). For more information
on refer “Regular Expressions”

4. In the Filtering Logic group box specify the filtering logic you will be using as:

And: which displays all rows and columns that meet all filter expressions

Or: which displays rows/columns that display any filter expressions.

5. Click OK.

You can invert any of your defined filter expressions by choosing Invert Expression from the
popup menu of the filter expression cell.

Creating Persistent Subset Views of the Design
On selecting to filter rows all columns connected to these rows are displayed. Similarly
choosing to filter columns displays all rows connected to these columns

To create a viewpoint:

Select required rows and/or columns and do one of the following:

• Choose Data>Viewpoints>Create from the cascade of the menu.

• Click the Filter icon in the design manager toolbar.

• Choose Create Viewpoint from the row/column popup menu or the viewpoint
dropdown box.

You can also take a snapshot of what’s currently visible without selecting any rows or columns.

IBD View Editor
Creating Filtered Views of the Design

Graphical Editors User Manual, V2010.3 271
June, 2011

A viewpoint filterx(ie Filter1, Filter2,...) is created. Viewpoints are saved in the drop down box
of the filter cell.

To rename a viewpoint:

Viewpoints names can be edited in the dropdown box to have more indicative names.

On saving your work you can always refer back to your created filtered views by:

To delete a viewpoint:

1. Choose Data>Viewpoints>Delete or Delete Viewpoint from filter row/column popup
menu to display the Delete Named Filter dialog.

2. Select the filter to be deleted and click OK.

Note
Any edits(add/remove/copy/paste) a named filter content undergoes are preserved when
toggling between filters.

Graphical Editors User Manual, V2010.3272

IBD View Editor
Creating Filtered Views of the Design

June, 2011

Pruning IBD Designs

Filtering Nets in an IBD view

To filter IBD view nets do the following:

Select a column’s filter cell. Choose a filter value from the drop down list or enter a simple
match string in the drop-down entry box.

In the example below we have chosen to filter all nets starting with the letter C by entering the
following expression C*. Notice the eye icon indicating that the view is filtered.

IBD View Editor
Creating Filtered Views of the Design

Graphical Editors User Manual, V2010.3 273
June, 2011

Select one of the following from the dropdown list of the cell at the intersection of the row and
column filters.

• All: Shows all the rows.

• Interconnected Nets: Shows nets that are connected to more than one component/block
with bidirectional or different modes.

• Connected Nets: Shows nets that are connected to at least one cell.

• Unconnected Rows: Shows nets, bundles, expressions, user rows that are not connected
to any cell.

• Floating Nets: Shows nets that are connected to only one cell.

• Common Nets: Shows nets that are connected to more than one cell.

Movie
How do I show unconnected signals and rows.

Note
If a filter matches a net in a group or a net slice the parent net is included.

Filtering Components in an IBD View

To filter IBD view columns:

1. Identify the row you would like to filter your components based upon e.g. Name,
Library, net/expression.

../animations/IBD/Demos/flash/show_unconnected_rows.htm
../animations/IBD/Demos/flash/show_unconnected_rows.htm

Graphical Editors User Manual, V2010.3274

IBD View Editor
Managing Design Hierarchy

June, 2011

2. Choose a filter value from the corresponding column filter cell dropdown list.

The IBD matrix displays the columns that satisfy the selected filter values.

Managing Design Hierarchy
The IBD editor allows the hierarchy to be manipulated at any time. Hierarchy can easily be
added or removed to facilitate design understanding or to improve performance of “down
stream” tools such as synthesis.

Adding a Level of Hierarchy
Adding hierarchy replaces the selected objects by a new component and moves the selected
objects into the new design unit view.

To add a level of hierarchy:

1. Select components to be re-leveled.

2. Choose Add Hierarchy from the Re-level cascade of the Table menu or popup menu.
An error message is issued if:

o Signals which constitute the interface of the new cells have slices.

o Selected objects are not in the same frame scope.

3. If prompted to save the design view click OK and specify Library, Design Unit and
View name in the Save Design Unit View dialog.

IBD View Editor
Managing Design Hierarchy

Graphical Editors User Manual, V2010.3 275
June, 2011

4. Specify the name of the new design unit in the Add Hierarchy dialog and click OK.

A child IBD view is created and the objects replaced by a single new instance on the parent
table.

Movie
Click here to see a demonstration of adding an extra level of hierarchy

Flattening Design Hierarchy
Removing hierarchy deletes the selected component instance and replaces it by the objects in
the child hierarchal view.

To flatten a level of hierarchy:

1. Select a single component instance to be re-leveled.

2. Choose Remove Hierarchy from the Re-level cascade of the Table menu or popup
menu. An error message is issued if you attempt to:

o Remove hierarchy from an instance which is opened.

o Remove hierarchy from an external IP or moduleware instance.

o Select an instance which is not described by an IBD view.

o Remove hierarchy from an instance which has a different language.

3. Click Yes to confirm the design objects to be deleted by the re-level operation.You may
need to manually update any other views that referenced the deleted component.

The child IBD view is deleted and its component instance is replaced by the objects in the child
hierarchal view. If any of the instances included other hierarchal views, their hierarchy is
retained but can be removed by another re-level operation.

The package references or compiler directives for the child view are merged with those defined
for the parent view.

../animations/IBD/Demos/flash/add_hierarchy.htm
../animations/IBD/Demos/flash/add_hierarchy.htm

Graphical Editors User Manual, V2010.3276

IBD View Editor
Checking a Design in IBD Editor

June, 2011

Movie
Click here to see a demonstration of flattening a level of hierarchy

To investigate a child view:

Select desired component column and double click to display child view.

Checking a Design in IBD Editor
1. Select Design Checking Options from the Table menu to display the Design Checking

dialog.

2. Set the desired checks and click OK.

3. Select Run Design Rule Checks from the Table menu or click the button.

Generating HDL from IBD views

Controlling the Generated HDL Code
This is really split into three areas, setting the order of generation within an individual IBD,
specifying the hierarchical generation preference, and specifying the style of the generated
code.

Setting Generation Order
The declarations of signals and external ports are either ordered automatically or manually. In
automatic ordering generation order is set by mode(in,out,inout or buffer) and alphanumeric
name irrespective of the rows display order. In manual ordering generation order is set by the
rows display order.

../animations/IBD/Demos/flash/flatten_hierarchy.htm
../animations/IBD/Demos/flash/flatten_hierarchy.htm

IBD View Editor
Generating HDL from IBD views

Graphical Editors User Manual, V2010.3 277
June, 2011

In both automatic and manual ordering cell generation is set according to column order. Unlike
BD objects there is no frame sequence number or embedded block number to specify generation
order. The order can be modified simply by the use of a drag and drop approach to re-locate
components to the desired order. The right mouse button must be used to select the column.
When more than one column is used to describe a component the leftmost column should be
selected.

Additionally it is possible to sort rows or columns by order using the sort keys on the main task
bar.

To enable manual ordering do one of the following:

• Select Manual from the popup menu of the icon.

• Select Manual from the Generation Order cascade of the Table menu.

Setting the Style of the VHDL or Verilog code
The style of the VHDL or Verilog code is controlled through a number of preferences.

Movie
Setting Generated VHDL Preferences

Setting Generated Verilog Preferences

Setting the Generation Hierarchy Level

To generate HDL from IBD views:

1. Select Main from the Options menu to display the Main Settings dialog box.

2. Select the Checks tab and mark the Perform Checks option and click OK.

3. Use the button or choose one of the Generate options from the Tasks menu. If a
block or component is selected, the generation command operates on the selected object
(or objects).

4. You can use the button to display a pulldown palette with options to run the task on a
single design level, the hierarchy through blocks, the hierarchy through component or
the hierarchy through components from the design root:

Run Single

Run Through Blocks

Run Through Components

Run Through Components from the Design Root

../animations/IBD/Demos/flash/vhdl_preferences.htm
../animations/IBD/Demos/flash/vhdl_preferences.htm
../animations/IBD/Demos/flash/verilog_preferences.htm

Graphical Editors User Manual, V2010.3278

IBD View Editor
Setting a Black Box for Synthesis

June, 2011

Enforcing Generation
Views which have not been changed since they were last generated are not generated unless you
have set the HDL generation run options to force regeneration.

If no views need to be generated, a single dot is displayed for each processed hierarchy with a
row of dashes to represent each selected hierarchy followed by a generation completed
message.

To Enforce Generation:

1. You can optionally enforce generation by choosing Settings from the Generate cascade
of the Tasks menu to display the Generator Settings dialog.

2. Check the Set Generate Always when using this task option.

Cross Referencing Generation Errors
Any generation errors are reported in the Task Log window.

Note
If an error is encountered during bulk parsing, the timestamp for the generated file is set
to the oldest date allowed by the system. (January 1st 1970 on UNIX or January 1st 1980
on a PC). This ensures that the generated HDL file is retained with an older timestamp
than the graphical view.

You can automatically display the generated HDL or graphics corresponding to an error
message in the Task Log window by double-clicking on the message (or by explicitly clicking
the or button).

Refer to “Task Log” in the HDL Designer Series User Manual for more information about the
Task Log window.

Setting a Black Box for Synthesis
You can make the active IBD view a black box for synthesis by setting the Black box for
Synthesis option in the HDL menu. When this option is set, synthesis control pragmas are
included in the generated HDL so that the view is available for simulation but is ignored for
synthesis.

For Verilog, the synthesis off pragma is inserted after the input/output statements and after any
Verilog parameters declared in the symbol but before the type declarations. The synthesis on
pragma is inserted immediately before the end module statement.

IBD View Editor
Documenting IBD Design Views

Graphical Editors User Manual, V2010.3 279
June, 2011

Documenting IBD Design Views

Creating Visualization Views
You can visualize you IBD views or subsets of your design as Block diagrams. Visualized
views allow only non-logical edits.

To visualize your IBD views:

Choose Visualize as Block Diagram from the Table menu or click the Visualize as BD icon in
the IBD toolbar and save your visualized view.

To open a visualized view:

1. In the Files pane, expand the Documentation and Visualization node to display the
Visualization folder.

Graphical Editors User Manual, V2010.3280

IBD View Editor
Documenting IBD Design Views

June, 2011

2. Click on the plus sign + to expand the Visualization; each <library> node, which is
indicated by the book icon , holds the visualized design units.

Exporting to HTML
You can export IBD views or hierarchy of views as HTML pages which can be displayed in a
compatible Web browser.

1. Use the button or open File > Document and Visualize > Single File/ Hierarchy
Through Components/ Through Design Root to display the Document & Visualize
dialog box. Notice that the Visualize your Code option is disabled, while the Create a
Website option is selected.

2. Browse for the target directory in which you wish to save your exported files.

3. Click the Options button to display the Documentation and Visualization Options
dialog box. You can configure the HTML export preferences in the Website Options
page as well as the HTML Settings and Graphics Settings sub-pages or leave the preset
default options and click OK.

4. On the Document and Visualize dialog click OK to display your web browser showing
the exported HTML pages.

Refer to “Exporting HTML Documentation” in the HDL Designer Series User Manual.

Exporting to TSV or CSV Files
You can export IBD views to text files (TSV) or Excel files (CSV).

1. Select TSV or CSV from the Export cascade of the Table menu.

2. In the Select a File dialog enter the name of the file to which you wish to export your
design and click Save.

IBD View Editor
Setting IBD Preferences

Graphical Editors User Manual, V2010.3 281
June, 2011

Compiler Directives
When you are creating Verilog based designs you can insert compiler directives to pass
information to the Verilog Compiler or any downstream tool.

To set compiler directives:

1. Choose Compiler Directives from the Table menu of the IBD editor to display the
Compiler Directives dialog.

2. Enter Pre, Post or End Module Directives.

Setting IBD Preferences
You can set IBD preferences by choosing Options>Master Preferences>Structural Diagram
in the design manager to display the Structural Diagram Master Preferences dialog box.

The dialog box has separate pages for setting General preferences, Default Settings,
ModuleWare preferences, Block Diagram preferences (which include Display Settings,
Appearance and Background preferences), in addition to IBD preferences.

You can set the IBD appearance (but not default values) for the active diagram by choosing
Diagram Preferences from the Options menu in the IBD editor to display the IBD
Preferences dialog box.

When you edit these preferences for the active diagram, the dialog box allows you to choose
whether the preferences are applied to new objects or to both new and existing objects in the
diagram.

Graphical Editors User Manual, V2010.3282

IBD View Editor
Setting IBD Preferences

June, 2011

The Appearance page allows you to set visual attributes for individual block diagram objects.

These attributes include the foreground and background colors, line color, fill style, line style,
line width and text font. Some attributes may not be available for all objects (for example, the
line style, width and color attributes are not available for a text object).

Graphical Editors User Manual, V2010.3 283
June, 2011

Chapter 6
Port Map and Generate Frames

This chapter describes how port map frames and generate frames can be used on a graphical
block diagram.

Port Map Frames . 283
Adding a Port Map Frame. 283
Editing a Port Map . 284
Generate Frames . 287

Generate Frames . 287
Adding a Generate Frame . 288
Using Generate Frames for Repeating Instances . 289
Using Generate Frames for Repeating Structures. 291
Using Generate Frames for Conditional Structures . 292
Using a BLOCK Generate Frame. 296
Using Nested Generate Frames. 298
Editing Generate Frame Properties. 302

Port Map Frames
Mapping between the actual signals on the block diagram and formal ports on a component with
different properties may be shown by using a port map frame. For example, to connect
individual slices of a signal to separate ports on the component.

Adding a Port Map Frame
You can add a port map frame to a component on a block diagram by choosing Enable from the
Port Map Frame cascade in the Diagram or popup menu when a component is selected.

Note
You can also add a port map frame by setting the Enable Port Map Frame option in the
Components tab of the Object Properties dialog box.

The following example shows the top level component from the UART example design with a
port map enabled on the block diagram. The type information has been hidden in this
illustration and the default mapping text is shown for both VHDL (on the left) and Verilog (on

Graphical Editors User Manual, V2010.3284

Port Map and Generate Frames
Port Map Frames

June, 2011

the right). Note that for VHDL, unconnected output ports are shown with the default value
OPEN.

The port map frame can be used to map connections between formal ports on the component
and actual signals and buses on the block diagram.

When a port map frame is enabled, any signal or bus can still be connected directly to a
component port provided that their properties are compatible.

You can also connect any signal, bus or bundle to the port map frame and edit the port map text
to define the connections to the ports. For example, you can connect a bus to the port map frame
and assign each slice or element of the bus to a separate formal port. A port can also be mapped
to any valid HDL expression.

When port mapping is enabled on a block diagram, a frame is shown around the component and
the port mapping list can be optionally shown or hidden on the diagram.

You can remove a port map frame on a block diagram by using the Del or key when only
the frame is selected or by choosing Disable from the Port Map Frame cascade. All
connections to the frame are unconnected and shown as dangling net connectors.

Editing a Port Map
You can edit the port mapping by directly editing the text on the diagram, by using the
Components tab of the Object Properties dialog box or by choosing Edit from the Port Map
Frame cascade of the Diagram menu (in a block diagram).

The Port Map Settings dialog box shows any explicit connections which have been made on the
block diagram in a read-only window. The editable window at the bottom of the dialog box can
be used to enter user port mappings which must be specified using the correct language (VHDL
or Verilog) syntax for your editor.

Port Map and Generate Frames
Port Map Frames

Graphical Editors User Manual, V2010.3 285
June, 2011

When Connect by Name is set, any signal with the same name as a component port is
implicitly connected.

VHDL Port Map Example
The following picture shows the VHDL UART example design connected using a port map:

The direct connections for clk, rst and data_in are shown in the read-only area at the top of the
dialog box and the user port map connections have been entered in the lower entry box. The
ad_1 signal is connected to index 2 of port addr and slice 15 DOWNTO 14 of the loc bus is
connected to bits 1 and 0 of bus addr.

The control bus is connected to the sin, nRW and cs ports and the data_out port mapped to
separate top4 and lower4 buses. The int and sout output ports are mapped to the signals

Graphical Editors User Manual, V2010.3286

Port Map and Generate Frames
Port Map Frames

June, 2011

interrupt and serial_out. This mapping corresponds to the following connections on a block
diagram:

Verilog Port Map Example
When you are using Verilog, the port mapping has the following syntax:

.clk(clk),

.data_in(data_in),

.rst(rst),

.addr(loc[2:0]),

.cs(control[0]),

.data_out(dout),

.int(interrupt),

.nrw(control[1]),

.sin(control[2]),

.sout(serial_out)

Port Map and Generate Frames
Generate Frames

Graphical Editors User Manual, V2010.3 287
June, 2011

The following picture shows the Verilog UART example design connected using a port map
frame.

Bits 2 to 0 of the loc bus are connected to the addr bus. The control bus is connected to the sin,
nRW and cs ports and the data_out port mapped to the dout bus. The int and sout output ports
are mapped to the signals interrupt and serial_out which are connected using the bundle
cpu_bundle.

Generate Frames
A generate frame can be used around one or more instances (including blocks, components and
embedded blocks) on a block diagram to represent repeated, conditional or alternative
structures in the HDL code.

For example, a FOR frame can be used to replicate a component which uses VHDL generics or
Verilog parameters to define its interface or an IF frame may be used to implement the
contained instances only when the generate expression is true. IF and ELSE frames can be used
to define alternative structures in a Verilog design.

Note
A generate FOR frame provides a static, compact representation of a design on a
graphical block diagram or IBD view. When a VHDL code is loaded into a simulator, the
generate statement is elaborated (expanded) into individual occurrences of the objects
within the frame. However, most Verilog synthesis tools do not support automatic
elaboration.

Graphical Editors User Manual, V2010.3288

Port Map and Generate Frames
Generate Frames

June, 2011

VHDL statements using the BLOCK keyword to define a cluster of concurrent statements can
be represented by a BLOCK frame around an area containing any of the standard block diagram
or IBD view objects. When HDL is generated, the frame contents are interpreted as a cluster of
concurrent statements using the BLOCK keyword. A BLOCK frame (and FOR or IF frames
defined using VHDL-93) may include local declarations which apply only within the frame.

Adding a Generate Frame
You can add a generate frame on a block diagram by using the button or choosing Frame
from the Add menu to display a cascade menu which provides the following frame options:

If one or more or objects are selected on a block diagram, the frame is added around the selected
objects. If nothing is selected, a ghosted frame is attached to the cursor and can be placed by
clicking at the required location. You can resize the frame as it is added by holding down the
Left mouse button and dragging with the cursor before you click for location or it can be resized
later by dragging the resize handles.

A frame can be "nested" within another frame. However, a warning is issued when you save a
block diagram if an instance is enclosed by overlapping frames. (This construction is considered
to be an error by HDL generation.) If an instance is not completely enclosed by a frame, it is
considered to be outside the frame.

All frames are added with a default title (comprising a label and expression) and default
number. The label must be a valid HDL identifier.

If you do not change the label, each new frame is given a unique label by adding an integer to
the default name (for example: g0, g1, g2…). However, if you add an ELSE frame to a Verilog
view and there is only one existing IF frame on the view, then the ELSE frame is given the same
label.

Option Shortcut Description

 FOR F6 A FOR frame can be used (in VHDL or Verilog) around a block or
component to define a repeating instance or (in VHDL only) to
define a repeating diagram area which may contain any number of
other diagram objects.

 IF Shift + F6 An IF frame can be used (in VHDL or Verilog) to define a
conditional diagram area.

 ELSE Ctrl + F6 An ELSE frame can be used (in Verilog only) with an IF frame
which has the same label to define an alternative diagram area.

 BLOCK Alt + F6 A BLOCK frame can be used (in VHDL only) to define an area
containing objects to be generated as concurrent HDL statements
using the BLOCK keyword.

Port Map and Generate Frames
Generate Frames

Graphical Editors User Manual, V2010.3 289
June, 2011

The frame number is used to determine the order of insertion in the generated HDL and can be
any positive integer but must be unique. If you specify a number which is already used by
another frame on the same view, the numbers are swapped.

Note
The frame label for a VHDL instance can be an extended identifier but you cannot use an
escaped identifier for a Verilog instance.

You can edit the title text and number by direct text editing or you can use the Frames tab in the
Object Properties dialog box which is displayed when you use the button or choose Object
Properties from the Edit menu.

The syntax used in the frame title text is automatically checked for the hardware description
language of the active view.

Using Generate Frames for Repeating Instances
A FOR generate frame can be used in VHDL or Verilog to replicate a component where the
relationship between the ports on the instances of the component and signals on the diagram can
be described by an expression. For example, a number of instances attached to each element of
a multi-bit bus where an instance is required connected in parallel for each element or group of
elements.

The following VHDL example shows an arithmetic logic unit (ALU) which is repeated three
times with each instance connecting to the next group of elements in the bus. The repetition is
defined by the VHDL expression FOR i IN 0 TO 2 GENERATE and each group of signals
assigned to the ports by a port map frame.

This example represents the following VHDL code:

Graphical Editors User Manual, V2010.3290

Port Map and Generate Frames
Generate Frames

June, 2011

ARCHITECTURE struct OF repetitive-instance IS
COMPONENT ALU
PORT (

Operator: in unsigned(2 DOWNTO 0);
Operand1: in unsigned(7 DOWNTO 0);
Operand2: in unsigned(7 DOWNTO 0);
Result: out unsigned(7 DOWNTO 0)

);
END COMPONENT ALU;

BEGIN
-- Generates 3 instances of ALU.

gen1: FOR i IN 0 TO 2 GENERATE
I1: ALU

PORT MAP (
Operator => Ctl_ab(2+i*3 DOWNTO i*3),
Operand1 => A(7+i*8 DOWNTO i*8),
Operand2 => B(7+i*8 DOWNTO i*8),
Result => Y1(7+i*8 DOWNTO i*8)

);
END GENERATE;

END struct;

Repeating instances in Verilog are simpler (but less flexible than in VHDL) since only direct
port mapping is supported for Verilog and a port map cannot be used.

The following Verilog example shows a tri-state buffer Buffer1 which is repeated for each bit of
the 8-bit input and output buses. In this case, each instance gets a part select of the range
expression [7:0] starting from the right-hand index and the enable signal is connected to every
instance.

This example represents the following Verilog code:

module Tristate(
 In,
 en,
 Out
);
input [7:0] In;
input en;
output [7:0] Out;
wire [7:0] In;
wire en;
wire [7:0] Out;

Port Map and Generate Frames
Generate Frames

Graphical Editors User Manual, V2010.3 291
June, 2011

buffif I0[7:0](
 .In0 (In),
 .enable (en),
 .Out0 (Out)
);
endmodule // Tristate

Using Generate Frames for Repeating Structures
When you are using VHDL, it is possible to use a FOR generate frame around a diagram area
containing a number of existing block and component objects.

The following example shows a variable width bank of registers. Each register consists of a flip-
flip whose output is connected to a tri-state buffer. The width of the input and output buses is
specified by the VHDL generic width and the frame is controlled by the expression: FOR
bit_index IN 0 TO width-1 GENERATE.

Signals which are connected to all occurrences of the objects in the generated code can be
connected directly (clk and en in the example above). Separate port map frames for each
component specify the connectivity expressions for each instance.

This example represents the following VHDL code:

LIBRARY ieee; use ieee.std_logic_1164.all;

ENTITY RegistersFrame IS
GENERIC (width : positive);
PORT (clock : IN std_logic;
out_enable : IN std_logic;
data_in : IN std_logic_vector(0 TO width - 1);
data_out : OUT std_logic_vector(0 TO width - 1));

END RegistersFrame;

Graphical Editors User Manual, V2010.3292

Port Map and Generate Frames
Generate Frames

June, 2011

ARCHITECTURE struct of RegistersFrame IS
SIGNAL dat_unbuffered : std_logic;

COMPONENT D_flipflop is
PORT (clk : IN std_logic;
d : IN std_logic;
q : OUT std_logic);

END COMPONENT;
COMPONENT tristate_buffer IS

PORT (a : IN std_logic;
en : IN std_logic;
y : OUT std_logic);

END COMPONENT;
BEGIN

cell_array : FOR bit_index IN 0 TO width - 1 GENERATE
I0 : D_flipflop

PORT MAP (
clk => clock,
d => data_in(bit_index),
q => data_unbuffered

);
I1 : tristate_buffer

PORT MAP (
a => data_unbuffered,
en => out_enable,
y => data_out(bit_index)

);
END GENERATE cell_array;

END struct;

Note
Repeating structures are not supported when you are using Verilog.

Using Generate Frames for Conditional Structures
An IF generate frame can be used in VHDL or Verilog to describe conditional or alternative
structures. When you are using VHDL, there can be any number of conditional IF frames.

When you are using Verilog, an alternative structure can be defined by using an ELSE frame
which must have the same label as the corresponding IF frame.

Port Map and Generate Frames
Generate Frames

Graphical Editors User Manual, V2010.3 293
June, 2011

The following example instantiates different versions of the lpm_add_sub model determined by
whether the variable lpm_REPRESENTATION is set to SIGNED or UNSIGNED.

This example represents the following VHDL code:

LIBRARY ieee;
USE ieee.std_logic_1164.all;
LIBRARY lpm;
USE lpm.lpm_components.all;

ENTITY lpm_add_sub IS
 GENERIC(
 lpm_WIDTH : positive;

Graphical Editors User Manual, V2010.3294

Port Map and Generate Frames
Generate Frames

June, 2011

 lpm_REPRESENTATION : string := SIGNED
);
 PORT(
 ADD_SUB : IN std_logic := '1';
 CLOCK : IN std_logic := '0';
 DATAA : IN std_logic_vector (lpm_WIDTH DOWNTO 1);
 DATAB : IN std_logic_vector (lpm_WIDTH DOWNTO 1);
 RESULT : OUT std_logic_vector (lpm_WIDTH DOWNTO 1)
);

END lpm_add_sub ;

LIBRARY ieee;
USE ieee.std_logic_1164.all;
LIBRARY lpm;
USE lpm.lpm_components.all;

LIBRARY framelib;

ARCHITECTURE struct OF lpm_add_sub IS

 COMPONENT lpm_add_sub_signed
 GENERIC (
 lpm_WIDTH : positive;
 lpm_REPRESENTATION : string := SIGNED
);
 PORT (
 ADD_SUB : IN std_logic := '1';
 CLOCK : IN std_logic := '0';
 DATAA : IN std_logic_vector (lpm_WIDTH DOWNTO 1);
 DATAB : IN std_logic_vector (lpm_WIDTH DOWNTO 1);
 RESULT : OUT std_logic_vector (lpm_WIDTH DOWNTO 1)
);
 END COMPONENT;
 COMPONENT lpm_add_sub_unsigned
 GENERIC (
 lpm_WIDTH : positive;
);
 PORT (
 ADD_SUB : IN std_logic := '1';
 CLOCK : IN std_logic := '0';
 DATAA : IN std_logic_vector (lpm_WIDTH DOWNTO 1);
 DATAB : IN std_logic_vector (lpm_WIDTH DOWNTO 1);
 RESULT : OUT std_logic_vector (lpm_WIDTH DOWNTO 1)
);
 END COMPONENT;

BEGIN
 L1: IF lpm_REPRESENTATION=UNSIGNED GENERATE
 U : lpm_add_sub_unsigned
 GENERIC MAP (
 lpm_WIDTH => lpm_WIDTH,
)
 PORT MAP (
 ADD_SUB => ADD_SUB,
 CLOCK => CLOCK,
 DATAA => DATAA,
 DATAB => DATAB,

Port Map and Generate Frames
Generate Frames

Graphical Editors User Manual, V2010.3 295
June, 2011

 RESULT => RESULT
);
 END GENERATE L1;

 L2: IF lpm_REPRESENTATION=SIGNED GENERATE
 V : lpm_add_sub_signed
 GENERIC MAP (
 lpm_WIDTH => lpm_WIDTH,
)
 PORT MAP (
 ADD_SUB => ADD_SUB,
 CLOCK => CLOCK,
 DATAA => DATAA,
 DATAB => DATAB,
 RESULT => RESULT
);
 END GENERATE L2;

END struct;

When you are using Verilog, an alternative structure can be defined by using an ELSE frame
which must have the same label as the corresponding IF frame.

The following example instantiates Buf1 if the macro definition BUF1 is true, otherwise Buf2 is
instantiated. Both frames have the same label Gen1.

This example represents the following Verilog code:

Graphical Editors User Manual, V2010.3296

Port Map and Generate Frames
Generate Frames

June, 2011

module tristate8(
 ena,
 in,
 out
);

input ena;
input [7:0] in;
output [7:0] out;
wire ena;
wire [7:0] in;
wire [7:0] out;

`ifdef BUF1
 buf1 U1(
 .enable (ena),
 .ip (in),
 .op (out)
);
`else
 buf2 U2(
 .enable (ena),
 .ip (in),
 .op (out)
);
`endif

endmodule // tristate8

Using a BLOCK Generate Frame
When you are using VHDL, a BLOCK generate frame can be used to cluster related concurrent
statements in the generated HDL. All the HDL statements generated for the objects contained in
a BLOCK frame are executed concurrently.

In the following example, separate BLOCK frames and frame declarations have been used to
specify delay constants for the ipdelay and opdelay embedded blocks. The main functionality is

Port Map and Generate Frames
Generate Frames

Graphical Editors User Manual, V2010.3 297
June, 2011

implemented by two instantiations of subcircuit which are contained within a third BLOCK
frame.

This example represents the following VHDL code:

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.numeric_std.all;

ENTITY block_circuit IS
 GENERIC(
 dtime : time := 10 ns
);
 PORT(
 In1 : IN bit;
 In2 : IN bit;
 In3 : IN bit;
 out1 : OUT bit;
 out2 : OUT bit
);
END block_circuit ;

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.numeric_std.all;

LIBRARY framelib;

ARCHITECTURE struct OF block_circuit IS

 SIGNAL delayed_in1 : bit;
 SIGNAL delayed_in2 : bit;
 SIGNAL delayed_in3 : bit;
 SIGNAL intermediate : bit;
 SIGNAL undelayed_out1 : bit;
 SIGNAL undelayed_out2 : bit;

 COMPONENT subcircuit

Graphical Editors User Manual, V2010.3298

Port Map and Generate Frames
Generate Frames

June, 2011

 PORT (
 a : IN bit ;
 b : IN bit ;
 y1 : OUT bit ;
 y2 : OUT bit
);
 END COMPONENT;

BEGIN
 input_delays: BLOCK
 BEGIN
 delayed_in1 <= in1 after dtime;
 delayed_in2 <= in2 after dtime;
 delayed_in3 <= in3 after dtime;

 END BLOCK input_delays;

 functionality: BLOCK
 BEGIN
 cell1 : subcircuit
 PORT MAP (
 a => delayed_in1,
 b => delayed_in2,
 y1 => undelayed_out1,
 y2 => intermediate
);
 cell2 : subcircuit
 PORT MAP (
 a => intermediate,
 b => delayed_in3,
 y1 => undelayed_out2,
 y2 => OPEN
);
 END BLOCK functionality;

 output_delays: BLOCK
 BEGIN
 out1 <= undelayed_out1 after dtime;
 out2 <= undelayed_out2 after dtime;
 END BLOCK output_delays;

END struct;

Using Nested Generate Frames
A frame may be included within another frame. Typically a repeating structure may require
different instantiations for parts of the structure.

Port Map and Generate Frames
Generate Frames

Graphical Editors User Manual, V2010.3 299
June, 2011

The following VHDL example shows a FOR generate frame used to represent five instances
where there are alternative instances determined by whether the value i is 0 or 1 (two instances)
and 2, 3, or 4 (three instances).

This example represents the following VHDL code:

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.numeric_std.all;

ENTITY NestedFrames IS
 PORT(
 C : IN unsigned (39 DOWNTO 0);
 Ctl_CD : IN unsigned (12 DOWNTO 0);
 D : IN unsigned (39 DOWNTO 0);
 Y2 : OUT unsigned (39 DOWNTO 0)
);
END NestedFrames ;

Graphical Editors User Manual, V2010.3300

Port Map and Generate Frames
Generate Frames

June, 2011

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.numeric_std.all;

ARCHITECTURE struct OF NestedFrames IS

 COMPONENT ALU1
 PORT (
 Operand1 : IN unsigned (7 DOWNTO 0);
 Operand2 : IN unsigned (7 DOWNTO 0);
 Operator : IN unsigned (1 DOWNTO 0);
 Result : OUT unsigned (7 DOWNTO 0)
);
 END COMPONENT;
 COMPONENT ALU2
 PORT (
 Operand1 : IN unsigned (7 DOWNTO 0);
 Operand2 : IN unsigned (7 DOWNTO 0);
 Operator : IN unsigned (2 DOWNTO 0);
 Result : OUT unsigned (7 DOWNTO 0)
);
 END COMPONENT;

BEGIN
 g2: FOR i IN 0 TO 4 GENERATE
 g0: IF i <= 1 GENERATE
 I0 : ALU1
 PORT MAP (
 Operator =>Ctl_CD(1+i*2 DOWNTO i*2),
 Operand1 => C(7+i*8 DOWNTO i*8),
 Operand2 => D(7+i*8 DOWNTO i*8),
 Result => Y2(7+i*8 DOWNTO i*8)
);
 END GENERATE g0;
 g1: IF i >= 2 GENERATE
 I1 : ALU2
 PORT MAP (
 Operator =>Ctl_CD(i*3 DOWNTO i*3-2),
 Operand1 => C(7+i*8 DOWNTO i*8),
 Operand2 => D(7+i*8 DOWNTO i*8),
 Result => Y2(7+i*8 DOWNTO i*8)
);
 END GENERATE g1;
 END GENERATE g2;
END struct;

Port Map and Generate Frames
Generate Frames

Graphical Editors User Manual, V2010.3 301
June, 2011

You cannot include another frame within a FOR frame when using Verilog. However, you can
have any level of nested IF and ELSE frames.

This example represents the following Verilog code:

module tristate_vlog(
 ena,
 in,
 out
);

input ena;
input [7:0] in;
output [7:0] out;
wire ena;
wire [7:0] in;
wire [7:0] out;

`ifdef COMP
 bufif U1[7:0](
 .enable (ena),
 .ip (in),
 .op (out)

Graphical Editors User Manual, V2010.3302

Port Map and Generate Frames
Generate Frames

June, 2011

);

`else
 // HDL Embedded Block 1 eb1
 assign out = (ena==1) ? in : 7'B0;
`endif

endmodule // tristate_vlog

Editing Generate Frame Properties
You can display and edit properties for generate frames in a block diagram or IBD view by
using the button, Alt + shortcut or choosing Object Properties from the Edit menu.
In IBD views the Frame number and Appearance fields do not exist.

If a frame is selected, the Frames page of the Object Properties dialog box is displayed listing
its existing properties.

You can use the dialog box to edit the frame style, label, number and expression and specify
whether the title (including the label and expression) and number are visible on the diagram.

The style can be selected from a pulldown list which includes FOR, IF and ELSE when using
Verilog or FOR, IF and BLOCK when using VHDL.

Refer to the dialog box description for details of the options and syntax supported for each of
these styles.

When you are using VHDL, you can use the Declarations button (or choose Frame
Declarations from the popup menu in an IBD view) to display a free-format entry Frame

Port Map and Generate Frames
Generate Frames

Graphical Editors User Manual, V2010.3 303
June, 2011

Declarations dialog box which allows you to specify local declarations which apply only within
the frame.

You can also choose whether these declarations are visible on a block diagram. Frame
declarations should only be used in a FOR or IF frame when Other Dialect is set as a
preference in the Style tab of the VHDL Options dialog boxes and can be specified in a BLOCK
frame when you are using any VHDL dialect.

The syntax of the declarations is checked on entry.

Tip: You can declare procedures, functions, shared variables, constants or other
declarations which are allowed in generate statements for the current VHDL dialect.
However, signal declarations local to generate frames are not supported.

Graphical Editors User Manual, V2010.3304

Port Map and Generate Frames
Generate Frames

June, 2011

Graphical Editors User Manual, V2010.3 305
June, 2011

Chapter 7
Component Interface Views

This chapter describes procedures for using the tabular IO and symbol views to edit a
component interface.

Opening a Component Interface . 305
Tabular IO and Symbol Views . 306

Tabular IO Notation . 307
Hiding Columns . 308
Filtering Columns . 309
Tabular IO Toolbar . 310
Sorting the Rows in a Tabular IO View . 311
Adding Ports in the Tabular IO View. 311
Grouping Port Rows . 312
Setting Visual Attributes in the Tabular IO View . 314

Symbol Notation. 315
Symbol Toolbar . 315
Adding Ports in the Symbol View . 316
Customizing a Symbol . 317

Editing Port Declarations . 318
Changing the Port Declaration Order . 319
Propagating Port Changes. 320
Updating Instances . 320
Adding Attributes to a Port Declaration . 321
Adding Comments to a Port Declaration . 321
Editing Symbol Generic or Parameter Declarations. 322

Editing Symbol/Interface Object Properties . 324
Editing Symbol User Declarations . 324
Editing Symbol Body Properties . 325

Setting Interface Preferences . 327

Opening a Component Interface
To create a new interface using the Design Content wizard:

1. Invoke the Design Content Creation Wizard by doing one of the following:

o Choose Design Content from the New cascade of the File menu.

o Click the icon in the Design Manager left side bar.

Graphical Editors User Manual, V2010.3306

Component Interface Views
Opening a Component Interface

June, 2011

o Click the icon in the shortcut bar to display a menu and choose Design Content
or choose Graphical View and select Interface from the cascade menu.

2. Choose Graphical View from the Categories pane and Interface from the File Type
pane.

You can also choose Interface from the Open As cascade of the component popup menu.

To create a new interface:

Click the icon in the shortcut bar and choose Interface from the Graphical View cascade
menu to open a tabular IO view.

Refer to “Creating Design Views” in the HDL Designer Series User Manual for detailed
information about creating new views.

To edit a component interface:

Do one of the following

o Select the symbol in the design explorer Design Units view and choose Open File
from the File or popup menu.

o Select a component instance from a block diagram or IBD view and then open down
by choosing Interface from the Open As cascade of the popup menu to edit a child
component interface.

o Use the button or choose Open Up or Interface from the Open cascade of the
File menu to edit a parent interface for a block diagram, IBD view, state diagram,
flow chart or truth table.

If the view is a block view, the parent block diagram or IBD view is opened. However, if it is a
component, the component interface is opened.

When you open up, the interface is opened as a tabular IO view or as a symbol diagram view
depending on an option set in the interface master preferences.

Note
If a component is described by a block diagram or IBD view, the component interface can
also be updated by reconciling the interface from the block diagram as described in
“Reconciling Interfaces” on page 128.

Tabular IO and Symbol Views
The tabular IO and symbol views are alternative views of the component interface. The tabular
IO view is typically used to define the interface and the symbol view is used to define the
graphical view when the component is instantiated in a block diagram.

Component Interface Views
Tabular IO Notation

Graphical Editors User Manual, V2010.3 307
June, 2011

You can display the tabular IO interface or symbol diagram view by choosing Interface or
Symbol or in the diagram browser as described in “Browsing Diagram Structure” on page 92.

You can enter the interface port declarations for a component by using either view. Any
changes made in one view are automatically made in the alternative view. Default port
placement is used for the symbol when you add ports in the tabular IO view.

When you are using VHDL, you can set VHDL package references by double-clicking over the
package list in the symbol view, or by choosing Package References from the Diagram menu
in the symbol view or from the Table menu in the tabular IO view. Refer to “Setting Package
References” on page 23 for more information.

Tabular IO Notation
The tabular IO view (when the Ports page is active) displays the port declarations for the
interface as a matrix of seven columns with a separate row for each port.

For example, the following picture shows the interface to a Verilog symbol with four input and
two output ports:

The following columns are normally displayed:

Group Named groups of rows can be selectively displayed.

Name Port name.

Mode Port mode: input, output, bi-directional, buffer (VHDL only) or local.

Type VHDL type definition or Verilog net type.

Graphical Editors User Manual, V2010.3308

Component Interface Views
Tabular IO Notation

June, 2011

For Verilog 2005 designs to extra columns are displayed:

If any synthesis properties have been added to a port declaration (for example, the input_drive
column in the picture above), these are shown as additional columns.

Horizontal and vertical sashes divide the tabular IO view into scrolling and non-scrolling
regions. Vertical and horizontal scroll bars are automatically displayed if the scrolling area does
not fit in the current window.

You can change the non-scrolling area by moving the cursor over the sash between the scrolling
areas in the letter row or number column. The cursor changes to and allows you to move the
sash by pressing down the Left mouse button and dragging it between the required column or
row.

You can move a column or row (or several selected columns or rows) by pressing down the
Right mouse button and dragging them to the required position. However, you cannot move the
header row or the Group column and there must always be at least two columns in the non-
scrolling area.

You can resize any column by using the button to fit the column width to the text in the
selected cell (or cells) or by dragging the sashes between the columns.

Note
Note that you can select an entire row by clicking the row number or an entire column by
clicking the column letter. You can also select the entire table by clicking on cell A1.

Hiding Columns
You can hide the selected column (or columns) by choosing Hide Column from the popup
menu or the Columns cascade of the Table menu.

If one or more columns are hidden, you can display a dialog box listing the hidden columns by
choosing Show Column from popup menu or the Columns cascade of the Table menu. For

Bounds Range of the specified type (may use short or long format for VHDL).

Delay Delay value for a Verilog port.

Initial Initial value of a VHDL port.

Comment Comment appended to a port declaration.

Signed Specify whether a net is signed or not.

Value Initial value for a Verilog 2005 port.

Component Interface Views
Tabular IO Notation

Graphical Editors User Manual, V2010.3 309
June, 2011

example, the following Show Columns dialog box is displayed if the Type, Bounds and Initial
columns are hidden:

You can select one or more columns and confirm the dialog box to make them visible in the
table.

Filtering Columns
You can filter the content of any column by setting the Filter option in the Table menu or by
using the button to toggle the current filter mode. When this option is set a dropdown menu
is available from an additional filter row in each column.

You can choose from any of the values in the dropdown menu to filter the column content. For
example, if you choose wire in the Type column for a Verilog view, only ports with wire type
are displayed.

You can also enter a simple match string in the drop entry box to display only matching ports.
For example, you could enter data* in the Name column to display only ports starting with the
characters data as show by the following example.

Graphical Editors User Manual, V2010.3310

Component Interface Views
Tabular IO Notation

June, 2011

You can apply filters to more than one column or set options to match case, match whole words
or use regular expressions by choosing Filter Settings from the Table or popup menu to
display the Filter Controls dialog box:

The filter controls are applied to the currently selected columns or to all columns if none are
selected.

Note that a list of supported regular expressions is available from the Quick Reference Index
which can be accessed through the Help and Manuals tab of the HDS InfoHub. To open the
InfoHub, select Help and Manuals from the Help menu.

Tabular IO Toolbar
The following commands are available from the Tabular IO Tools toolbar:

Table 7-1. Tabular IO Toolbar

Icon Description

Add an input port

Add an output port

Add a bidirectional (inout) port

Group the selected rows or add a group

Ungroup

Expand all groups

Collapse all groups

Toggle Filter

Fit the cell width to the contents of the selected cell

Sort in ascending order

Sort in descending order

Toggle between grouped and ungrouped mode

Toggle between the port and Verilog parameters table (OLE view only)

Component Interface Views
Tabular IO Notation

Graphical Editors User Manual, V2010.3 311
June, 2011

The toolbar can be displayed or hidden by setting the Tabular IO Tools option in the Toolbars
cascade of the View menu.

Refer to “Toolbars” on page 20 for more information about toolbars including the standard
toolbar buttons which are available in more than one editor.

Sorting the Rows in a Tabular IO View
You can sort the rows in a selected column of the tabular IO view in ascending alphanumeric
order of the cell data by using the button or choosing Sort Ascending from the popup menu
or the Columns cascade of the Table menu.

Alternatively, you can sort the data in descending order by using the button or by choosing
Sort Descending from the popup menu or the Columns cascade of the Table menu.

Adding Ports in the Tabular IO View
You can add ports to a component interface using the Add menu or the following buttons in the
tabular IO view:

The port is added in the next available row with default name, type and bounds.

Alternatively, you can add ports by entering a declaration directly into the next row of Name,
Mode, Type and Bounds cells. The mode defaults to the last mode used or you can choose from
a list of available modes: input, output, bidirectional (inout) or buffer (VHDL only).

The type defaults to the last type used or you can choose from a dropdown list of available types
in the Type column. The bounds defaults to the last range used or you can choose from a
dropdown list of recently entered ranges in the Bounds column.

A VHDL bounds can be entered in long or short format. The display format can be set by setting
or unsetting the Short Form option in the Table menu.

If you enter a port name followed by a valid bounds constraint, for example, myport(7
DOWNTO 0), the constraint is automatically moved to the Bounds column.

Table 7-2. Tabular IO View Commands for Adding Ports

Button Function Key Description

F8 Add an input port

F9 Add an output port

F11 Add a bidirectional (inout) port

F12 Add a buffer port (VHDL only)

Graphical Editors User Manual, V2010.3312

Component Interface Views
Tabular IO Notation

June, 2011

Tip: You can automatically complete a row with default properties by using the
key after entering a port name to move to the name cell in the next row.

You can optionally enter a value in the Initial (VHDL) or Delay (Verilog) and Comment
columns. The delay or initial value can be chosen from a dropdown list of recently entered
values.

If you enter characters that match characters in an existing entry of the same column, the
remaining characters are entered automatically.

If you do not change the name of a port, each new port name is made unique by adding an
integer to the default name. (For example: In, In1, In2…).

Grouping Port Rows
You can group rows in the tabular IO view by selecting a row or rows and using the button
or by choosing Group from the popup menu, the Add menu or from the Group cascade of the
Table menu.

The selected rows are added to a new group with the default name GroupN (where N is
automatically incremented if it already exists).

You can also add a group or create a new group by entering a name in the Group column for the
ports you want to group.

Note
You can choose from a dropdown list of existing groups. If you type a partial string that
matches the name of an existing group the name is automatically completed.

Component Interface Views
Tabular IO Notation

Graphical Editors User Manual, V2010.3 313
June, 2011

The following example shows groups defined for Inputs, Outputs and InOuts. The Inputs and
InOuts groups are shown collapsed but the Outputs group is shown expanded. When grouped
mode is set, you can enter a multi-line comment in the group row as shown below.

Tip: Note that you can select a port declaration row (or rows) and drag and drop the
row(s) into an existing group.

You can remove a group name by selecting a row (or rows) and using the button, choosing
UnGroup from the popup menu, the Group cascade of the Table menu or by deleting the name
from the Group cell.

If you rename or remove an existing group cell and the group is no longer referenced, you are
prompted to delete the old group name.

When the view includes one or more groups, you can use the button or set Show Grouped
in the Table menu to toggle between grouped and ungrouped mode. All rows are displayed
normally in flat mode but rows in the same group are shown as a single (but expandable) group
in hierarchy mode.

You can expand all the group rows by using the button or choosing Expand All Groups
from the Group cascade of the Table menu. Alternatively, you can expand an individual group
by clicking on the icon.

You can collapse all the group rows by using the button or choosing Collapse All Groups
from the Group cascade of the Table menu.

Graphical Editors User Manual, V2010.3314

Component Interface Views
Tabular IO Notation

June, 2011

Note
If you delete a group, all its contents are deleted. If you copy a group, all ports in the
copied group are automatically made unique.

Setting Visual Attributes in the Tabular IO View
You can set the visual attributes for the selected cell (or selected cells) by choosing
Appearance from the Edit or popup menu. The Cell Edit Appearance dialog box is displayed:

The dialog box allows you to set the font and cell colors. You can also set the fill style, default
text font and cell text alignment.

You can also edit the visual attributes used in the table using the Appearance toolbar. Refer to
“Setting Visual Attributes” on page 83 for more information.

Component Interface Views
Symbol Notation

Graphical Editors User Manual, V2010.3 315
June, 2011

Symbol Notation
When a component is defined by a child block diagram or IBD view, the ports shown on the
symbol correspond to ports on the child view.

By default the port name and other properties text is shown inside the symbol body but can
optionally be moved outside the symbol.

You can choose to hide properties text in the symbol view or when the symbol is instantiated in
a block diagram. You can also choose to automatically hide connected ports when the symbol is
instantiated. (This option is typically used when the clocked and inverted attributes are set.)

When a symbol is automatically created, input ports are placed on the left, output ports on the
right, bidirectional ports on the bottom edge and buffer ports on the top edge but these positions
can be changed when you edit the symbol. Note that vertical text is automatically used for ports
on the upper and lower edges.

Symbol Toolbar
The following commands are available from the Symbol Tools toolbar:

Input ports are shown by entering the symbol and output ports
by exiting from the symbol.
A bidirectional (InOut) port is indicated by and a buffer port
by .
Any input port can be shown as an edge triggered clock signal
(indicated by).
Any input, output, bidirectional or buffer port can be shown as an
active low (Not) signal (indicated by).

Table 7-3. Symbol Toolbar

Icon Description

Select text and shapes, text only or shapes only

Add or modify comment text

Pan the window

Add an input port

Add an output port

Add a bidirectional (inout) port

Add a buffer port (VHDL only)

Add a panel

Graphical Editors User Manual, V2010.3316

Component Interface Views
Symbol Notation

June, 2011

The button sets normal selection mode (text or shapes) but has a pulldown menu which
allows you to select text only or shapes only . The button changes to indicate the
active selection mode.

Refer to “Adding Comment Text” on page 56 for information about adding comment text and
“Panels” on page 78 for information about adding panels.

Refer to “Toolbars” on page 20 for more information about toolbars including the standard
toolbar buttons which are available in more than one editor.

Adding Ports in the Symbol View
You can add ports to a component interface using the Add menu or the following buttons in the
symbol view:

The cursor changes to a cross-hair which allows you to add a port by clicking near the required
location on the symbol outline.

The port is added to the symbol outline at the point nearest to the cursor. By default, the port
name, type and bounds constraint are added inside the symbol alongside the new port but the
text can be moved outside the outline.

Note that the command normally repeats until you use the Esc key (or Right mouse button) to
terminate the repeating command.

The ports are added with default type and bounds but these properties can be changed by
directly editing the text on the diagram or by double-clicking on the port declarations to display
the tabular IO view.

You can change the mode of a port in the symbol view by choosing Change Mode from the
popup menu (or Ports cascade of the Diagram menu) which is displayed when you use the
Right mouse button with a single port selected.

If you do not change the name of a port, each new port is given a unique name by adding an
integer to the default name. (For example: In, In1, In2…).

Table 7-4. Symbol View Commands for Adding Ports

Button Function Key Mnemonic Description

F8 I Add an input port

F9 O Add an output port

F11 T Add a bidirectional (inout) port

F12 F Add a buffer port (VHDL only)

Component Interface Views
Symbol Notation

Graphical Editors User Manual, V2010.3 317
June, 2011

You can move ports around the symbol body by dragging with the Left mouse button. (If you
select more than one port, their separation is preserved.)

You can space all the ports on each edge of a symbol evenly by choosing Equidistant Ports
from the popup menu when the symbol body is selected or space the selected ports when one or
more parts are selected.

The port name (and type constraints if visible) is aligned with the port orientation. Thus, the
name text is horizontal for a port on the left or right of the symbol and vertical for a port on the
top or bottom of the symbol. However, the text can be rotated independently by choosing
Rotate Text from the popup menu.

You can add an active low (Not) or edge-triggered clock indicator on a symbol port as
described in “Indicating Not or Clocked Ports” on page 231.

Customizing a Symbol
You can customize a symbol by checking Custom Symbol in the Diagram or popup menu in
the symbol view or by checking the Custom Symbol option in the Symbol tab of the Symbol
Object Properties dialog box.

When this option is active, the symbol body is replaced by a resizable rectangular boundary
containing an editable comment graphic.

Any comment graphics object can be superimposed on the default shape or you can use the Edit
Vertices command from the popup menu to modify the default shape.

Any comment graphics or comment text completely within the boundary is part of the custom
symbol and will be displayed when the symbol is instantiated in a block diagram.

The following example shows a custom symbol for the uart_top design unit (with autowhiskers
enabled and a HDS logo added as a custom graphics bitmap):

Graphical Editors User Manual, V2010.3318

Component Interface Views
Editing Port Declarations

June, 2011

Comment graphics or text outside the boundary is visible only inside the symbol editor.

Refer to “Adding Comment Graphics” on page 72 for more information about using comment
graphics.

You can check Lock from the Diagram or popup menu to lock all objects inside the symbol
boundary so that they behave as a single object. (Note however, that all objects inside the
boundary of an autoshape are automatically included.)

Ports can be added to the symbol boundary in the normal way. If Autowhisker is checked in the
Diagram or popup menu or in the Symbol tab of the Symbol Object Properties dialog box.

Whiskers are automatically added as orthogonal lines between the ports on the symbol
boundary and the contained comment graphics shape. However, no whisker is added if the line
would not intersect with the contained comment graphics.

You can also change the shape of a symbol by applying a standard logic shape as described in
“Choosing a Standard Shape” on page 229.

Editing Port Declarations
You can edit port declarations by direct text editing in the symbol view or by editing the cells in
the tabular IO view.

You can edit the port name, mode, type, bounds, VHDL initial value or Verilog delay and
comments for an existing port in the tabular IO view by editing the cell contents.

Note that you can choose from a pulldown list of standard VHDL or Verilog types by clicking
in a Type cell and using the button. The type which most closely matches the current string
is automatically selected in the list. (For example, if the characters st are entered for a VHDL
view, the type std_logic is selected.)

If you are using VHDL, the type must be defined in a VHDL package, referenced in the
package references or be one of the standard predefined types.

The pulldown list includes the most commonly used types and any other types which have
already been used in the view. However, you may need to add a new package reference if you
choose a type which is not in the currently referenced packages. For example, ieee.numeric_std
should be referenced if you want to use the signed or unsigned types.

The standard Verilog types can be selected if you are using Verilog. However, input or
bidirectional ports cannot have type reg and automatically default to wire.

The bounds can be used to specify the indexes for the elements in an array or the range for a
vector type. For example: 15 DOWNTO 0 or 0 TO 7 (if you are using VHDL); 15:0 or 0:7 (if
you are using Verilog).

Component Interface Views
Editing Port Declarations

Graphical Editors User Manual, V2010.3 319
June, 2011

If you are using VHDL, you can also enter a user specified constraint such as an enumerated or
integer type name or you can enter an array name or type of the form: <array>'RANGE or
<array>'REVERSE_RANGE.

If you are using VHDL, you can use the Initial column to enter an expression defining an initial
value for the net connected to the port.

Note
VHDL can be generated for a block diagram containing component interfaces with
unconnected ports if the ports have been assigned an initial value. However, HDL
generation issues an error for unconnected ports without an initial value.

If you are using Verilog, you can use the Delay column to enter a delay as one, two or three
values. If two or three delay values are required, they must be separated by commas and
enclosed in parentheses. For example: (delay1, delay2, delay3).

Changing the Port Declaration Order
The port declarations are normally ordered automatically by mode (in, out, bidirectional or
buffer) and alphanumeric name as they are added. This mode is indicated by an icon in the
first cell of the title row in the tabular IO view.

You can change the order of the port declaration rows in the table by selecting a row (or rows)
and dragging it to a new position with the Right mouse button.

You can enable manual ordering in the tabular IO view by choosing Switch to Manual from
the popup menu in the cell (or Manual from the Port Ordering cascade of the Table
menu). This mode is indicated by an icon.

When manual ordering is enabled, you can choose Update Generation Order from the Port
Ordering cascade of the Table or popup menu to update the declaration order to be the same as
the row order. Alternatively, choose Show Generation Order to re-order the table rows in
declaration order.

The new order is preserved on the symbol and in the generated HDL.

Note
Manual ordering is automatically set if you synchronize component interface ports with a
text view to preserve the port ordering specified in the text view.
Manual ordering is also used when diagrams are created by HDL2Graphics in order to
preserve the order (and any in-line comments) from the source HDL code.

If you choose Switch to Automatic from the popup menu in the cell (or Automatic from
the Port Ordering cascade of the Table menu, the original ordering is discarded and the
declarations are sorted automatically by mode and alphanumeric name.

Graphical Editors User Manual, V2010.3320

Component Interface Views
Editing Port Declarations

June, 2011

Propagating Port Changes
When you edit a port declaration in the tabular IO or symbol view, you can choose whether the
changes are applied only to the interface or are propagated to connected nets in the views
hierarchically below the symbol.

You can set Hierarchical or Non Hierarchical as the Scope for Changes from the popup
menu or from the Ports cascade of the Table menu in the tabular IO view or the Diagram menu
in the symbol view.

If hierarchical scope is set, the Net Propagation Options dialog box is displayed after you apply
changes to the port properties for you to choose how the changes are propagated to nets in other
views.

Refer to “Propagating Net Changes” on page 166 and “Inserting and Removing Nets” on
page 169 for more information about propagating new signals and changes to the properties of a
net.

Updating Instances
If you save a component interface after you have changed a port declaration or any of the
symbol properties, you are prompted whether to update any instances where the component is
used. If you answer Yes to the prompt, the Search page of the Where Used wizard is displayed:

The Search page allows you to specify the search scope for referenced components.

You can choose to search for references in the same libraries as the selected objects, the default
library only, all libraries in the current project or in specified libraries.

Component Interface Views
Editing Port Declarations

Graphical Editors User Manual, V2010.3 321
June, 2011

If you choose to specify libraries, the selection list is enabled and allows you to choose from any
of the available libraries mapped for the current project.

The specified libraries are searched when you use the Start button and the Update Where Used
dialog box is displayed listing any occurrences where an instance of the component is
instantiated:

You can choose to update the interface only or also update any changes to the symbol graphics
while preserving the symbol size and port positions. You can also choose to update all changes
from the symbol. This option does a literal replacement of the symbol and nets may be moved if
any ports have been moved on the symbol.

Adding Attributes to a Port Declaration
You can add attributes to a port declaration in a tabular IO view by choosing Attributes from
the popup when one or more port rows are selected in the table matrix.

You can add attributes to a port declaration in the symbol view by choosing Attributes from the
popup menu when the port or its declaration is selected.

Refer to “Setting Attributes and Embedded Constraints” on page 165 for more information.

Adding Comments to a Port Declaration
You can add comments to a port declaration in the tabular IO view by choosing Comments
from the popup menu when the port declaration row is selected.

You can add comments to a port declaration in the symbol view by choosing Comments from
the popup menu when the port or its declaration is selected.

Graphical Editors User Manual, V2010.3322

Component Interface Views
Editing Port Declarations

June, 2011

A free-format entry Comments dialog box is displayed which allows you to add a single line
comment at the end of the declaration or you can enter a multi-line comment to be included
before or after the declaration.

Comment characters for the current hardware description language (VHDL or Verilog) are
automatically inserted if the Add comment characters check box is set. When this option is
unset, the comments must be valid HDL statements and are automatically syntax checked if
checking is enabled.

The comments are displayed in the port declarations list in the symbol view. If a declaration is
deleted, the corresponding comments are also deleted.

Although multi-line comments can be added to a tabular IO using the dialog box, these
comments are not displayed in the table. However, end-of-line comments can be edited directly
in the Comment column for the port declaration row.

Editing Symbol Generic or Parameter Declarations
A separate page in the interface view can be used to declare Verilog parameters (if the language
is Verilog) or VHDL generics (if the language is VHDL). These pages can be opened from the
diagram browser or by choosing Generics or Parameters from the Diagram menu in the
symbol view.

Note
The Generics page is available if you are using VHDL or the Parameters page is
available if you are using Verilog.

Component Interface Views
Editing Port Declarations

Graphical Editors User Manual, V2010.3 323
June, 2011

To set a new declaration, enter a name, type (not required when the language is Verilog) and
default value in the table cells.

For example, the following picture shows VHDL generics width and delay defined in the
Generics page:

The width generic is used to specify the upper bounds for the output bus and delay specifies a
variable value for an internal signal used within the component.

The new declarations are shown as a text object anchored to the symbol body in the symbol
view. For example:

Note
The default value specified for a declaration can be a discrete value or an expression.
Note that the time type used in the example above may not be supported by some
compilers (for example, Synopsys Design Compiler).

Note that you can choose from a pulldown list of standard VHDL types in the Type column.

Refer to “Generics and Parameters” on page 174 for more information about using VHDL
generics and Verilog Parameters.

VHDL Verilog

Graphical Editors User Manual, V2010.3324

Component Interface Views
Editing Symbol/Interface Object Properties

June, 2011

Editing Symbol/Interface Object Properties
You can edit s and graphical properties for a component interface in the tabular IO or symbol
view by using the button, Alt + shortcut or choosing Object Properties from the
Edit menu.

The Symbol Object Properties dialog box is displayed with tab options for setting s, comment
Text properties and Symbol body properties.

Note
The Text tab is available in the symbol view when comment text is present on the
diagram. The Symbol tab is only available in the symbol view.

Refer to “Editing Text Properties” on page 58 for information about editing comment text
properties in the symbol view.

Editing Symbol User Declarations
You can use the Declarations tab of the Symbol/Interface Properties dialog box to add or edit
User Declarations in the symbol or tabular IO view.

The dialog box can also be displayed directly by double-clicking on an existing declaration in
the symbol view or by choosing Edit Declarations from the Table menu or from the popup
menu when a complete port row is selected in the tabular IO view.

Component Interface Views
Editing Symbol/Interface Object Properties

Graphical Editors User Manual, V2010.3 325
June, 2011

You can also edit the statements directly on the symbol view by clicking to select the text and
clicking again to edit the text.

You can enter declarations in the dialog box using free format. The statements are added to the
Declarations list on the diagram when you use the Apply button.

The syntax is automatically checked for the hardware description language of the active view.
However, syntax checking can be disabled by unsetting a preference. If you change the
language for the current view, syntax errors are reported when you edit a statement.

When you are using VHDL, there is a single entry box for declarations which are included as
entity declarations in the generated VHDL entity.

When you are using Verilog, the dialog box has separate sections for external and internal
declarations. The external declarations are inserted in the generated HDL before the Verilog
module statement. The internal declarations (typically used to declare interface parameters) are
inserted immediately after the module statement.

You can set or unset the Align in Columns option to control how the declarations are formatted
on the diagram. Note that a monospace font must be used for the this option to be effective.

Editing Symbol Body Properties
You can edit the properties for a symbol body in the symbol view by using the Symbol tab of
the Symbol/Interface Properties dialog box.

The dialog box displays the library and component names as read-only text fields and provides
options to control how the symbol is displayed in the symbol view or when it is instanced on a
block diagram.

You can use the Port Display button to control how port properties are displayed in the symbol
view as described in “Changing the Display of Port Properties” on page 206.

You can use the Change Shape button to choose from a list of alternative standard shapes as
described in “Choosing a Standard Shape” on page 229.

You can enable Custom Symbol editing and choose whether to automatically add whiskers to
signals as described in “Customizing a Symbol” on page 317.

If the Show ports when attached to a signal option is set, ports are displayed when a
component instance is connected on a block diagram. (Unconnected ports are always visible but
are automatically hidden when a signal is connected if this option is not set.)

Graphical Editors User Manual, V2010.3326

Component Interface Views
Editing Symbol/Interface Object Properties

June, 2011

The Show library name and Show design unit name options control whether the library name
and design unit names are displayed on each instance.

If the Same as symbol option is set, the port text visibility for an instance displays the same
properties that are visible in the symbol view.

Alternatively, you can set the Specify option and use the Port Display button to set the default
visibility of port properties text displayed for an instance of the symbol on a block diagram.

Tip: You can change the display of port properties for a selected component instance on a
block diagram by using the Port Display button in the Components tab of the block
diagram Object Properties dialog box (or by choosing Port Visibility from the popup
menu).

Component Interface Views
Setting Interface Preferences

Graphical Editors User Manual, V2010.3 327
June, 2011

Setting Interface Preferences
You can set preferences for the interface views by choosing Interface from the Master
Preferences cascade of the Options menu in the design manager to display the Interface
Master Preferences dialog box

The dialog box has separate pages for setting General, Default Settings, Interface Table and
Symbol preferences.

The master preferences take effect on the next interface you create. However, you can apply the
current master preferences for the symbol appearance and background to the active view by
choosing Apply to New Objects or Apply to New and Existing Objects from the Master
Preferences cascade of the Options menu in the diagram.

You can set the symbol appearance and Interface table preferences for the active symbol by
choosing Diagram Preferences from the Options menu in the symbol/Interface view.

When you edit these preferences for the active diagram, the dialog box allows you to choose
whether the preferences are applied to new objects or to both new and existing objects in the
diagram.

You can save the preferences for the active diagram as master preferences by choosing Update
from Diagram in the Master Preferences cascade of the Options menu.

Graphical Editors User Manual, V2010.3328

Component Interface Views
Setting Interface Preferences

June, 2011

The General page allows you to set miscellaneous preferences for the interface and symbol
view:

You can set an option to check the HDL syntax of declarations and embedded HDL text objects
on entry.

Note
Checks are also performed for unsynthesizable constructs when Common synthesis
checks are set in the Checks tab of the Main Settings dialog box.

You can choose whether to automatically open the Where Used wizard when edits to the logical
interface are saved.

Component Interface Views
Setting Interface Preferences

Graphical Editors User Manual, V2010.3 329
June, 2011

You can also specify whether port declaration ordering is automatic (by mode and alphanumeric
name) or if manual ordering is allowed and choose whether the interface view for a symbol is
opened as a tabular IO interface or as a graphical symbol.

The Interface Appearance page allows you to set default visual attributes for the font and cell
colors in the tabular IO view. You can also set the fill style, default text font and cell text
alignment.

Graphical Editors User Manual, V2010.3330

Component Interface Views
Setting Interface Preferences

June, 2011

The appearance options are described in the description of the Cell Edit Appearance dialog box
which can be used to change the appearance on individual cells. Refer to “Setting Visual
Attributes in the Tabular IO View” on page 314 for more information.

The Symbol Appearance page allows you to set default visual attributes for individual objects
in the symbol view

The attributes that can be set include the foreground and background colors, line color and style,
fill style and line width, and the text font. However, some attributes are not always available.
For example, the line style, width and color attributes are not available for a text object.

The appearance options are described in the description of the Edit Appearance dialog box
which can be used to change the appearance of individual objects in a diagram. Refer to
“Setting Visual Attributes” on page 83 for more information.

When accessed from the editor, you can choose whether to apply the symbol appearance
changes to new objects only or to all new and existing objects on the diagram.

Component Interface Views
Setting Interface Preferences

Graphical Editors User Manual, V2010.3 331
June, 2011

The Default Settings page allows you to change the port and group namedefaults.

Graphical Editors User Manual, V2010.3332

Component Interface Views
Setting Interface Preferences

June, 2011

Separate VHDL and Verilog sub-pages can be used to set the default constraints, type and
bounds for VHDL and Verilog ports. For example, the following picture shows the Verilog sub-
page:

The bounds can be entered as a range (for example, 15 DOWNTO 0 or 0 TO 75 in VHDL or 0:7
in Verilog) or you can use the first bounds entry box as an index for a single element in an array
leaving the second entry empty.

For VHDL, you can also use the first bounds entry box to enter a user specified constraint such
as an enumerated or integer type name or you can enter an array name or type of the form:

<array>'RANGE or <array>'REVERSE_RANGE

Component Interface Views
Setting Interface Preferences

Graphical Editors User Manual, V2010.3 333
June, 2011

You can use the Default Properties sub-page to define default properties for tabular IO
interface views.

Refer to the HDL Designer Series User Manual for information about “Using View Property
variables”.

Graphical Editors User Manual, V2010.3334

Component Interface Views
Setting Interface Preferences

June, 2011

The Interface sub-page provides additional preferences which apply only to the interface view:

You can enable drag fill and enable single click editing in the interface view. You can enable an
option to highlight the active row and column when a table cell is selected.

You can also choose whether to edit or display VHDL range constraints using short form
notation.

Component Interface Views
Setting Interface Preferences

Graphical Editors User Manual, V2010.3 335
June, 2011

The Object Visibility sub-page allows you to set the default object visibility for multi-line text
objects on the diagram. Refer to “Changing Text Visibility” on page 68.

The VHDL Port Display and Verilog Port Display sub-pages buttons allow you to set default
port display properties. For example, the following picture shows the Verilog Port Display
page:

The port display properties can be set separately for VHDL and Verilog when you edit the
master preferences or for the language used by the active symbol when accessed from the
editor. Refer to “Changing the Display of Port Properties” on page 206 for more information.

Graphical Editors User Manual, V2010.3336

Component Interface Views
Setting Interface Preferences

June, 2011

Component Interface Views
Setting Interface Preferences

Graphical Editors User Manual, V2010.3 337
June, 2011

The Background page allows you to control the diagram background color and grid attributes
used in the symbol view.

These preferences are described in “Setting Background Preferences” on page 50.

Refer to the “Default Preferences” appendix in the HDL Designer Series User Manual for lists
of the default preferences which are set when you invoke a HDL Designer Series tool for the
first time.

Graphical Editors User Manual, V2010.3338

Component Interface Views
Setting Interface Preferences

June, 2011

Graphical Editors User Manual, V2010.3 339
June, 2011

Chapter 8
Flow Chart Editor

This chapter describes how a design process can be described by a flow chart in terms of
graphical action boxes, decision box, wait boxes case boxes and loops connected by flows. This
technique can be used to describe a design unit view of any leaf-level block or component in a
block diagram or IBD view.

Flow Chart Notation . 340

Flow Chart Toolbar . 342

Adding Objects on a Flow Chart . 343
Adding a Start Point . 345
Adding an Action Box . 346
Adding a Decision Box. 347
Adding a Wait Box . 348
Adding a Loop . 348
Adding a Case Box . 349
Adding a Flow. 351
Adding an End Point. 352
Adding Other Objects on a Flow Chart . 352

Hierarchical Flow Charts . 352

Concurrent Flow Charts . 354
Adding a Concurrent Flow Chart . 355
Opening a Concurrent Flow Chart . 355
Renaming a Concurrent Flow Chart . 355
Deleting a Concurrent Flow Chart . 356

Editing Flow Chart Object Properties. 356
Editing Action Box Object Properties . 356
Editing Decision Box Object Properties . 358
Editing Wait Box Object Properties . 360
Editing Loop Object Properties . 362
Editing Case Object Properties . 363

Setting Flow Chart Properties . 364
Setting Flow Chart Generation Properties . 365
Editing Architecture or Module Declarations. 369
Editing Concurrent Statements . 370
Editing Process or Local Declarations . 372

Setting Flow Chart Preferences . 373

Graphical Editors User Manual, V2010.3340

Flow Chart Editor
Flow Chart Notation

June, 2011

Flow Chart Notation
The notation used for flow chart objects is show below.

Table 8-1. Flow Chart Notation

There must be one and only one start point
which is always named Start.

An action box contains HDL statements which
are executed when the box is entered from a
flow. There must be one input flow and one
output flow.

A hierarchical action box represents a child
flow chart describing action logic.

A decision box represents if-then-else
statements and has two outputs: A True flow
which is followed when its condition is
satisfied or a False flow otherwise.

A wait box defines a HDL wait or delay
statement.

A loop comprises start loop and end loop
objects.
The loop will continue for ever if no control
properties are associated with the start loop
object.
Any number of other objects can be included
in the flow between the start and end loop.

A decision box represents if-then-else
statements and has two outputs: A True flow
which is followed when its condition is
satisfied or a False flow otherwise.

Flow Chart Editor
Flow Chart Notation

Graphical Editors User Manual, V2010.3 341
June, 2011

The on flow chart objects indicates ports where flows can be connected.

A flow chart may contain any combination of objects connected by flows but must contain one
start point and one (or more) end points.

A flow chart is typically used for the input stimulus and output checking blocks in a test bench.
For example:

There must be at least one end point.

Graphical Editors User Manual, V2010.3342

Flow Chart Editor
Flow Chart Toolbar

June, 2011

Flow Chart Toolbar
The following commands are available from the Flow Chart Tools toolbar:

Note
The and buttons have pulldown menus which allows you to choose from a
list of concurrent flow chart names.

Refer to the HDL Designer Series User Manual for general information about toolbars and the
HDL Designer Series user interface.

Table 8-2. Flow Chart Toolbar

Icon Description

Select text or objects

Select text only

Select objects only

Add or modify comment text

Pan the window

Add a new concurrent flow chart

Open a named concurrent flow chart

Delete a named concurrent flow chart

Add an action box

Add a hierarchical action box

Add a decision box

Add a wait box

Add a start point

Add an end point

Add a start loop

Add an end loop

Add a case box

Add a case port

Add a flow

Add a panel

Flow Chart Editor
Adding Objects on a Flow Chart

Graphical Editors User Manual, V2010.3 343
June, 2011

Refer to Diagram Editor Windows in Chapter 2 or information about selecting objects, resizing
objects, adding comment text or graphics, panning the window, adding a panel and additional
toolbars which are common to the other diagram editors.

Adding Objects on a Flow Chart
You can add objects on a flow chart using the Add menu or one of the buttons in the Flow Chart
Tools toolbar. Some objects can also be added using a shortcut or mnemonic key.

You can find a list of supported Graphical Editor Shortcut Keys in the Quick Reference Index
which is displayed using the -help switch.

The cursor changes to a cross-hair which allows you to add the object by clicking at the required
location on the diagram.

When you add any object (except a start point) on a flow chart, a flow is automatically
connected to the nearest unconnected port on an existing object.

The ghosting shows which port the object will connect to. If there are several available ports,
the ghost flow snaps between them as you move the cursor.

This automatic connection mode can be set or unset by choosing AutoConnect from the
Diagram menu. The current setting is saved as a preference.

After adding an object, the command normally repeats until you use the Esc key (or Right
mouse button) to terminate the command. However, you can set a preference for the command
to remain active or activate only once and you can toggle this mode for the current command by
using the Ctrl key.

If you move the cursor over an existing flow while you are adding an object, the cursor changes
to and the object is inserted into the flow between the existing objects.

Graphical Editors User Manual, V2010.3344

Flow Chart Editor
Adding Objects on a Flow Chart

June, 2011

If the new object is too close to the object above it, it will automatically snap to a position in
free space below the object. Any existing objects below the new object are automatically moved
down to make space.

This automatic insertion mode can be set or unset by choosing AutoInsert from the Diagram
menu. The current setting is saved as a preference.

The following example shows a loop being inserted into the flow between a start point and a
decision box:

Note
Automatic insert mode works only for vertical flows.

If an object is resized so that it overlaps the next object in a flow, the next object is
automatically moved down to make space.

Flow Chart Editor
Adding Objects on a Flow Chart

Graphical Editors User Manual, V2010.3 345
June, 2011

Adding a Start Point
You can add a start point to a flow chart using the button, Shift + F8 or S shortcut keys or
by choosing Start Point from the Add menu.

There must be one (but only one) start point on a flow chart.

The default name for a start point can be changed by setting a preference.

Graphical Editors User Manual, V2010.3346

Flow Chart Editor
Adding Objects on a Flow Chart

June, 2011

Adding an Action Box
You can add an action box to a flow chart using the button or T shortcut key or by choosing
Action Box from the Add menu.

You can add a hierarchical action box to a flow chart using the button, Shift + F2 or H
shortcut keys or by choosing Hierarchical Action Box from the Add menu.

You can change the name of an action box (and the enclosed actions) by clicking to select the
text and clicking again to edit the text in-line.

Alternatively, you can double-click on the action box, use the button or choose Object
Properties from the Edit menu, to display the Action Boxes tab of the Object Properties dialog
box as described in “Editing Action Box Object Properties” on page 356.

If you do not change the name of an action box, each new action box is given a unique name by
adding an integer to the default name (for example: a0, a1, a2…). The default actions can be
changed by setting preferences. Action boxes and hierarchical action boxes have the same
default base name (a).

The default actions defined in your preferences are placed in the action box. The actions may
overlap the action box outline but can be independently moved away from (or into) the action
box. If you want to contain all your actions inside the box, it may be necessary to resize the
object.

The actions syntax is automatically checked for the hardware description language of the active
diagram. However, flow chart syntax checking can be disabled by unsetting a preference.

Note
Verilog system functions such as $display or $stop can be used in an action box.

Flow Chart Editor
Adding Objects on a Flow Chart

Graphical Editors User Manual, V2010.3 347
June, 2011

Adding a Decision Box
You can add a decision box to a flow chart using the button, F3 or D shortcut keys or by
choosing Decision Box from the Add menu.

You can change the name or condition by clicking to select the text and clicking again to edit
the text. Alternatively, you can double-click on the decision box, use the button or choose
Object Properties from the Edit menu, to display the Decision Boxes tab in the Object
Properties dialog box as described in “Editing Decision Box Object Properties” on page 358.

If you do not change the name of an decision box, each new decision box is given a unique
name by adding an integer to the default name (for example: d0, d1, d2…). The default base
name for new decision boxes, the default condition text or default labels for the True and False
flows can be changed by setting preferences.

You can exchange the position of the output flows by choosing Swap True and False from the
Diagram or popup menu when a decision box is selected.

The condition text is placed inside the decision box and after editing may overflow the box but
can be moved independently away from (or into) the box. If you want to contain the whole
condition inside the box, it may be necessary to resize the object.

When you enter a condition, the syntax is automatically checked for the hardware description
language of the active diagram. However, flow chart syntax checking can be disabled by
unsetting a preference.

A decision box corresponds to an If statement in HDL. You should not connect the output flows
from two or more decision boxes directly together as this would generate invalid HDL. If
necessary, copy the same action box and connect separately to both output flows. You can then
recombine the flows using a flow join. End if statements will then be correctly generated for
each decision arm.

Graphical Editors User Manual, V2010.3348

Flow Chart Editor
Adding Objects on a Flow Chart

June, 2011

Adding a Wait Box
You can add a wait box to a flow chart using the button, F4 or W shortcut keys or by
choosing Wait Box from the Add menu.

You can change the name of a wait box by clicking on the name to select the text and clicking
again to edit the text. Similarly, you can change the wait statement by clicking on the wait
statement text.

Alternatively, you can double-click on the wait box, use the button or choose Object
Properties from the Edit menu, to display the Wait Boxes tab in the Object Properties dialog
box as described in “Editing Wait Box Object Properties” on page 360.

When you enter wait statements, the syntax is automatically checked for the hardware
description language of the active diagram. However, flow chart syntax checking can be
disabled by unsetting a preference.

If you do not change the name of an wait box, each new wait box is given a unique name by
adding an integer to the default name (for example: w0, w1, w2…). The default base name for
new wait boxes and the default wait statement text can be changed by setting preferences.

The wait statement text is normally offset overlapping the wait box but can be moved
independently away from (or into) the box. If you want to contain the whole statement inside
the box, it may be necessary to resize the object.

Adding a Loop
You can add a start loop to a flow chart using the button or L shortcut key or by choosing
Loop from the Add menu to place a start loop object.

Any combination of flow chart objects (including other loops) can be added below the start
loop.

To complete the loop, you must add an end loop object using the button or O shortcut keys
or by choosing End Loop from the Add menu.

Note
If AutoConnect is enabled in the Diagram menu, the loop back flow is automatically
connected to the nearest unconnected start loop.

You can change the name of a loop by clicking on the name to select the text and clicking again
to edit the text. However, you cannot change the loop control text directly.

Flow Chart Editor
Adding Objects on a Flow Chart

Graphical Editors User Manual, V2010.3 349
June, 2011

To edit the control text (or the loop name), double-click on the wait box, use the button or
choose Object Properties from the Edit menu, to display the Loops tab in the Object
Properties dialog box as described in “Editing Loop Object Properties” on page 362.

If you do not change the name of a loop, each new loop is given a unique name by adding an
integer to the default name (for example: (l0, l1, l2…). The default base name for new loops and
the default labels for the start and end loop objects can be changed by setting preferences.

The loop control text is normally placed to the right of the start loop object but can be moved
independently away from (or into) the object. If you want to contain the whole of the control
text inside the loop object, it may be necessary to resize the object.

Breaking Out of a Loop
You can break out of a loop by using a decision box to set a "breakout" condition which is
connected below the end loop using a flow join as shown below:

Note
If there are multiple break-out conditions, these must be combined using a single break-
out decision box. For example, in the example above, the loop is exited when the loop is
on its third iteration if the signal b has the value '1'. Otherwise, the loop is exited
normally after completing eight iterations.

Adding a Case Box
You can add a case box to a flow chart using the button, F6 or C shortcut keys or by
choosing Case from the Add menu.

Graphical Editors User Manual, V2010.3350

Flow Chart Editor
Adding Objects on a Flow Chart

June, 2011

The start case box is added at the cursor location and an associated end case object with the
same name is automatically added vertically below.

Any combination of other flow chart objects (including other case boxes) can be added between
the start and end case objects.

A new start case box has a single output port (with a name which can be set as a preference) but
you can add any number of unconnected case ports using the button, Shift + F6 or P
shortcut keys or by choosing Case Port from the Add menu or Add Port from the popup menu
when the case box is selected or simply by adding flows with their origin over the start case
object.

You can delete a case port by using the Del key or by choosing Delete from the Edit or popup
menu while the port is selected.

You can change the case name, case expression or the value for an existing case port by clicking
on the name to select the text and clicking again to edit the text.

Alternatively, double-click on the case box or any case port, use the button or choose
Object Properties from the Edit menu to display the Cases tab in the Object Properties dialog
box as described in “Editing Case Object Properties” on page 363.

When you enter a case expression or case port name, the syntax is automatically checked for the
hardware description language of the active diagram. However, flow chart syntax checking can
be disabled by unsetting a preference.

If you do not change the name of a case, each new case object is given a unique name by adding
an integer to the default name (for example: c0, c1, c2…). The default case expression and port
values for new case boxes can be changed by setting preferences.

Flow Chart Editor
Adding Objects on a Flow Chart

Graphical Editors User Manual, V2010.3 351
June, 2011

The expression is normally placed inside the start case object but can be moved independently
away from (or into) the object. If you want to contain the whole of the expression inside the case
box, it may be necessary to resize the object.

Adding a Flow
You can add a flow to a flow chart using the button, F7 or F shortcut keys or by choosing
Flow from the Add menu.

The cursor changes to a cross-hair which allows you to add a flow by clicking the Left mouse
button with the cursor over a source and destination plus any number of route points.

Flows can only be connected between the connect ports shown by on each flow chart object.
However, you can move the loop back points on a loop object to the opposite side by dragging
them with the mouse. Similarly, you can move the True and False flows from a decision box to
an alternative vertex.

Note
You can dynamically create a port on a case box by adding a flow with its origin over the
start case object.

A flow cannot originate on another flow but can be terminated on a flow (creating a flow join).

For example, the following constructs using flow joins are functionally equivalent and generate
the same HDL:

Note that if you delete an object (such as an action box) which has one input flow and one
output flow, a flow is automatically connected between the objects immediately above and
below the deleted object.

All flow chart objects (except case ports) must be connected before you can generate HDL for a
flow chart. Any unconnected case port is assigned a NULL statement by HDL generation.

Graphical Editors User Manual, V2010.3352

Flow Chart Editor
Hierarchical Flow Charts

June, 2011

Note
You cannot create a loop by connecting an output directly to the input of a previous
object on the flow chart since this could create unreachable nodes. Use a start and end
loop as described in “Adding a Loop” on page 348.

Adding an End Point
You can add an end point to a flow chart using the button, F8 or C shortcut keys or by
choosing End Point from the Add menu. There must be at least one end point on a flow chart.
The default name for a start point can be changed by setting a preference.

Adding Other Objects on a Flow Chart
You can also add other objects such as a title block, comment text, comment graphics and
panels on a flow chart.

Hierarchical Flow Charts
A large flow chart can be decomposed into a hierarchy of smaller more manageable hierarchical
flow charts which are embedded below hierarchical action boxes in their parent flow chart. The
child chart is connected to the hierarchical action box in the parent flow chart by its start point
and end point.

You can open down into a child flow chart by double-clicking on a hierarchical action box or by
choosing Open Down from the Open cascade of the File menu (or popup menu) to explicitly
open the selected hierarchical action box.

The child flow chart is opened for in the existing window. A new child flow chart comprises a
start point, a single action box and an end point connected by flows. You can edit a hierarchical
chart in the same way as any other flow chart including more hierarchical action boxes as well
as any other flow chart objects.

You can choose Open Up from the File menu or select the name of the parent diagram in the
diagram browser to open the parent of the currently active flow chart.

Child flow charts are saved as part of the parent flow chart and named after the parent
hierarchical action box by adding the name of the parent hierarchical action box to the
concurrent flow chart name.

Flow Chart Editor
Hierarchical Flow Charts

Graphical Editors User Manual, V2010.3 353
June, 2011

For example, the following picture shows a flow chart for a test bench which includes a
test_status, test_xmit, test_rcv hierarchical action boxes represented by child flow charts:

Graphical Editors User Manual, V2010.3354

Flow Chart Editor
Concurrent Flow Charts

June, 2011

The parent flow chart is named: tester_top and the child is named tester_top/test_status:

Concurrent Flow Charts
Any number of concurrent flow charts can be created from within an existing flow chart with
the same interface.

The package list and any VHDL architecture declarations, Verilog module declarations or
concurrent statements are shared by the concurrent flow charts but the sensitivity list and
process declarations or local declarations can be set separately.

Each concurrent flow chart is given a unique name by adding an integer to the default name (for
example: process0, process1, process2…) and identified in the title bar by appending this name
and its position in the set of concurrent flow charts to the leaf flow chart name. For example, if
you create three concurrent flow charts for the flow chart DESIGNS\ConcFC\flow the resulting
set of four flow charts would be identified as follows:

DESIGNS\ConcFC\flow ['process0' 1 of 4]
DESIGNS\ConcFC\flow ['process1' 2 of 4]
DESIGNS\ConcFC\flow ['process2' 3 of 4]
DESIGNS\ConcFC\flow ['process3' 4 of 4]

Flow Chart Editor
Concurrent Flow Charts

Graphical Editors User Manual, V2010.3 355
June, 2011

A set of concurrent flow charts is treated as a single design object and all concurrent charts
(including any hierarchical diagrams) are saved when any flow chart is saved. When HDL is
generated for concurrent flow charts, separate VHDL processes (or always blocks in Verilog)
are generated for each chart.

Note
Object names must be unique within the set of concurrent flow charts.

Adding a Concurrent Flow Chart
You can create a concurrent flow chart from within an existing flow chart using the button
or the Ctrl + F2 shortcut keys or by choosing Concurrent Flow Chart from the Add menu. A
new flow chart is created in the existing window with the same interface as the current chart.

The package list and any VHDL architecture declarations, Verilog module declarations or
concurrent statements are shared by the concurrent flow charts but the sensitivity list and
process declarations or local declarations can be set separately.

Each concurrent flow chart is given a unique name by adding an integer to the default name (for
example: process0, process1, process2…). However, the base name for a new flow chart can be
set as a preference in the Default Values tab of the Flow Chart Preferences dialog box.

Opening a Concurrent Flow Chart
You can open an existing concurrent flow chart from within an existing chart by using the
button or choosing Open Flow Chart from the Diagram menu and selecting from the menu of
concurrent flow chart names. The concurrent flow chart is opened in the existing window. You
can also open a concurrent flow chart by selecting it in the diagram browser.

Renaming a Concurrent Flow Chart
You can change the name of the active concurrent flow chart by choosing Rename Flow Chart
from the Diagram menu to display a Rename dialog box. The name is also shown in the
window title for the flow chart. This name is used to uniquely identify concurrent flow charts in
the generated HDL but can also be specified when there are no concurrent flow charts defined.
If not specified, the name defaults to the value set in the flow chart preferences.

In a Verilog flow chart, the concurrent flow chart name is used to label the initial or always code
for each chart and can be used (for example, by a disable statement) to reference this code.

Graphical Editors User Manual, V2010.3356

Flow Chart Editor
Editing Flow Chart Object Properties

June, 2011

Deleting a Concurrent Flow Chart
You can delete a concurrent flow chart from a set of concurrent flow charts by using the
button or choosing Delete Flow Chart from the Diagram menu and selecting from the menu of
concurrent flow chart names.

When you select the name of a concurrent flow chart in this list, you are prompted for
confirmation that the chart should be deleted. If you delete an open chart its window is closed.
The titles for all other charts in the set of concurrent flow charts are updated. However, the
design explorer view is not updated until you save the flow chart.

Note
You cannot delete the last concurrent flow chart in the set.

Editing Flow Chart Object Properties
You can edit the properties for an object (or objects) on a flow chart by using the button or
choosing Object Properties from the Edit or popup menu. An Object Properties dialog box is
displayed with separate tabs for Action Boxes, Decision Boxes, Wait Boxes, Loops, Cases and
Text objects.

You can also edit most text properties (including object names, conditions and actions) directly
on the diagram by clicking to select the text and clicking again to edit the text.

Editing Action Box Object Properties
You can edit the properties of one or more selected action boxes by using the button or
choosing Object Properties from the Edit menu or popup menu to display the Action Boxes

Flow Chart Editor
Editing Flow Chart Object Properties

Graphical Editors User Manual, V2010.3 357
June, 2011

tab of the Object Properties dialog box. You can also display the tab directly by double-clicking
on an existing action box on the diagram.

The action box name must be unique and can only be applied to a single selected action box.

If you change a hierarchical action box to a non-hierarchical action box, the child flow chart
diagram (if it exists) and its contents are discarded. However, you can undo this change to
recover the hierarchical action box and its child flow chart. If you change an action box to a
hierarchical action box, any existing actions are transferred to a default action box in the child
flow chart.

You can add or edit actions defined in the action box. If more than one action box is selected,
you can use the Modify check box to choose whether the actions in the dialog box are applied to
all the selected action boxes.

Note
An expression builder dialog box is automatically displayed when you begin to enter an
action. Refer to “Building a HDL Expression” in the State Machine Editors User Manual
for more information.

When you enter actions, the HDL syntax is automatically checked for the language of the
diagram you are using (VHDL or Verilog). However, flow chart syntax checking can be

Graphical Editors User Manual, V2010.3358

Flow Chart Editor
Editing Flow Chart Object Properties

June, 2011

disabled by unsetting a preference. Note that you must include a terminating semi-colon for
each statement although line breaks and indents can be used to improve legibility.

You can choose whether the action box name and actions are displayed or hidden on the
diagram.

Editing Decision Box Object Properties
You can edit the properties of a one or more selected decision boxes) by using the button or
choosing Object Properties from the Edit menu or popup menu to display the Decision Boxes
tab of the Object Properties dialog box. You can also display the tab directly by double-clicking
on an existing decision box on the diagram.

The decision box name must be unique and can only be applied to a single selected decision
box.

By default, if your flow chart uses nested decision boxes, combined ELSIF (VHDL) or else if
(Verilog) statements are generated for the false branch if the decision box is the first and only
statement on the false branch of another decision box.

Flow Chart Editor
Editing Flow Chart Object Properties

Graphical Editors User Manual, V2010.3 359
June, 2011

For example, c2 and c3 in the following example:

VHDL:

IF c1 THEN
 action1;
ELSIF c2 THEN
 action2;
ELSIF c3 THEN
 action3;
END IF;

Verilog:

if (c1) begin
 action1;
end
else if (c2) begin
 action2;
end
else if (c3) begin
 action3;
end

If your downstream tool does not support combined else and if, you can unset this option in the
dialog box or change the default behavior by unsetting the preference in the Miscellaneous tab
of the Flow Chart Preferences dialog box. However, these options are ignored and separate
instrumented else and if statements are always generated when the Instrument for Animation
option is set in the Generation tab of the Flow Chart Properties dialog box.

You can add or edit the condition defined in the decision box. If more than one decision box is
selected, you can use the Modify check box to choose whether the condition is applied to all the
selected boxes.

Graphical Editors User Manual, V2010.3360

Flow Chart Editor
Editing Flow Chart Object Properties

June, 2011

Note
An expression builder dialog box is automatically displayed when you begin to enter a
condition. Refer to “Building a HDL Expression” in the State Machine Editors User
Manual for more information.

When you enter a condition, the HDL syntax is automatically checked for the language of the
diagram you are using (VHDL or Verilog). However, flow chart syntax checking can be
disabled by unsetting a preference.

You can choose whether the decision box name and condition are displayed or hidden on the
diagram.

Editing Wait Box Object Properties
You can edit the properties of one or more selected wait boxes by using the button or
choosing Object Properties from the Edit menu or popup menu to display the Wait Boxes tab
of the Object Properties dialog box. You can also display the tab directly by double-clicking on
an existing wait box on the diagram.

The dialog box allows you to enter any valid HDL statements for the current hardware
description language. Some examples of wait statements for the current language are given in
the dialog box.

Flow Chart Editor
Editing Flow Chart Object Properties

Graphical Editors User Manual, V2010.3 361
June, 2011

VHDL:

wait [on SensitivityList] [until Condition] [for TimeExpression];
wait until clk = '1';
wait; -- wait forever
wait on clk until clk = '0';
wait for 25 ns;

These can be inserted as templates by clicking on the required example with the Left mouse
button.

The basic template for VHDL allows you to combine on, until and for clauses which may also
include valid arithmetic operators.

For example:

wait until ((high="000")AND(low="0000")) for 6000ns;

In Verilog, you can also use the @ operator to specify an event or # to specify a time delay:

wait (Expression);
@Name;
@(eventExpression);
#UnsignedNumber;
#ParameterName;
#ConstantMinTypMaxExpression;
#(MinTypMaxExpression);

For example:

wait ((high==4'd0)&&(low==4'd0));
@(posedge clk);
#12;
#clk_prd;

Note
The default wait statement (wait;) corresponds to a wait for user interaction.
Verilog system functions such as $stop cannot be used in a wait box but can be used in an
action box.

When you enter a wait statement, the HDL syntax is automatically checked for the language of
the diagram you are using (VHDL or Verilog). However, flow chart syntax checking can be
disabled by unsetting a preference.

You can choose whether the wait box name and statement are displayed or hidden on the
diagram.

Graphical Editors User Manual, V2010.3362

Flow Chart Editor
Editing Flow Chart Object Properties

June, 2011

Editing Loop Object Properties
You can edit the properties of one or more selected loops by using the button or choosing
Object Properties from the Edit menu or popup menu to display the Loops tab of the Object
Properties dialog box. You can also display the tab directly by double-clicking on an existing
wait box on the diagram.

By default, a loop will repeat forever. However, you can clear this option in the dialog box and
enter a specific loop control clause. Example clauses for repeat (if you are using Verilog), for
and while loops are given in the dialog box.

VHDL:

FOR i IN 0 TO 15
WHILE i<16

Verilog:

repeat (n)
for (i=0;i<16;i=i+1)
while (i)

These can be inserted as templates by clicking on the required example with the Left mouse
button.

Flow Chart Editor
Editing Flow Chart Object Properties

Graphical Editors User Manual, V2010.3 363
June, 2011

When you enter a loop statement, the HDL syntax is automatically checked for the language of
the diagram you are using (VHDL or Verilog). However, flow chart syntax checking can be
disabled by unsetting a preference.

You can also choose whether the loop name and loop control clause are displayed or hidden on
the diagram.

Editing Case Object Properties
You can edit the properties of one or more selected case boxes by using the button or
choosing Object Properties from the Edit menu or popup menu to display the Loops tab of the
Object Properties dialog box. You can also display the tab directly by double-clicking on an
existing case box on the diagram.

The case box name must be the same as the corresponding end case object and otherwise unique
on the diagram.

Graphical Editors User Manual, V2010.3364

Flow Chart Editor
Setting Flow Chart Properties

June, 2011

If you are using Verilog, you can choose to use casex or casez comparison as an alternative to
the default bit comparison case style and you can insert the following pragmas to specify full
case or parallel case statements:

You can specify a case expression which can comprise any valid HDL statements entered as
free-format text (using multiple lines if required).

The dialog box also lists the existing output port names which should correspond to possible
values for the evaluated expression. These values can be edited by double-clicking over the
existing name in the dialog box to display a Rename dialog box.

When you enter an expression or port name, the HDL syntax is automatically checked for the
language of the diagram you are using (VHDL or Verilog). However, flow chart syntax
checking can be disabled by unsetting a preference.

You can also choose whether the case box name and expression are displayed or hidden on the
diagram.

Setting Flow Chart Properties
There are a number of properties associated with a flow chart which can be accessed from the
Flow Chart Properties dialog box. The following properties are shown as text objects on the
flow chart (or on the top-level diagram of a hierarchical flow chart):

full_case All possible branches have been specified, any missing
branches cannot occur and a default branch need not be
generated.

parallel_case Branches are mutually exclusive.

parallel_case full_case All possible branches have been specified and are mutually
exclusive.

Architecture or Module
Declarations

A list of user defined VHDL architecture declarations or
Verilog module declarations.

Concurrent Statements A statement block containing a list of concurrent statements
that are included in the generated HDL.

Flow Chart Editor
Setting Flow Chart Properties

Graphical Editors User Manual, V2010.3 365
June, 2011

Concurrent statements and architecture or module declarations are applied to all concurrent
flow charts. However, process or local declarations and the sensitivity list are set separately for
each diagram in a set of concurrent flow charts.

You can edit the flow chart properties by choosing Flow Chart Properties from the Diagram
menu to display a dialog box with tab options for:

Setting Flow Chart Generation Properties
You can set the HDL generation properties by choosing Flow Chart Properties from the
Diagram or popup menu and then selecting the Generation tab in the Flow Chart Properties
dialog box.

Sensitivity List A list of signals which cause the corresponding process to
execute if any of the signals change.

Process or Local
Declarations

A list of statements which are included as process declarations
in the generated VHDL or as local declarations in the
generated Verilog.

Generation
Architecture Declarations (VHDL only) or Module Declarations (Verilog only)
Process Declarations (VHDL only) or Local Declarations (Verilog only)

Graphical Editors User Manual, V2010.3366

Flow Chart Editor
Setting Flow Chart Properties

June, 2011

For example, the following dialog box is displayed when you are using Verilog:

Note
Separate generation properties can be specified for each diagram in a set of concurrent
flow charts.

Sequential and Combinatorial Diagrams
You can specify whether the flow chart is sequential or combinatorial.

A sequential flow chart changes state on active clock edges. An optional reset signal can be
used to perform specified reset actions.

A combinatorial flow chart operates independently of any clock and is typically used for
applying stimulus and testing results in a test bench.

Flow Chart Editor
Setting Flow Chart Properties

Graphical Editors User Manual, V2010.3 367
June, 2011

Clock Signal
When the sequential option is selected, you can enter the clock signal or choose from a
dropdown list of available input signals.

You can also set the clock edge sensitivity.

For a Verilog view, you can choose Rising or Falling corresponding to posedge or negedge
sensitivity.

For a VHDL view, you can choose Rising, Falling, Rising Last, Falling Last. These options
generate the following VHDL clock edge expressions:

Alternatively for either language, you can choose Specify to enter any other valid edge
condition.

Reset Signal
When the sequential option is selected, you can enter a list of reset actions and enter a
synchronous or asynchronous reset signal (or choose from a dropdown list of available input or
internal signals). You can choose to trigger the reset on a High or Low level signal (or choose
Specify to enter any other valid reset condition).

If you have specified a Verilog reset condition, you must also specify any additional signals
required in the sensitivity list. (Multiple signals should be separated by an OR operator.)

You can optionally set pragmas (sync_set_reset_local or async_set_reset_local) which identify
the name of the currently specified synchronous or asynchronous reset signal.

Note
The pragmas are entered using the keyword (pragma, synopsys or exemplar) preference
set in the Style tab of the VHDL or Verilog Options dialog box.

Sensitivity List
You can also specify a sensitivity list of signals which cause the corresponding process to
execute if any of the signals change. Multiple signals should be separated by the comma
character for VHDL and by an or when using Verilog.

Rising clk'EVENT AND clk = '1'

Falling clk'EVENT AND clk = '0'

Rising Last clk'EVENT AND clk = '1' AND clk'LAST_VALUE = '0'

Falling Last clk'EVENT AND clk = '0' AND clk'LAST_VALUE = '1'

Graphical Editors User Manual, V2010.3368

Flow Chart Editor
Setting Flow Chart Properties

June, 2011

You can choose whether the sensitivity list is visible or hidden on the diagram. If the user-
entered list is visible, it can also be edited by direct text editing on the diagram.

If the sensitivity list is not specified it is shown as <Automatic> in the dialog box and is
automatically created during HDL generation using to the following rules:

Block Type
For Verilog designs, you can specify whether initial or always style code is generated. You can
also choose whether the generated code is contained between begin and end statements or using
fork and join statements.

Animation
You can choose to instrument the HDL for animation. When this option is enabled, activity
information is available for flow chart animation. This is achieved by additional code included
in the generated HDL. The additional code is surrounded by translation control pragmas which
ensure that it is ignored by downstream synthesis tools.

The HDL generated for nested decision boxes on a flow chart is normally created with ELSIF
statements for each decision box. However, separate ELSE and IF statements instrumented by
animation pragmas are generated when you choose the Instrument HDL for Animation
option. You should regenerate HDL with the animation option unset if you want to use the
generated HDL for synthesis.

Note
Note that you cannot instrument the generated HDL for animation when a flow chart is
used to define an embedded view in a block diagram.

The new flow chart properties are set when you confirm the dialog box.

Note
The generation properties (other than the sensitivity list) are not normally shown on the
diagram. However, you can set preferences in the Headers tab of the VHDL and Verilog
Options dialog boxes to include the generation properties as comment text after the
header in the generated HDL.

Sequential with synchronous or no reset <clock name>

Sequential with asynchronous reset <clock name>, <reset name>

Combinatorial All input and internal signals

Flow Chart Editor
Setting Flow Chart Properties

Graphical Editors User Manual, V2010.3 369
June, 2011

Editing Architecture or Module Declarations
You can edit architecture declarations (when using VHDL) or module declarations (when using
Verilog) by choosing Flow Chart Properties from the Diagram or popup menu or by double-
clicking over the Architecture Declarations (VHDL) or Module Declarations label (Verilog) on
the diagram.

The Architecture Declarations (or the Module Declarations) tab of the Flow Chart Properties
dialog box is displayed which allows you to enter any valid HDL statements for the current
hardware description language in a free-format entry box.

Signal declarations, constants, variables, comments, procedures, functions or type definitions
can be included in the declaration.

Typically a VHDL declaration, comprises a keyword (signal, constant or variable) followed by
a name, type and value. The specified type must be one of the standard predefined types or a
type defined in a VHDL package. An initial value is required when the declaration is a constant
but is optional when you declare a signal or variable.

A typical Verilog declaration, comprises a keyword followed by appropriate parameters as
given below:

Table 8-3. Verilog Declarations

Keyword Parameters

'define name value

parameter name value

reg range (optional)1

1. Verilog range and array parameters should be entered in the format [m:n].

name array (optional)

integer name array (optional)

real name

time name array (optional)

wire range (optional) name array (optional)

Graphical Editors User Manual, V2010.3370

Flow Chart Editor
Setting Flow Chart Properties

June, 2011

For example, the following picture shows the Flow Chart Properties dialog box being used to
enter an architecture declaration:

The declarations are inserted at the top of the VHDL architecture or Verilog module in the
generated HDL in the order they are listed and apply to all diagrams in a set of concurrent flow
charts.

The syntax is checked and the declarations are added as a text object on the flow chart (or the
top level diagram when you are editing a hierarchical flow chart) when you confirm the dialog
box.

You can choose whether the declarations are visible or hidden on the diagram.

Note
Architecture declarations or module declarations cannot be set when a flow chart is used
to define an embedded view in a block diagram or IBD view. However, any declarations
required by the embedded view can be set on the parent view.

Editing Concurrent Statements
You can edit concurrent statements by choosing Flow Chart Properties from the Diagram or
popup menu or by double-clicking on an existing Concurrent Statements label on the diagram.

The Concurrent Statements tab of the Flow Chart Properties dialog box provides a free-format
entry box for you to add or edit these HDL statements.

Flow Chart Editor
Setting Flow Chart Properties

Graphical Editors User Manual, V2010.3 371
June, 2011

You can also choose whether the concurrent statements are visible or hidden on the diagram (or
on the top level diagram when you are editing a hierarchical flow chart).

Note
An expression builder dialog box is automatically displayed when you begin to enter a
concurrent statement. Refer to “Building a HDL Expression” in the State Machine
Editors User Manual for more information.

The edited statements are added to the diagram when you confirm the dialog box.

When you enter statements, the syntax is automatically checked for the hardware description
language of the active diagram. However, flow chart syntax checking can be disabled by
unsetting a preference.

Concurrent statements are included in the generated HDL at the end of the VHDL architecture
or Verilog module and are applied to all diagrams in a set of concurrent flow charts. They are
executed concurrently with all of the processes (or always blocks) in the flow chart and are
typically used for additional datapath operations or specialized clocking.

You can also edit the statements directly on the diagram by clicking on the action to select the
text and clicking again to edit the text.

Graphical Editors User Manual, V2010.3372

Flow Chart Editor
Setting Flow Chart Properties

June, 2011

Editing Process or Local Declarations
You can add or edit flow chart process declarations (when using VHDL) or local declarations
(when using Verilog) by choosing Flow Chart Properties from the Diagram menu or by
double clicking on the Process Declarations (VHDL) or Local Declarations (Verilog) label on
the flow chart.

The Process Declarations (or Local Declarations) tab of the Flow Chart Properties dialog box
allows you to add or edit declaration statements within a VHDL process or within a local
Verilog initial or always block. These tabs are typically used to declare constants and
parameters (or for 'define statements when using Verilog).

You can also choose whether the declarations are visible or hidden on the diagram.

For a VHDL flow chart, process declarations are placed at the beginning of the process
immediately before the BEGIN keyword in the generated HDL.

For a Verilog flow chart, local declarations are placed after the initial (or always) keyword in
the generated HDL. (You can choose whether initial or always code is generated using the
Generation tab of the dialog box.)

Separate process declarations can be specified for each diagram in a set of concurrent flow
charts.

The edited statements are added to the flow chart when you confirm the dialog box.

Flow Chart Editor
Setting Flow Chart Preferences

Graphical Editors User Manual, V2010.3 373
June, 2011

You can also edit the statements directly on the diagram by clicking to select the text and
clicking again to edit the text.

The syntax is automatically checked when you enter VHDL statements. However, flow chart
syntax checking can be disabled by unsetting a preference.

Setting Flow Chart Preferences
You can set flow chart preferences by choosing Flow Chart from the Master Preferences
cascade of the Options menu in the design manager.

The Flow Chart Preferences dialog box has separate pages for General, Default Settings,
Object Visibility, Appearance and Background preferences.

Note
The general, default settings and object visibility preferences take effect on the next flow
chart you open and can only be edited when the dialog box is displayed from the Master
Preferences cascade in the design manager Options menu. These pages are not available
when you choose Diagram Preferences in a flow chart window.

The Appearance page allows you to set default visual attributes for individual flow chart
objects.

Graphical Editors User Manual, V2010.3374

Flow Chart Editor
Setting Flow Chart Preferences

June, 2011

The attributes include the foreground and background colors, line color and style, fill style, line
width and the text font. Some attributes may not always be available. For example, line style,
width and color attributes are not available for a text object.

Refer to “Setting Visual Attributes” on page 83” for more information.

This page can also be edited by choosing Diagram Preferences from the Options menu in a
flow chart. When you edit preferences for the active diagram, the dialog box allows you to
choose whether the preferences are applied to new objects or to both new and existing objects in
the flow chart (including concurrent or hierarchical diagrams).

You can save the appearance preferences set on the active diagram as master preferences by
choosing Update from Diagram in the Master Preferences cascade of the Options menu or
you can apply the master preferences to the active diagram by choosing Apply to New Objects
or Apply to New and Existing Objects.

The General page allows you to set other flow chart options:

These options include syntax checking, an option to generate ELSIF statements and the default
save name for flow charts.

Flow Chart Editor
Setting Flow Chart Preferences

Graphical Editors User Manual, V2010.3 375
June, 2011

The Default Settings page allows you to set flow chart default values:

You can set default names for decision box conditions, case expressions and port values, the
concurrent flow chart name and the default actions used in an action box.

You can use the Default Properties sub-page to define default properties for flow chart views.

Refer to the HDL Designer Series User Manual for information about “Using View Property
Variables”.

Graphical Editors User Manual, V2010.3376

Flow Chart Editor
Setting Flow Chart Preferences

June, 2011

The Object Visibility allows you to set the default object visibility for multi-line text objects on
the diagram.

Refer to “Changing Text Visibility” on page 68 for more information.

The Background page allows you to control the diagram background color and grid attributes
used by the flow chart editor.

These preferences are described in “Setting Background Preferences” on page 50.

Refer to the “Default Preferences” appendix in the HDL Designer Series User Manual for lists
of the default preferences set when you invoke a HDL Designer Series tool for the first time.

Graphical Editors User Manual, V2010.3 377
June, 2011

Chapter 9
Truth Table Editor

This chapter describes how a design function can be represented as a matrix of true or false
input signals and their resultant output signal (or signals). This truth table can be used to
describe a design unit view of any block or component in a block diagram or IBD view and HDL
can be generated from the truth table.

Truth Table Notation. 379
Comparison Operators . 380

Truth Table Toolbars . 380

Editing a Truth Table Cell . 380

Adding a Column or Row . 381

Deleting a Column or Row . 381

Setting Truth Table Properties. 381
Setting Truth Table Generation Properties . 382
Editing Architecture or Module Declarations. 386
Editing Concurrent Statements . 387
Editing Process or Local Declarations . 387
Editing Global Actions . 388

Case and IF Style Truth Tables . 389

Setting Truth Table Preferences. 391

A truth table may typically be used to convert between digital and analog data input signals to
describe a decoder or multiplexor function.

The truth table editor is implemented as a spreadsheet which supports extended behavioral and
comparison functions as well as simple combinatorial or sequential truth tables.

A sequential truth table can be defined by setting clock and reset information as generation
properties which are added to the VHDL process (or Verilog module) when HDL is generated
for the truth table.

The syntax and semantics of the truth table are checked during HDL generation and the cells
corresponding to any errors encountered are highlighted on the truth table.

When you create a new truth table as a child view from within a block diagram or IBD view, an
input column is automatically created for each input port and an output column for each output

Graphical Editors User Manual, V2010.3378

Truth Table Editor

June, 2011

port. Alternatively, you can set preferences for the initial number of columns and rows in a new
truth table which has no parent view.

In the following example, the output ser_if_data is assigned the value of the xmitdt, recvdt or
status input registers depending on which enable signal is set. For any other inputs, the output is
assigned the value "00000000".

Truth Table Editor
Truth Table Notation

Graphical Editors User Manual, V2010.3 379
June, 2011

Truth Table Notation
The truth table editor displays a spreadsheet containing input and output columns. The columns
are numbered using alphabetic characters and rows using numeric characters so that any cell can
be uniquely referenced. (For example, C4 references the cell in column C, row 4.)

The first row is a header row which contains the names of input and output variables (typically
an input, output or bidirectional net name). Subsequent rows may contain a value for the
variable (which assumes the equality operator), an expression preceded by a comparison
operator or a more complex expression.

For example, the scalar VHDL value '1' corresponds to the default expression <input variable>
= true.

The output column (or columns) typically contain an expression defining the value of an output
variable (or variables). An empty row of input cells (such as rows 5 or 11 in the picture above)
represents the OTHERS condition which assigns output values when none of the input
expressions are true.

You can use an empty row of input and output cells (such as row 6 in the picture above) to
separate groups of cells. These cells are described by separate If or Case statements when HDL
is generated for the truth table.

Additional conditions (for example, an expression using an internal signal or variable name) can
be added in one or more unnamed input columns and additional actions added in unnamed
output columns. The conditions or actions are generated in the order of the columns.

All values, expressions, conditions and actions must be valid for the hardware description
language. If any syntax errors are encountered during HDL generation, an error message is
issued and the corresponding cells are highlighted on the truth table.

Graphical Editors User Manual, V2010.3380

Truth Table Editor
Truth Table Toolbars

June, 2011

Truth Table Toolbars
There is no toolbar specific to the truth table. However the standard, HDL tools, tasks and
format text toolbars are available.

Refer to the HDL Designer Series User Manual for general information about these toolbars
and general information about the HDL Designer Series user interface.

Editing a Truth Table Cell
You can add text to a truth table editor cell by simply selecting the cell and typing the required
expression. Any existing text is overwritten or you can double-click in a cell to explicitly add
new or edit existing text characters.

VHDL scalar values should be entered in single quotes (for example: '0' or '1'; VHDL array
values should be entered in double quotes (for example: "00000000" or "101"). Verilog scalar
values should be entered without quotes (for example: 0 or 1; VHDL array non-decimal values
should be entered with a width and base prefix (for example: 3'b101, 8'b00000000 or
15'h107d).

By default, you can add or edit a single line in each cell. However, you can allow multiple lines
in any cell by choosing Change To Multi-line from the Table or popup menu or return to
single line mode by choosing Change To Single-line. Multi-line cells are outlined to
distinguish them from single-line cells and are highlighted with a red background when
selected.

Note
The key is disabled and the key creates a new line when multi-line mode
is enabled. If you change a multi-line cell to single-line, the cell contents are concatenated
on one line.

Refer to “Table Editor Windows” on page 87 for information about selecting, editing and
resizing table cells.

Comparison Operators
When you enter a value in a truth table input column, the equality operator is assumed by
default. However, any of the following operators can be used:

Operator VHDL Verilog

equal (default) = == or ===

not equal /= != or !==

less than < <

Truth Table Editor
Adding a Column or Row

Graphical Editors User Manual, V2010.3 381
June, 2011

Note
Expressions using the === or !== operators are not synthesizable.

Adding a Column or Row
You can add a column to a truth table by choosing Add Column from the Table or popup
menu.

If more than one cell is selected, the corresponding number of new columns are added to the left
of the selected column(s). If the selected cells are input columns, the new columns are added as
input columns. If the selected cells are output columns, the new columns are added as output
columns. If the selected cells include both input and output columns the new columns are added
as input columns.

You can add a row to a truth table by choosing Add Row from the Table or popup menu.

If more than one cell is selected, the corresponding number of new rows are added above the
selected row(s). However you cannot add rows when the header row is selected.

Deleting a Column or Row
You can delete a column or group of selected columns from a truth table by choosing Delete
Column from the Table or popup menu. However, you cannot delete all the columns. All truth
tables must contain at least one input column and one output column.

You can delete a row or group of selected rows from a truth table by choosing Delete Row from
the Table or popup menu. However, you cannot delete the header row and there must be at least
one row for input comparison and output assignment.

Setting Truth Table Properties
You can edit the truth table properties by choosing Truth Table Properties from the Table
menu to display the Truth Table Properties dialog box with tab options for:

greater than > >

less than or equal <= <=

greater than or equal >= >=

Generation You can specify a sequential or combinatorial truth table
generated with If or Case statements and specify the
sensitivity list.

Graphical Editors User Manual, V2010.3382

Truth Table Editor
Setting Truth Table Properties

June, 2011

Note
You can set preferences in the Headers tab of the VHDL and Verilog Options dialog
boxes to include the generation properties as comment text after the header in the
generated HDL.

Setting Truth Table Generation Properties
You can set the HDL generation properties by choosing Truth Table Properties from the
Table menu and then selecting the Generation tab in the Truth Table Properties dialog box.

Architecture or Module
Declarations

A list of user defined declarations which are included at the
start of the VHDL architecture or Verilog module in the
generated HDL.

Concurrent Statements A list of concurrent statements that are included at the end of
the VHDL architecture or Verilog module in the generated
HDL.

Process or Local
Declarations

A list of statements which are included at the start of the
process in the generated VHDL or at the start of the local
always code in the generated Verilog.

Global Actions Common actions that are always performed when the truth
table is evaluated.

Truth Table Editor
Setting Truth Table Properties

Graphical Editors User Manual, V2010.3 383
June, 2011

For example, the following dialog box is displayed when you are using Verilog:

Sequential and Combinatorial Diagrams
You can specify whether the truth table is sequential or combinatorial.

A sequential truth table changes state on active clock edges. An optional reset signal can be
used to perform specified reset actions.

A combinatorial truth table operates independently of any clock and is typically used for
decoding an address bus.

HDL Style
You can specify whether HDL is generated using If or Case styles. When Case style is selected
you can choose to generate a default Others condition when not this condition is not specified
by an empty input row in the truth table.

Graphical Editors User Manual, V2010.3384

Truth Table Editor
Setting Truth Table Properties

June, 2011

When using Verilog, you can also choose to use casex or casez comparisons as an alternative to
bit comparison (case).

Note
If you choose Case style, and invalid cells are encountered during HDL generation, a
warning is issued and generation is attempted using If style. If the truth table contains
multiple blocks of cells, any cell blocks which are not valid for Case style may be
generated using If style resulting in generated HDL which contains both If and Case
constructs.

Refer to “Case and IF Style Truth Tables” on page 389 for more information.

Clock Signal
When the sequential option is selected, you can enter the clock signal or choose from a
dropdown list of available input signals.

You can also set the clock edge sensitivity.

For a Verilog view, you can choose Rising or Falling corresponding to posedge or negedge
sensitivity.

For a VHDL view, you can choose Rising, Falling, Rising Last, Falling Last. These options
generate the following VHDL clock edge expressions:

Alternatively for either language, you can choose to specify any other valid edge condition.

Reset Signal
When the sequential option is selected, you can enter a list of reset actions and enter a
synchronous or asynchronous reset signal (or choose from a dropdown list of available input or
internal signals). You can choose to trigger the reset on a High or Low level signal (or choose
Specify to enter any other valid reset condition).

Option Expression

Rising clk'EVENT AND clk = '1'

Falling clk'EVENT AND clk = '0'

Rising Last clk'EVENT AND clk = '1' AND clk'LAST_VALUE = '0'

Falling Last clk'EVENT AND clk = '0' AND clk'LAST_VALUE = '1'

Rising edge rising_edge(clk)

Falling Edge falling_edge(clk)

Truth Table Editor
Setting Truth Table Properties

Graphical Editors User Manual, V2010.3 385
June, 2011

If you have specified a Verilog reset condition, you must also specify any additional signals
required in the sensitivity list. (Multiple signals should be separated by an OR operator.)

You can optionally set pragmas (sync_set_reset_local or async_set_reset_local) which identify
the name of the currently specified synchronous or asynchronous reset signal.

Note
The pragmas are entered using the keyword (pragma, synopsys or exemplar) preference
set in the Style tab of the VHDL or Verilog Options dialog box.

Sensitivity List
You can also specify a sensitivity list of signals which cause the corresponding process to
execute if any of the signals change. Multiple signals should be separated by the comma
character for VHDL and by an or when using Verilog.

If the sensitivity list is not specified it is shown as <Automatic> in the dialog box and is
automatically created during HDL generation using to the following rules:

Full/Parallel Case
When you are using Verilog, you can insert pragmas to specify full case or parallel case
statements:

Assignment Type
When you are using Verilog, you can also choose whether Blocking assignments, specified by
the = operator or Non Blocking assignments specified by the <= operator are used in the
generated HDL.

Sequential with synchronous or no reset <clock name>

Sequential with asynchronous reset <clock name>, <reset name>

Combinatorial All input and internal signals

full_case All possible branches have been specified, any missing
branches cannot occur and a default branch need not be
generated.

parallel_case Branches are mutually exclusive.

parallel_case full_case All possible branches have been specified and are mutually
exclusive.

Graphical Editors User Manual, V2010.3386

Truth Table Editor
Setting Truth Table Properties

June, 2011

Editing Architecture or Module Declarations
You can edit architecture declarations (when using VHDL) or module declarations (when
using Verilog) by choosing Truth Table Properties from the Table menu.

The Architecture Declarations (or the Module Declarations) tab of the Truth Table
Properties dialog box is displayed which allows you to enter any valid HDL statements for the
current hardware description language in a free-format entry box.

For example, the following picture shows the Truth Table Properties dialog box being used to
enter an architecture declaration:

Terminating semi-colons should be included for all statements entered in the dialog box. No
syntax checking is performed when the dialog box is applied to the truth table. However, syntax
and semantic checks are performed when you generate HDL for the truth table.

Note
Architecture declarations or module declarations cannot be set when a truth table is used
to define an embedded view in a block diagram or IBD view. However, any declarations
required by the embedded view can be set on the parent view.

For more information about declarations refer to “Editing Architecture or Module Declarations”
on page 369 in the Flow Chart Editor chapter.

Truth Table Editor
Setting Truth Table Properties

Graphical Editors User Manual, V2010.3 387
June, 2011

Editing Concurrent Statements
You can edit concurrent statements by choosing Truth Table Properties from the Table
menu.

The Concurrent Statements tab of the Truth Table Properties dialog box provides a free-
format entry box for you to add or edit free-format HDL statements.

Terminating semi-colons should be included for all statements entered in the dialog box. No
syntax checking is performed when the dialog box is applied to the truth table. However, syntax
and semantic checks are performed when you generate HDL for the truth table.

Concurrent statements are included in the generated HDL at the end of the VHDL architecture
or Verilog module. They are executed concurrently with all of the processes (or always blocks)
in the truth table and are typically used for additional datapath operations or specialized
clocking.

Editing Process or Local Declarations
You can add or edit truth table process declarations (when using VHDL) or local declarations
(when using Verilog) by choosing Truth Table Properties from the Table menu.

Graphical Editors User Manual, V2010.3388

Truth Table Editor
Setting Truth Table Properties

June, 2011

The Process Declarations (or Local Declarations) tab of the Truth Table Properties dialog box
allows you to add or edit declaration statements within a VHDL process or within a local
Verilog always block.

These tabs are typically used to declare constants and parameters (or for 'define statements
when using Verilog). For example, the following picture shows the Truth Table Properties
dialog box being used to enter a constant process declaration:

For a VHDL truth table, process declarations are placed at the beginning of the process
immediately before the BEGIN keyword in the generated HDL.

For a Verilog truth table, local declarations are placed after the always keyword in the generated
HDL.

Terminating semi-colons should be included for all statements entered in the dialog box. No
syntax checking is performed when the dialog box is applied to the truth table. However, syntax
and semantic checks are performed when you generate HDL for the truth table.

Editing Global Actions
You can add or edit the global actions for a truth table by choosing Truth Table Properties
from the Table menu to display the Truth Table Properties dialog box.

Truth Table Editor
Case and IF Style Truth Tables

Graphical Editors User Manual, V2010.3 389
June, 2011

The Global Actions tab of the dialog box allows you to add or edit HDL statements which are
included in the generated HDL for the truth table as default actions which are always
performed.

Terminating semi-colons should be included for all statements entered in the dialog box.

No syntax checking is performed when the dialog box is applied to the truth table. However,
syntax and semantic checks are performed when you generate HDL for the truth table.

Case and IF Style Truth Tables
The HDL generated for a truth table is usually described using If-Then-Else constructs but you
can optionally set the generation properties to use Case style code.

Case statements can often be more efficiently synthesized because the Case statement does not
imply priority between the available choices.

When you use an If statement, priority is imposed by the order in which conditions are
specified.

When you are using If-Then-Else style code, individual input cells in the truth table matrix can
be left empty and are treated as "Don't Care" values by HDL generation.

In a Case style truth table, values must be assigned for all input cells in the matrix (although you
can use a specific "Don't Care" character if one is supported by your downstream tools).

Graphical Editors User Manual, V2010.3390

Truth Table Editor
Case and IF Style Truth Tables

June, 2011

However, each separate block of cells (which correspond to separate Case statements) may
include empty columns.

A Case style truth table (or block of cells representing a Case statement) may contain a single
input expression or multiple input expressions.

If the generation properties are set to Case style and invalid cells are encountered during HDL
generation, a warning is issued and generation is attempted using If-Then-Else constructs.

If the truth table contains multiple blocks of cells, any cell blocks which are not valid for Case
style are generated using If-Then-Else style (if valid) resulting in generated HDL which contains
both If and Case constructs.

Note
Case style HDL cannot be generated when additional conditions have been entered in the
truth table.

Case Style with a Single Input Expression
For a single input expression, possible values of the input expression are entered in a single
column and the corresponding output values entered under each output column.

The resulting CASE construct is based purely on the values of this input expression.

An option Others (or Default) can be specified using a blank input value with output values
specified. If not specified, the default VHDL value is "null".

Blank input expression cells are not allowed except for the Others row. Any type of input
expression is allowed as for If-Then-Else style.

Case Style with Multiple Input Expressions
For multiple input expressions, possible values of each input expression are entered under each
input column and the corresponding output values entered under each output column.

All scalar input expressions must be of the SAME type and either:

std_logic
std_ulogic

All array input expressions must be of the SAME type and either:

std_ulogic_vector
std_logic_vector
signed
unsigned

Truth Table Editor
Setting Truth Table Preferences

Graphical Editors User Manual, V2010.3 391
June, 2011

In VHDL, a case expression must be an enumeration, integer, physical or a one dimension array
and locally static. Hence, a local variable is required to contain the concatenation of the input
expressions being considered for a given block of cells.

The name of this local variable must have the form:

<blockname>_<input expression 1>_<input expression N>_...

The resulting name must be a valid VHDL identifier, so care must be taken to modify any
characters which may be legal in and expression but not in the concatenated name.

The type of the concatenated variable will be either:

You cannot mix std_ulogic, std_ulogic_vector with signed or unsigned.

Note
If scalar values (in single quotes) are concatenated with other scalar values or with array
values (in double quotes) the result is always an array value (in double quotes).

The size of the concatenated variable is the sum of the individual sizes (ranges) of the input
expressions being concatenated for that particular block of cells. However, this is not
necessarily the width of the ports or input declarations since the input expression can be any
expression.

Verilog does allow direct concatenation within the case expression itself, hence a concatenation
variable is not required. However, the concatenated values must be prefixed with the total
width, for example: 4'b 0101

Setting Truth Table Preferences
You can set truth table preferences by choosing Truth Table from the Master Preferences
cascade of the Options menu in the design manager.

The Truth Table Preferences dialog box has separate pages for setting the default table General
options, Default Properties and Appearance.

std_ulogic_vector
std_logic_vector
std_logic_vector

if all inputs are std_ulogic or std_ulogic_vector
if inputs are a mix of std_logic_vector and std_ulogic_vector
if all inputs are scalar and of type std_logic
or the type of the inputs buses, if there are any.

Graphical Editors User Manual, V2010.3392

Truth Table Editor
Setting Truth Table Preferences

June, 2011

Note
The general and default preferences take effect on the next truth table you open and can
only be edited when the dialog box is displayed from the Master Preferences cascade in
the design manager Options menu. These pages are not available when you choose
Diagram Preferences in a truth table window.

The Appearance page allows you to set default visual attributes for individual truth table
objects.

The attributes include the foreground and background colors, line color and style, fill style, line
width and the text font. Some attributes may not always be available. For example, line style,
width and color attributes are not available for a text object. Refer to ““Setting Visual
Attributes” on page 83” for more information.

When you are setting master preferences, you can also set the highlight color for syntax errors.

Truth Table Editor
Setting Truth Table Preferences

Graphical Editors User Manual, V2010.3 393
June, 2011

The General page allows you to set the column width and the row height. You can also set the
initial number of columns and rows for a new truth table which has no parent view. There must
be at least two columns which are split evenly between input and output columns.

Note
Note that when a truth table is created as a child view from a block diagram, IBD view or
symbol, an input column is created for each input signal and an output column for each
output, buffer or bidirectional signal.

The HDL syntax in a truth table is not checked on entry. However, you can set a master
preference to specify that the syntax is checked during HDL generation. If this option is
enabled, cells with syntax errors are highlighted when HDL is generated for the view.

The Default Properties page allows you to define default user properties for truth table views.

Refer to the HDL Designer Series User Manual for information about “Using View Property
Variables”.

Graphical Editors User Manual, V2010.3394

Truth Table Editor
Setting Truth Table Preferences

June, 2011

The appearance and default properties preferences can also be edited by choosing Diagram
Preferences from the Options menu in a truth table.

The diagram preferences dialog box allows you to set the background color for each type of cell
in the truth table and the foreground color and font used for cell text.

Note
The foreground color for cells and background color for text is ignored.

When you edit preferences for the active diagram, the dialog box allows you to choose whether
the preferences are applied to new objects or to both new and existing objects in the truth table.

Diagram preferences effect the active truth table view only. The master preferences take effect
on the next truth table you open but do not effect any truth tables that are already open.

You can save the appearance preferences set on the active diagram as master preferences by
choosing Update from Diagram in the Master Preferences cascade of the Options menu or
you can apply the master preferences to the active diagram by choosing Apply to New Cells or
Apply to New and Existing Cells.

Refer to the “Default Preferences” appendix in the HDL Designer Series User Manual for lists
of the default preferences set when you invoke a HDL Designer Series tool for the first time.

Graphical Editors User Manual, V2010.3 395
June, 2011

Chapter 10
Graphical Rendering

This chapter describes how you can convert HDL text views to editable graphical views. You
can also choose to visualize any HDL individual view as a graphical view.

Design Extraction. 395
Recovering Design Structure . 396
Recovering State Machines. 398
Recovering Flow Charts . 399
Incremental Recovery . 401

Using the Convert to Graphics Wizard . 401
Setting Convert to Graphics View Styles . 402
Setting Libraries for Black Box Components. 403
Setting Convert to Graphics Wizard Options . 404

Setting Convert to Graphics Options. 405
Block Diagram Options . 406
Routing Options . 407
Placement Options . 408

Updating a Graphics View from Generated HDL . 409

Visualizing HDL Text as Graphical Views . 409

Block Diagram Layout and Routing . 409
Changing the Layout of a Block Diagram . 410
Automatic Routing . 410

Design Extraction
The HDL Designer Series tools incorporate HDL2Graphics technology which can read any
VHDL, Verilog (or mixed VHDL and Verilog) design and convert the structure of the source
design code to a more easily maintainable hierarchy of design unit views while fully preserving
the original behavior.

The HDL Designer Series can read HDL source files which fully comply with the VHDL
(IEEE-1076-1987, IEEE-1076-1993 and IEEE-1076-2002) or Verilog (IEEE-1364-1995 and
IEEE-1364-2005) and SystemVerilog standards but may fail if non-standard HDL is
encountered.

Graphical Editors User Manual, V2010.3396

Graphical Rendering
Design Extraction

June, 2011

Many tools support translate_on and translate_off pragmas which can be used to segregate
application specific sections of HDL code. For example, -- synopsys translate_off, -- exemplar
translate_off or -- pragma translate_off.

HDL2Graphics attempts to convert all HDL code including comments and code enclosed
between these pragmas. However, you can isolate code you do not want converted by using the
special pragmas -- hds translate_off and -- hds translate_on. All pragmas must include the
appropriate comment characters (-- in VHDL or // in Verilog).

Recovering Design Structure
The structure of the source HDL is recovered as a hierarchy of design unit views representing
the relationship between design units.

Top level design units are recovered as components and marked with a marker. Child design
units are recovered as unmarked components.

Hierarchy descriptions in the HDL can be recovered as graphical views defined by a block
diagram or IBD view. Primitive leaf level views defined as state machines in the HDL can be
recovered as graphical state diagrams and other leaf-level code represented as graphical flow
charts.

All diagram types can be recovered when you are using the HDL Detective or HDL Designer
tools but are not automatically available when you are using HDL Author. However, if you
attempt to use HDL2Graphics technology with HDL Author, a dialog box is displayed which
allows you to acquire a temporary floating license for HDL Detective or HDL Designer if one is
available. This license is released when the conversion to graphics operation has been
completed.

Any concurrent HDL fragments within a hierarchy description are recovered as embedded
blocks. Leaf-level HDL can optionally also be recovered as embedded blocks on a non-
hierarchical block diagram. These embedded blocks are defined by embedded views which
usually contain HDL text but if the HDL is recognized as a state machine can optionally be
recovered as an embedded state diagram.

Each occurrence of a concurrent VHDL process or a block of Verilog always code is recovered
in a separate embedded block connected by the signals used in the HDL fragment. All other
concurrent HDL (such as assignments or generate statements) are recovered in a single
embedded block which is unconnected to other objects in the recovered view.

Any required Verilog compiler directives or VHDL package references are automatically set on
the graphical views.

If a design unit interface uses a VHDL generic or Verilog parameter declaration which requires
port mapping it is instantiated in the parent view using a port map frame. Generate or Block
keywords and other conditional HDL structures are recovered using a generate frame.

Graphical Rendering
Design Extraction

Graphical Editors User Manual, V2010.3 397
June, 2011

If a VHDL entity has multiple VHDL architectures, then all architectures are recovered as
design unit views and the alphabetically last architecture name is set as the default view of the
recovered design unit.

Any configuration information included in the HDL source (either as embedded declarations or
as separate configuration specifications) is used to automatically recover multiple libraries and
identify the instantiation of different views for a design unit. However, multiple libraries or
multiple views cannot be recovered for Verilog designs.

A VHDL configuration defines the HDL library for a given entity and the architecture which is
bound to a given instance within a structural architecture. For example, the following
configuration statement specifies that instance i0 of the counter component is bound to
architecture fsm of entity counter, in library timer_vhdl:

for i0: counter
use entity timer_vhdl.counter(fsm);
end for;

The configuration may also specify additional port mapping and VHDL generics for an instance
to those defined by the component instantiation. When multiple configurations exist for the
same entity, only one configuration will be recovered. If a configuration is used in the source
HDL to bind a component instantiation to alternative entities, this information is not recovered.

If a Verilog source file references an instance for which no corresponding Verilog module is
provided, the port mapping does not indicate the mode or type of the ports for the instance. HDL
import will guess the missing port information and recover a black box instance. This allows the
recovered view to show the connectivity between the undefined instances.

The layout and routing for recovered block diagrams is determined by the default Document
and Visualization options. However, you can change these options and run the diagram layout
or autorouting commands interactively on any block diagram. Once changes have been made,
the new options are saved as preferences and used the next time that you run a conversion to
graphics operation.

The Verilog source code may contain many Verilog modules in the same file.

Compiler directives before the first module keyword are recovered as Pre-Module directives.

Compiler directives after a module keyword but before the first lexical token other than a
comment or white space are recovered as Post-Module directives for the Verilog module.

Compiler directives after the last endmodule keyword in the file are recovered as End-Module
directives.

Compiler directives between two Verilog modules are recovered as End-Module directives for
the previous module if they occur before a `nounconnected_drive or `endcelldefine directive,
otherwise they are recovered as Pre-Module directives for the next Verilog module.

Graphical Editors User Manual, V2010.3398

Graphical Rendering
Design Extraction

June, 2011

Recovering Verilog Parameters
If a Verilog parameter is used in the declaration of an interface signal, it is recovered in the
external declarations at the top of the Verilog module.

Other Verilog parameters which occur before syntactic text in the source Verilog are declared in
the internal declarations for the Verilog module except parameters which are used for
enumerated state encoding in a state machine.

Any other Verilog parameters are declared in the view declarations.

Any parameter on an instance with an overridden value is included in the Verilog parameter
mapping shown on the instantiated block or component.

Recovering State Machines
When state machine recovery is enabled, a state diagram is created for each behavioral (leaf-
level) HDL description below an instance in the recovered structure that is recognized as an
explicit state machine and can be described by a state diagram.

Note
Implicit algorithmic state machines are not recovered. However, an algorithmic state
machine can be recovered as a flow chart with clock conditions specified at the start of
each action box representing a state.

An explicit state machine is implied when a block of HDL code contains:

• A state variable, which specifies the current state of the machine.

• A clock and optional synchronous or asynchronous reset condition (for synchronous
machines only).

• Specification of state transitions.

• Specification of outputs.

A separate concurrent state machine is created for each state machine defined in the same
VHDL architecture or Verilog module.

The recovered states are placed in a clockwise direction around a circle with the start state at the
top. However, when there are only two states, they are placed horizontally with the start state on
the left. The placement sequence is determined by the connections between states (not their
order of occurrence in the HDL code).

Graphical Rendering
Design Extraction

Graphical Editors User Manual, V2010.3 399
June, 2011

Recognizing State Machines
When you enable the State Diagram option in the Convert to Graphics View Style Options, the
HDL parser searches for HDL code with characteristics which represent an explicit state
machine.

The following algorithm is used to analyze the HDL code:

• Find any clocked processes (which must have a sensitivity list).
The first body statement must be IF (but can be preceded by declarations) which must
contain a condition. For example: IF <condition> THEN.
If there is no ELSE or ELSIF, then assume that the IF is testing the clock condition and
extract this clock condition.
If there are ELSE or ELSIF branches, then assume the first IF contains the reset
condition and check the ELSE or ELSIF to get the clock condition.

The reset condition must have the form <condition> THEN <actions>
and must include a reset signal in the condition. For example: rst='0' or rst/='0'. There
must also be an assignment (signal or variable) to a state variable.

The clock condition must have the form <condition> THEN <actions> and must
include a clock signal in the condition. For example: clk'event AND ... or
rising_edge(clk). If the first statement is an assignment, it must assign a signal or
variable to a state variable. If the first statement is CASE, then it must test the state
variable.

• Find transition (next state) processes for each clocked process, (clocked and transition
processes may be combined) and find a process which assigns to the next state.

• Find output processes for each clocked process and the output process which assigns to a
non state variable output signal.

• Build the state machine structure from the process information.
Store the first clock that was identified.
Store the first reset that was identified.
Store the state variable info for this process.
Store the state encoding, if it is not already stored.
Store target of WHEN OTHERS transition as recovery state
Ensure the reset strings are valid characters.
All assigned signals in the clocked process are tagged as registered.

Recovering Flow Charts
When flow chart recovery is enabled in the Convert to Graphics View Style Options, a flow
chart is created for each behavioral (leaf-level) HDL description below an instance in the
recovered structure. A separate concurrent flow chart is created for each VHDL process or
Verilog procedure (where a procedure is any section of code represented by Verilog always or
initial statements).

Graphical Editors User Manual, V2010.3400

Graphical Rendering
Design Extraction

June, 2011

Note
After recovery, you can choose whether the Verilog regenerated from the graphical flow
chart uses initial or always statements.

For VHDL, concurrent flow charts are named after the process, or if the process is unnamed, a
name is generated using the format: process<n> where n is an integer starting from 1. Verilog
procedures are not normally named in the source HDL and each concurrent flow chart is given a
name using the format: procedure<n>.

Architecture declarations and process declarations (in VHDL) or module declarations and local
declarations (in Verilog) are included in the corresponding flow chart as text blocks. Any
concurrent statements in the recovered code relate to all concurrent diagrams for the same block
instance and are included as text blocks on all the concurrent flow charts. A text block showing
the signals sensitivity list for each concurrent flow chart is also created.

The objects in each concurrent flowchart are laid out from top to bottom with all flows (except
for loopback flows) pointing downwards.

Conditional (IF) statements) are recovered as decision boxes with a true and false branch. If the
conditional statement includes ELSIF (or Verilog else if) constructs these are represented by
multiple cascaded decision boxes.

The choices (values) of a CASE statement are recovered as ports arranged on the bottom edge
of a start case box from left to right as encountered in the code with the port values placed in the
standard position relative the port. (For Verilog, casex and casez statements are recovered as
start case objects with appropriate object attributes.)

Loops are represented with the continue and break statements shown to the right of a start loop
and end loop pair. The loopback flow is connected between the left sides of these objects.

Wait statements are recovered as wait boxes with the appropriate delay statement. In Verilog,
timing controls using the wait keyword are recovered as wait boxes but the # or @ timing
controls are included in action box text.

Any other statements are treated as action statements and recovered into an action box. The
action box contains as many statements as possible. For example, a section of code containing
100 lines none of which is a decision, case, loop or wait statement, is recovered into a single
action box. The action box is automatically sized to contain the HDL text (with default padding
added).

Comments within action statements or declarations are included on the flow chart but comments
associated with if, case or loop statements are not recovered. In particular, the HDL translation
pragmas synopsys parallel_case and synopsys full_case are not recovered.

Graphical Rendering
Using the Convert to Graphics Wizard

Graphical Editors User Manual, V2010.3 401
June, 2011

Incremental Recovery
Convert to Graphics will normally attempt to recover the entire design described by the source
HDL. However, the source HDL may be incomplete or may reference design units which have
been previously recovered and already exist.

If an incomplete design is recovered, dummy design units are created in the database for
undefined instances in the source HDL.

If the source HDL has been updated and you choose to reconvert the design, any new views are
added (and dummy views overwritten). When a design unit is updated by incremental recovery,
its interface to child or parent views in the database may also be changed.

In general when a design unit already exists, the following rules are followed:

Note
An interface is considered to have changed if a port, VHDL generic or Verilog parameter
has changed.

If the Overwrite option is set, you are not prompted before a view is overwritten. If not set,
there is a single confirmation prompt for all views which will be overwritten. If a symbol is
overwritten, you are warned that instances of the component will need to be reconciled.

Using the Convert to Graphics Wizard
You can convert any existing HDL text views to editable graphical source views by selecting
the views (or design units if the default views are HDL text views) in the design explorer and
using the button or by choosing Single Level from the Convert To Graphics cascade of
the HDL or popup menu.

Existing Unit New Unit Rules Applied

component component Add or overwrite views. If interface has changed,
overwrite symbol.

component block Add or overwrite views. If interface has changed,
overwrite symbol.

component component Add or overwrite views, convert block to component,
update parent view.

block block If parent design units are unchanged, add or overwrite
views. If parent design units changed, convert block
to component and update parent view.

VHDL package package Add or overwrite package.

Graphical Editors User Manual, V2010.3402

Graphical Rendering
Using the Convert to Graphics Wizard

June, 2011

If the HDL text is a structural view which contains hierarchy descriptions, you can use the
button or choose Hierarchy Through Components from the HDL or popup menu to convert
all views in the hierarchy below the selected view.

The Convert To Graphics wizard is displayed indicating the number of hierarchy descriptions
and leaf level descriptions in the selected HDL files. For example, the hierarchy of the uart_tb
test bench in the example UART_TXT library contains four hierarchy descriptions and six leaf
level descriptions.

Setting Convert to Graphics View Styles
The first page of the Convert to Graphics wizard allows you to set the required graphical view
styles:

Hierarchy descriptions can be recovered as block diagram or IBD views.

If a finite state machine is recognized in a leaf-level description it can be recovered as a state
diagram. You can optionally choose the “Deep analysis” option whereby all process statements
are analyzed to recover any relevant state machine information. Otherwise, the leaf level
description can be saved as a flow chart or as a block diagram with the leaf level HDL codes
represented by embedded HDL text views on the diagram.

Graphical Rendering
Using the Convert to Graphics Wizard

Graphical Editors User Manual, V2010.3 403
June, 2011

You can also choose to create a symbol even when no other graphical view styles are selected.
If this option is set, symbols are created although all views remain as HDL text. If unset,
symbols are only created for the design units converted to graphic views.

Setting Libraries for Black Box Components
If you use the Next and the HDL code includes instantiations for components which are not
defined in the current library (or in a library specified by a VHDL configuration) the Black Box
Components page is displayed listing these black box instances.

For example, the following page is displayed when converting a HDL view which contains
undefined black box components for the design units address_decoder, clock_divider,
cpu_interface and serial_interface:

You can use the Set Library button to set a specific library by choosing from a list of existing
libraries in the active project or the Clear Library button to clear a specific library
specification.

Alternatively, you can use the Add button to create a list of libraries to search for matching
components. The list can be ordered by using the Up and Down buttons or libraries removed
from the list using the Remove button.

Components are automatically removed from the list of black box components if they exist in
one of the libraries in the search list.

Graphical Editors User Manual, V2010.3404

Graphical Rendering
Using the Convert to Graphics Wizard

June, 2011

The following example shows the cpu_interface component has been explicitly assigned to the
UART_TXT library while the other components are located by searching the Test_Lib,
SCRATCH_LIB and UART_TXT libraries:

If you confirm the wizard while there are unassigned black box components, you are prompted
to return to the wizard and specify the remaining libraries. If you override this prompt, the
components are instantiated as black box components in the graphical view.

Setting Convert to Graphics Wizard Options
The last page of the wizard allows you to set additional options to overwrite existing graphical
views and display verbose messages in the log window during conversion.

If you choose to overwrite an existing view, you can choose to make a copy of the previous
view. (For example, if you overwrite a block diagram view named struct, the previous view is
saved as Copy_of_struct.)

Graphical Rendering
Setting Convert to Graphics Options

Graphical Editors User Manual, V2010.3 405
June, 2011

You can also choose to set the new graphical views as the default views or use the Advanced
button to display the Documentation and Visualization Options dialog box.

When you confirm the wizard, the selected HDL files are read and the graphics views created.

Progress messages (including any errors if problems are encountered) are written to the Task
Log window.

When conversion is complete a completion message is issued with a report of the number of
design units saved and the number of components, block diagrams, state machines and flow
charts that have been created.

Note
Note that a file name clash with the original source HDL file may occur if you generate
HDL from a graphical view. You should rename one of these views if you want to keep
both the graphical and HDL text views.

Setting Convert to Graphics Options
Convert to Graphics options can be set by using the Advanced button in the Convert to
Graphics wizard or by choosing Documentation and Visualization from the Options menu in
the design manager to display the Documentation and Visualization Options dialog box.

The options are saved and used as defaults the next time you convert or render HDL code as
graphics.

Graphical Editors User Manual, V2010.3406

Graphical Rendering
Setting Convert to Graphics Options

June, 2011

Block Diagram Options
The Structural Diagram Node allows you to set options for text visibility, embedded blocks
and instances on the recovered diagrams.

Note
Hiding text helps to optimize automatic routing and placement for compact layout. If the
text objects are hidden, instances can be placed closer together to minimize the size of the
recovered diagrams.

Graphical Rendering
Setting Convert to Graphics Options

Graphical Editors User Manual, V2010.3 407
June, 2011

Routing Options
The Routing node allows you to set options which control whether nets are connected on a
recovered block and how these nets are routed.

Note
The routing options are also available from the Block Diagram Layout and Routing
Options dialog box.

Graphical Editors User Manual, V2010.3408

Graphical Rendering
Setting Convert to Graphics Options

June, 2011

Placement Options
The Placement node allows you to control the placement of instances on the recovered block
diagrams.

Note
The placement options are also available from the Block Diagram Layout and Routing
Options dialog box.

Graphical Rendering
Updating a Graphics View from Generated HDL

Graphical Editors User Manual, V2010.3 409
June, 2011

Updating a Graphics View from Generated HDL
If a graphical view is older than its generated HDL, you can select the generated file in the
design explorer HDL Files view and choose Update Graphics from the popup menu to run
Convert to Graphics and overwrite the graphical view.

You are prompted whether to retain a copy of the existing view (as Copy_of<view>) and
whether to preserve the placement of objects from the existing view.

For example:

Visualizing HDL Text as Graphical Views
You can visualize a HDL text view as a graphical view by selecting the view (or a design unit if
the default view of the design unit is a HDL text view) in the design explorer and using the

 button.

A pulldown palette on the button allows you to choose a block diagram , IBD view ,
state diagram or flow chart view.

Alternatively you can choose Block Diagram, IBD, State Diagram or Flow Chart from the
Visualize Code As cascade of the HDL or popup menu.

Although you can only perform non-logical edits to visualized views, the simulation, animation
and cross-probing facilities described in “Simulation and Animation” on page 415 are fully
functional.

Block Diagram Layout and Routing
Layout and routing is performed automatically when a block diagram is created from a HDL
text view using the current layout and routing options or when you show a block diagram from
an IBD view with the Update Layout option.

Block diagram layout and routing options can be set using a tabbed dialog box which is
displayed by choosing Layout/Routing Options from the Diagram menu in a block diagram to
display the Block Diagram Layout/Routing Options dialog box.

Graphical Editors User Manual, V2010.3410

Graphical Rendering
Block Diagram Layout and Routing

June, 2011

Tip: The Routing tab can also be accessed by choosing Autoroute Options from the
Autoroute cascade of the Diagram or popup menu.

The dialog box provides access to the same options as provided in the Documentation and
Visualization Options dialog box shown in “Placement Options” on page 408 and “Routing
Options” on page 407.

Refer to the descriptions of the Layout Options and Routing Options which can be accessed
using the Help buttons on each tab of this dialog box. These options are saved as preferences
and used as defaults the next time you use the layout and routing commands.

Changing the Layout of a Block Diagram
You can automatically update the placement of blocks and components on a block diagram by
choosing Layout Diagram from the Diagram menu or by using the Ctrl + L shortcut.

The placement algorithm attempts to rearrange the diagram, reducing empty space while
preserving a left-to-right design flow. This command can be used in conjunction with the
Autoroute command to optimize the diagram readability.

The placement algorithm is designed to reduce the number of feedback loops and reduce the
complexity of the signal paths while showing association by placing ports on blocks as close as
possible to their source.

The placement algorithm and block diagram layout options are used automatically to arrange
diagrams recovered from HDL text views. However, the layout for a diagram may often be
improved by using the Layout Diagram command after changing layout options.

Note
Note that any Non-autoroute panels on the diagram are deleted but Regular or Sheet
panels are preserved.

Automatic Routing
You can re-route the nets on a block diagram by using the Autoroute cascade of the Diagram
or popup menu and choosing Autoroute, Autoconnect, Autobundle or Connect By Name.
Note that the Autoroute command can also be executed by using the Ctrl + R shortcut.

If nothing is selected, all connections on the diagram are re-routed. However if objects are
selected, the selected nets and all nets connected to other selected objects are re-routed.

You can exclude parts of a diagram from the automatic routing commands by adding a panel
around an area and setting the Non-autoroute panel property as described in “Adding a Panel”
on page 79.

Graphical Rendering
Block Diagram Layout and Routing

Graphical Editors User Manual, V2010.3 411
June, 2011

The percentage complete is indicated in the status bar while autorouting a large design.

The routing algorithm and current block diagram routing options are used automatically to route
diagrams recovered from HDL text views. However, the routing for a diagram may be improved
by using the Autoroute command after changing the routing options. For example, a complex
diagram can often be simplified by enabling the options to automatically group signal nets into
bundles or reconstruct a bus from bus slices.

Autoroute
The Autoroute command uses the current options set in the Routing tab of the Block Diagram
Layout/Routing dialog box.

Autoconnect
The Autoconnect command attempts to re-route the nets using simple routes which comprise
the minimum number of vertical and horizontal segments to connect the source and destination
but avoid other objects (or unselected nets).

If no route is found, or the source or destination is on another net, a direct line is drawn with no
route points between the origin and destination. This command is equivalent to using
Autoroute with Explicit connection set (but Keep existing connectivity, Bundle signals and
Connection limit unset) in the routing options.

Autobundle
The Autobundle command automatically groups signal nets into bundles. This command is
equivalent to using Autoroute with Explicit connection set (but Keep existing connectivity
unset) and Bundle signals set. (The Bundle limit is set to the current number specified in the
routing options.)

Graphical Editors User Manual, V2010.3412

Graphical Rendering
Block Diagram Layout and Routing

June, 2011

When you set the Bundle signals option, you can choose whether to use direct or indirect
connection. For example, the following illustration shows the same two blocks connected using
indirect and direct bundles:

When direct bundling is set, bundles are automatically created for any group of signals (which
may include buses) between the same nodes.

For indirect bundling, the individual signals are shown as stubs with a common bundle
connecting them across the diagram.

You can set a bundle limit to prevent buses being created with less than a specified number of
signals. The most compact diagram layout is achieved when this limit is set to zero.

When the signals are connected to a component and direct bundling is set, the bundle is
connected to the ports on the component using a port map frame. If two bundles have same
contents, they are not connected but connections between the contained signals is implied by
name.

Automatically created bundles are given a name derived from the source and destination nodes.
For example, the bus I0_I1 connects between instances I0 and I1 in the illustrations above.

Connect by Name
The Connect By Name command reduces all nets to stub signals with all the connections
implied by name. This command is equivalent to using Autoroute with Connect by name set
in the routing options.

Bus Reconstruction
You can enable a block diagram layout option to reconstruct buses from slices of a signal with
the same name. When set, automatic bus reconstruction is performed when you render a new
block diagram or when you use the Autoroute command in an existing block diagram.

Graphical Rendering
Block Diagram Layout and Routing

Graphical Editors User Manual, V2010.3 413
June, 2011

When you set the Bus reconstruction option, you can choose whether to use direct or indirect
connection. However, reconstructed buses connected to signal stubs on a block are always
connected indirectly since direct connections to a block would modify the block interface. The
following example shows slices sigA(0), sigA(1), sigA(2:3) and sigA(4:7) combined into a
single 8-bit bus sigA then deconstructed into slices sigA(0:1), sigA(2:3), sigA(4:5) and
sigA(6:7).

Graphical Editors User Manual, V2010.3414

Graphical Rendering
Block Diagram Layout and Routing

June, 2011

Graphical Editors User Manual, V2010.3 415
June, 2011

Chapter 11
Simulation and Animation

This chapter describes procedures for driving simulation from a graphical diagram and
animating the state diagrams and flow charts in your design.

Simulator Cross-Probing. 415
Simulation Toolbar . 416
Adding Signals to Simulator Windows . 418
Removing Signals from Simulator Windows . 418
Adding Signals to the Simulator Log . 419
Highlighting Signals in the Simulator . 419
Reporting Signal Information . 419
Adding and Removing Breakpoints . 419
Enabling and Disabling Breakpoints . 420
Reporting Breakpoint Status . 420
Adding and Removing Simulation Probes . 421
Choosing the Simulation Instance . 424
Setting the Simulator Environment. 425
Running the Simulator . 426
Displaying Simulator Windows . 427
Restarting the Simulator . 427
Using the ModelSim Source Window . 427
Cross-Probing from ModelSim. 428

State Diagram and Flow Chart Animation . 431
Animation Toolbar . 432
Enabling Data Capture . 433
Setting the Activity Trail . 434
Graphical Highlighting . 435
Reviewing Animation . 436
Linking Diagrams for Animation . 437
Mixed Language Animation . 437

Simulator Cross-Probing
When you are using a supported simulator, an additional Simulate menu and toolbar are
available in the block diagram,flow chart and state diagram windows which allow direct cross-
probing between the simulator and the source design objects.

The features described in this chapter have been developed primarily for use with the ModelSim
EE, SE or PE (version 5.5 or later) simulator. However, many of the features are also available

Graphical Editors User Manual, V2010.3416

Simulation and Animation
Simulator Cross-Probing

June, 2011

when you have invoked the NC-Sim (version 3.0 or later) simulator. Simulator cross-probing is
not available when you are using VCS or VCSi.

Refer to “Tasks, Tools and Flows” in the HDL Designer Series User Manual for information
about setting up the simulator and other downstream tools.

The simulator should normally be invoked on a design unit at or above the level to be simulated.
However, you can change the simulator environment to a lower level design unit and it is
possible to synchronize with ModelSim when the simulator has been invoked on a root design
which includes lower level design units.

Simulation Toolbar
The Simulation toolbar which is automatically displayed in the graphical state diagram and flow
chart views when a supported simulator has been invoked and supports the following
commands

Table 11-1. Simulation Toolbar Commands in State Diagram and Flow Chart
Views

Icon Description

Run for a specified time

Run forever

Continue

Run until next event

Step over the current HDL line

Step into procedure calls in the current HDL line

Step over HDL in the selected object (state diagram only)

Add a breakpoint to the selected object

Remove a breakpoint from the selected object

Remove all breakpoints

Disable breakpoints

Disable all breakpoints

Enable breakpoints

Enable all breakpoints

Highlight signal in simulator corresponding to selected object

Restarts the simulator

Simulation and Animation
Simulator Cross-Probing

Graphical Editors User Manual, V2010.3 417
June, 2011

Note
The button allows you to change the default timestep used by the button by
choosing from a pulldown list. The button is available in the state diagram only.

The following additional commands are available from the Simulation toolbar which is
displayed in the graphical block diagram.

The following additional commands are available from the Simulation toolbar which is
displayed in the graphical state diagram:

Note
The button is permanently dimmed in the Simulation toolbars if you are using
ModelSim PE which does not support this integration feature.

Table 11-2. Simulation Toolbar Commands in Block Diagram Views

Icon Description

Add the selected signals to the simulator Wave window

Remove the selected signals from the simulator Wave window

Add the selected signals to the simulator List window

Remove the selected signals from the simulator List window

Reports signal information to the main ModelSim window

Add a probe to the selected signal

Delete a probe from the selected signal

Delete all probes

Enable or disable cursor tracking for probes

Set probe properties

Choose instance for simulation

Table 11-3. Simulation Toolbar Additional Commands in State Diagram

Icon Description

Add the current state to the simulator Wave window

Remove the current state from the simulator Wave window

Add the current state to the simulator List window

Remove the current state from the simulator List window

Enable or disable cursor tracking for state machines

Graphical Editors User Manual, V2010.3418

Simulation and Animation
Simulator Cross-Probing

June, 2011

The toolbar is normally displayed at the bottom of the diagram window but can be undocked,
moved, docked or hidden in the same way as the other toolbars.

The toolbar can be displayed or hidden by setting the Simulation Tools option in the Toolbars
cascade of the View menu.

Refer to “Toolbars” on page 20 for more information about toolbars.

Adding Signals to Simulator Windows
You can add signals to the simulator Wave window by selecting them on the block diagram
using the button from the Simulation toolbar or by choosing Add Wave from the Display
cascade of the Simulate menu.

You can add selected signals to the simulator List window by using the button from the
Simulation toolbar or by choosing Add List from the Display cascade of the Simulate menu.

Note
If a block or component is selected, all the connected signals are added to the simulator
window.
The Wave window is automatically displayed if it is not already open.

If you are using ModelSim, the and buttons (or commands in the Simulate menu) can
be used in a state diagram to add a signal defining the current state of the state machine to the
Wave or List windows.

For Verilog, a virtual signal showing the enumerated state is derived from the bit value. For
VHDL, the signal represents the instance path of the state machine.

You can set these signals to track the ModelSim Wave window cursor by using the button
or choosing Track Cursor from the Display cascade. (The button is shown with a light
background when cursor tracking is enabled or a superimposed cross when disabled.)

Removing Signals from Simulator Windows
You can remove a selected signal from the Wave window by using the button or by
choosing Delete Wave from the Display cascade of the Simulate menu.

You can remove signals from the List window by using the button or by choosing Delete
List from the Display cascade of the Simulate menu.

The and buttons (or commands in the Simulate menu) can be used in a state diagram
to remove the current state signal from the Wave or List windows.

Simulation and Animation
Simulator Cross-Probing

Graphical Editors User Manual, V2010.3 419
June, 2011

Adding Signals to the Simulator Log
You can add one or more signals to the simulator log by selecting the required signals on the
block diagram and choosing Add Log from the Display cascade of the Simulate menu.

Signals added to the simulator log in this way are not be displayed but their simulation activity
is recorded and can be added to the Wave or List window for later analysis.

You can remove one or more selected signals from the simulator log by choosing Delete Log
from the Display cascade of the Simulate menu.

Highlighting Signals in the Simulator
You can highlight the signal or signals in the simulator windows corresponding to a selected
object in a block diagram, flow chart or state diagram by using the button from the
Simulation toolbar or by choosing Highlight Object from the Display cascade in the Simulate
menu.

All occurrences of the selected signal in the ModelSim Structure, Source, Signals, List and
Wave windows are highlighted.

Reporting Signal Information
You can report information about one or more selected signals by using the button from the
Simulation toolbar or by choosing Signal Info from the Simulate menu in a block diagram.

The ModelSim examine, describe and drivers commands are used to report current information
about the current value, type information and a list of drivers to the main ModelSim window.

Adding and Removing Breakpoints
You can add breakpoints for any object which is referenced by the generated HDL from a block
diagram, flow chart or state diagram by selecting the object and using the button from the
Simulation toolbar or by choosing Add from the Breakpoints cascade of the Simulate menu.

Breakpoints can be added to any object which corresponds to a executable line in the generated
HDL. For example, a state or transition in a state diagram, an action box, decision box or wait
box in a flow chart and a signal or bus in a block diagram.

If multi-line text (such as declarations or concurrent statements) is selected the breakpoint is
added to the first line of the selected text.

Note
Line breakpoints may be corrected by up to ten lines if the selected object does not
correspond to an executable line in the simulator.

Graphical Editors User Manual, V2010.3420

Simulation and Animation
Simulator Cross-Probing

June, 2011

If you select an object which has no corresponding executable HDL code, you are prompted to
select another object.

Breakpoints are shown by an icon on a diagram.

Breakpoints added to a HDL line in the ModelSim Source window are automatically added to
the corresponding source object in the graphical view.

Note
If you set a breakpoint on a state name, HDL line breakpoints are added to all transitions
which set the state as the next state.
For a hierarchical state machine, these transitions may be in another state diagram but
will be shown when the diagram is displayed.

You can remove breakpoints from the selected object by using the button or by choosing
Delete from the Breakpoints cascade of the Simulate menu.

You can remove all breakpoints by using the button or by choosing Delete All from the
menu.

All breakpoints are automatically cleared when the simulator is closed.

Enabling and Disabling Breakpoints
You can disable breakpoints at any time during a simulation run for the selected signals by
using the button or by choosing Disable from the Breakpoints cascade of the Simulate
menu and disable all breakpoints by using the button or choosing Disable All.

The breakpoint icon for a disabled breakpoint is redrawn with no fill color.

You can enable breakpoints for the selected signals by using the button or by choosing
Enable from the menu.

You can enable all breakpoints by using the button or by choosing Enable All.

Reporting Breakpoint Status
You can display information in the main ModelSim window about all currently set breakpoints
by choosing Report from the Breakpoints cascade of the Simulate menu when you are using
ModelSim.

Simulation and Animation
Simulator Cross-Probing

Graphical Editors User Manual, V2010.3 421
June, 2011

Adding and Removing Simulation Probes
You can add simulation probes to signals on a block diagram by selecting one or more signals
and using the button from the Simulation toolbar or by choosing Add from the Probes
cascade of the Simulate menu.

If one or more instances are selected, probes are added to all the signals connected to the
instances.

You can also add probes by using the button in the ModelSim Wave window or by
choosing Add Probe from the Probes menu in the ModelSim Wave, List or Signals windows.

A simulation probe displays the current value of the associated signal.

Simulation probes are added on a block diagram as yellow icons with associated text on a grey
background adjacent to the signal name. However, you can move the probe independently and
its associated signal is connected by an anchor.

You can set probe properties which control how each probe is displayed including an optional
name, probe expression, display radix, previous value, time of change and visible anchor
connecting it to the net.

The probes in the following example show a new value for the data_out and addr signals but
the sout and sin signals have the same value as the last time the simulator stopped:

Probes P1, P3 and P4 in the example have been set to display the current/previous values and
the time of the last change.

A breakpoint has also been attached to the sout signal.

The Probes and Breakpoints columns can be hidden or displayed by setting options in the View
menu.

Graphical Editors User Manual, V2010.3422

Simulation and Animation
Simulator Cross-Probing

June, 2011

Note
The block diagram is automatically made read-only when a probe has been added and all
probes must be removed before you can edit the view. All probes are automatically
cleared when the view is closed and when you exit from the simulator.

The probes are updated whenever the simulator stops (at a breakpoint, forced stop or the end of
a run). If the change indicator option is set and a signal has changed since the previous simulator
step, the probe is shown as a red icon on a block diagram. Note that there is no color change if
the signal value is the same although there may have been signal transitions during the
simulation run and the signal has returned to its previous value.

You can remove probes from a selected signal by using the button or by choosing Delete
from popup menu or the Probes cascade of the Simulate menu and remove all probes by using
the button or by choosing Delete All from the menu.

If you are using ModelSim SE, you can set probes to track the ModelSim Wave window cursor
by using the button or choosing Track Cursor from the popup menu or from the Probes
cascade of the Simulate menu. (The button has a light background when cursor tracking is
enabled or a superimposed cross when disabled.)

When cursor tracking is enabled for probes, the probe values track the current position of the
active cursor in the ModelSim Wave window.

Note
Simulation probes are re-initialized if you restart the simulator but they are NOT
automatically updated if you execute the ModelSim restore command in the simulator
window. However, the probes are updated when the next run or step command is
executed.

Simulation and Animation
Simulator Cross-Probing

Graphical Editors User Manual, V2010.3 423
June, 2011

Setting Probe Properties
You can set simulation probe properties by using the button in the Simulation toolbar or by
choosing Probe Properties from the popup menu or the Probes cascade of the Simulate menu
when one or more probes are selected to display the Probe Properties dialog box:

The dialog box allows you to specify the name of the probe and choose how it is displayed on
the diagram.

You can optionally specify an expression if you want the probe to display a value other than the
current signal value. For example, dat_in(9:0) would display only bits 9 DOWNTO of the
multi-bit bus dat_in.

The properties specified in the dialog box are applied to the selected probe or changes to the
properties can be applied to all selected probes with unchanged properties remaining <AS_IS>.

The current probe properties for display radix and contents can be saved as defaults in your
preferences using the Set as Defaults button.

Forcing Signal Values
You can force signal values for simulation by adding a probe and entering the required value in
the Probe Properties dialog box using the Force Value button to force the required value.

You can also force a signal value by directly editing the value of a signal in a probe on a block
diagram.

The signal is forced using the default strength currently set in ModelSim or you can choose the -
freeze, -drive or -deposit drive strength arguments from a drop down list.

Graphical Editors User Manual, V2010.3424

Simulation and Animation
Simulator Cross-Probing

June, 2011

When the value of a signal has been forced, the probe is shown as a blue icon on a block
diagram.

Choosing the Simulation Instance
When you send a command to the simulator, the signal or process is identified by a pathname
that uniquely identifies its location in the design hierarchy.

This path is referenced relative to the component from which the current simulation was
invoked. For example, if you have invoked simulation from the block diagram
DESIGNS/am2909/stack, references will be relative to this path.

If your design hierarchy contains more than one occurrence of a component, you can open down
into this component from each separate instance. When driving simulation from within such a
component, it is necessary to specify the simulator hierarchy path in order to uniquely identify
the signals and blocks it contains.

It is also possible to open separate windows on each instance in which case each instance can be
animated separately.

Note
If the instance has not been selected, you are prompted to choose the instance when you
use a command which requires the full hierarchy path.

You can display the Instances dialog box to set the simulator hierarchy path in a flow chart or
state diagram by using the button in the Animation toolbar or by selecting Choose
Instance from the Animation menu.

In a block diagram, you can choose the button in the Simulation toolbar or select Choose
Instance from the Simulate menu.

For example, if there are four instances (I0, I1, I2 and I3) of a component and simulation has
been invoked from the parent block diagram, you can simulate any of the four instances by

Simulation and Animation
Simulator Cross-Probing

Graphical Editors User Manual, V2010.3 425
June, 2011

setting the appropriate hierarchy path. You can also open block diagram windows for each
instance and set a hierarchy path for each window.

The hierarchy path is also used when you add a breakpoint to an instance of a component which
is used several times in the same diagram.

There can be many instances on a diagram (particularly if your design contains nested FOR
generate frames) and the dialog box is initially empty. You can choose to show all available
instances or specify a maximum number of instances to display in the dialog box.

This elaboration limit is saved as a preference and used when the dialog box is next displayed.
The available instances determined by this limit are listed in the dialog box when you use the
Update button.

The dialog box also allows you to explicitly enter a hierarchy path. For example, when your
design contains many instances and you want to change the selected instance by simply
incrementing its instance number.

This is also useful if a FOR generate frame has bounds which are not literal integers. Such a
frame is treated as a single instance with an index of 0 and a warning message is issued when
you select an instance path. However, you can then choose to accept the default index of 0 or
explicitly edit the instance path to the required value.

Setting the Simulator Environment
The initial simulator environment is determined by the selected design unit in the source
browser or the active view when you started the simulator. However, you can change the
simulator environment to any lower level without having to re-invoke the simulator.

Graphical Editors User Manual, V2010.3426

Simulation and Animation
Simulator Cross-Probing

June, 2011

The following commands are available from the Environment cascade of the Simulate menu:

Running the Simulator
You can run the simulator from a block diagram, flow chart or state diagram by using
commands from the Simulation toolbar or the Run and Step cascades of the Simulate menu.

Running a Simulation
You can run the simulator using the following Run commands:

Stepping Through a Simulation
You can step through a simulation using the following Step commands:

Selected Set environment to the selected block or component instance in a block
diagram.

Diagram Set environment to the active block diagram, flow chart or state diagram
view.

Top Set environment to the top level of simulation.

Report Reports the current simulator environment level. The pathname for the
current simulator environment is reported in a popup dialog box.

For Time Run the simulator for the last specified time or you can use the
 button to display a pulldown list. A pulldown list allows you

to choose from the four most recently used timesteps, enter a
time interval by displaying a dialog box or reset the default time
step specified in the simulator. When you enter a time interval,
the new interval replaces one of the default time steps in the
pulldown list.

Forever Run the until there are no more events scheduled.

Continue Continue the simulation run after a step command or breakpoint.

To Next Event Run the simulator until the next event.

Over Line Steps to the next HDL statement skipping any VHDL
procedures, functions or Verilog tasks by treating them as simple
statements instead of tracing each HDL line inside them.

Into Line Steps into the next HDL statement.

Over Object Steps to the next HDL statement representing a new graphical
object (for example, the next state) by stepping over HDL lines
for the current object. This command is available in a state
diagram only.

Simulation and Animation
Simulator Cross-Probing

Graphical Editors User Manual, V2010.3 427
June, 2011

Displaying Simulator Windows
You can open any simulator window by choosing one of the following options from the View
cascade of the Simulate menu:

The Wave and List windows can also be opened automatically when you add signals as
described in “Adding Signals to Simulator Windows” on page 418.

Restarting the Simulator
You can restart the simulator by using the button or by choosing Restart Simulator from
the Simulate menu in a block diagram, flow chart or state diagram.

When you restart the simulator, the design hierarchy is reloaded in the simulator, all captured
data and animation views are cleared and the simulation time is reset to zero.

Using the ModelSim Source Window
If you have invoked ModelSim from a HDL Designer Series tool, the ModelSim Source window
displays the source HDL files used for simulation.

The Source window is normally displayed in read-only mode.

If you need to make changes to a view which is described by a graphical view, the source design
object should be modified in the HDL Designer Series tool and the button used to
regenerate, compile and restart simulation. However, if you want to directly modify a view
which is described by a text source object, you can toggle the ModelSim Source window to
editable mode from the Edit menu.

If you want to open a HDL text view of an embedded block from the HDL Designer Series tool
you can choose Send to Editor from the popup menu over the HDL text or by double-clicking

Source Displays the simulator Source window

Structure Displays the simulator Structure window

Variables Displays the simulator Variables window

Signals Displays the simulator Signals window

List Displays the simulator List window

Process Displays the simulator Process window

Wave Displays the simulator Wave window

Dataflow Displays the simulator Dataflow window

All Displays all simulator windows

Graphical Editors User Manual, V2010.3428

Simulation and Animation
Simulator Cross-Probing

June, 2011

over the embedded block. If ModelSim is invoked, this command sends the HDL text file to the
ModelSim Source window instead of to the HDL Designer Series text editor.

Cross-Probing from ModelSim
If you have invoked ModelSim from a HDL Designer Series tool, the simulator toolbars and
Debug menu provide additional commands which support cross-probing with the graphical
views.

The following commands are provided in the main ModelSim window:

The following command is provided in the ModelSim Source window:

The following commands are provided in the ModelSim Wave window:

The following command is provided in the ModelSim Structure window:

Table 11-4. ModelSim Main Window Commands

Button Debug Menu Description

none Debug Detective Enabled Enable or disable Debug Detective mode

none Use Source Window Enable Source window for HDL text views

Trace To HDS Open selected object as a graphical view

Table 11-5. ModelSim Source Window Commands

Button Debug Menu Description

Trace To HDS Open view corresponding to HDL line

Table 11-6. ModelSim Wave Window Commands

Button Debug Menu Description

Trace To HDS Open view where selected signal is declared

Add Probe Add a probe to the selected signal

Cause Show animation step at cursor time

Table 11-7. ModelSim Structure Window Commands

Button Debug Menu Description

Trace To HDS Open selected object as a graphical view

Simulation and Animation
Simulator Cross-Probing

Graphical Editors User Manual, V2010.3 429
June, 2011

The following menu commands are provided in the ModelSim List window:

The following menu commands are provided in the ModelSim Signals window:

If the Use Source Window as Text Editor option is set in the Debug menu for the main
ModelSim window, all HDL text views are displayed in this window. If this option is unset, the
HDS text editor is used.

A button is added to the toolbar and a Trace To HDS command to the Debug menu in the
ModelSim Source window which can be used to open the source design object corresponding to
the line of HDL code under the cursor.

The Trace To HDS command is also available in the Debug menu for the ModelSim Wave,
List and Signals windows (or using the button in the Wave window). It can be used in
these windows to display the source object where the selected signal is declared. (Typically, this
will be the test bench or top level block diagram for the design being simulated.) You can also
trace a signal to HDS from the Wave or Signals windows by double-clicking on the signal.

A Trace To HDS command is also added in the Debug menu and a button to the toolbar in
the main ModelSim window and the ModelSim Structure window. They can be used in these
windows to open the source object corresponding to the selected instance.

If the HDS source is a text file (and Debug Detective Enabled is set in the ModelSim Debug
menu or the Simulate menu in any graphical view) the button or Trace To HDS command
can be used to display an Open As dialog box which allows you to render the source text file as
a graphics view.

Table 11-8. ModelSim List Window Commands

Debug Menu Description

Trace To HDS Open view where selected signal is declared

Add Probe Add a probe to selected signal

Cause Show animation at cursor time

Table 11-9. ModelSim Signals Window Commands

Debug Menu Description

Trace To HDS Open view where selected signal is declared

Add Probe Add a probe to selected signal

Graphical Editors User Manual, V2010.3430

Simulation and Animation
Simulator Cross-Probing

June, 2011

The Open As dialog box is also displayed when you double-click over a block or component
instance in a block diagram, if the instance is described by a HDL text view.

You can choose to open the view using the default view style, or as a block diagram, state
diagram, flow chart or text view. (The default view style is used if the specified view cannot be
rendered.)

These views allow limited editing but fully support the simulation cross-probing and animation
features.

Note
If you set the Always use this view style option in the dialog box, the dialog box is not
displayed and HDS attempts to always render HDL text views using the last selected
style.

You can add simulation probes to the active graphical block diagram view by using the
button in the ModelSim Wave window or by choosing Add Probe from the Debug menu in the
ModelSim Wave, List or Signals windows. Refer to “Adding and Removing Simulation Probes”
on page 421 for more information about using probes on graphical diagrams.

When you have invoked ModelSim from a HDL Designer Series tool, a button is added to
the ModelSim toolbar and a Cause command to the Debug menu in the simulator Wave
window.

This command can be used to update all currently open animation windows to the simulation
step or event immediately preceding the time marked by the Wave window cursor for the
currently selected signal. If there is no cursor in the Wave window, the simulation time is set to
zero.

If cursor tracking is enabled in a block diagram the values displayed by simulation probes in
these views track the simulation time under the Wave window cursor. If cursor tracking is
enabled in a state diagram and an animation view is displayed, the state machine animation
tracks the cursor.

Simulation and Animation
State Diagram and Flow Chart Animation

Graphical Editors User Manual, V2010.3 431
June, 2011

Note
The cursor tracking feature is not available if you are using ModelSim PE.

A Cause command is also added to the Debug menu in the simulator List window and can be
used to update all open animation windows to the simulation step or event corresponding to the
selected line in the List window.

ModelSim uses the drivers command to determine the driver of the signal. If the signal is driven
from an instance which corresponds to a diagram that can be animated and which has data
capture enabled, it is opened (or popped to the front if already open).

If the selected signal is a vector, the driver of the first element in the vector is chosen. This may
be incorrect if the vector has more than one driver.

If the instance corresponds to a state machine or flow chart with concurrent diagrams, the
default concurrent state machine or flow chart is opened although the process driving the signal
may be contained in one of the other concurrent diagrams. The last view of the diagram is
displayed and may not include the current animation state or action (especially if it is in a
hierarchical diagram).

State Diagram and Flow Chart Animation
The state diagram and flow chart views in a VHDL or Verilog design can be animated if a
ModelSim or NC-Sim simulator is available.

Animation exercises the generated HDL for your design and displays simulation behavior
graphically on the source diagrams as well as in the monitoring windows provided within the
simulator.

You can animate individual flow charts and state machines, one or more diagrams in a
hierarchical branch of your design or the entire design. For example, you can invoke simulation
from a test bench block diagram and simultaneously display animation for the flow chart which
controls the test bench and state diagrams within the design under test.

Note
If you enable animation in a concurrent or hierarchical diagram, all the flow charts or
state diagrams are animated. Flow chart or state diagram views describing an embedded
block can be animated but you cannot animate an embedded view which is contained
within a FOR generate frame.

The views can be animated in three usage modes:

• Animation of one or more diagrams or an overall system with simulation stimuli
provided by a HDL test bench. The test bench runs scenarios which are selected at run

Graphical Editors User Manual, V2010.3432

Simulation and Animation
State Diagram and Flow Chart Animation

June, 2011

time by setting HDL signals and variables in the test bench. In this mode, simulation is
initiated by a run command.

• Animation of one or more diagrams with simulation stimuli provided by a "dofile"
which contains force, breakpoint and run commands.

• Interactive animation of a single diagram using single stepping or run simulation
commands controlled from the simulator command entry window. Forces and
breakpoints are applied interactively.

The Enable Communication with HDS option must be set in the Simulator Invoke Settings
dialog box if you want to use the simulation cross-probing or animation facilities.

Animation Toolbar
The Animation toolbar is automatically displayed in the state diagram and flow chart views
when a supported simulator has been invoked and supports the following commands:

Note that the , or buttons display a pulldown menu which allows you to
change the mode. When one of these options is chosen the button changes to indicate the
selected mode.

Table 11-10. Animation Toolbar

Icon Description

Step backward through animation history

Step forward through animation history

Sets review mode to step by states

Sets review mode to step by simulation events

Moves to a specified simulation time

Moves to a specified simulation time

Moves to the start of simulation time

Moves to latest simulation time

Enables capture of animation data

Clears the animation data for the current instance

Displays animation view

Sets up the activity trail for capture and display

Moves ModelSim Wave and List windows to current animation time

Choose instance for simulation

Links all currently animated diagrams

Simulation and Animation
State Diagram and Flow Chart Animation

Graphical Editors User Manual, V2010.3 433
June, 2011

You can also step backward or forward through the animation by using the Ctrl + Shift + < or
Ctrl + Shift + > shortcuts.

The toolbar is normally displayed at the bottom of the diagram window but can be undocked,
moved, docked or hidden in the same way as the other toolbars.

The toolbar can be displayed or hidden by setting the Animation Tools option in the Toolbars
cascade of the View menu.

Refer to “Toolbars” on page 20 for more information about toolbars.

Enabling Data Capture
Animation data capture can be enabled for any graphical state machine or flow chart within the
current hierarchy being simulated. However, if you want to apply stimulus to a hierarchy of
diagrams, you must invoke simulation from a structural HDL view at the appropriate level.

In order to animate a flow chart, the flow chart must have been generated with the Instrument
HDL for Animation option enabled in the Generation tab of the Flow Chart Properties dialog
box.

In order to fully animate a state diagram, the state machine must have been generated with the
Instrument HDL for Animation option enabled in the Generation tab of the State Machine
Properties dialog box. If this option was not enabled, the animation will show changes of state
but full animation (for example, transitions taken and moving by clock cycle) is not available.

The extra HDL code generated for animation is enclosed between translation pragmas so that it
can be ignored by downstream tools which recognize the pragmas.

If you invoke the simulator from within a flow chart or state diagram, you are prompted whether
to enable data capture and show animation. If you confirm this dialog box, data capture is
enabled and the animation view is displayed.

Alternatively, if the simulator is already invoked, you can use the button in the Animation
toolbar or choose Data Capture from the Animation menu to enable animation for the active
state diagram. The button is shown pressed when data capture is enabled.

The animation view is automatically selected when you enable data capture but can be toggled
by using the button or choosing Show Animation from the Animation menu. The button is
shown pressed when the animation view is displayed.

When data capture is enabled, simulation data is stored to capture animation activity. When the
animation view is displayed, the diagram is set to be read-only and the graphics are updated
directly from the simulation data whenever the simulator stops at a breakpoint or at the end of a
run.

Graphical Editors User Manual, V2010.3434

Simulation and Animation
State Diagram and Flow Chart Animation

June, 2011

You can enable animation for all instances in the current simulation hierarchy by choosing
Global Capture On from the Animation menu (or from the Animation cascade of the
Options menu in the design manager). An animation view is automatically shown for any state
diagrams or flow charts which are opened after this option has been set.

Data capture can be stopped for all diagrams by choosing Global Capture Off from the
Animation menu (or from the Animation cascade of the Options menu in the design manager)
and you can stop the capture of animation data for the active diagram by unsetting the
button or by clearing the Data Capture option in the Animation menu.

The stored data is cleared when the simulator is restarted or reloaded and when the session is
exited. In addition, you can clear the animation data at any time by using the button or by
choosing Clear Captured Events from the Animation menu.

Setting the Activity Trail
The current and previous steps (for a flow chart animation) or the current and previous states
plus the last transition (for a state machine animation) are normally highlighted in the animation
view.

The activity trail allows you to control how much additional animation activity is displayed
relative to a particular time in the simulation history or at a particular clock cycle in simulation
history.

You can set the activity trail to highlight all visited steps in a flow chart or visited states and
transitions in a state machine, a specified length (number of steps or transitions) or no activity
trail.

You can change the activity trail settings by using the button or choosing Activity Trails
from the Animation menu to display the Activity Trail Settings dialog box.

If you are using ModelSim, you can specify the maximum number of simulation events captured
for each diagram during an animation run. When this limit is exceeded, old events are discarded
to reduce the total amount of stored data.

Simulation and Animation
State Diagram and Flow Chart Animation

Graphical Editors User Manual, V2010.3 435
June, 2011

For a state machine, you can also choose whether to capture data about evaluated conditions or
active clock edges. If all the capture options are unset, no data is saved, however, the animation
is updated with the latest simulation data when the simulator stops.

You can specify the length of the displayed activity trail in terms of the simulation time or the
number of visited objects (an object corresponds to a visited state in a state machine).

If you choose the From Start option, all objects visited since data capture was enabled are
highlighted. You can also hide the activity trail except for the last step (or last state and
transition) by selecting the Off option.

For a state machine, you can also choose whether conditions evaluated to be true but not
followed are highlighted in the activity trail. This may occur if a condition is evaluated to be
true but reverts to false before the next clock edge which would cause the transition to be
completed.

Your activity trail choices are saved as preferences and re-used for the next animation run.

The initial data capture preferences for events captured, evaluated conditions and active clock
edges are shown as a comment in the main simulator window which is repeated if the activity
trail settings are modified.

For example, hds_anim_prefs 8000 0 1 indicates that up to 8000 events can be
captured, evaluated conditions are ignored but events on active clock edges are included.

Graphical Highlighting
The following color conventions are used in an animated flow chart:

red fill: Current step
yellow fill: Previous step
blue fill: Previously visited steps
white fill: Unvisited objects

Graphical Editors User Manual, V2010.3436

Simulation and Animation
State Diagram and Flow Chart Animation

June, 2011

The following color conventions are used in an animated state diagram:

red fill: Current state or last transition taken
yellow fill: Previous state or transitions
blue fill: Previously visited states and transitions
green fill: Transitions evaluated but not followed
white fill: Unvisited objects

Reviewing Animation
You can use the animation view to investigate the cause and effect of animation events by
moving to a specified point in the animation.

In an animated flow chart, you can you can move forwards or backwards to display the
preceding and following steps by using the or buttons from the Animation toolbar or
choosing Goto Next or Goto Previous from the Animation menu.

In an animated state diagram, you can choose whether to Move By States, Move By Events or
Move By Clocks by selecting options in the Animation menu or by using the , or

 buttons on the Animation toolbar.

You can change the current setting of these buttons by using the icon to pulldown a choice
menu. The current setting of these buttons is indicated on the button.

Note
The Move By Clocks option is not available unless the Active Clock Edges option is
enabled in the Activity Trail Settings dialog box to capture events associated with active
clock edges.

For each of these options, you can move forwards or backwards to display the preceding and
consequential events (change of state, clock cycle or other animation event) by using the or

 buttons from the Animation toolbar or choosing the Goto Next or Goto Previous option
(Clock, State or Event) from the Animation menu.

You can also use the Ctrl + Shift + < shortcut to Goto Previous or the Ctrl + Shift + > shortcut
to Goto Next.

You can use the button (or choose Goto Time from the menu) to view a specified
animation time, the button (or Goto Start from the menu) to return to the start of the
animation or choose the button (or Goto Latest from the menu) to view the latest
animation event.

If you choose Goto Time, a dialog box is displayed for you to enter an absolute animation time:
When you execute the dialog box, the animation time is set to the specified absolute time (or the
time of the closest preceding event if no event occurred at the specified time).

Simulation and Animation
State Diagram and Flow Chart Animation

Graphical Editors User Manual, V2010.3 437
June, 2011

When you use any of these commands, the animation status is redrawn and the activity trail is
shown relative to the new animation time. The current animation time is displayed on the status
line at the bottom of the animated window and an indication when you are at the start or end of
an animation run.

When you are using ModelSim, you can use the button or choose Cause from the
Animation menu to move the Wave window cursor to the current animation time. (The current
animation time should also be highlighted in the ModelSim List window.)

Linking Diagrams for Animation
You can link all open state diagrams and flow charts in the simulation hierarchy which are
currently being animated by using the button or choosing Link Diagrams for the
Animation menu in any animated diagram.

When this command is enabled, all animation review commands executed in one diagram, also
animate the linked diagrams.

The button is shown pressed and the link closed when diagrams are linked.

Mixed Language Animation
Mixed language animation is supported when you are using the ModelSim simulator. Note
however, that VHDL is case-insensitive and case sensitive Verilog names (for example,
different instances named I2 and i2) may cause problems in a mixed language design. You are
advised to avoid using names that differ only by case in Verilog designs that need to co-exist
with VHDL.

You can animate a mixed language design using the NC-Sim simulator but you cannot display
animation views for both languages in the same simulation run. If the top level view is Verilog,
you can instrument the generated HDL for all VHDL and Verilog views but can only display
animation for the Verilog diagrams. If the top level view is VHDL, error messages are issued if
the design includes any instrumented Verilog views and the design cannot be loaded.

Graphical Editors User Manual, V2010.3438

Simulation and Animation
State Diagram and Flow Chart Animation

June, 2011

Graphical Editors User Manual, V2010.3 439
June, 2011

Chapter 12
Using a Test Bench

This chapter describes how you can create a graphical test bench to validate your designs.

Test Benches . 439

Creating a Test Bench . 440

Defining Stimulus. 441
Using ModuleWare Stimulus Generator Parts . 441
Defining Stimulus on a Flow Chart . 441
Defining Stimulus using Lookup Tables . 443
Defining Stimulus using TextIO. 444
Defining Stimulus using a State Machine. 446
Generating a Clock using HDL Statements . 446

Analyzing Results. 447

Re-using a Test Bench . 448

Test Benches
A test bench allows you to apply stimuli to your design and ensure that it fully meets the
specified requirements.

The input stimuli and corresponding output waveforms are just as important as the design
description itself. If made available early in the design cycle, they can be used to test all phases
of the design including behavioral, RTL and gate level designs.

A set of test stimuli available at the start of the design process reduces the number of design
iterations by allowing the designer to check results for each level of abstraction and to verify the
consistency of the design between levels.

You can implement a test bench by instantiating your design as a component in a block diagram
or IBD view. Then connect the component to a block (or blocks) implementing the stimulus and
output checking circuits.

These blocks can be described directly using VHDL or Verilog HDL text views or graphically
by using block diagrams, IBD views, state diagrams, truth tables or flow charts.

Graphical Editors User Manual, V2010.3440

Using a Test Bench
Creating a Test Bench

June, 2011

For example, the test bench in the graphical design tutorial uses a single block Timer_tester
described by a flow chart which provides both the test stimuli and output checking logic.

Creating a Test Bench
You can automatically create a test bench by choosing Test Bench from the New cascade in the
File menu of any graphic editor window that represents a component. This command is also
available in the design explorer when a component design unit or component design unit view
is selected.

The Create Test Bench dialog box is displayed with a default name for the test bench created by
adding the suffix _tb to the design unit name. You can change this name and choose a library to
contain the test bench.

You can also create a tester unit to test your design unit by checking the Tester checkbox. The
tester module is created with a default name adding the suffix _tester to the design unit name.
You can change this name and choose a library to contain the tester unit.

Using a Test Bench
Defining Stimulus

Graphical Editors User Manual, V2010.3 441
June, 2011

When you confirm the dialog box, a block diagram is created containing an instance of the
component under test and a tester block with ports corresponding to each port on the component
which are implicitly connected to the component ports by name.

The tester block can be used to provide input stimulus and output checking signals by opening
down to create a child view. This view can be any valid design unit view. For example, it may
be a block diagram, IBD view, HDL text view, sequential flow chart or state machine.

Any required VHDL packages (for example, if the interfaces to the component are custom
defined) are automatically included on the test bench block diagram.

Defining Stimulus
The HDL Designer Series ModuleWare library includes a number of waveform generator parts
which can be instantiated in a block diagram, IBD view or HDL text view are used to generate
stimulus waveforms for your test bench.

You can also define stimulus using concurrent and sequential processes in a flow chart or state
machine or by writing a HDL text view using standard techniques such as lookup tables and
TextIO.

When you are using VHDL, the std_developerskit standard library contains a number of
procedures and functions which may be useful when you are designing a test harness. For
example, these can be used to build Typical or Maximum timing into models, convert VHDL
types to strings for use in File I/O and ASSERTS, perform arithmetic on unlimited length
register sets and build memories of any size and program them from ASCII files.

Using ModuleWare Stimulus Generator Parts
The ModuleWare library Stimulus category provides a number of parameterized generators
which can be used to setup clock, pulse and constant, random value or counter based
waveforms.

Refer to the ModuleWare Reference Guide for a full description of these parts.

Refer to “Instantiating a ModuleWare Component” on page 116 for information about using
ModuleWare parts in a block diagram or IBD view.

Refer to the DesignPad Text Editor User Guide for information about instantiating
ModuleWare parts in a HDL text view.

Defining Stimulus on a Flow Chart
Stimulus generation within a test bench is predominantly sequential in nature.

Graphical Editors User Manual, V2010.3442

Using a Test Bench
Defining Stimulus

June, 2011

Although separate processes are likely to be used for clock and reset generation, most of the
code to generate stimuli is likely to be contained in a single process.

This process can conveniently be represented as a flow chart and separate action boxes can be
used to represent procedures and functions for generic operations (such as 'write to register') or
to separate out distinct blocks of code.

The result is a relatively short, top-level process which sequentially calls a series of procedures
and functions to perform the main tasks in turn.

There are a number of techniques which can be used to define stimulus on a flow chart
including Wait, Loop and Case statements.

Wait Statements
Wait statements can be used for results analysis where signal values are checked relative to one
another or particular values are expected at certain times.

The VHDL WAIT command has four variants:

You can combine FOR, UNTIL and ON clauses which may also include valid arithmetic
operators.

For example:

wait until ((high="000")AND(low="0000")) for 6000ns;

In Verilog, you can use wait statements and also use the @ operator to specify an event or # to
specify a time delay.

For example:

wait ((high==4'd0)&&(low==4'd0));
@(posedge clk);
#12;
#clk_prd;

WAIT causes an indefinite suspension of a process, for example,
after an initial trigger pulse.

WAIT FOR <time> suspends the process for the specified time.

WAIT UNTIL <condition> suspends the process until a specified condition becomes
true.

WAIT ON <signal> suspends the process until an event occurs on the
specified signal(s).

Using a Test Bench
Defining Stimulus

Graphical Editors User Manual, V2010.3 443
June, 2011

Loop Statements
Loops can be used to apply repeating patterns, read and apply values from tables or files and
progressively increment or decrement values. For example, a loop variable can be used to assign
a value using a function:

Case Statements
If stimulus is to be applied at different specific times, a counter can be used as an index within a
Case statement to count clock cycles and determine which stimuli set is applied. For example:

CASE elapsed_counter IS
WHEN 13 => x <= ‘1’;
y <= ‘0’;
WHEN 27 => x <= ‘0’;
END CASE;

Defining Stimulus using Lookup Tables
A lookup table containing arrays or records can be defined using CONSTANTS in the
declarations on a diagram or in a separate VHDL package. Such a table can be sequenced
through or used to apply particular values depending on the value of other index signals.

Lookup tables exploit the power of HDL and can be easily related to the required results.
However, recompilation is necessary if any changes are made to the code.

In the following example, the procedure write_table performs a series of write operations to
load internal data tables and simulate the operation of an external microprocessor.

CONSTANT sys_clk : time := 50 ns;
CONSTANT row : INTEGER := 4;
CONSTANT col : INTEGER := 4;
TYPE table is ARRAY(1 TO row, 1 TO col) OF INTEGER;
CONSTANT lookup_table : table := (

(1, 2, 3, 4),
(5, 6, 7, 8),
(9,10,11,12),
(13,14,15,16)

);
PROCEDURE write_table(

SIGNAL Write : OUT slv_0d0;
SIGNAL Address_Bus : OUT slv_4d0;
SIGNAL Data_Bus : OUT slv_7d0) IS

BEGIN
FOR i IN 1 TO row LOOP

VHDL Verilog
FOR J IN 0 TO 7 LOOP
x <= conv_funct(J);
WAIT FOR 20 ns;
END LOOP;

for (j=0;j<=7;j=j+1)
x = conv_function(J);

Graphical Editors User Manual, V2010.3444

Using a Test Bench
Defining Stimulus

June, 2011

FOR j IN 1 TO col LOOP
Write <= '1' ;
Address_Bus <=
to_stdlogicvector((((i-1)*4)+(j-1)),5);
Data_Bus <=
to_stdlogicvector(lookup_table(i, j), 8) ;
WAIT FOR sys_clk ;
Write <= '0' ;
WAIT FOR sys_clk ;
Write <= '1' ;
WAIT FOR sys_clk ;
Address_Bus <= (OTHERS => '0') ;
Data_Bus <= (OTHERS => '0') ;
WAIT FOR sys_clk ;

END LOOP ;
END LOOP ;

END write_table ;

Note
Nested For loops are used to sequence through each row and column of the table. The
values for Address_Bus are calculated from the row and column indices. All bits of each
bus are set to ‘0’ between write cycles by assigning (OTHERS => ‘0’).

Defining Stimulus using TextIO
TextIO provides a mechanism to read stimulus files into a test bench at run time. This makes it
easier to change values and does not need recompilation. In this way, a test bench can be made
general purpose. For example, the same test bench can be used for a number of variants of the
same basic design.

The VHDL 93 standard adds a number of enhancements to the basic TextIO capability,
allowing files to be opened and closed for read or write at run time. The addition of pointers
allows navigation within a file.

In the following example, a file ctrl_registers.txt contains values to be loaded into the three
control registers RT1, RT2 and RT3. The procedure write_ctrl_registers reads the data from the
file and simulates the microprocessor writing values into the internal control registers.

Using a Test Bench
Defining Stimulus

Graphical Editors User Manual, V2010.3 445
June, 2011

FILE ctrl_file : TEXT IS IN "ctrl_registers.txt" ;

PROCEDURE write_ctrl_registers(
SIGNAL Write : OUT slv_0d0;
SIGNAL Address_Bus : OUT slv_4d0;
SIGNAL Data_Bus : OUT slv_7d0) IS

VARIABLE good : BOOLEAN ;
VARIABLE RT : INTEGER ;
VARIABLE ctrl_line : LINE ;

BEGIN
IF NOT ENDFILE(ctrl_file) THEN

READLINE(ctrl_file, ctrl_line) ;
FOR i IN 0 TO 2 LOOP

READ(ctrl_line, RT, good) ;
IF good THEN

Write <= '1' ;
Address_Bus <= to_stdlogicvector((16 + i), 5) ;
Data_Bus <= to_stdlogicvector(RT, 8) ;
WAIT FOR sys_clk ;
Write <= '0' ;
WAIT FOR sys_clk ;
Write <= '1' ;
WAIT FOR sys_clk ;
Address_Bus <= (OTHERS => '0') ;
Data_Bus <= (OTHERS => '0') ;
WAIT FOR sys_clk ;

END IF ;
END LOOP ;

ELSE
ASSERT false REPORT "END OF FILE reached"
SEVERITY NOTE ;

END IF ;
END write_ctrl_registers ;

The ctrl_registers.txt file contains the following data:

-- ctrl_registers.txt
-- RT1 RT2 RT3

 1 2 3
 4 5 6

The file is declared and a line is read from the file into the variable ctrl_line. A loop then reads
each of the three fields in turn into the variable RT. Variable good is the status returned by the
read operation. The Address_Bus value is calculated from the loop index and the value of RT is
assigned to the Data_Bus.

The TextIO function ENDFILE indicates when the end of the file has been reached. In this
example, an ASSERT statement issues a note to that effect.

Graphical Editors User Manual, V2010.3446

Using a Test Bench
Defining Stimulus

June, 2011

Defining Stimulus using a State Machine
A state machine can be used to apply a sequence of stimuli values, either on each clock or when
certain conditions are true.

In the following example, an internal signal test_counter_int is created and used to count the
clocks to the state machine. The count value is assigned to the test_counter output signal which
can be used for stimulus in the test bench.

Generating a Clock using HDL Statements
A clock or repeating waveform can be generated using concurrent or sequential statements.

If your test bench is implemented as a flow chart, these statements can be included as
concurrent statements on the diagram. Alternatively, the statements could be included in a HDL
text view defining a clock generator block on a block diagram.

When you are using VHDL, a repeating clock waveform can be generated using concurrent
statements. For example, the following architecture declarations and concurrent statements are
used to generate a 10MHz clock by inverting the int_clk signal AFTER half the clock period:

Architecture Declarations
CONSTANT clk_prd : time := 100 ns;

Using a Test Bench
Analyzing Results

Graphical Editors User Manual, V2010.3 447
June, 2011

SIGNAL int_clk : std_logic := '0';

Concurrent Statements
int_clk <= not int_clk AFTER clk_prd / 2;
clk <= int_clk;

Alternatively, you can use a sequential VHDL process. For example, the following architecture
declarations and sequential statements are used to generate a 10MHz clock by looping around
four sequential statements which alternately assign the values ‘0’ and ‘1’ to iclk after a WAIT of
half the clock period:

Architecture Declarations
CONSTANT clk_prd : time := 100 ns;
SIGNAL iclk : std_logic;

Concurrent Statements
clock_gen : PROCESS
BEGIN
iclk <= '0';

WAIT FOR clk_prd/2;
iclk <= '1';

WAIT FOR clk_prd/2;
END PROCESS clock_gen;
clk <= iclk;

When you are using Verilog, a repeating clock waveform can be generated using initial and
always statements.

For example, the following module declarations and concurrent statements are used to generate
a 10MHz clock by inverting the int_clk signal after half the clock period:

Module Declarations
reg int_clk;
parameter clk_prd = 100 ;

Concurrent Statements
initial
begin
int_clk = 0;
forever #(clk_prd/2) int_clk = ~int_clk;
end
always @(int_clk)
clk = int_clk;

Analyzing Results
The output checking logic in a test bench can perform analysis on the outputs from the design
under test. It can also give a Pass or Fail indication for the design and provide messages
indicating where results differ from those expected.

Graphical Editors User Manual, V2010.3448

Using a Test Bench
Re-using a Test Bench

June, 2011

When you are using VHDL, ASSERT statements can be used to display messages in the main
simulator window if a test condition is false. Assertions have three severity levels: Error,
Warning or Note and you can specify what severity causes the simulator to stop.

The std_iopak package in the std_developerskit library contains string concatenation functions
which can be used to include simulation values in messages as shown in the following example:

 ASSERT false
 REPORT "DR is " & to_string(DR,"%d") & " clks wide"
 SEVERITY note;
 ASSERT (DR = DR_REF)
 REPORT "DR width incorrect!"
 SEVERITY ERROR;

When you are using Verilog, messages can be displayed using the Verilog $display() function.
For example:

$display("DR width incorrect!");

For a control dominated system, the behavioral model used to generate the expected results can
be represented by a state machine. For example, when using a master counter to count clock
cycles and apply stimuli at certain counter values, the counter signal can also be fed to the
results analysis process.

A state machine may be used to perform specific checks depending on the value of the counter
or other sets of conditions on inputs.

In the same way that lookup tables can be used as a source of input stimuli, they can also be
used to store reference values.

TextIO can be used to read in values corresponding to the expected results from ASCII files
which were created manually, or from a behavioral model. It can also be used to write out
results or errors to a file for subsequent analysis or documentation.

Re-using a Test Bench
A test bench can be re-used to verify different stages of your design. For example, to check that
the RTL version of your design performs identically with the initial behavioral version.

The design under test can be updated by changing the default view of the component
representing the design under test or by instantiating a new test design into an existing test
bench. If the interface signals correspond to those used in the test bench, you can add signal
stubs to the test component and use connection by name to avoid having to re-connect signals
between the test harness and the design under test.

Using a Test Bench
Re-using a Test Bench

Graphical Editors User Manual, V2010.3 449
June, 2011

For example, the following block diagram with explicit connections:

is functionally equivalent to the following diagram which is connected by name:

Graphical Editors User Manual, V2010.3450

Using a Test Bench
Re-using a Test Bench

June, 2011

Graphical Editors User Manual, V2010.3 451
June, 2011

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

HDL Designer Series Glossary

This glossary defines the standard terminology used in the HDL Designer Series tools.

— A —

action box
A named object on a flow chart or ASM chart containing actions which are executed when the
box is entered by a flow. Each action box must have one input flow and one output flow. See also
case box, decision box and wait box.

action
An operation performed by a state machine, flow chart or truth table which modifies its output
signals. In a state diagram, there can be transition actions executed when an associated
condition occurs or state actions executed when a state is entered. In a flow chart, the actions are
executed when a flow entering the action box is followed. In a truth table, actions are generated
from the values assigned to a variable in an output column or can be explicitly entered as
additional actions in an unnamed output column. See also global actions.

activity trail
A summary of simulation activity (states visited and transitions taken) displayed on an animated
state diagram.

anchor
An anchor attaches a text element to its parent object. For example, the name and type of a signal
in a block diagram or the transition text and its transition arc in a state diagram. An anchor is
also used to attach a simulation probe to its associated signal.

architecture declarations
User-specified VHDL statements which can be entered in a state diagram, flow chart or truth
table and are declared for the corresponding VHDL architecture in the generated HDL.
Architecture declarations are typically used to define local signals or constants. See also entity
declarations and process declarations.

ASIC
ASIC stands for Application Specific Integrated Circuit.

ASM
An algorithmic state machine describes the behavior of a system in terms of a defined sequence
of operations which produce the required output from the given input data. These sequential
operations can be represented using flow chart stye notation as an ASM chart.

452
June, 2011

Graphical Editors User Manual, V2010.3

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

ASM chart
A graphical representation of an algorithmic state machine which uses flow chart style objects to
represent states, conditions and actions.

asynchronous
An asynchronous process is activated as soon as any of its inputs have any activity on them
rather than only being activated on a clock edge. See also clocking.

— B —

black box
A view which has HDL translation pragmas set so that it is not analyzed or optimized for
synthesis. See also don’t touch.

black box instance
An instance of a component on a block diagram or IBD view which has no corresponding design
unit. A black box instance may exist in a partial design which instantiates a view which has not
been defined.

block
The representation of a functional object on a block diagram or IBD view. Also the design unit
that contains the object definition. A block has a dynamic interface defined by the signals
connected to it on the diagram and is typically defined by a child block diagram, IBD view, state
diagram, flow chart, truth table or HDL text view. See also embedded block and component.

block diagram
A diagram editor view which defines a design unit view in terms of lower level blocks and
components connected by signals. See also IBD view.

bottom-up design
The process of designing a system starting from the primitive or leaf-level views and progressing
up through parent views until the design is completed. See also top-down design.

bounds
The range of possible values for a signal with integer, floating, enumeration or physical type.
Also used to specify the index constraint for an array type. A VHDL range is normally shown in
the format (15 DOWNTO 0) or (0 to 7). A Verilog range is shown in the format [15:0]
or [0:7].

breakpoint
A breakpoint can be used to interrupt the progress of a simulation at a specific point in the
generated HDL. For example, you could set a breakpoint on a signal to interrupt the simulation
when the signal changes value or on a state to interrupt the simulation when the state is entered.

bundle
A group of signals and/or buses with different types drawn as a composite line on a block
diagram.

Graphical Editors User Manual, V2010.3 453
June, 2011

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

bus
A named vector signal with a type and bounds drawn as a composite line on a block diagram.
See also net and bundle.

— C —

case box
A named object which represents a CASE statement on a flow chart or ASM chart. When used
for decoding action logic each Case has an associated End Case object. A case box has one input
flow and one or more output flows corresponding to the possible values for an evaluated CASE
expression. See also action box, decision box, if decode box and wait box.

child
A view instantiated below its parent in the design hierarchy. A component or block on a block
diagram or IBD view typically has a child design unit view which may be another block diagram,
IBD view, state diagram, flow chart, truth table or a HDL text view. Also used for the embedded
view representing a hierarchical state or “hierarchical state box” on page 460 in a hierarchical
state machine or a hierarchical action box in a hierarchical flow chart or ASM chart.

clocked signal
A signal in a state machine whose value is assigned to an internal signal by the clocked process.
This internal signal is continuously assigned to the real output signal. No default value need be
specified. Typically used for an internal counter whose value is also required as an output. See
also combinatorial signal and registered signal.

clocking
The timing aspects of behavior can be asynchronous or synchronous (explicitly clocked).

clock point
An object on an ASM chart which displays the clock signal name and condition. See also enable
point and reset point.

clone window
A duplicate view of a graphical editor window. All select, highlighting and edit operations are
made in both windows. However, you can display different parts of the diagram or table in each
window.

combinatorial signal
A signal in a state machine whose value is directly assigned to the output port. See also clocked
signal and registered signal.

comment graphics
Annotation graphics which can be used for illustration on a block diagram, state diagram, flow
chart or symbol.

454
June, 2011

Graphical Editors User Manual, V2010.3

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

comment text
Annotation text on a block diagram, state diagram, flow chart or symbol which can optionally be
attached to an object and included as comments or HDL code in the generated HDL for the
diagram.

compiled library
A repository within a library containing downstream compiled objects usually created by
compiling the HDL files in a design data library.

compiler directive
An instruction to the Verilog compiler. Typically used to define library cells or define a macro
which controls conditional compilation. Also used to include specified Verilog file or define the
simulation time units. The directive is effective from the place it appears in the Verilog code
until it is superseded or reset.

complete transition path
The sequence of one or more partial transitions going from one state to another state (or itself)
in a state machine. The conditions in the transition path are the collection of all the conditions on
the individual transitions. The action in the transition path are the collection of all the actions on
the individual transitions plus the actions of the origin state. When tracing the transition path,
links are resolved to the referenced start state, state or junction. See also partial transition.

component
A design unit that contains a re-usable functional object definition or the instantiation of this
object on a block diagram or IBD view. A component has a fixed interface and may be defined
by a child block diagram, IBD view, state diagram, flow chart, truth table, ModuleWare, HDL
text, external HDL or foreign view. See also embedded block, block and port map frame.

component browser
The component browser is a separate floating window which can be used to browse for
components available in the current library mapping. Components can be instantiated in an
editor view by copy and paste or drag and drop.

concurrent events
Occurrence of two or more events in the same clock cycle.

concurrent statements
Statements which can be entered in a state diagram, flow chart or truth table and are included in
the generated HDL at the end of the VHDL architecture or Verilog module. Concurrent
statements are applied to all diagrams in a set of concurrent state machines.

condition
A condition in a state machine is a boolean input expression which conforms to HDL syntax, and
when it evaluates to TRUE, causes a transition to occur. The expression usually consists of a
signal name, a relational operator and a value. In a flow chart, conditions are used in a decision
box to determine which output flow is followed. In a truth table, conditions are generated from

Graphical Editors User Manual, V2010.3 455
June, 2011

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

the values assigned to a variable in an input column or can be explicitly entered as additional
conditions in an unnamed input column. See also transition priority.

configuration
A definition of the design unit views that collectively describe a design by listing the included
VHDL entities and architectures. A configuration may also include specification of the values
for VHDL generics associated with components in the design. See also VHDL configuration.

connectable item
A node in a block diagram, flow chart or state diagram that can be the source or destination of a
signal, flow or transition.

current view
The design unit view of a block or component that is currently used. This will be the default view
unless a loaded configuration specifies otherwise.

— D —

decision box
A named object on a flow chart or ASM chart containing a condition. Each decision box has one
input flow and two output flows (corresponding to the TRUE and FALSE conditions for an IF
statement). See also action box, case box and wait box.

default view
The design unit view used in hierarchical operations, open commands and HDL generation
(unless a loaded configuration specifies otherwise). See also current view.

design data library
A repository within a library containing source design data objects. There are usually different
library mappings for graphical editor or HDL text source views. See also compiled library.

design explorer
The source browser design explorer windows can be used to browse the content and hierarchy of
the source design data using user-defined viewpoints displayed in tree or list format.

design manager
The main HDL Designer Series window which is used for library management, data exploration,
design flow and version control. The design manager includes a shortcut bar, project manager,
design explorer, side data browser, downstream browser, task manager and template manager.

design unit
A subdirectory within a design data library which is represented by an icon in the design
explorer. Design units may be blocks, components or unknown design units.

design unit view
A description of a design unit. Multiple views of block or component design units can describe
alternative implementations. These can include block diagram, IBD view, state diagram, flow
chart, truth table or HDL text views.

456
June, 2011

Graphical Editors User Manual, V2010.3

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

DesignPad
The built-in VHDL and Verilog sensitive editor and viewer for HDL text views.

destination
The connectable item at the end of a signal, transition or flow. See also source.

diagram browser
The diagram browser is an optional sub-window which displays the structure and content of the
active diagram editor view.

diagram editor
An editable block diagram, state diagram, flow chart or symbol window which represents a
design unit view using graphical objects. See also graphical editor and table editor.

don’t touch
A control placed on a design unit or design unit view which disables specified downstream
operations. See also black box.

downstream browser
The downstream browser displays the contents of the compiled library for the design data
library currently open in the active design explorer. See also source browser, side data browser
and resource browser.

downstream only library
A library which has library mappings defined only for downstream compiled data.

— E —

embedded block
The representation of an embedded view on a block diagram or IBD view which has a dynamic
interface defined by the signals connected to it but unlike a block or component does not add
hierarchy to the design.

embedded view
An embedded view describes concurrent HDL statements on a block diagram or IBD view and is
represented by an embedded block which can be defined by a state diagram, flow chart, truth
table or HDL text.

enable point
An object on an ASM chart which displays an enable signal name and condition. See also clock
point and reset point.

end point
A flow chart must have at least one end point which is always named end. See also start point.

Graphical Editors User Manual, V2010.3 457
June, 2011

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

entity declarations
User-specified VHDL statements which can be entered as properties in a symbol and are added to
the corresponding VHDL entity declarations in the generated HDL. See also architecture
declarations and process declarations.

entry point
A connector on a child state diagram which connects to a source in the parent state diagram. See
also exit point.

exit point
A connector on a child state diagram which connects to a destination in the parent state diagram.
See also entry point.

explicit clock
A net on a block diagram or IBD view which is used as a clock signal by the instantiated views of
blocks, embedded blocks or components. See also clocking.

external HDL
A HDL description which was not created by a HDL Designer Series tool (for example, user-
written VHDL or Verilog, gate-level HDL models created by synthesis, Inventra, FPGA or 3Soft
core models). A port interface must exist for the referenced model as a VHDL entity or Verilog
module. See also HDL view and foreign view.

— F —

flow
An orthogonal line connecting objects on a flow chart. A flow can end on another flow (by
creating a flow join) but cannot start from a flow.

flow chart
A diagram editor view which represents a process in terms of action boxes, case boxes, decision
boxes, wait boxes and loops connected by flows. A flow chart must also contain one start point
and one or more end points.

flow join
A connection between flows shown as a solid dot where the flows meet.

foreign view
A non-HDL description (for example, a C or C++ view) with a registered file type which
requires an external HDL generator. See also external HDL.

formal
A signal or bus associated with a port on a component. Typically, a formal port is connected to
an actual signal or bus on the parent view which has the same properties but may have a different
name. Formal ports and actual signals with different properties can be connected using a port
map frame.

458
June, 2011

Graphical Editors User Manual, V2010.3

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

FPGA
FPGA stands for Field Programmable Gate Array.

functional primitive
A block or component that is not further decomposed but fully defined by its own views.
However, there may be both a block diagram or IBD view which describes its behavior in terms
of lower level blocks or components and, for example, a HDL text view which fully defines its
behavior. In this case, the current view determines whether the block or component is a
functional primitive.

— G —

generate frame
An optional outline which can be used to replicate structure using a FOR frame or conditionally
include structure using an IF frame (and ELSE frame in Verilog). Also used in VHDL to cluster
concurrent objects using a BLOCK frame.

global actions
Explicit action in a state diagram or truth table which are always performed. In a state machine,
global actions are executed on registered signals at an active clock edge or concurrently at a
transition event on unregistered signals and are used to ensure that default output values are
assigned for transitions with no explicit actions defined. See also state actions and transition
actions.

global connector
Any signal, bus, or bundle connected to a global connector is considered to be connected (as an
input) to every block in the block diagram or IBD view. It is typically used to connect clock or
reset signals.

global net
A global net is a signal which can be used on a block diagram or IBD view but is declared
externally in a VHDL package or Verilog include file. A global net can not be connected to a
block, external port or global connector.

graphical editor
An editable window which displays a diagram editor or table editor view of a design unit. See
block diagram, IBD view, state diagram, flow chart, symbol, truth table and tabular IO.

— H —

HDL
HDL stands for Hardware Description Language and is used in the documentation as a generic
term for the VHDL or Verilog languages. It may also refer to any other language (for example, C)
which is being used to describe the behavior of hardware.

HDL2Graphics
HDL2Graphics is a utility program used by HDL Designer Series tools to create graphical block
diagram, state diagram, flow chart or IBD view from source VHDL or Verilog code.

Graphical Editors User Manual, V2010.3 459
June, 2011

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

HDL Author
HDL Author is an advanced environment for HDL design which supports design management,
HDL text editing using the integrated DesignPad text editor, re-usable ModuleWare library,
version management, and downstream tool interfaces. HDL Author includes graphical editors
for maintaining the structure of a design as graphical block diagram or IBD views and a symbol
or tabular IO editor for editing design unit interfaces. It also includes editors for state diagram,
flow chart, truth table, symbol and tabular IO views which allow an entire design to be
represented graphically. A simulation analyzer interface supports error cross-referencing and
animation facilities to assist with design de-bug operations.

HDL Designer
The HDL Designer tool includes all the facilities provided by the HDL Author tool plus
HDL2Graphics import which can automatically create editable diagrams from imported HDL
code. HDL Designer supports the creation of block diagram, state diagram, flow chart and IBD
views.

HDL Designer Series
The HDL Designer Series (HDS) is a family of tools for electronic system design using the
VHDL and Verilog hardware description languages. See also HDL Detective, HDL Author and
HDL Designer .

HDL Detective
HDL Detective is the HDL Designer Series visualization tool which allows you to import any
complete or partial HDL text based design and convert the design into a hierarchy of graphical
views. The design structure can be represented as graphical block diagrams or IBD views.
Primitive leaf-level views can be viewed as block diagram, state diagram, flow chart or HDL
text views. A design manager can be used to explore the relationship between individual design
units.

HDL text
A textual HDL description of a design object. A HDL text design unit view may contain
structural HDL or define the behavior of a leaf-level block or component design unit. HDL text
may also be used by an embedded view on a block diagram or IBD view to contain concurrent
HDL statements which are included in the generated structural code. See also HDL view.

HDL text editor
The tool used to edit or view HDL text views. The HDL Designer Series tools are initially
configured to use the built-in DesignPad editor but can be set to use many other popular editors.

HDL view
A design unit view defined by structural or behavioral HDL text. See Verilog module, VHDL
entity and VHDL architecture. Also the VHDL package header and VHDL package body views
of a VHDL package.

460
June, 2011

Graphical Editors User Manual, V2010.3

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

HDM
The Hierarchical Data Model is the internal representation of design data used by the HDL
Designer Series which allows design objects to be located anywhere in the hierarchy below a
physical directory specified in the library mapping.

hierarchical action box
The representation on a flow chart or ASM chart of an embedded child diagram which describes
action logic. See also action box.

hierarchical state
The representation on a state diagram of an embedded child diagram which describes state
transitions. See also simple state.

hierarchical state box
The representation on an ASM chart of an embedded child diagram which describes state
transitions. See also state box.

— I —

IBD view
A design unit view described using Interface-Based Design which represents the interfaces
between instantiated blocks, embedded blocks and components as one or more interconnect
tables showing the signal connections between them. See also block diagram.

if decode box
A named object which represents an IF statement on an ASM chart. When used for decoding
action logic each If has an associated End If object. An if decode box has one input flow and one
or more output flows each corresponding to an evaluated conditional expression. See also action
box, case box,decision box and wait box.

interconnect cell
A cell at the intersection of a row and a column in an IBD view. The interconnect cells specify
ports connecting signals or buses (defined by the rows) and blocks, embedded blocks,
components, external HDL or ModuleWare instances (defined by the columns).

interconnect table
A table editor view which represents the connections between one or more blocks, embedded
blocks, components or ModuleWare instances in an IBD view. May be abbreviated as ICT.

Interface-Based Design
A methodology which defines the structure of a design in terms of the interfaces between lower
level blocks and components. See also IBD view.

interrupt condition
A condition associated with a transition from an interrupt point which applies to every state in
the state diagram and has a higher transition priority than any other transitions.

Graphical Editors User Manual, V2010.3 461
June, 2011

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

interrupt point
A node on a state diagram or ASM chart that is implicitly connected to all states on the same
diagram. Any transition from an interrupt point is treated as an interrupt condition from every
other state in the diagram. A transition from an interrupt point in the top level diagram is treated
as global interrupt condition and applies to all states in a hierarchical state machine. See also
junction and entry point.

— J —

junction
A connector on a state diagram that enables a set of transitions between states to be replaced by
a simpler set of partial transitions between the same states. See also interrupt point and entry
point. Also used for a net connector joining two nets with the same properties on a block
diagram.

— K —
No entries

— L —

leaf view
An undefined view of a block which has been added on a block diagram or IBD view but has not
been defined by a design unit view.

library
A repository for source design data and compiled objects that has been assigned a logical name.
See also library mapping, regular library, protected library and downstream only library.

library mapping
The mapping of a logical library name to physical locations. There are typically different
mappings for the design data library containing graphical editor and HDL text source views and
the compiled library containing downstream objects.

link
A connector used on a state diagram or ASM chart (or between child diagrams in the same
hierarchy) to avoid long transition arcs or flows. A link is implicitly connected to the state or
junction(on a state diagram) or to the state box (on an ASM chart) with the specified name. See
also exit point.

local declarations
User-specified Verilog statements which can be entered as properties for a flow chart or truth
table. These statements are declared at the top of the always code in the generated HDL for a
truth table. When concurrent flow charts are defined, these declarations are local to each of the
individual concurrent flow charts and you can choose whether they are inserted in the initial or
always code. See also module declarations.

462
June, 2011

Graphical Editors User Manual, V2010.3

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

loop
A loop on a flow chart is defined by a start loop and stop loop object connected by a flow. A loop
is used to repeat a set of sequential statements and can have Repeat, For, While or Unconditional
control properties.

LPM
A library of parameterizable modules which can be instantiated as components. to implement
common gate, arithmetic, storage or pad functions.

— M —

Mealy notation
A Mealy notation state machine is defined as a sequential network whose output is a function of
both the present state and the inputs to the network (conditions). In Mealy notation, outputs
(action) are associated with the transitions between states. See also Moore notation and
transition actions.

module declarations
Locally defined Verilog statements which can be entered as properties in a state diagram, flow
chart, truth table or symbol and are declared for the corresponding Verilog module in the
generated HDL. Module declarations are typically used for 'define, parameter, reg, integer, real,
time or wire declarations. See also local declarations.

ModuleWare
A library of technology-independent, synthesis-optimized HDL generators which can be used to
implement many common logic, constant, combinatorial, bit manipulation, arithmetic, register,
sequential, memory or primitive functions as instantiated VHDL or Verilog models.

Moore notation
A Moore notation state machine is defined as a sequential network whose outputs (action) are a
function of the present state only. In Moore notation, actions are associated with the states. See
also Mealy notation and state actions.

— N —

net
A set of signals or buses which have the same name and type. The net represents connections
between objects in the design structure and has a value determined by the net's drivers. See also
wire.

netlist
An ASCII representation of a circuit that lists all of the content of a design and shows how they
are interconnected. Typically used for a gate level description as the input to a simulator or place
and route tool.

net connector
A net connector can be used on a block diagram to join nets which have the same properties. It
can also be used as an implicit on-page connector between nets with the same properties on the

Graphical Editors User Manual, V2010.3 463
June, 2011

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

same diagram or as a dangling connector to terminate nets which are left deliberately
unconnected. See also global connector, junction and ripper.

node
A connectable item on a block diagram, state diagram, ASM chart or flow chart. On a block
diagram, it can be a block, embedded block, component, port map frame, global connector, port,
ripper or net connector. On a state diagram, it can be a state, start state, hierarchical state,
junction, interrupt point, link and an entry point or exit point in a child hierarchical state diagram.
On a flow chart, it can be a start point, action box, loop, decision box, case box, wait box or end
point.

— O —

object
A general term used for a selectable item or selectable group of closely related items.

object tip
A popup window which displays information about the object under the cursor.

— P —

package list
A list of VHDL packages referenced by a design unit view. The package list is displayed as a text
object on a block diagram, state diagram, flow chart or symbol.

panel
A defined and named area on a block diagram, flow chart, state diagram or symbol which
facilitates viewing or printing the area.

parent
The view immediately above its child in the design hierarchy. A design unit view appears as a
block or component on its parent block diagram or IBD view. Also used for the view containing
the hierarchical state or hierarchical action box or hierarchical state box representing a
hierarchical state diagram, ASM chart or flow chart.

partial condition
The condition associated with a partial transition.

partial transition
Any transition arriving at or leaving a junction or interrupt point on a state diagram. Also the
transitions connected to an entry point or exit point in a child hierarchical state diagram. See also
complete transition path.

polyline
A series of connected straight lines joining one or more points. Polylines may be orthogonal
(horizontal and vertical lines only) or may include diagonals. See also spline.

464
June, 2011

Graphical Editors User Manual, V2010.3

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

port
The external connections for a design unit and their representation on a symbol, tabular IO, block
diagram or IBD view. Also the connections to an instantiated block, embedded block or
component on a block diagram or IBD view. The signals connected to ports may be inputs,
outputs or bidirectional or (for VHDL) buffered. The connection points on objects in an ASM
chart or flow chart are also described as ports.

port map frame
An optional outline around a component on a block diagram which allows mapping between
actual signals on a block diagram and formal ports which have different properties.

probe
A probe is a text object which can be used to monitor the simulation activity of a signal on a
block diagram. Although a probe can be moved independently, it is permanently attached to its
associated signal by an anchor.

process declarations
User-specified VHDL statements which can be entered on a flow chart, state machine or truth
table and are included at the beginning of the corresponding process in the generated HDL.
When concurrent flow charts are defined, these declarations are local to each of the individual
concurrent flow charts. See also entity declarations and architecture declarations.

project
The collection of library mapping information that the HDL Designer Series uses to locate and
manage your designs.

project manager
The source browser project manager window can be used to set up a project and to define, load
and configure the library mapping for your designs.

protected library
A library containing re-usable objects (such as standard VHDL type definitions or shared
components) which cannot be edited, generated or compiled.

properties
A mechanism for storing additional information in the data model.

PSL
PSL is a Property Specification Language for the verification of VHDL or Verilog RTL designs.

— Q —
No entries

— R —

range
The maximum and minimum bounds for an integer, floating, physical or enumeration type.

Graphical Editors User Manual, V2010.3 465
June, 2011

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

recovery state point
A node on an ASM chart that indicates the flow to the recovery state used when there is no other
valid state assignment.

registered signal
A signal in a state machine whose value is held as an internal signal which is then assigned to the
output port by the clocked process. A default value should be specified to avoid creating latches
during synthesis. See also combinatorial signal and clocked signal.

regular expression
A regular expression is a pattern to be matched against a text string. When found, a string which
matches the expression can optionally be replaced by another text string.

regular library
A library used for design creation which has library mappings for graphical and HDL text
source design objects.

re-level
An operation available in the state diagram editor to add or remove hierarchy by moving states
into or from a child diagram which is represented by a hierarchical state on the parent diagram.

requirement traceability
The process of tracking a requirement through a design to ensure that it is satisfied.

reset point
A node on an ASM chart that displays the reset signal name and condition. See also clock point
and enable point.

resource browser
The resource browser provides a task manager for configuring and invoking tasks and a template
manager for maintaining templates. See also source browser, side data browser and downstream
browser.

ripper
A ripper can be used on a block diagram to split or combine nets which have the same name and
bounds but represent a different slice or element. It can also be used to add or remove nets from
a bundle. See also net connector.

route point
One of a series of points specifying the path of a net in a block diagram (or a transition arc in a
state diagram). Route points can be connected using polylines or splines.

— S —

selection set
A set of selected objects which are acted on by subsequent operations.

466
June, 2011

Graphical Editors User Manual, V2010.3

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

sensitivity list
A list of signals which can be entered in a flow chart or truth table and are used as the sensitivity
list in the generated HDL. The signals defined in the sensitivity list cause the corresponding
process to execute when any of the signals changes.

shortcut bar
A customizable control panel which provides shortcuts to viewpoints, tasks and ModuleWare
components.

shortcut key
A keyboard key or key combination that invokes a particular command (also referred to as an
accelerator key. See also toolbar.

side data
Supplementary source design data (such as EDIF, SDF and document header files) or user data
(such as design documents or text files) which is saved with a design unit view and can be
viewed using the side data browser.

side data browser
The side data browser displays an expandable indented list showing design and user data
associated with the design unit view selected in the design explorer. See also source browser,
resource browser and downstream browser.

signal
A connection or transfer of information between blocks or components which is represented as a
polyline or spline (with a name and type) on a block diagram. A set of signals with the same
name is called a net. See also bus.

signals status
A list of the output and locally declared signals in a state machine or ASM chart which shows the
type (VHDL only), scope (output or local), default value, reset value and status (combinatorial,
registered or clocked).

simple state
The representation on a state diagram of a state which has no child state diagram. See also
hierarchical state and wait state.

slice
A slice is used to access a set of contiguous elements within an array type (such as
std_logic_vector). The left and right limits of the slice must be consistent with the bounds of the
object.

source
Source design data contained in a library as graphical editor or HDL text views. Also the
connectable item at the start of a signal, bus, transition or flow on a diagram editor view. See
also destination.

Graphical Editors User Manual, V2010.3 467
June, 2011

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

source browser
The source browser provides a project manager window and any number of design explorers for
browsing source design objects. See also side data browser, resource browser and downstream
browser.

spline
A curved line connecting two or more points. See also polyline.

start point
There is one and only one start point in a flow chart which is always named start. See also end
point.

start state
The initial state of a state machine. The start state represents the status of the state machine
before any transitions occur.

state
A state is a resting mode of a state machine. Also the representation of a state on a state diagram.
Encoding information is shown if manual encoding is enabled and the state may have associated
actions. See also hierarchical state, simple state, start state, wait state, transition and condition.

state actions
The actions associated with a state on a state diagram which are executed when the state is
entered. See also transition actions and global actions.

state box
A state box is the representation of a state on an ASM chart. A state box may have associated
entry, state and exit actions. See also hierarchical state.

state diagram
A diagram editor representation of a state machine. A state diagram typically consists of a
number of states, junctions, interrupt points or links connected by transitions. The diagram may
also include text blocks containing global actions, concurrent statements, local declarations and
comment text. A hierarchical state machine may also include hierarchical states, entry points and
exit points.

state machine
A design unit view of a block or component which defines its behavior in terms of a finite state
machine (FSM). This is a mathematical model of a system. The system is represented by a finite
number of states with a finite number of associated transitions between pairs of states. The state
machine is represented graphically as a state diagram. State machines drawn using Mealy
notation and Moore notation or a mixture of Mealy and Moore notation are supported.

state register statements
User entered statements which can be entered in a state diagram and are included in the
generated HDL to replace the default state assignment for the state machine before the state
decode statements at the beginning of a VHDL process or Verilog always code.

468
June, 2011

Graphical Editors User Manual, V2010.3

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

state variable
The name of a signal whose value that defines the current state of a state machine.

status bar
An area at the bottom of the design manager, HDL text editor or graphical editor window that
displays information about the current command.

subtree
All objects directly or indirectly below a given object in the design hierarchy.

symbol
A diagram editor view which uses graphical objects to define the signal interface of a component
and its representation when the component is instantiated on a block diagram. See also tabular
IO.

synchronous
A synchronous process is activated on the next explicit clock edge rather than being activated
only if any of its inputs are changed. See also clocking.

synthesis
The automatic generation of ASIC, FPGA or CPLD designs (circuits) from HDL descriptions.

system
Something that performs a specific function or set of functions with defined inputs and outputs.
Typically, a self-contained electronic subsystem.

— T —

table editor
An editable truth table, IBD view or tabular IO window which represents a design unit view
using a tabular matrix of cells. See also diagram editor and graphical editor.

tabular IO
An alternative table editor view showing the interface of a symbol.

task
A customizable downstream tool or design flow which can be configured and invoked using the
task manager.

task manager
The task manager window can be used to create, modify or run a task.

template manager
The template manager window can be used to create and modify the templates used for new
graphical editor or HDL text views.

test bench
A test harness which allows a standard set of stimuli to be applied to a design.

Graphical Editors User Manual, V2010.3 469
June, 2011

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

toolbar
A group of buttons which provide shortcuts to commonly used commands. The HDL Designer
Series design manager and graphical editor windows typically have several undockable toolbars
each supporting a set of related commands. See also shortcut key.

tooltip
A small pop-up window that provides descriptive text for a toolbar button.

top-down design
The process of designing a system by identifying its major parts, decomposing them into lower
level blocks and repeating the process until the desired level of detail is achieved. In electronic
design automation, this process is applied to the top-down design of ASIC, FPGA and CPLD
circuits using a hardware description language such as VHDL or Verilog. See also bottom-up
design.

transition
A change of state within a state machine. The transition occurs when an associated condition is
satisfied. A transition may have associated transition actions which are executed when the
transition takes place. A transition is represented by a transition arc with associated transition
text in a state diagram. See also transition priority.

transition actions
The action associated with a transition in a state machine which are executed when the transition
occurs. A transition action is the consequence of a condition. See also state actions.

transition arc
A polyline or spline representing part of a transition between states on a state diagram. The
direction of the transition is normally shown by an arrow head at its destination and the
transition text is attached to the arc by an anchor.

transition order
The order in which CASE style transitions leaving a state are generated. CASE style transitions
in VHDL are mutually exclusive and the order is ignored but the order is significant in Verilog
since the first match in the generated code is taken.

transition priority
When there are more than one IF style transitions leaving a state, the associated conditions are
evaluated in the order of their priority. The transition priority is shown by an integer on the
transition arc adjacent to the source state. However, a transition with the condition OTHERS is
always evaluated last.

transition text
The condition text (in a Moore notation transition) or the condition and action text (in a Mealy
notation transition) which is attached to the transition arc by an anchor.

truth table
A table editor view which represents one or more output signals by the logical state of one or
more input signals.

470
June, 2011

Graphical Editors User Manual, V2010.3

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

type
Specifies the characteristics and allowed values of a net. In VHDL, all signals, buses, variables
and constants have a specific VHDL type definition which is defined in a package list. In
Verilog, a net may have wire, tri, wor, trior, wand, triand, tri0, tri1, supply0, supply1, reg, trireg,
real, integer, time or realtime type. The values for a bus may also be limited by a bounds
constraint.

— U —

universe
The total area available for a diagram.

unknown design unit
A design unit which is not defined as a block, component or package list.

unknown design unit view
A design unit view representing data that is not defined as a graphical editor, HDL text or other
registered view. Typically contains a text description and is treated as a text view for open, print
or other file operations.

user directory
On UNIX, this is the home directory used when you login which contains your startup files and
is normally located by the HOME environment variable. On a PC, an application data directory
is created when you use a tool for the first time. On Windows NT, this is created in the profiles
directory. For example:
C:\Winnt\Profiles\<user>\Application Data\HDL Designer Series\
On a Windows XP machine, the application data directory is located below the Documents and
Settings directory. For example:
C:\Documents and Settings\<user>\Application Data\HDL Designer Series\ Typically, the user
directory will contain your preferences and library mapping files unless you have explicitly
saved these files in alternative locations.

— V —

Verilog
A hardware description language (compliant with IEEE standard 1364-1995) that can be used to
design, model and simulate electronic circuits. Verilog is a registered trademark of Cadence
Design Systems Inc. See also HDL and VHDL.

Verilog include
A Verilog file containing global declarations or other Verilog code which can be included by
reference using the `include compiler directive.

Verilog module
A design unit view of a block or component which defines its behavior using Verilog source
code.

Graphical Editors User Manual, V2010.3 471
June, 2011

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

Verilog module body
Describes the boundaries and content of a Verilog logic block in structural, dataflow and
behavioral constructs.

Verilog parameter
A Verilog parameter is a constant value used to parameterize a Verilog design description.
Verilog parameters are used in a similar way to VHDL generics.

VHDL
VHDL stands for VHSIC (Very High Speed Integrated Circuit) Hardware Description
Language. VHDL is a design and modelling language (compliant with IEEE standards 1076-
1987, 1076-1993 and 1076-2002) which was specifically created to describe (in machine and
human-readable form) the organization and function of digital hardware systems and circuit
boards. See also HDL and Verilog.

VHDL architecture
A design unit view of a block or component which defines its behavior using VHDL source code.

VHDL architecture body
Declares the items available inside a VHDL design entity and specifies the relationships between
inputs and outputs. An architecture body describes the organization and operations performed
inside the design entity. You can choose to store the VHDL architecture body in the same file or
in a separate file from the VHDL entity.

VHDL configuration
A declaration which specifies the VHDL architecture body used to define a VHDL design entity.
See also configuration.

VHDL design entity
A VHDL design entity is the primary abstraction level of a VHDL hardware model which
typically represents a cell, chip, board or subsystem. A VHDL design entity comprises a VHDL
entity declaration and a VHDL architecture body.

VHDL entity
Declares the interface between a VHDL design entity and its external environment. An entity
declaration contains definitions of inputs to and outputs from the VHDL design entity. VHDL
entity declarations can optionally be stored in the same file or a separate file from the associated
VHDL architecture body.

VHDL generic
A VHDL generic is a constant value used to parameterize a VHDL design description. VHDL
generics are used in a similar way to Verilog parameters.

VHDL package
A VHDL object that contains procedural definitions and declarations used by design unit views
of blocks or components. Typically contains type and subtype definitions. Usually comprises a
separate VHDL package header containing declarations and a VHDL package body containing
any functions or procedures declared in the package header.

472
June, 2011

Graphical Editors User Manual, V2010.3

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

VHDL package body
The part of a VHDL package which defines the implementation of objects in the package. It
contains data used when the design is evaluated. The package body typically contains constant
definitions and function bodies.

VHDL package header
The part of a VHDL package which declares the objects defined in the package. It is referenced
by block and component views.

viewpoint
A set of user-defined rules which examine particular aspects of a design.

VITAL
VITAL stands for the VHDL Initiative Towards ASIC Libraries which is an IEEE standard
(IEEE1076.4) for ASIC library design.

— W —

wait box
A named object on a flow chart containing a conditional wait statement which controls the delay
before an event occurs on a signal in the sensitivity list. See also action box, case box and
decision box.

wait state
A wait state has similar properties to a simple state but introduces a delay of two or more clock
cycles.

whisker
A line that extends between a port on the boundary of a customized block or component symbol
and the body of the block or component symbol.

wire
A segment of a net on a VHDL or Verilog block diagram. A wire may have signal or bus style
and scalar or vector type and should not be confused with the Verilog wire type.

working directory
On UNIX, the directory from which you invoked the application. On a PC, the working directory
defaults to the user directory or can be set using the Start In option when you define the
properties for a short cut to your application. Do not set a working directory using the Start In
shortcut option if you want to use object linking and embedding (OLE) to import objects into a
documentation tool as the application will not be able to access library mapping information
from this location.

workspace
A working environment which allows common design data to be shared between multiple users.
Typically, a project comprises one or more shared workspaces and a private workspace (often
described as a sandbox) for each engineer working on the project.

Graphical Editors User Manual, V2010.3 473
June, 2011

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

— X —

Xdefaults
A set of resources which can be used to set the default display characteristics on X server
window systems.

— Y —
No entries

— Z —
No entries

474
June, 2011

Graphical Editors User Manual, V2010.3

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

475

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

Graphical Editors User Manual, V2010.3
June, 2011

Index

— A —
Action box

object properties, 356
Actions

action box, 346
syntax, 357

Activity trail
setting, 434

Adding Ports, 257
Anchor

comment text, 57
simulation probe, 421
text object, 67

Animation
activity trail, 434
cause, 430, 437
clear captured events, 434
data capture, 433
enabling, 433
flow chart, 431
global capture, 433
goto latest, 436
goto next, 436
goto previous, 436
goto start, 436
goto time, 436
graphical highlighting, 436
highlight colors, 436
instrument for, 433
link diagrams, 437
linking diagrams, 437
mixed language, 437
move by clocks, 436
move by events, 436
move by states, 436
notation, 436
preferences, 435
reviewing, 436
showing the animation view, 433

state diagram, 431
ASM chart

editor, 18
Attributes

in port declarations, 165
in signal declarations, 165
setting, 165

Autoshape
see comment graphics

— B —
Backup

automatic, 31
file, 31

Black box
setting, 44, 278

Block
automatic instance name, 111
autowhiskers, 229
changing the shape, 228
customizing, 228
definition of, 202
instantiating, 111
open down, 194
renaming, 111
updating the interface, 128

Block diagram
adding hierarchy, 172
automatic routing, 410
bus reconstruction, 412
changing the layout, 410
definition of, 200
editor, 18
layout and routing options, 409
notation, 201
preferences, 231
re-level, 172
text visibility, 70
toolbar, 211

Breakpoints

Index

476
June, 2011

Graphical Editors User Manual, V2010.3

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

adding, 419
disabling, 420
enabling, 420
graphical, 420
removing, 419
reporting, 420

Browser
diagram, 91

content, 94
columns, 96
grouping, 97
sorting, 97

structure, 92
Bundle

adding on a block diagram, 217
adding signals, 218
definition of, 204
highlight color, 225
ripping a bundle, 219
ripping a bus, 219
ripping a signal, 218

Bus
adding on a block diagram, 213
definition of, 204
endpoint, 213
ripping a slice, 215
ripping an element, 215

— C —
Case box

expression
syntax, 364

object properties, 363
Cell

autofit, 90
copying contents, 88
cut and paste, 88
deleting contents, 88
editing, 88
resizing a column or row, 90
selecting, 88

Changing the Display of Signal Properties, 208
Column

collapsing, 266
expanding, 266
moving, 267

Command
auto-repeat, 22

Command Auto-repeat, 22
Comment graphics

adding, 72
adding a bitmap, 76
adding a circle, 76
adding a line, 74
adding a polygon, 75
adding a polyline, 74
adding a rectangle, 75
adding an arc, 75
adding an ellipse, 76
adding arrowheads, 74
autoshape, 229
edit vertices, 72
grouping, 55
layering, 55
loading a bitmap, 76

Comment text
adding, 56
after file header, 57
after object, 57, 104, 163, 322
at file end, 57
at file start, 57
attaching, 57
before object, 57, 104, 163, 322
detaching, 57
editing, 57, 58
end of line, 57, 104, 163, 322
formatting, 58
grouping, 55
hiding, 58
in block interface, 57
in port declarations, 163, 321
in signal declarations, 163
including in HDL, 57
internal variables, 58
Kanji, 58
layering, 55
object properties, 58
properties, 58
showing, 58

Compiler directive
recovery, 397

477Graphical Editors User Manual, V2010.3
June, 2011

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

setting, 26
Component

automatic instance name, 111
definition of, 202
drag and drop, 112
instantiating, 112
open down, 194
updating an instance, 127
where used, 320

Component browser
instantiating a component, 112
instantiating a ModuleWare part, 116

Condition
syntax, 360

Constrained
move, 52
resize, 53

Copy
object, 34
picture, 34
to clipboard, 34

Cursor tracking
probes, 422, 430
state machine, 418, 422, 430

CVE models
source VHDL, 121

— D —
Dataflow window

displaying, 427
Decision box

object properties, 358
Declarations

align in columns, 324
entity, 324
external module declarations, 324
internal module declarations, 324
module, 324
symbol, 324
Verilog parameter, 322
Verilog signals, 152
VHDL generic, 322
VHDL signals, 150

Default view
setting, 196

DesignPad

HDL text editor, 18
Diagram

saving, 29
Diagram editor

default font, 48
template title block, 49
visible anchors, 49

Dialog box
Activity Trail Settings, 435
Add External IP, 122
Add Hierarchy, 173
Add Signal Stubs, 217, 221
Attributes, 165
Block Diagram Layout and Routing

Options, 409
Block Diagram Master Preferences, 231,

281
Block Diagram Preferences, 232, 281

Appearance, 243, 282
Background, 244
Default Values, 232, 233

Default Properties, 235
Verilog, 234
VHDL, 234

Display Settings, 239
ModuleWare Display, 241
ModuleWare Params, 236
Object Visibility, 240
Verilog PortIO, 241
Verilog Signals, 241
VHDL PortIO, 241
VHDL Signals, 241

Cell Edit Appearance, 314
Choose Instances, 424
Choose Panel to Delete, 81
Choose Panel to Show, 80
Choose Panel to View, 80
Choose Shape, 229
Color Selection, 83, 85
Comments, 104, 163, 322
Convert To Graphics, 402
Create Embedded View, 125
Create Test Bench, 440
Design Checking Options, 131
Diagram Master Preferences

478
June, 2011

Graphical Editors User Manual, V2010.3

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

Background, 50
Documentation and Visualization Options,

405
Edit Appearance, 83
File Creation Wizard, 195
Filter Controls, 310
Filter Settings, 182
Find and Replace

Find, 35
Replace, 37

Flow Chart Preferences, 373
Appearance, 373
Background, 376
Default Values, 375

Default Properties, 375
Miscellaneous, 374

Object Visibility, 376
Flow Chart Properties, 364

Architecture Declarations, 369
Concurrent Statements, 370
Generation, 365
Module Declarations, 369
Process Declarations, 372

Font Select, 83
Found, 37, 38
Frame Declarations, 302
Generation File Clash, 43
Interface Master Preferences, 327
Interface Preferences

Default Values, 331
Default Properties, 333
Verilog, 332
VHDL, 332

Interface Appearance, 329
Miscellaneous

Interface, 334
Object Visibility, 335
Verilog Port Display, 335
VHDL Port Display, 335

Symbol Appearance, 330
Main Settings

Diagrams, 48, 67, 77, 78
General, 22, 23
Save, 31
Tables, 87

ModuleWare Object Tips Visibility, 88
ModuleWare Parameter Visibility, 120
ModuleWare Preview, 118
Name Block, 195
Net Highlighting Options, 226
Net Insert Options, 169
Net Insert/Remove Parameters, 170
Net Propagation Options, 166
Net Remove Options, 171
Object Properties, 32

Action Boxes, 357, 358, 360, 362, 363
Components, 133
Embedded Blocks, 143
Frames, 302
Text, 58

Open As (rendered view), 429
Package List, 24
Panel Object Properties, 79
Port Display Control, 207
Port Map Settings, 284
PortIO Display Control, 206
Probe Properties, 423
Reconcile Interface, 129
Reconcile Interface Options, 130
Rename, 355
Rip Bus/Slice From Bundle, 219
Rip Element From Bus, 215
Rip New Bundle, 219
Rip Signal/Element From Bundle, 218
Rip Slice From Bus, 215
Save As Design Unit View, 29
Show Columns, 105, 309
Signal Display Control, 209
Symbol Master Preferences, 327
Symbol Object Properties, 324

Text, 58
Symbol Preferences

Background, 337
Miscellaneous, 328

Symbol/Interface Properties
Declarations, 324
Symbol, 325

Truth Table Preferences, 391
Appearance, 392
Default Properties, 393

479Graphical Editors User Manual, V2010.3
June, 2011

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

Truth Table Properties, 381
Architecture Declarations, 386
Concurrent Statements, 387
Generation, 382
Global Actions, 388
Module Declarations, 386
Process Declarations, 388

Update Where Used, 321
Update/Replace Foreign Component, 124
Verilog Compiler Directives, 26
Where Used wizard, 320

— E —
Embedded block

adding, 124
definition of, 203
renaming, 125

Embedded constraints
setting, 165

Embedded HDL text
adding, 126
editing, 58

Embedded view, 203
flow chart, 125
HDL text, 125
opening, 125
state diagram, 125
truth table, 125

Environment variables
CVE_HOME, 121

Export
comma separated value (CSV) file, 90
tab separated value (TSV) file, 90
table, 90

External HDL
instantiating, 120
soft pathnames, 123
updating or replacing, 124

— F —
Find

class expression, 36
match case, 36
match word, 36
regular expression, 36
replace, 37

select all, 37
select object, 37
text, 35
wrap search, 36

Flip
object, 55
ripper, 216

Flow chart
adding a case box, 349
adding a concurrent chart, 355
adding a decision box, 347
adding a flow, 351
adding a loop, 348
adding a start point, 345
adding a wait box, 348
adding an action box, 346
adding an end point, 352
adding objects, 343
animation, 431
automatic connection mode, 343
automatic insertion mode, 344
breaking out of a loop, 349
concurrent, 354
deleting a concurrent chart, 356
editor, 18
hierarchical, 352
opening a concurrent chart, 355
properties

architecture declarations, 364, 369
begin and end, 368
clock, 367
combinatorial, 366
concurrent statements, 364, 370
fork and join, 368
generation characteristics, 365
initial or always style code, 368
instrument for animation, 368
local declarations, 365, 372
module declarations, 364, 369
process declarations, 365, 372
reset, 367
sensitivity list, 365, 367
sequential, 366

renaming a concurrent chart, 355
text visibility, 71

480
June, 2011

Graphical Editors User Manual, V2010.3

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

— G —
Generate frame

adding, 288
BLOCK, 258, 259, 288, 296
block, 259, 296
declarations, 302
editing properties, 302
ELSE, 288
FOR, 288, 289, 298
IF, 288
nested, 298
object properties, 302

Generic declarations
editing, 322

Global connector
adding on a block diagram, 222

Graphical views
opening, 429

Grid
preferences, 51
snapping, 86
visibility, 86

— H —
HDL

bulk parsing, 43, 278
convert to graphics, 401
generating from graphical views, 41
setting the language, 23
show as graphics, 409
VHDL and Verilog, 23
viewing generated HDL, 44

HDL2Graphics, 397
compiler directives, 397
flow chart recovery, 399
state machine recovery, 398, 399
structure recovery, 396
Verilog parameter, 398

HDL2Graphics,compiler directives, 397
Highlight

color, 225
net, 225

— I —
IBD view

adding hierarchy, 172

editor, 18
expanding and collapsing, 266
moving rows or columns, 267
remove hierarchy, 172

Icons
Animation toolbar, 432
Appearance toolbar, 84
Arrange Object toolbar, 53
Block Diagram Tools toolbar, 211
breakpoint, 420
Comment Graphics toolbar, 72
diagram browser

notation, 92, 93, 94, 95, 96, 98
Format text toolbar, 27
Simulation toolbar, 416
Standard toolbar, 20
Tabular IO toolbar, 310

IF Frame
using, 298

Intellectual property
instantiating, 120

Interface
enforce consistent case, 130
enforce consistent port ordering, 130
preferences, 327
reconciling, 128

Internal variable
in comment text, 58

Inventra models
source HDL, 121

— K —
Kanji text

in comment text, 58

— L —
Library mapping

standard packages, 23
List window

adding signals, 418
displaying, 427

Log window
Task log, 43, 278

Logic function
notation, 227

Loop

481Graphical Editors User Manual, V2010.3
June, 2011

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

object properties, 362
statement

syntax checking, 363

— M —
Mixed language

external HDL, 122
using, 196

ModelSim
Debug menu, 428
List window, 418, 419, 429
Main window, 428
Signals window, 419, 429
Source window, 419, 420, 428
Structure window, 419, 428
Wave window, 418, 419, 428

ModuleWare
default parameter visibility, 236
editing parameters, 117
instantiating, 116
object tips, 236
parameter visibility, 120
port polarity, 119, 231
resizing, 119
stimulus generators, 441

Mouse
strokes, 22

— N —
Net

adding a net slice on an IBD view, 257
adding on a block diagram, 212
connecting, 222
connecting to a block or component, 223
connecting to a port map frame, 225
highlight color, 225
highlighting, 225
inserting, 169
propagating, 169
propagating changes, 166
removing, 169
report if unconnected, 132
routing, 212

Net connector
change to ripper, 216

Notation

action box, 340
block, 201
block diagram, 201
BLOCK generate frame, 259, 296
bundle, 201
component, 201
decision box, 340
diagram browser

content
ASM chart, 96, 98
block diagram or IBD view, 95
flow chart, 95
state diagram, 96

structure
block diagram, 92
concurrent and hierarchy views, 92
symbol, 93
text objects, 94

ELSE generate frame, 259, 292, 295
embedded block, 201
end point, 341
FOR generate frame, 258, 289
global connector, 201
hierarchical action box, 340
IF generate frame, 259, 292
logic functions, 227
loop, 340
net connector, 201
port, 201
port map frame, 283
ripper, 201
start point, 340
symbol bidirectional port, 315
symbol buffer port, 315
symbol clock port, 315
symbol input port, 315
symbol inverted port, 315
symbol output port, 315
truth table, 379
wait box, 340

— O —
Object

aligning, 54
deleting, 34
Distributing, 54

482
June, 2011

Graphical Editors User Manual, V2010.3

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

flipping, 54
moving, 51
moving to next grid point, 51
resizing, 53
rotating, 54
selecting, 33
selecting shapes, 33
selecting text, 33

Object properties
2 dimensional bounds, 151
2 dimensional slice, 151
action box, 356
anchored panel, 79
array bounds, 152
attributes, 165
block, 139
block diagram, 133
block port ordering, 140
BUS keyword, 151
case box, 363
charge strength, 152
comment bounding box, 58
comment text, 58
comments, 163
component, 133
decision box, 358
editing, 32
embedded block, 143
embedded constraints, 165
expansion, 152
generate frame, 302
IBD view, 133
loop, 362
net bounds, 151
net type, 150
non-autoroute panel, 79
panel, 79
panel visibility, 79
Register keyword, 151
regular panel, 79
sheet panel, 79
signal declarations, 150
symbol, 324
text, 58
vector bounds, 152

VHDL net declarations, 150
wait box, 360

Object tip
displaying, 78

OLE
object linking and embedding, 38
opening an OLE view, 41
using drag and drop, 40

Opening Block and Component Views, 194

— P —
Panel

adding, 79
anchored, 79
deleting, 81
displaying, 80
hiding, 80
non-autoroute, 79
object properties, 79
OLE, 41
printing, 81
protecting, 81
sheet, 79
showing, 80
viewing, 80

Panning
window, 86

Parent view
editing, 28
opening, 28

Paste
here, 34
object, 34
special, 34

Polyline
see comment graphics

Port
active high, 231
active low (Not), 231
adding in the signals table, 102
adding in the symbol editor, 316
adding in the tabular IO editor, 311
adding on a block diagram, 220
adding to a net, 221
changing the mode, 221, 316
display properties, 206

483Graphical Editors User Manual, V2010.3
June, 2011

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

edge triggered (Clock), 231
falling edge clock, 231
mapping, 283
naming, 205
ordering, 319
polarity control, 231
propagating, 320
properties, 325
rising edge clock, 231
rotating, 222
spacing, 317
visibility, 230

Port map frame
editing the mapping, 284
enabling, 283
example, 286

Pragma
async_set_reset_local, 367, 385
dc_script_begin, 166
dc_script_end, 166
hds, 396
sync_set_reset_local, 367, 385
synopsys full_case, 400
synopsys parallel_case, 400
translate_off, 396
translate_on, 396

Preference
net width label, 204
view type, 202

Preferences
animation, 435
appearance, 243, 282
applying master preferences, 50
automatic completion in table cells, 87
auto-update signal style, 239
backup file, 31
block diagram, 231
block diagram default values, 233
block diagram HDL types, 234
bundle name, 233
bus name, 233
check syntax on entry, 328
create component declarations, 44
default font for diagram editor views, 48
default font for table editor views, 87

diagram background color, 244, 337, 376
editing diagram preferences, 49
editing master preferences, 49
elaboration limit, 425
embedded block name, 233
generate in-line ModuleWare code, 232
global connector name, 233
grid, 244, 337, 376
grid display, 51
include title block in new diagrams, 49, 77
instance name, 233
interface appearance, 329
interface default values, 331
interface visual attributes, 329
layout, 410
net width label, 239
object tips, 78
open as symbol, 329
open as tabular IO, 329
port constraints, 332
port display control, 241, 335
port names, 331
port ordering, 329
reconcile enforce consistent case, 130
reconcile enforce consistent port ordering,

130
recovery file, 31
routing, 410
setting diagram background preferences,

50
show anchors, 49, 67
show signal attributes, 239
signal constraints, 234
signal display control, 241
signal name, 233
snap to grid, 51
symbol appearance, 330
symbol visual attributes, 330
take display settings from component port,

239
title block location, 49, 77
update HDL view when symbol is saved,

32
updating master preferences, 50
use closest matched fonts, 49

484
June, 2011

Graphical Editors User Manual, V2010.3

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

use scalable fonts, 48
use symbol visual attributes for

components, 239
wrap bundle contents, 239

Print
panel, 81

Probes
adding, 421
removing, 421
setting properties, 423
tracking the ModelSim cursor, 422

Process window
displaying, 427

— R —
Recovery

file, 31
Redo

last undone command, 33
Regular expression

class expression, 36
searching for, 35
tagged expression, 38

Replace
see Find

Ripper
change to net connector, 216
flip direction, 216

Rotating
objects, 54
text, 317

Route point
adding, 82
removing, 82

Row
collapsing, 266
expanding, 266
moving, 267
sorting in a tabular IO view, 311
sorting in the signals table, 107

— S —
Save

automatic, 31
Seamless models

see CVE models

Search
see Find

Setting Background Preferences, 50
Setting Compiler Directives, 26
Setting Package References, 23
Setting Preferences for Diagram Views, 48
Setting Preferences for Table Views, 87
Setting Visual Attributes, 83
Shapes

selecting, 33
shared.hdp, 23
Shortcuts

in-line text editing, 65
mnemonic Keys, 22

Signal
adding in the signals table, 102
adding on a block diagram, 213
adding stubs on a block diagram, 217
adding the current state to simulator

windows, 418
adding to a bundle, 218
adding to simulator windows, 418
adding to the simulator log, 419
definition of, 204
display properties, 209
endpoint, 213
forcing, 423
highlighting in the simulator, 419
ordering, 171
reporting information, 419
rotating text, 222

Signals table
displaying, 99
filtering, 105
grouping, 105
notation, 100

Signals window
displaying, 427

Simulation
choosing the simulation instance, 424
continue, 426
driving, 418
forcing signals, 423
ModelSim cursor tracking, 418, 422, 430
removing probes, 422

485Graphical Editors User Manual, V2010.3
June, 2011

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

reporting signal information, 419
restarting, 427
run for time, 426
run forever, 426
run to next event, 426
running, 426
step into line, 426
step over line, 426
step over object, 426
stepping, 426

Simulator environment
reporting, 426
setting, 425

Simulator windows
displaying, 427

Source window
displaying, 427

speedCHART models
source HDL, 121

State diagram
animation, 431
editor, 18
text visibility, 71

Strokes
enabling, 49
mouse shortcuts, 22

Structure window
displaying, 427

Symbol
autowhiskers, 317
changing the shape, 317
customize, 317
editing declarations, 324
lock, 317
notation, 315
text visibility, 70

Syntax
checking, 357, 360, 361, 363, 364

Synthesis
black box, 44, 278

— T —
Table

non-scrolling area, 308
panning, 89
scrolling, 89

sorting rows, 107, 311
Table editor

default font, 87
Tabular IO

editor, 18
filtering columns, 309
grouping, 312
hiding columns, 308
VHDL range constraint format, 334

Test bench
analyzing results, 447
creating, 440
defining stimulus on a flow chart, 442
defining stimulus on a state machine, 446
defining stimulus using lookup tables, 443
defining stimulus using textIO, 444
definition of, 439
generating a clock, 446
re-using, 448

Text
alignment, 27
anchor, 57, 67
editing on a diagram, 64
editor, 18
embolden, 27
finding, 35
finish all edits, 67
finish edits, 67
font size, 27
formatting, 27
italicize, 27
moving, 67
pattern matching, 35
regular expression, 35
replacing, 37
searching, 35
selecting, 33
send to editor, 66
setting font, 83
underline, 27
visibility, 69

TextIO
defining stimulus, 444

The Diagram Browser, 91
Title block

486
June, 2011

Graphical Editors User Manual, V2010.3

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

adding, 77
creating, 77
saving, 77
template, 77

Toolbar
Animation, 432
Appearance, 84
Arrange Object, 53
auto-repeat, 22
Block Diagram Tools, 211
Comment Graphics, 72
Format Text, 27
HDL Tools, 20
Simulation, 416
SM Signals Tools, 101
Standard, 20
Tabular IO Tools, 310
Tasks, 20
Version Management, 20

Travel log
window history, 29

Truth table
adding a column or row, 381
Case style, 389
comparison operators, 380
deleting a column or row, 381
editor, 19
If-Then-Else style, 389
notation, 379
preferences, 391
properties

architecture declarations, 382, 386
clock, 384
combinatorial, 383
concurrent statements, 382
generation, 381
generation properties, 382
global actions, 382, 388
local declarations, 382, 387
module declarations, 382, 386
process declarations, 382, 387
reset, 384
sensitivity list, 385
sequential, 383

— U —
Undo

last command, 32
Using the Convert to Graphics Wizard, 401

— V —
Variables window

displaying, 427
Verilog

arrays, 153
Verilog compiler directives

setting, 26
Verilog parameter

declaration, 322
recovery, 398
usage example, 175
using, 174

VHDL
component declarations, 44

VHDL generic
declaration, 322
usage example, 175
using, 174

VHDL package
setting references, 23

View
all, 86
area, 86
diagram, 86
opening parent, 28
pan, 86
scroll, 86
zoom in, 86
zoom last, 86
zoom out, 86

Visual attributes
background color, 83
fill pattern, 83
foreground color, 83
line color, 83
line style, 83
line width, 83
setting, 83
setting color, 85
setting in the tabular IO view, 314

487Graphical Editors User Manual, V2010.3
June, 2011

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

text font, 83

— W —
Wait box

object properties, 360
Wait statement

syntax, 361
Wave window

adding signals, 418
displaying, 427

Where used
component, 320

Window
back, 29
forward, 29
panning, 86
refreshing, 32
re-using, 29
saving position and size, 32
scrolling, 86
single, 29
travel log, 29
zooming, 86

— Z —
Zoom

window, 86

488
June, 2011

Graphical Editors User Manual, V2010.3

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

End-User License Agreement
The latest version of the End-User License Agreement is available on-line at:

www.mentor.com/eula

END-USER LICENSE AGREEMENT (“Agreement”)

This is a legal agreement concerning the use of Software (as defined in Section 2) and hardware (collectively
“Products”) between the company acquiring the Products (“Customer”), and the Mentor Graphics entity that
issued the corresponding quotation or, if no quotation was issued, the applicable local Mentor Graphics entity
(“Mentor Graphics”). Except for license agreements related to the subject matter of this license agreement which
are physically signed by Customer and an authorized representative of Mentor Graphics, this Agreement and the
applicable quotation contain the parties' entire understanding relating to the subject matter and supersede all
prior or contemporaneous agreements. If Customer does not agree to these terms and conditions, promptly return
or, in the case of Software received electronically, certify destruction of Software and all accompanying items
within five days after receipt of Software and receive a full refund of any license fee paid.

1. ORDERS, FEES AND PAYMENT.

1.1. To the extent Customer (or if agreed by Mentor Graphics, Customer’s appointed third party buying agent) places and
Mentor Graphics accepts purchase orders pursuant to this Agreement (“Order(s)”), each Order will constitute a contract
between Customer and Mentor Graphics, which shall be governed solely and exclusively by the terms and conditions of this
Agreement, any applicable addenda and the applicable quotation, whether or not these documents are referenced on the
Order. Any additional or conflicting terms and conditions appearing on an Order will not be effective unless agreed in
writing by an authorized representative of Customer and Mentor Graphics.

1.2. Amounts invoiced will be paid, in the currency specified on the applicable invoice, within 30 days from the date of such
invoice. Any past due invoices will be subject to the imposition of interest charges in the amount of one and one-half
percent per month or the applicable legal rate currently in effect, whichever is lower. Prices do not include freight,
insurance, customs duties, taxes or other similar charges, which Mentor Graphics will state separately in the applicable
invoice(s). Unless timely provided with a valid certificate of exemption or other evidence that items are not taxable, Mentor
Graphics will invoice Customer for all applicable taxes including, but not limited to, VAT, GST, sales tax and service tax.
Customer will make all payments free and clear of, and without reduction for, any withholding or other taxes; any such
taxes imposed on payments by Customer hereunder will be Customer’s sole responsibility. If Customer appoints a third
party to place purchase orders and/or make payments on Customer’s behalf, Customer shall be liable for payment under
Orders placed by such third party in the event of default.

1.3. All Products are delivered FCA factory (Incoterms 2000), freight prepaid and invoiced to Customer, except Software
delivered electronically, which shall be deemed delivered when made available to Customer for download. Mentor
Graphics retains a security interest in all Products delivered under this Agreement, to secure payment of the purchase price
of such Products, and Customer agrees to sign any documents that Mentor Graphics determines to be necessary or
convenient for use in filing or perfecting such security interest. Mentor Graphics’ delivery of Software by electronic means
is subject to Customer’s provision of both a primary and an alternate e-mail address.

2. GRANT OF LICENSE. The software installed, downloaded, or otherwise acquired by Customer under this Agreement,
including any updates, modifications, revisions, copies, documentation and design data (“Software”) are copyrighted, trade
secret and confidential information of Mentor Graphics or its licensors, who maintain exclusive title to all Software and retain
all rights not expressly granted by this Agreement. Mentor Graphics grants to Customer, subject to payment of applicable
license fees, a nontransferable, nonexclusive license to use Software solely: (a) in machine-readable, object-code form (except
as provided in Subsection 5.2); (b) for Customer’s internal business purposes; (c) for the term of the license; and (d) on the
computer hardware and at the site authorized by Mentor Graphics. A site is restricted to a one-half mile (800 meter) radius.
Customer may have Software temporarily used by an employee for telecommuting purposes from locations other than a
Customer office, such as the employee's residence, an airport or hotel, provided that such employee's primary place of
employment is the site where the Software is authorized for use. Mentor Graphics’ standard policies and programs, which vary
depending on Software, license fees paid or services purchased, apply to the following: (a) relocation of Software; (b) use of
Software, which may be limited, for example, to execution of a single session by a single user on the authorized hardware or for
a restricted period of time (such limitations may be technically implemented through the use of authorization codes or similar
devices); and (c) support services provided, including eligibility to receive telephone support, updates, modifications, and
revisions. For the avoidance of doubt, if Customer requests any change or enhancement to Software, whether in the course of

 IMPORTANT INFORMATION

USE OF ALL SOFTWARE IS SUBJECT TO LICENSE RESTRICTIONS. CAREFULLY READ THIS
LICENSE AGREEMENT BEFORE USING THE PRODUCTS. USE OF SOFTWARE INDICATES

CUSTOMER’S COMPLETE AND UNCONDITIONAL ACCEPTANCE OF THE TERMS AND
CONDITIONS SET FORTH IN THIS AGREEMENT. ANY ADDITIONAL OR DIFFERENT PURCHASE

ORDER TERMS AND CONDITIONS SHALL NOT APPLY.

http://www.mentor.com/eula

receiving support or consulting services, evaluating Software, performing beta testing or otherwise, any inventions, product
improvements, modifications or developments made by Mentor Graphics (at Mentor Graphics’ sole discretion) will be the
exclusive property of Mentor Graphics.

3. ESC SOFTWARE. If Customer purchases a license to use development or prototyping tools of Mentor Graphics’ Embedded
Software Channel (“ESC”), Mentor Graphics grants to Customer a nontransferable, nonexclusive license to reproduce and
distribute executable files created using ESC compilers, including the ESC run-time libraries distributed with ESC C and C++
compiler Software that are linked into a composite program as an integral part of Customer’s compiled computer program,
provided that Customer distributes these files only in conjunction with Customer’s compiled computer program. Mentor
Graphics does NOT grant Customer any right to duplicate, incorporate or embed copies of Mentor Graphics’ real-time operating
systems or other embedded software products into Customer’s products or applications without first signing or otherwise
agreeing to a separate agreement with Mentor Graphics for such purpose.

4. BETA CODE.

4.1. Portions or all of certain Software may contain code for experimental testing and evaluation (“Beta Code”), which may not
be used without Mentor Graphics’ explicit authorization. Upon Mentor Graphics’ authorization, Mentor Graphics grants to
Customer a temporary, nontransferable, nonexclusive license for experimental use to test and evaluate the Beta Code
without charge for a limited period of time specified by Mentor Graphics. This grant and Customer’s use of the Beta Code
shall not be construed as marketing or offering to sell a license to the Beta Code, which Mentor Graphics may choose not to
release commercially in any form.

4.2. If Mentor Graphics authorizes Customer to use the Beta Code, Customer agrees to evaluate and test the Beta Code under
normal conditions as directed by Mentor Graphics. Customer will contact Mentor Graphics periodically during Customer’s
use of the Beta Code to discuss any malfunctions or suggested improvements. Upon completion of Customer’s evaluation
and testing, Customer will send to Mentor Graphics a written evaluation of the Beta Code, including its strengths,
weaknesses and recommended improvements.

4.3. Customer agrees to maintain Beta Code in confidence and shall restrict access to the Beta Code, including the methods and
concepts utilized therein, solely to those employees and Customer location(s) authorized by Mentor Graphics to perform
beta testing. Customer agrees that any written evaluations and all inventions, product improvements, modifications or
developments that Mentor Graphics conceived or made during or subsequent to this Agreement, including those based
partly or wholly on Customer’s feedback, will be the exclusive property of Mentor Graphics. Mentor Graphics will have
exclusive rights, title and interest in all such property. The provisions of this Subsection 4.3 shall survive termination of this
Agreement.

5. RESTRICTIONS ON USE.

5.1. Customer may copy Software only as reasonably necessary to support the authorized use. Each copy must include all
notices and legends embedded in Software and affixed to its medium and container as received from Mentor Graphics. All
copies shall remain the property of Mentor Graphics or its licensors. Customer shall maintain a record of the number and
primary location of all copies of Software, including copies merged with other software, and shall make those records
available to Mentor Graphics upon request. Customer shall not make Products available in any form to any person other
than Customer’s employees and on-site contractors, excluding Mentor Graphics competitors, whose job performance
requires access and who are under obligations of confidentiality. Customer shall take appropriate action to protect the
confidentiality of Products and ensure that any person permitted access does not disclose or use it except as permitted by
this Agreement. Customer shall give Mentor Graphics written notice of any unauthorized disclosure or use of the Products
as soon as Customer learns or becomes aware of such unauthorized disclosure or use. Except as otherwise permitted for
purposes of interoperability as specified by applicable and mandatory local law, Customer shall not reverse-assemble,
reverse-compile, reverse-engineer or in any way derive any source code from Software. Log files, data files, rule files and
script files generated by or for the Software (collectively “Files”), including without limitation files containing Standard
Verification Rule Format (“SVRF”) and Tcl Verification Format (“TVF”) which are Mentor Graphics’ proprietary syntaxes
for expressing process rules, constitute or include confidential information of Mentor Graphics. Customer may share Files
with third parties, excluding Mentor Graphics competitors, provided that the confidentiality of such Files is protected by
written agreement at least as well as Customer protects other information of a similar nature or importance, but in any case
with at least reasonable care. Customer may use Files containing SVRF or TVF only with Mentor Graphics products. Under
no circumstances shall Customer use Software or Files or allow their use for the purpose of developing, enhancing or
marketing any product that is in any way competitive with Software, or disclose to any third party the results of, or
information pertaining to, any benchmark.

5.2. If any Software or portions thereof are provided in source code form, Customer will use the source code only to correct
software errors and enhance or modify the Software for the authorized use. Customer shall not disclose or permit disclosure
of source code, in whole or in part, including any of its methods or concepts, to anyone except Customer’s employees or
contractors, excluding Mentor Graphics competitors, with a need to know. Customer shall not copy or compile source code
in any manner except to support this authorized use.

5.3. Customer may not assign this Agreement or the rights and duties under it, or relocate, sublicense or otherwise transfer the
Products, whether by operation of law or otherwise (“Attempted Transfer”), without Mentor Graphics’ prior written
consent and payment of Mentor Graphics’ then-current applicable relocation and/or transfer fees. Any Attempted Transfer
without Mentor Graphics’ prior written consent shall be a material breach of this Agreement and may, at Mentor Graphics’
option, result in the immediate termination of the Agreement and/or the licenses granted under this Agreement. The terms

of this Agreement, including without limitation the licensing and assignment provisions, shall be binding upon Customer’s
permitted successors in interest and assigns.

5.4. The provisions of this Section 5 shall survive the termination of this Agreement.

6. SUPPORT SERVICES. To the extent Customer purchases support services, Mentor Graphics will provide Customer updates
and technical support for the Products, at the Customer site(s) for which support is purchased, in accordance with Mentor
Graphics’ then current End-User Support Terms located at http://supportnet.mentor.com/about/legal/.

7. AUTOMATIC CHECK FOR UPDATES; PRIVACY. Technological measures in Software may communicate with servers
of Mentor Graphics or its contractors for the purpose of checking for and notifying the user of updates and to ensure that the
Software in use is licensed in compliance with this Agreement. Mentor Graphics will not collect any personally identifiable data
in this process and will not disclose any data collected to any third party without the prior written consent of Customer, except to
Mentor Graphics’ outside attorneys or as may be required by a court of competent jurisdiction.

8. LIMITED WARRANTY.

8.1. Mentor Graphics warrants that during the warranty period its standard, generally supported Products, when properly
installed, will substantially conform to the functional specifications set forth in the applicable user manual. Mentor
Graphics does not warrant that Products will meet Customer’s requirements or that operation of Products will be
uninterrupted or error free. The warranty period is 90 days starting on the 15th day after delivery or upon installation,
whichever first occurs. Customer must notify Mentor Graphics in writing of any nonconformity within the warranty period.
For the avoidance of doubt, this warranty applies only to the initial shipment of Software under an Order and does not
renew or reset, for example, with the delivery of (a) Software updates or (b) authorization codes or alternate Software under
a transaction involving Software re-mix. This warranty shall not be valid if Products have been subject to misuse,
unauthorized modification or improper installation. MENTOR GRAPHICS’ ENTIRE LIABILITY AND CUSTOMER’S
EXCLUSIVE REMEDY SHALL BE, AT MENTOR GRAPHICS’ OPTION, EITHER (A) REFUND OF THE PRICE
PAID UPON RETURN OF THE PRODUCTS TO MENTOR GRAPHICS OR (B) MODIFICATION OR
REPLACEMENT OF THE PRODUCTS THAT DO NOT MEET THIS LIMITED WARRANTY, PROVIDED
CUSTOMER HAS OTHERWISE COMPLIED WITH THIS AGREEMENT. MENTOR GRAPHICS MAKES NO
WARRANTIES WITH RESPECT TO: (A) SERVICES; (B) PRODUCTS PROVIDED AT NO CHARGE; OR (C) BETA
CODE; ALL OF WHICH ARE PROVIDED “AS IS.”

8.2. THE WARRANTIES SET FORTH IN THIS SECTION 8 ARE EXCLUSIVE. NEITHER MENTOR GRAPHICS NOR
ITS LICENSORS MAKE ANY OTHER WARRANTIES EXPRESS, IMPLIED OR STATUTORY, WITH RESPECT TO
PRODUCTS PROVIDED UNDER THIS AGREEMENT. MENTOR GRAPHICS AND ITS LICENSORS
SPECIFICALLY DISCLAIM ALL IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NON-INFRINGEMENT OF INTELLECTUAL PROPERTY.

9. LIMITATION OF LIABILITY. EXCEPT WHERE THIS EXCLUSION OR RESTRICTION OF LIABILITY WOULD BE
VOID OR INEFFECTIVE UNDER APPLICABLE LAW, IN NO EVENT SHALL MENTOR GRAPHICS OR ITS
LICENSORS BE LIABLE FOR INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES (INCLUDING
LOST PROFITS OR SAVINGS) WHETHER BASED ON CONTRACT, TORT OR ANY OTHER LEGAL THEORY, EVEN
IF MENTOR GRAPHICS OR ITS LICENSORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. IN
NO EVENT SHALL MENTOR GRAPHICS’ OR ITS LICENSORS’ LIABILITY UNDER THIS AGREEMENT EXCEED
THE AMOUNT RECEIVED FROM CUSTOMER FOR THE HARDWARE, SOFTWARE LICENSE OR SERVICE GIVING
RISE TO THE CLAIM. IN THE CASE WHERE NO AMOUNT WAS PAID, MENTOR GRAPHICS AND ITS LICENSORS
SHALL HAVE NO LIABILITY FOR ANY DAMAGES WHATSOEVER. THE PROVISIONS OF THIS SECTION 9 SHALL
SURVIVE THE TERMINATION OF THIS AGREEMENT.

10. HAZARDOUS APPLICATIONS. CUSTOMER ACKNOWLEDGES IT IS SOLELY RESPONSIBLE FOR TESTING ITS
PRODUCTS USED IN APPLICATIONS WHERE THE FAILURE OR INACCURACY OF ITS PRODUCTS MIGHT
RESULT IN DEATH OR PERSONAL INJURY (“HAZARDOUS APPLICATIONS”). NEITHER MENTOR GRAPHICS
NOR ITS LICENSORS SHALL BE LIABLE FOR ANY DAMAGES RESULTING FROM OR IN CONNECTION WITH
THE USE OF MENTOR GRAPHICS PRODUCTS IN OR FOR HAZARDOUS APPLICATIONS. THE PROVISIONS OF
THIS SECTION 10 SHALL SURVIVE THE TERMINATION OF THIS AGREEMENT.

11. INDEMNIFICATION. CUSTOMER AGREES TO INDEMNIFY AND HOLD HARMLESS MENTOR GRAPHICS AND
ITS LICENSORS FROM ANY CLAIMS, LOSS, COST, DAMAGE, EXPENSE OR LIABILITY, INCLUDING
ATTORNEYS’ FEES, ARISING OUT OF OR IN CONNECTION WITH THE USE OF PRODUCTS AS DESCRIBED IN
SECTION 10. THE PROVISIONS OF THIS SECTION 11 SHALL SURVIVE THE TERMINATION OF THIS
AGREEMENT.

12. INFRINGEMENT.

12.1. Mentor Graphics will defend or settle, at its option and expense, any action brought against Customer in the United States,
Canada, Japan, or member state of the European Union which alleges that any standard, generally supported Product
acquired by Customer hereunder infringes a patent or copyright or misappropriates a trade secret in such jurisdiction.
Mentor Graphics will pay costs and damages finally awarded against Customer that are attributable to the action. Customer
understands and agrees that as conditions to Mentor Graphics’ obligations under this section Customer must: (a) notify
Mentor Graphics promptly in writing of the action; (b) provide Mentor Graphics all reasonable information and assistance

http://supportnet.mentor.com/about/legal/

to settle or defend the action; and (c) grant Mentor Graphics sole authority and control of the defense or settlement of the
action.

12.2. If a claim is made under Subsection 12.1 Mentor Graphics may, at its option and expense, (a) replace or modify the Product
so that it becomes noninfringing; (b) procure for Customer the right to continue using the Product; or (c) require the return
of the Product and refund to Customer any purchase price or license fee paid, less a reasonable allowance for use.

12.3. Mentor Graphics has no liability to Customer if the action is based upon: (a) the combination of Software or hardware with
any product not furnished by Mentor Graphics; (b) the modification of the Product other than by Mentor Graphics; (c) the
use of other than a current unaltered release of Software; (d) the use of the Product as part of an infringing process; (e) a
product that Customer makes, uses, or sells; (f) any Beta Code or Product provided at no charge; (g) any software provided
by Mentor Graphics’ licensors who do not provide such indemnification to Mentor Graphics’ customers; or
(h) infringement by Customer that is deemed willful. In the case of (h), Customer shall reimburse Mentor Graphics for its
reasonable attorney fees and other costs related to the action.

12.4. THIS SECTION 12 IS SUBJECT TO SECTION 9 ABOVE AND STATES THE ENTIRE LIABILITY OF MENTOR
GRAPHICS AND ITS LICENSORS FOR DEFENSE, SETTLEMENT AND DAMAGES, AND CUSTOMER’S SOLE
AND EXCLUSIVE REMEDY, WITH RESPECT TO ANY ALLEGED PATENT OR COPYRIGHT INFRINGEMENT
OR TRADE SECRET MISAPPROPRIATION BY ANY PRODUCT PROVIDED UNDER THIS AGREEMENT.

13. TERMINATION AND EFFECT OF TERMINATION. If a Software license was provided for limited term use, such license
will automatically terminate at the end of the authorized term.

13.1. Mentor Graphics may terminate this Agreement and/or any license granted under this Agreement immediately upon written
notice if Customer: (a) exceeds the scope of the license or otherwise fails to comply with the licensing or confidentiality
provisions of this Agreement, or (b) becomes insolvent, files a bankruptcy petition, institutes proceedings for liquidation or
winding up or enters into an agreement to assign its assets for the benefit of creditors. For any other material breach of any
provision of this Agreement, Mentor Graphics may terminate this Agreement and/or any license granted under this
Agreement upon 30 days written notice if Customer fails to cure the breach within the 30 day notice period. Termination of
this Agreement or any license granted hereunder will not affect Customer’s obligation to pay for Products shipped or
licenses granted prior to the termination, which amounts shall be payable immediately upon the date of termination.

13.2. Upon termination of this Agreement, the rights and obligations of the parties shall cease except as expressly set forth in this
Agreement. Upon termination, Customer shall ensure that all use of the affected Products ceases, and shall return hardware
and either return to Mentor Graphics or destroy Software in Customer’s possession, including all copies and
documentation, and certify in writing to Mentor Graphics within ten business days of the termination date that Customer no
longer possesses any of the affected Products or copies of Software in any form.

14. EXPORT. The Products provided hereunder are subject to regulation by local laws and United States government agencies,
which prohibit export or diversion of certain products and information about the products to certain countries and certain
persons. Customer agrees that it will not export Products in any manner without first obtaining all necessary approval from
appropriate local and United States government agencies.

15. U.S. GOVERNMENT LICENSE RIGHTS. Software was developed entirely at private expense. All Software is commercial
computer software within the meaning of the applicable acquisition regulations. Accordingly, pursuant to US FAR 48 CFR
12.212 and DFAR 48 CFR 227.7202, use, duplication and disclosure of the Software by or for the U.S. Government or a U.S.
Government subcontractor is subject solely to the terms and conditions set forth in this Agreement, except for provisions which
are contrary to applicable mandatory federal laws.

16. THIRD PARTY BENEFICIARY. Mentor Graphics Corporation, Mentor Graphics (Ireland) Limited, Microsoft Corporation
and other licensors may be third party beneficiaries of this Agreement with the right to enforce the obligations set forth herein.

17. REVIEW OF LICENSE USAGE. Customer will monitor the access to and use of Software. With prior written notice and
during Customer’s normal business hours, Mentor Graphics may engage an internationally recognized accounting firm to
review Customer’s software monitoring system and records deemed relevant by the internationally recognized accounting firm
to confirm Customer’s compliance with the terms of this Agreement or U.S. or other local export laws. Such review may include
FLEXlm or FLEXnet (or successor product) report log files that Customer shall capture and provide at Mentor Graphics’
request. Customer shall make records available in electronic format and shall fully cooperate with data gathering to support the
license review. Mentor Graphics shall bear the expense of any such review unless a material non-compliance is revealed. Mentor
Graphics shall treat as confidential information all information gained as a result of any request or review and shall only use or
disclose such information as required by law or to enforce its rights under this Agreement. The provisions of this Section 17
shall survive the termination of this Agreement.

18. CONTROLLING LAW, JURISDICTION AND DISPUTE RESOLUTION. The owners of certain Mentor Graphics
intellectual property licensed under this Agreement are located in Ireland and the United States. To promote consistency around
the world, disputes shall be resolved as follows: excluding conflict of laws rules, this Agreement shall be governed by and
construed under the laws of the State of Oregon, USA, if Customer is located in North or South America, and the laws of Ireland
if Customer is located outside of North or South America. All disputes arising out of or in relation to this Agreement shall be
submitted to the exclusive jurisdiction of the courts of Portland, Oregon when the laws of Oregon apply, or Dublin, Ireland when
the laws of Ireland apply. Notwithstanding the foregoing, all disputes in Asia arising out of or in relation to this Agreement shall
be resolved by arbitration in Singapore before a single arbitrator to be appointed by the chairman of the Singapore International

Arbitration Centre (“SIAC”) to be conducted in the English language, in accordance with the Arbitration Rules of the SIAC in
effect at the time of the dispute, which rules are deemed to be incorporated by reference in this section. This section shall not
restrict Mentor Graphics’ right to bring an action against Customer in the jurisdiction where Customer’s place of business is
located. The United Nations Convention on Contracts for the International Sale of Goods does not apply to this Agreement.

19. SEVERABILITY. If any provision of this Agreement is held by a court of competent jurisdiction to be void, invalid,
unenforceable or illegal, such provision shall be severed from this Agreement and the remaining provisions will remain in full
force and effect.

20. MISCELLANEOUS. This Agreement contains the parties’ entire understanding relating to its subject matter and supersedes all
prior or contemporaneous agreements, including but not limited to any purchase order terms and conditions. Some Software
may contain code distributed under a third party license agreement that may provide additional rights to Customer. Please see
the applicable Software documentation for details. This Agreement may only be modified in writing by authorized
representatives of the parties. Waiver of terms or excuse of breach must be in writing and shall not constitute subsequent
consent, waiver or excuse.

Rev. 100615, Part No. 246066

	Table of Contents
	List of Tables
	Chapter 1 Introduction
	The Design Creation Editors
	DesignPad Text Editor
	Block Diagram and IBD View Editors
	Component Interface Editor
	State Diagram and Algorithmic State Machine Editors
	Flow Chart Editor
	Truth Table Editor

	Editor Windows
	The Menu Bar
	Toolbars
	Standard Toolbar

	Keyboard Shortcuts
	Mnemonic Keys
	Command Auto-repeat
	Strokes

	Common Features
	Setting the Hardware Description Language
	Setting Package References
	Example VHDL Package List

	Setting Compiler Directives
	Formatting Text
	Format Text Toolbar

	Opening the Parent View
	Editing the Parent Interface

	Using the Same Window
	Saving Graphic Editor Views
	Automatic Backup and Recovery
	Saving the Window Position and Size

	Editing Object Properties
	Redrawing a Window
	Undo and Redo
	Selecting Objects
	Copying and Pasting Objects
	Deleting Objects
	Finding and Replacing Text Strings
	More Search Options
	Replacing a Text String

	Object Linking and Embedding
	Using Drag and Drop
	Opening an OLE View

	Generating HDL
	VHDL Component Declarations
	Setting a Black Box for Synthesis
	Viewing the Generated HDL

	Chapter 2 Graphical Editor Windows
	Diagram Editor Windows
	Setting Preferences for Diagram Views
	Setting Diagram Master Preferences
	Setting Background Preferences
	Moving and Copying Diagram Objects
	Resizing Objects
	Arranging Objects
	Arrange Object Toolbar
	Aligning or Distributing Objects
	Rotating and Flipping Objects
	Layering Comment Text and Graphics
	Grouping Comment Text and Graphics

	Adding Comment Text
	Editing Text Properties

	Adding Requirement Reference Object
	Pasting in Editor
	Pasting in Design Browser

	Editing Text on a Diagram
	Text Editing Shortcuts

	Editing Text in the Text Editor
	Moving Text
	Changing Text Visibility
	Adding Comment Graphics
	Comment Graphics Toolbar
	Adding a Line or Polyline
	Adding an Arc
	Adding a Rectangle or Polygon
	Adding an Ellipse or Circle
	Adding a Bitmap

	Adding a Title Block
	Displaying Object Information
	Panels
	Adding a Panel
	Editing Panel Object Properties
	Displaying a Panel
	Viewing a Panel
	Protecting Panels
	Deleting a Panel
	Printing a Panel

	Editing Route Points
	Setting Visual Attributes
	Appearance Toolbar
	Setting Color Attributes

	Toggling the Grid Visibility and Snapping
	Changing the Diagram View

	Table Editor Windows
	Setting Preferences for Table Views
	Selecting Table Cells
	Editing a Table Cell
	Changing the Table View
	Resizing a Column or Row
	Exporting a Table

	The Diagram Browser
	Browsing Diagram Structure
	Browsing Diagram Content
	Changing the Columns in the Content Pane
	Sorting the Content Pane
	Using Groups in the Content Pane

	Using Flow Help

	Signals Table
	Signals Table Notation
	Signal Declaration Columns
	Signals Table Toolbars

	Adding Port or Local Signal Declarations
	Adding Comments to a Port or Local Signal Declaration
	Resizing Columns
	Hiding Columns
	Filtering Columns
	Grouping Signal Rows
	Sorting Signal Rows

	Chapter 3 Block Diagram and IBD Views
	Editing Block Diagram and IBD Views
	Adding Blocks and Components
	Assigning Automatic Instance Names
	Instantiating a Block
	Instantiating a Component
	Instantiating Verilog 2005 or System Verilog3.0 Text Components
	Instantiating a ModuleWare Component
	Editing ModuleWare Parameters
	Using Dynamic ModuleWare Components
	Setting the Visibility of ModuleWare Parameters

	Instantiating an External HDL Model
	Using a Soft Pathname for External HDL
	Updating an External HDL Model

	Adding an Embedded Block
	Opening an Embedded View
	Adding Embedded HDL Text

	Updating an Instance
	Reconciling Interfaces

	Checking the Design
	Checking Through Hierarchy

	Editing Object Properties
	Editing Component Properties
	Editing Component Generics and Parameters
	Editing Component Text Visibility
	Editing Component Port map Frame
	Setting Component Attributes and Embedded Constraints
	Modifying Component Appearance

	Editing Block Properties
	Editing Block Generics and Parameters
	Modifying Block Port Ordering
	Setting Block Attributes and Embedded Constraints
	Setting Block Appearance

	Editing Embedded Block Properties
	Editing Embedded Blocks HDL Text
	Modifying Embedded Blocks Text Appearance
	Modifying Embedded Blocks Text Box Appearance
	Modifying Embedded Blocks Appearance

	Editing ModuleWare Properties
	Editing Moduleware Port map Frames
	Setting ModuleWare Attributes and Embedded Constraints

	Editing External IPs Properties
	Editing External IP Generics
	Editing External IP Text Visibility
	Editing External IP Port map Frame
	Setting External IP Attributes and Embedded Constraints
	Modifying External IP Appearance

	Editing Bundle Properties
	Modifying Bundle Appearance

	Editing Signal Properties
	Editing VHDL Signal Declarations
	Using 2D Signal Types

	Editing Verilog Signal Declarations
	Verilog Arrays

	Editing Signal Text Visibility
	Setting Signal Attributes and Embedded Constraints
	Editing Signal Comments
	Modifying Signal Appearance

	Editing Port IOs Properties
	Editing Port IO Text Visibility
	Modifying Port IO Appearance

	Editing Frame Properties
	Modifying Frame Appearance

	Editing Comment Text Properties
	Modifying Comment Text Appearance
	Modifying Comment Text Box Appearance

	Editing Requirement Reference Properties
	Modifying Requirement Reference Text Appearance

	Editing Comment Graphics Properties
	Editing User Declarations
	Editing User Properties
	Setting the Scope for Net Changes
	Adding Comments to a Signal or Port Declaration
	Setting Attributes and Embedded Constraints

	Propagating Net Changes
	Inserting and Removing Nets

	Ordering Port and Signal Declarations
	Adding or Removing Design Hierarchy
	Generics and Parameters
	Generics and Parameters Tables
	Accessing the Generics or Parameters Table
	Generics Table Controls
	Parameters Table Controls
	Using the Generics and Parameters Table
	Add Generics/Parameters
	Grouping Generics/Parameters
	Filtering Generics/Parameters
	Sorting Generics/Parameters
	Hiding Columns
	Resizing Columns

	Related Topics

	Defining Generics and Parameters
	Defining Generics for Components and Blocks
	Procedure
	Related Topics

	Defining Parameters for Components and Blocks
	Procedure
	Related Topics

	Editing Generics and Parameters for Instances
	Editing VHDL Generic Values for Instances
	Prerequisites
	Procedure
	Related Topics

	Editing Verilog Parameter Values for Instances
	Prerequisites
	Procedure
	Related Topics

	Generics and Parameters Synchronization
	Related Topics

	Opening Block and Component Views
	View Initialization
	Setting the Default View

	Mixed Language Designs
	VHDL Instantiation of Verilog Components
	Verilog Instantiation of VHDL Components

	Chapter 4 Block Diagram Editor
	Block Diagrams
	Block Diagram Notation
	Blocks and Components
	Embedded Blocks and Embedded Views
	Signals, Buses and Bundles
	Ports and Signals
	Changing the Display of Port Properties
	Changing the Display of Signal Properties
	Block Diagram Editor Toolbar

	Adding Nets on a Block Diagram
	Routing Nets
	Adding a Signal or Bus on a Block Diagram
	Ripping from a Bus
	Adding Signal Stubs on a Block Diagram
	Adding a Bundle on a Block Diagram
	Adding Signals to a Bundle
	Ripping from a Bundle
	Using HDL Text to Combine or Split Signals
	Adding Ports on a Block Diagram
	Adding Ports to Existing Nets
	Adding Ports from a Component
	Changing the Mode of a Port
	Rotating a Port
	Rotating Signal Names

	Adding a Global Connector on a Block Diagram
	Connecting Overlapping Nets
	Connecting Nets to a Block or Component
	VHDL Port Mapping

	Connecting Nets to a Port Map Frame
	Highlighting a Net on a Block Diagram

	Logic Shape Notation
	Changing the Shape of a Block or Component
	Choosing a Standard Shape

	Hiding Ports on a Block or Component
	Indicating Not or Clocked Ports

	Setting Block Diagram Preferences

	Chapter 5 IBD View Editor
	Interface-Based Design
	New Design Creation Flow
	Code Re_Use Flow
	Design Assembly Flow

	IBD Working Environment
	IBD View Matrix
	IBD View Toolbar

	Getting Designs into IBD Editor
	Working on a Previously Created HDS Design
	To get an HDL view into IBD editor:
	To get a block diagram view into IBD editor:

	Creating a New Design View
	To create a new IBD view using the Design Content Creation wizard:

	Adding Design Elements
	Adding Components
	To add a component from an HDS library:
	To add a moduleware component:
	To add a component from an HDL text file:
	To add an external IP:
	To filter unconnected ports:

	Adding Blocks
	To define the view type:

	Adding Embedded Blocks
	Adding Nets
	Adding a Signal or Bus
	To add a signal or bus do one of the following:
	To edit a signal or bus do one of the following:

	Adding Ports
	Adding a Net Slice
	Adding Generate Frames
	Using Generate Frames for Repeating Instances
	Using Generate Frames for Repeating Structures
	Using Generate Frames for Conditional Structures
	Using a BLOCK Generate Frame

	Adding Requirements References

	Connecting Design Elements
	Connecting Nets to Component Ports
	Connecting Existing Nets: Net_Centric_Connection Approach
	To connect an existing net to a component port do one of the following:
	To connect an existing net to one or more component ports in one step:

	Connecting Ports: Port_Centric_Connection Approach
	To connect unconnected component ports to new signals do one of the following:

	Mapping Expressions or Function Calls to Component Ports
	Examples on Expressions:
	To map an expression to a component port:
	To connect an expression row to more than one port on the same component:

	Another Port_Centric_Connection Convention
	To connect a single port by choosing from a dynamic list of design nets/expressions:

	Organizing View Layout
	Expanding and Collapsing IBD Views
	Moving Rows and Columns in an IBD View
	Sorting Rows and Columns in an IBD View
	Grouping IBD Rows and Columns
	Showing/Hiding Columns in an IBD View
	To hide a column:
	To show a hidden column:

	Adding Bundles to your IBD view
	Adding Net/Component Comments
	To add a comment:

	Adding Property Columns/Rows

	Creating Filtered Views of the Design
	Defining Filter Settings and Logic
	To specify filter settings and logic do the following:

	Creating Persistent Subset Views of the Design
	To create a viewpoint:
	To rename a viewpoint:
	To delete a viewpoint:

	Pruning IBD Designs
	Filtering Nets in an IBD view
	To filter IBD view nets do the following:

	Filtering Components in an IBD View
	To filter IBD view columns:

	Managing Design Hierarchy
	Adding a Level of Hierarchy
	To add a level of hierarchy:

	Flattening Design Hierarchy
	To flatten a level of hierarchy:
	To investigate a child view:

	Checking a Design in IBD Editor
	Generating HDL from IBD views
	Controlling the Generated HDL Code
	Setting Generation Order
	To enable manual ordering do one of the following:

	Setting the Style of the VHDL or Verilog code
	Setting the Generation Hierarchy Level
	To generate HDL from IBD views:

	Enforcing Generation
	To Enforce Generation:

	Cross Referencing Generation Errors

	Setting a Black Box for Synthesis
	Documenting IBD Design Views
	Creating Visualization Views
	To visualize your IBD views:
	To open a visualized view:

	Exporting to HTML
	Exporting to TSV or CSV Files
	Compiler Directives

	Setting IBD Preferences

	Chapter 6 Port Map and Generate Frames
	Port Map Frames
	Adding a Port Map Frame
	Editing a Port Map
	VHDL Port Map Example
	Verilog Port Map Example

	Generate Frames
	Adding a Generate Frame
	Using Generate Frames for Repeating Instances
	Using Generate Frames for Repeating Structures
	Using Generate Frames for Conditional Structures
	Using a BLOCK Generate Frame
	Using Nested Generate Frames
	Editing Generate Frame Properties

	Chapter 7 Component Interface Views
	Opening a Component Interface
	Tabular IO and Symbol Views

	Tabular IO Notation
	Hiding Columns
	Filtering Columns
	Tabular IO Toolbar
	Sorting the Rows in a Tabular IO View
	Adding Ports in the Tabular IO View
	Grouping Port Rows
	Setting Visual Attributes in the Tabular IO View

	Symbol Notation
	Symbol Toolbar
	Adding Ports in the Symbol View
	Customizing a Symbol

	Editing Port Declarations
	Changing the Port Declaration Order
	Propagating Port Changes
	Updating Instances
	Adding Attributes to a Port Declaration
	Adding Comments to a Port Declaration
	Editing Symbol Generic or Parameter Declarations

	Editing Symbol/Interface Object Properties
	Editing Symbol User Declarations
	Editing Symbol Body Properties

	Setting Interface Preferences

	Chapter 8 Flow Chart Editor
	Flow Chart Notation
	Flow Chart Toolbar
	Adding Objects on a Flow Chart
	Adding a Start Point
	Adding an Action Box
	Adding a Decision Box
	Adding a Wait Box
	Adding a Loop
	Breaking Out of a Loop

	Adding a Case Box
	Adding a Flow
	Adding an End Point
	Adding Other Objects on a Flow Chart

	Hierarchical Flow Charts
	Concurrent Flow Charts
	Adding a Concurrent Flow Chart
	Opening a Concurrent Flow Chart
	Renaming a Concurrent Flow Chart
	Deleting a Concurrent Flow Chart

	Editing Flow Chart Object Properties
	Editing Action Box Object Properties
	Editing Decision Box Object Properties
	Editing Wait Box Object Properties
	Editing Loop Object Properties
	Editing Case Object Properties

	Setting Flow Chart Properties
	Setting Flow Chart Generation Properties
	Sequential and Combinatorial Diagrams
	Clock Signal
	Reset Signal
	Sensitivity List
	Block Type
	Animation

	Editing Architecture or Module Declarations
	Editing Concurrent Statements
	Editing Process or Local Declarations

	Setting Flow Chart Preferences

	Chapter 9 Truth Table Editor
	Truth Table Notation
	Truth Table Toolbars
	Editing a Truth Table Cell
	Comparison Operators

	Adding a Column or Row
	Deleting a Column or Row
	Setting Truth Table Properties
	Setting Truth Table Generation Properties
	Sequential and Combinatorial Diagrams
	HDL Style
	Clock Signal
	Reset Signal
	Sensitivity List
	Full/Parallel Case
	Assignment Type

	Editing Architecture or Module Declarations
	Editing Concurrent Statements
	Editing Process or Local Declarations
	Editing Global Actions

	Case and IF Style Truth Tables
	Case Style with a Single Input Expression
	Case Style with Multiple Input Expressions

	Setting Truth Table Preferences

	Chapter 10 Graphical Rendering
	Design Extraction
	Recovering Design Structure
	Recovering Verilog Parameters

	Recovering State Machines
	Recognizing State Machines

	Recovering Flow Charts
	Incremental Recovery

	Using the Convert to Graphics Wizard
	Setting Convert to Graphics View Styles
	Setting Libraries for Black Box Components
	Setting Convert to Graphics Wizard Options

	Setting Convert to Graphics Options
	Block Diagram Options
	Routing Options
	Placement Options

	Updating a Graphics View from Generated HDL
	Visualizing HDL Text as Graphical Views
	Block Diagram Layout and Routing
	Changing the Layout of a Block Diagram
	Automatic Routing
	Autoroute
	Autoconnect
	Autobundle
	Connect by Name
	Bus Reconstruction

	Chapter 11 Simulation and Animation
	Simulator Cross-Probing
	Simulation Toolbar
	Adding Signals to Simulator Windows
	Removing Signals from Simulator Windows
	Adding Signals to the Simulator Log
	Highlighting Signals in the Simulator
	Reporting Signal Information
	Adding and Removing Breakpoints
	Enabling and Disabling Breakpoints
	Reporting Breakpoint Status
	Adding and Removing Simulation Probes
	Setting Probe Properties
	Forcing Signal Values

	Choosing the Simulation Instance
	Setting the Simulator Environment
	Running the Simulator
	Running a Simulation
	Stepping Through a Simulation

	Displaying Simulator Windows
	Restarting the Simulator
	Using the ModelSim Source Window
	Cross-Probing from ModelSim

	State Diagram and Flow Chart Animation
	Animation Toolbar
	Enabling Data Capture
	Setting the Activity Trail
	Graphical Highlighting
	Reviewing Animation
	Linking Diagrams for Animation
	Mixed Language Animation

	Chapter 12 Using a Test Bench
	Test Benches
	Creating a Test Bench
	Defining Stimulus
	Using ModuleWare Stimulus Generator Parts
	Defining Stimulus on a Flow Chart
	Wait Statements
	Loop Statements
	Case Statements

	Defining Stimulus using Lookup Tables
	Defining Stimulus using TextIO
	Defining Stimulus using a State Machine
	Generating a Clock using HDL Statements

	Analyzing Results
	Re-using a Test Bench

	HDL Designer Series Glossary
	Index
	End-User License Agreement
	Documentation Feedback

