Foundation
Series 4 User
Guide

Foundation Series 4 User Guide — PN Online

Chapter 1- Introduction
Chapter 2 - Project Toolset
Chapter 3 - Design
Methodologies - Schematic

Flow

Chapter 4 - Schematic Design
Entry

Chapter 5 - Design
Methodologies - HDL Flow

Chapter 6 - HDL Design
Entry and Synthesis

Chapter 7 - State Machine
Designs

Chapter 8 - LogiBLOX

Chapter 9 - CORE Generator
System

Chapter 10 - Functional
Simulation

Chapter 11 - Design
Implementation

Printed in U.S.A.

Foundation Series 4 User Guide

Chapter 12 - Verification and
Programming

Appendix A - Instantiated
Components

Glossary

Foundation Series 4 User Guide

X ®
The Xilinx logo shown above is a registered trademark of Xilinx, Inc.

FPGA Architect, FPGA Foundry, NeoCAD, NeoCAD EPIC, NeoCAD PRISM, NeoROUTE, Timing Wizard,
TRACE, XACT, XILINX, XC2064, XC3090, XC4005, XC5210, and XC-DS501 are registered trademarks of Xilinx,
Inc.

The shadow X shown above is a trademark of Xilinx, Inc.

All XC-prefix product designations, Alliance Series, AllianceCORE, BITA, CLC, Configurable Logic Cell, Dual
Block, EZTag, FastCLK, FastCONNECT, FastFLASH, FastMap, Foundation, HardWire, LCA, LogiBLOX, Logic
Cell, LogiCORE, LogicProfessor, MicroVia, Plus Logic, PLUSASM, Plustran, P+, PowerGuide, PowerMaze,
Selectl/O, Select-RAM, Select-RAM+, Smartguide, SmartSearch, Smartspec, Spartan, TrueMap, UIM,
VectorMaze, VersaBlock, VersaRing, Virtex, WebLINX, XABEL, XACTstep, XACTstep Advanced, XACTstep
Foundry, XACT-Floorplanner, XACT-Performance, XAM, XAPP, X-BLOX, X-BLOX plus, XChecker, XDM, XDS,
XEPLD, Xilinx Foundation Series, XPP, XSI, and ZERO+ are trademarks of Xilinx, Inc. The Programmable Logic
Company and The Programmable Gate Array Company are service marks of Xilinx, Inc.

All other trademarks are the property of their respective owners.

Xilinx, Inc. does not assume any liability arising out of the application or use of any product described or shown
herein; nor does it convey any license under its patents, copyrights, or maskwork rights or any rights of others.
Xilinx, Inc. reserves the right to make changes, at any time, in order to improve reliability, function or design and
to supply the best product possible. Xilinx, Inc. will not assume responsibility for the use of any circuitry described
herein other than circuitry entirely embodied in its products. Xilinx, Inc. devices and products are protected under
one or more of the following U.S. Patents: 4,642,487; 4,695,740; 4,706,216; 4,713,557; 4,746,822; 4,750,155;
4,758,985; 4,820,937; 4,821,233; 4,835,418; 4,855,619; 4,855,669; 4,902,910; 4,940,909; 4,967,107, 5,012,135;
5,023,606; 5,028,821, 5,047,710; 5,068,603; 5,140,193; 5,148,390; 5,155,432; 5,166,858; 5,224,056, 5,243,238;
5,245,277, 5,267,187, 5,291,079; 5,295,090; 5,302,866; 5,319,252; 5,319,254, 5,321,704; 5,329,174, 5,329,181,
5,331,220; 5,331,226; 5,332,929; 5,337,255; 5,343,406; 5,349,248; 5,349,249; 5,349,250; 5,349,691, 5,357,153;
5,360,747; 5,361,229; 5,362,999; 5,365,125; 5,367,207; 5,386,154; 5,394,104; 5,399,924; 5,399,925; 5,410,189;
5,410,194; 5,414,377, 5,422,833; 5,426,378; 5,426,379; 5,430,687; 5,432,719; 5,448,181, 5,448,493; 5,450,021,
5,450,022; 5,453,706; 5,455,525; 5,466,117; 5,469,003; 5,475,253; 5,477,414, 5,481,206; 5,483,478; 5,486,707;
5,486,776; 5,488,316; 5,489,858; 5,489,866; 5,491,353; 5,495,196; 5,498,979; 5,498,989; 5,499,192; 5,500,608;
5,500,609; 5,502,000; 5,502,440; 5,504,439; 5,506,518; 5,506,523; 5,506,878; 5,513,124; 5,517,135; 5,521,835;
5,521,837; 5,523,963; 5,523,971; 5,524,097; 5,526,322; 5,528,169; 5,528,176; 5,530,378; 5,530,384, 5,546,018;
5,550,839; 5,550,843; 5,552,722; 5,553,001, 5,559,751, 5,561,367; 5,561,629; 5,561,631; 5,563,527, 5,563,528;
5,563,529; 5,563,827; 5,565,792; 5,566,123; 5,570,051; 5,574,634; 5,574,655; 5,578,946; 5,581,198; 5,581,199;
5,581,738; 5,583,450; 5,583,452; 5,592,105; 5,594,367; 5,598,424; 5,600,263; 5,600,264; 5,600,271, 5,600,597;
5,608,342; 5,610,536; 5,610,790; 5,610,829; 5,612,633; 5,617,021; 5,617,041, 5,617,327; 5,617,573, 5,623,387;
5,627,480; 5,629,637; 5,629,886; 5,631,577; 5,631,583; 5,635,851; 5,636,368; 5,640,106; 5,642,058; 5,646,545;
5,646,547; 5,646,564; 5,646,903; 5,648,732; 5,648,913; 5,650,672; 5,650,946, 5,652,904; 5,654,631, 5,656,950;
5,657,290; 5,659,484; 5,661,660; 5,661,685; 5,670,896; 5,670,897; 5,672,966; 5,673,198; 5,675,262; 5,675,270;
5,675,589; 5,677,638; 5,682,107; 5,689,133; 5,689,516; 5,691,907; 5,691,912; 5,694,047; 5,694,056; 5,724,276;
5,694,399; 5,696,454; 5,701,091; 5,701,441, 5,703,759; 5,705,932; 5,705,938; 5,708,597; 5,712,579; 5,715,197;
5,717,340; 5,719,506; 5,719,507; 5,724,276; 5,726,484; 5,726,584, 5,734,866; 5,734,868; 5,737,234; 5,737,235;
5,737,631; 5,742,178; 5,742,531, 5,744,974, 5,744,979; 5,744,995; 5,748,942; 5,748,979; 5,752,006; 5,752,035;
5,754,459; 5,758,192; 5,760,603; 5,760,604; 5,760,607; 5,761,483; 5,764,076; 5,764,534, 5,764,564, 5,768,179;

Xilinx Development System

5,770,951, 5,773,993; 5,778,439; 5,781,756, 5,784,313; 5,784,577; 5,786,240; 5,787,007; 5,789,938; 5,790,479;
5,790,882; 5,795,068; 5,796,269; 5,798,656; 5,801,546; 5,801,547; 5,801,548; 5,811,985; 5,815,004, 5,815,016;
5,815,404; 5,815,405; 5,818,255; 5,818,730; 5,821,772; 5,821,774; 5,825,202; 5,825,662; 5,825,787, 5,828,230;
5,828,231, 5,828,236; 5,828,608; 5,831,448; 5,831,460; 5,831,845; 5,831,907; 5,835,402; 5,838,167, 5,838,901;
5,838,954; 5,841,296; 5,841,867; 5,844,422; 5,844,424, 5,844,829; 5,844,844, 5,847,577, 5,847,579; 5,847,580;
5,847,993; 5,852,323; 5,861,761; 5,862,082; 5,867,396; 5,870,309; 5,870,327; 5,870,586; 5,874,834, 5,875,111;
5,877,632; 5,877,979; 5,880,492; 5,880,598; 5,880,620; 5,883,525; 5,886,538; 5,889,411, 5,889,413, 5,889,701;
5,892,681; 5,892,961; 5,894,420; 5,896,047; 5,896,329; 5,898,319; 5,898,320; 5,898,602; 5,898,618; 5,898,893;
5,907,245; 5,907,248; 5,909,125; 5,909,453; 5,910,732; 5,912,937; 5,914,514, 5,914,616; 5,920,201, 5,920,202;
5,920,223; 5,923,185; 5,923,602; 5,923,614; 5,928,338; 5,931,962; 5,933,023; 5,933,025; 5,933,369; 5,936,415;
5,936,424; 5,939,930; Re. 34,363, Re. 34,444, and Re. 34,808. Other U.S. and foreign patents pending. Xilinx,
Inc. does not represent that devices shown or products described herein are free from patent infringement or from
any other third party right. Xilinx, Inc. assumes no obligation to correct any errors contained herein or to advise
any user of this text of any correction if such be made. Xilinx, Inc. will not assume any liability for the accuracy or
correctness of any engineering or software support or assistance provided to a user.

Xilinx products are not intended for use in life support appliances, devices, or systems. Use of a Xilinx product in
such applications without the written consent of the appropriate Xilinx officer is prohibited.

Copyright 1991-2000 Xilinx, Inc. All Rights Reserved.

Foundation Series 4 User Guide

About This Manual

This Foundation Series 4 User Guide provides a detailed description of
the Foundation™ design methodologies, design entry tools, simula-
tion (both functional and timing simulation). Information on
synthesis is included for Foundation Express users.The manual also
briefly describes the Xilinx design implementation tools. Detailed
descriptions of the design implementation tools can be found in two
other online books, Design Manager/Flow Engine Guide and Develop-
ment System Reference Guide.

Before using this manual, you should be familiar with the operations
that are common to all Xilinx software tools: how to bring up the
system, select a tool for use, specify operations, and manage design
data. Consult the Verilog Reference Guide and the VHDL Reference
Guide for detailed information on using Verilog and VHDL with
Foundation Express.

Manual Contents

This guide covers the following chapters:

e Chapter 1, “Introduction,” lists supported architectures, plat-
forms, and features. It also lists the available documentation and
tutorials to help you get started with Foundation.

e Chapter 2, “Project Toolset,” explains the two Foundation project
types—Schematic Flow projects and HDL Flow projects—and
how to access the various Foundation design tools from the
Project Manager. It briefly describes each tool and its function.

Foundation Series 4 User Guide — PN Online \Y

Foundation Series 4 User Guide

VI

Chapter 3, “Design Methodologies - Schematic Flow,” describes
various design methodologies for top-level schematic designs
and state machine designs in Schematic Flow projects.

Chapter 4, “Schematic Design Entry,” explains how to manage
your schematic designs and how to create hierarchical schematic
designs.

Chapter 5, “Design Methodologies - HDL Flow,” describes
various design methodologies for HDL, schematic, and state
machine designs in HDL Flow projects.

Chapter 6, “HDL Design Entry and Synthesis,” describes how to
create top-level HDL designs, explains how to manage large
designs, and discusses advanced design techniques.

Chapter 7, “State Machine Designs,” explains the basic operations
for creating state machine designs.

Chapter 8, “LogiBLOX,” explains how to create LogiBLOX™
modules and how to use them in schematic and HDL designs.

Chapter 9, “CORE Generator System” gives an overview of the
Xilinx CORE Generator System.

Chapter 10, “Functional Simulation,” describes the basic func-
tional simulation process.

Chapter 11, “Design Implementation,” briefly describes how to
implement your design with the Xilinx Implementation Tools.
The chapter also describes how to select various design options
in the Implementation Options dialog box and describes the
Implementation reports.

Chapter 12, “Verification and Programming,” explains how to
generate a timing-annotated netlist, how to perform a static
timing analysis, and describes the basic timing simulation
process. An overview of the device download tools is also
included.

Appendix A “Instantiated Components,” lists the Xilinx Unified
Library components most frequently instantiated in synthesis
designs for FPGAs.

“Glossary,” defines some of the commonly used terms in this
manual.

Xilinx Development System

Additional Resources

For additional information, go to http://support.xilinx.com. The
following table lists some of the resources you can access from this
page. You can also directly access some of these resources using the
provided URLs.

Resource

Description/URL

Tutorial

Tutorials covering Xilinx design flows, from design entry to verification
and debugging
http://support.xilinx.com/support/techsup/tutorials/index.htm

Answers Data-
base

Current listing of solution records for the Xilinx software toolsSearch
this database using the search function at
http://support.xilinx.com/support/searchtd.htm

Application Descriptions of device-specific design techniques and approaches
Notes http://support.xilinx.com/apps/appsweb.htm
Data Book Pages from The Programmable Logic Data Book, which describe device-

specific information on Xilinx device characteristics, including readback,
boundary scan, configuration, length count, and debugging
http://support.xilinx.com/partinfo/databook.htm

Xcell Journals

Quarterly journals for Xilinx programmable logic users
http://support.xilinx.com/xcell/xcell.ntm

Technical Tips

Latest news, design tips, and patch information on the Xilinx design
environment
http://support.xilinx.com/support/techsup/journals/index.htm

Foundation Series 4 User Guide VI

Foundation Series 4 User Guide

VIl Xilinx Development System

Conventions

This manual uses the following conventions. An example illustrates
each convention.

Typographical
The following conventions are used for all documents.

 Courier font indicates messages, prompts, and program files
that the system displays.

speed grade: - 100

* Courier boldindicates literal commands that you enter in a
syntactical statement. However, braces “{ }” in Courier bold are
not literal and square brackets “[]” in Courier bold are literal
only in the case of bus specifications, such as bus [7:0].

rpt_del _net=

Couri er bol d also indicates commands that you select from a
menu.

File - Open
» [talic font denotes the following items.

¢ Variables in a syntax statement for which you must supply
values

edi f 2ngd desi gn_nane

+ References to other manuals

Foundation Series 4 User Guide — PN Online IX

Foundation Series 4 User Guide

See the Development System Reference Guide for more informa-
tion.

¢+ Emphasis in text

If a wire is drawn so that it overlaps the pin of a symbol, the
two nets are not connected.

» Square brackets “[]” indicate an optional entry or parameter.
However, in bus specifications, such as bus [7:0], they are
required.

edi f2ngd [option_nane] design_name

* Braces “{}” enclose a list of items from which you must choose
one or more.

| owpwr ={on| of f}
* Avertical bar “|” separates items in a list of choices.
| owpwr ={on| of f}

» A vertical ellipsis indicates repetitive material that has been

omitted.
| OB #1: Nane = QOUT
| OB #2: Nane = CLKIN
* Ahorizontal ellipsis “....” indicates that an item can be repeated

one or more times.

al I ow bl ock block_name locl loc2locn;

Online Document

The following conventions are used for online documents.

» Red-underlined text indicates an interbook link, which is a cross-
reference to another book. Click the red-underlined text to open
the specified cross-reference.

X Xilinx Development System

» Blue-underlined text indicates an intrabook link, which is a cross-
reference within a book. Click the blue-underlined text to open
the specified cross-reference.

Foundation Series 4 User Guide Xl

Foundation Series 4 User Guide

Xl Xilinx Development System

Chapter 1

Introduction

This chapter contains the following sections.
» “Architecture Support”

o “Platform Support”

» “Tutorials”

e “Online Help”

e “Books”

Architecture Support

The software supports the following architecture families in this
release.

e XC4000E™/L™/EX™/XL™/XV™/XLA™
e Spartan™/XL™

* Spartan2™

o Virtex™/E™/II™

s XC9500™/XL™/XV™

The primary difference between these products lies in the number of
gates and the architectural features of the individual devices.

For a detailed list of supported devices, see the “Device and Package
Support” chapter in the Foundation Series 4.1i Installation Guide and
Release Notes.

Platform Support

Foundation runs on Windows NT 4.0, Windows 95, and Windows 98.

Foundation Series 4 User Guide — PN Online 1-1

Foundation Series 4 User Guide

Tutorials
Online Help
1-2

An in-depth tutorial, the Foundation Watch Tutorial, is available from
the Education tab on the Xilinx support website (http://
support.xilinx.com/support/techsup/tutorials/index.htm).

Context-sensitive online help is available for Foundation applica-
tions. In addition, Foundation includes an “umbrella” help system
called the Xilinx Foundation Series On-Line Help System. The
umbrella help contains topics covering all of the design entry and
implementation tools provided in the product plus additional infor-
mation. It also contains in-depth information essential for designing
with FPGAs and CPLDs, including the following topics:

CPLD design techniques
FPGA design techniques
Application notes
Several tutorials

Reference information on the HDL languages, CPLD schematic
library and attributes, and Foundation configurations

You can invoke the “umbrella” help system (shown in the following
figure) by selecting Hel p —» Foundat i on Hel p Cont ent s from the
Project Manager menu bar.

Xilinx Development System

Introduction

File Edit Bookmark Options Help

@ Xilinx Foundation Series Online Help Spstem

R =1]

Help Topics| Back | Fiint

[« [T »]

Xilinx Foundation Series On-Line Help System

Tools

#} Eroject Manager
Schematic Editor
Foundation Express
HOL Editor

State Editor

LogiBL O

Logic Simulator

Tirning Analyzer

B EGIUET

PACT

Advanced Tools

e

Elow Engine 3 State Editor Tutorial

Techniques

CPLD Design Technigues

EPGA Design Techniques

k. 2
k2
3 Project Flows
Fy sweleatientiotes
=

Application Motes

Entering Constraints

Tutorials

Foundation Series Tutorial

[at Hilinx Web site)

CPLD Design Flows

Hierarchy Tutarial

Reference

What's Mew in
Foundation Series 4.1i

Licensing Synthesis
Products

»HOL Reference Guide

ABEL Reference Guide

Foundation Configuration
Information

CPLD Schematic Library

CPLD Attributes

%mmww%%

Technical Suppaort

Figure 1-1 The Online “Umbrella” Help System

Books

Multiple printed and online books are available for the Foundation

Series 4 product and the various tools included with it.

Printed Books

The Foundation Series 4.1i Installation Guide and Release Notes describes
installation procedures, new features, supported devices, and the
most critical known issues. It also includes information on the soft-
ware license required for the Base Express and Foundation Express
products.

Foundation Series 4 User Guide

1-3

Foundation Series 4 User Guide

Adobe Acrobat PDF files for viewing and printing all of the Founda-
tion Series 4 online books can be found in the print directory on the
Documentation CD-ROM. Refer to the Foundation Series 4.1i Installa-
tion Guide and Release Notes for information on accessing and printing
the PDF files. Or, click Hel p in the Document Viewer for instructions.

Online Books

The online Foundation Series book collection is provided in both PDF
and HTML.

The online Foundation Series 4 PDF collection is available from the
Foundation Series 4 Documentation CD. Both PDF and HTML
versions are available from the Xilinx support page on the web at
http://support.xilinx.com. You must use a Java-enabled HTML
browser to view the Xilinx HTML online books. If you do not already
have an appropriate browser on your PC, you can install Netscape 4.0
from the Foundation Design Environment CD-ROM or the Founda-
tion Documentation CD-ROM.

Document Viewer

The HTML Document Viewer provided with Foundation Series 4 is
powered by the Docsan™ indexing tool. This tool provides your
HTML browser with optimal searching capabilities within the online
book collection. Refer to the online help provided with the Document
Viewer for detailed instructions on using this tool.

The PDF Document Viewer provided with Foundation Series 4 uses
the Adobe Acrobat Viewer.

Foundation-Specific Online Books

The following online books contain information that applies only to
the Xilinx Foundation Series products.

1-4 Xilinx Development System

Introduction

Title

Description

Foundation Series 4 User
Guide

This guide provides a detailed description of the Founda-
tion design methodologies, design entry tools, and both
functional and timing simulation. The manual also briefly
describes the Xilinx design implementation tools.

Verilog Reference Guide

This manual describes how to use Xilinx Foundation
Express to translate and optimize a Verilog description into
an internal gate-level equivalent.

VHDL Reference Guide

This manual describes how to use Xilinx Foundation
Express to translate and optimize a VHDL description into
an internal gate-level equivalent.

Design Entry Online Reference Books

The following books contain additional information not found in the
Foundation-specific books regarding the Xilinx schematic library
components (and constraints) and LogiBLOX.

Title

Description

Libraries Guide

This book describes the logic elements (primitives or
macros), that you use to create your designs as well as the
attributes and constraints used to process elements during
logic implementation. It also discusses relationally placed
macros (RPMs), which are macros that contain relative loca-
tion constraints (RLOC) information. The Xilinx libraries
enable you to convert designs easily from one family to
another.

Foundation Series 4 User Guide 1-5

Foundation Series 4 User Guide

Title

Description

Constraints Guide

This book provides a detailed description of each Xilinx
constraint. Descriptions include supported architectures for
each constraint, applicable elements, propagation rules and
syntax examples of constraints entry methods.

LogiBLOX Guide

This guide describes the high-level modules you can use to
speed up design entry and the attributes that support logic
synthesis, primarily for FPGA architectures. It also explains
how to use the LogiBLOX program to create designs and
the different types of logic synthesis completed by the Logi-
BLOX program.

Note The CORE Generator User Guide is not currently part of the
online book collection. It is an Adobe Acrobat file (.pdf) that can be
accessed from the CORE Generator Help menu (Hel p - Onl i ne
Docunent ati on.)

Synthesis and Simulation Reference Book

The following book contains general information on Synthesis and
Simulation.

Title

Description

Design Guide

Synthesis and Simulation This manual provides a general overview of designing

FPGAs with Hardware Description Languages (HDLs). It
includes design hints for the novice HDL user, as well as for
the experienced user who is designing FPGAs for the first
time.

1-6

Implementation-Related Online Books

The following books contain detailed information on the Xilinx
implementation tools. Much of the information contained in these
books is for the standalone or command line versions of the tool.

Xilinx Development System

Introduction

Title

Description

Constraints Editor Guide

This manual describes the Xilinx Constraints Editor GUI
that can be used after the design has been implemented to
modify or delete existing constraints or add new constraints
to a design.

Design Manager/
Flow Engine Guide

This manual describes the Design Manager, a Xilinx Alli-
ance Series tool for managing multiple implementations of
the same design. This manual also explains the Xilinx Flow
Engine, which implements designs, and explains how to
interact with other programs that run in the Design
Manager environment; namely, the Design Editor, the
Timing Analyzer, the PROM File Formatter, and the PROM
Programmer.

Development System Refer-
ence Guide

This book describes the Xilinx design implementation soft-
ware, which includes programs to generate EDIF files, LCA
files, and BIT files. The book covers all the program options
and files that are generated by these programs. It also
contains in-depth information on timing constraints.

FPGA Editor Guide

The FPGA Editor is a graphical editor used to display and
configure FPGAs. The FPGA Editor enables you to place
and route critical components before running automatic
place and route tools on an entire design, modify placement
and routing manually, interact with the physical constraints
file (PCF) to create and modify constraints, and verify
timing against constraints.

Floorplanner Guide

This book describes the Floorplanner, a graphical interface
tool to help you improve performance and density of your
design.

Timing Analyzer Guide

This manual describes Xilinx’s Timing Analyzer program, a
graphical user interface tool that performs static analysis of
a mapped FPGA or CPLD design. The mapped design can
be partially or completely placed, routed, or both.

Device Programming Online Books

Detailed information on the device programming process is included
in the following books.

Foundation Series 4 User Guide

1-7

Foundation Series 4 User Guide

Title

Description

iMPACT User Guide

This guide documents the graphical interface used for in-
system programming and verification of CPLD and FPGA
parts.

PROM File Formatter Guide

(FPGAs only) This manual explains how to use a Windows-
based tool to format bitstream files into HEX format files
compatible with Xilinx and third-party PROM program-
mers. You use the PROM files to program a PROM device,
which is then used to configure daisy chains of one or more
FPGAs for one application (configuration) or several appli-
cations (reconfiguration).

1-8

Xilinx Development System

Chapter 2

Project Toolset

This chapter explains how to create Foundation projects and how to
access the various Foundation tools that you use to complete the
project. Each tool and its function is briefly described. This chapter
contains the following sections.

» “Creating Foundation 4 Projects”
* “Project Manager”

* “Accessing LogiBLOX”

» “Accessing the CORE Generator System”
* “Documenting Your Design”

* “Project Archiving”

* “Design Entry Tools”

* “Synthesis Tools”

* “Simulation/Verification”

* “Constraints Editors”

* “Implementation Tools”

* “Device Programming”

» “Utilities”

Creating Foundation 4 Projects

To organize your work, Foundation groups all related files into sepa-
rate logical units called projects. Schematic, HDL, and Finite State
Machine (FSM) designs must be defined as elements in a project. The
associated libraries as well as netlists, bitstream files, reports, and
configuration files are all part of the project.

Foundation Series 4 User Guide — PN Online 2-1

Foundation Series 4 User Guide

2-2

Each project is stored in a separate directory called the project
working directory. The location of the project working directory is
specified when the project is created. The name of the project
working directory is the same as the name of the project.

A Foundation Series 4 project can be either a Schematic Flow project
or an HDL Flow project. If you are using the Base (DS-FND-BAS-PC)
or Standard (DS-FND-STD-PC) products, only the Schematic Flow is
available to you. Both flows are available to Base Express (DS-FND-

BSX-PC) and Foundation Express (DS-FND-EXP-PC) users.

Schematic Flow Projects

A Schematic Flow project can have top-level schematic or ABEL files.
Top-level schematic designs can contain underlying schematic, Logi-
BLOX, CORE Generator, or ABEL macros. The top-level ABEL files or
underlying ABEL macros can be created with the Finite State
Machine (FSM) Editor or a text editor. (Top-level ABEL files are not
recommended for FPGA projects.)

If you have Base Express or Foundation Express, a Schematic Flow
project can also have underlying HDL, VHDL, or ABEL macros
created with the HDL Editor, FSM Editor, or another text editor.

To create a Schematic Flow project, perform the following steps.

1. Open the Project Manager by clicking on the Project Manager
icon (shown below) on your desktop or by Start -
Programs —» Xilinx Foundation Series 4 - Project
Manager .

Manager:

2. Clickthe Create a New Proj ect radio button on the Getting
Started dialog box. Click OK. (To create new projects, you can also
selectFil e - New Proj ect from the Project Manager.)

Xilinx Development System

Project Toolset

N oo o &

Foundation Series 4 User Guide

Getting Started x|

™ Open an Existing Project

wiatch3 - More projects... |
mgatch

wiatchwver
watchyvhd
watch_sc

witut_wer LI

d\ndtnhactivehprojectzhwatcha

™ Always open last project

aK LCancel | Help |

Enter the project name, up to 8 characters, in the Name field of
the New Project dialog box.

Select a location for the project in the Directory box.
Select F4. 1i as the project type in the Type box.
Select the Schenat i ¢ Flow.

Enter the device family, part, and speed of your target device.

Mew Project x|

Mame: [watch_sd ok |
Cancel |
Browse... |
Tope:— |Fa1i =l Hep |

Dirgcton: |E:'~.‘><ILIN><\ACTIVE WPROJECTS

Flows & Schematic © HOL
[Spatar. 7| [s0mdLPCB4 =5 =
Click OK.

The Project Manager screen for the new project appears (see
Figure 2-1). The Project Manager screen contains three main
sections.

2-3

Foundation Series 4 User Guide

» Onthe left side is the Hierarchy Browser consisting of a hierarchy
tree of the project files on the Files tab and of the project imple-
mentation versions on the Versions tab.

» The upper right area includes the Flow tab showing the design
flowchart with the functions used for Schematic Flow projects.
This section also contains Contents, Reports, and Synthesis tabs.
If you create any lower-level HDL or FSM macros for the project,
you can use functions on the Synthesis tab to list and update
them. From the Contents tab, you can view information on the
Files shown in the Hierarchy Browser area. You can access
system-created reports from the Reports tab.

» The bottom console area displays errors, warnings, and

messages.

Refer to the“Project Manager” section later in this chapter for more
information on the Project Manager and the tools accessed from it.

o abe - 505PC84-3 - Project Manager
File Document Wiew Projsct Implemertation Tocks Help

=1oix]

Dles| 6] ofw| &]%| E#] [x|

Files ", Versions
B~ abc
abe
simprims

spartan

Flow ', Contents . Reports ', Syrthesis

abe (S05PCE4-3)

E\,

SIMULATION

T, e i
2B e @ B
IMPLEMENTATION 7 VERIFICATION

h

2

PROGRAMMING

Fem p e Opening project: abe ———
Fermn : Creating project: abe

Pem o Xilime server initialization

Fermn o Xilimeversion: 1,0, 0,1

Femn : Reading Xiling project

Fem p e Opening project: abe ———
Femn :Desian Twpe Schematic

Femn : Reading Xiling project

Fern :Start Kiling Foundation F2.11 - Messages - Tue May 25 12:33:54 15893

Conzole

|Reary

Figure 2-1 Project Manager - Schematic Flow

2-4

Xilinx Development System

Project Toolset

HDL Flow Projects (Express Only)

An HDL Flow project can contain VHDL, Verilog, or schematic top-
level designs with underlying VHDL, Verilog, or schematic modules.
HDL files can be created by the HDL Editor, Finite State Machine
Editor, or other text editors.

LogiBLOX, CORE Generator, and ABEL modules as well as XNF files
can be instantiated in the VHDL and Verilog code using the “black
box instantiation” method.

To create an HDL Flow project, perform the following steps.

1. Open the Project Manager by clicking on the Project Manager
icon (shown below) or by Start - Programs - Xilinx
Foundation Series 4 - Project Mnager.

Praject
Manager:

2. Clickthe Create a NewProj ect radio button on the Getting
Started dialog box. Click OK. (To create new projects, you can also
selectFil e - New Proj ect from the Project Manager.)

Getting Started x|

™ Open an Existing Project

wiatch3 - More projects... |
mgatch

wiatchwver
watchyvhd
watch_sc

witut_wer LI

d\ndtnhactivehprojectzhwatcha

™ Always open last project

]S I LCancel | Help |

3. Enter the project name in the Name box of the New Project
dialog.

Foundation Series 4 User Guide 2-5

Foundation Series 4 User Guide

2-6

Select a location for the project in the Directory box.
Select F4. 1i as the project type in the Type box.
Select the HDL Flow.

Note When you select the HDL Flow button, the device family,
part, and speed boxes for the target device are removed. You do
not need to select a target device for HDL Flow projects until the
design is synthesized.

HNew Project |
M ame: Iwatch_sd (n] 4 I
Cancel I
Direscton: IC:'\XILINX\ACTI\-"E\F’HDJECTS
Erowsze... I
Type: JFai | Help |
Flows: & Schematic HDL
|SpataricL =] |S0m<LPCE4 = s =
Click OK.

The Project Manager screen for the new project appears. The
Project Manager screen contains three sections.

¢ On the left side is the Hierarchy Browser consisting of a hier-
archy tree of the project files on the Files tab and of the
project versions on the Versions tab.

¢ The upper right area includes the Flow tab showing the
design flowchart with the functions used for HDL Flow
projects. This section also contains Contents and Reports
tabs. From the Contents tab, you can view information on the
Files and Versions shown in the Hierarchy Browser area. You
can access system-created reports from the Reports tab.

¢+ The bottom Console tab displays errors, warnings, and
messages. The HDL Errors, HDL Warnings, and HDL
Messages tabs display information about synthesis results
when a specific version of the project is selected.

Refer to the “Project Manager” section later in this chapter for
more information on the Project Manager and the tools accessed
from it.

Xilinx Development System

Project Toolset

45 #yz - design not implemented - Project Manager [[JE5]
Fie Document View Project Senthesis |mplementation Took Help

i = O O O R e =T T

Files ", Yersions Flows Cortents ., Reports
B onz
DESIGN ENTRY 7
o o
[& 8a 25Y
Els 2= B
SYNTHES1S 7 SIMULATION
A
2y on R e
i R e B B9
IMPLEMENTATION 7 VERIFICATION
v
S
2 =
PROGRAMMING
Pem Hilinxwersion:1,0,0,1 -
Pem Reading Xilinx project
Pem e Opening project: abe ----------
Pem Cesign Type Schematic
Pem Reading Xilinx project
Pem Creating project: xyz
Pem Synopsys server initialization
Pem License checking time 0.2 [g]
Pem Cpening Synopsys project
Pem Synopsys version: 3,2, 1000, 4015
Pem Xiling server initialization
Pem Hilinxwersion:1,0,0,1 _I
Pem Synopsys server initialization
Pem License checking time 0.1 [g]
Pem Cpening Synopsys project
Pem Synopsys version: 3, 2, 1000, 4015 -
Consols / HOL Errors / HOL Warnings / HOL Messages |u d
|Ready

Figure 2-2 Project Manager - HDL Flow

Project Manager

The Project Manager, the overall project management tool, contains
the Foundation Series tools used in the design process. Figure 2-1 and
Figure 2-2 illustrate the tools accessible for the two Foundation 4
project flow types. It is through the Project Manager that you access
the tools for the design process from design entry tools to device
programming.

The Project Manager performs the following functions:

» Automatically loads all design resources when opening a project
» Checks that all project resources are available and up-to-date

» lllustrates the design process flow

* Initiates applications used in the design process

Foundation Series 4 User Guide 2-7

Foundation Series 4 User Guide

2-8

» Displays error and status messages in the message window

* Provides automated data transfer between various Foundation
design tools

» Displays design status information

The three main regions of the Project Manager are discussed in the
following sections

Hierarchy Browser

Foundation organizes related files into a distinct logical unit called a
project. Related files include the following:

* Project documents (schematics, HDL source files, and state
diagram files)

* Project libraries

* Output and intermediate files (netlists, bitstreams, report and log
files)

» Configuration files

Two tabs in the Hierarchy Browser area on the Project Manager
window keep track of these files. The Hierarchy Browser is an inter-
active area in addition to a display area. You can open the listed files
and versions/revisions by double clicking on them in the Hierarchy
Browser—the application that is associated with the file type is
invoked. For example, if you double click on a schematic file, the
Schematic Editor displays the schematic file. You can also access
menus listing the functions you can perform on the displayed items
by right clicking on the item.

The Hierarchy Browser’s Files and Version tabs are summarized in
the following sections. To learn more about how to use the hierarchy
browser, select Hel p - Foundati on Hel p Contents -

Proj ect Manager - Hierarchy Browser.

Files Tab

The Files tab displays the hierarchy of the project files, project
libraries, and external files. From this tab you can add, remove, or
reorder the displayed files and libraries as well as open applications
associated with them.

Xilinx Development System

Project Toolset

Files * “ersions
B~ newptj
newprj
simprirms
spartan

For new projects, the Project Manager automatically creates the
following files:

« Aconfiguration file called the Project Description File (PDF). The
PDF file has the same name as the project plus the .pdf extension.
The PDF file is stored at the top-level of the associated project
directory.

e Three types of library files (project library, Simprims library, and
device library). In HDL Flow projects, the Simprims library and
device library are not added until the device is selected in the
Synthesis phase.

A Foundation project always has one or more “top-level” design
file(s). In a Schematic Flow project, you can see what the top-level
designs in the project are by looking at the top level of the Hierarchy
Browser. In a Schematic Flow project, all top-level files must be sche-
matics, FSM (ABEL) diagrams, or ABEL files. In an HDL Flow
project, you designate the top-level entity or module at the time of
synthesis. The list of entities/modules is automatically generated
from the list of HDL source files that have been added to the project.
The added HDL design files are displayed in the File tab of the Hier-
archy Browser and can be VHDL, Verilog, or schematic files.

The following table shows some the of common project files included
in the Hierarchy Browser, their extensions, and the Foundation tool
that creates them.

Extension File Type Created By

pdf Project description file Project Manager
.sch Schematic source file ~ Schematic Capture
v Verilog source file HDL Editor

.vhd VHDL source file HDL Editor

.abl ABEL source file HDL Editor

.asf Finite State Machine FSM Editor

source file

Foundation Series 4 User Guide 2-9

Foundation Series 4 User Guide

2-10

Extension File Type Created By
.ucf User constraints file Constraints Editor
.tve Test vector file Logic Simulator

For detailed information about the project files, libraries, and other
project information, refer to the online help by selecting Hel p -
Foundati on Hel p Contents— Foundation Configuration
I nf or mati on.

Versions Tab

The Versions tab displays the revisions and versions of the chip
implementations of the design. For a newly created project, this tab is
empty.

Project management consists of control over design versions and
revisions. A version represents an input design netlist. Each time a
change is made to the source design, such as logic being added to or
removed from the schematic or the HDL source being modified, a
new version may be created. A revision represents an implementa-
tion on a given version, usually with new implementation options
such as different placement or router effort level.

Project Flowchart Area

The Foundation 4 Project Manager’s project flowchart area contains
four tabs that allow you to obtain current information about your
current project and facilitate the design process.

Flow Tab - Project Flowchart

The Flow tab displays the project flowchart. You use the buttons on
the flowchart to perform steps in the design flow, from design entry
through device programming. The buttons included in the flowchart
in this area depend on whether you have a Schematic Flow project or
an HDL Flow project (see Figure 2-1 and Figure 2-2).

When you start programs from the project flowchart, the Project
Manager automatically controls the transfer of input and output data
(files) between the applications. It performs the necessary steps to
take the design to the point you requested.

Xilinx Development System

Project Toolset

Alternatives to Flowchart Buttons

In addition to the project flowchart, the Project Manager includes a
number of alternative ways to run the Foundation application tools.
You can access tools by right-clicking items listed in the Hierarchy
Browser area. Or, you can use the Tools menus in the Project Manager
Toolbar to access submenus for Design Entry, Simulation/\erifica-
tion, Implementation, and Device Programming tools. It is also
possible to start the Foundation applications directly from the
Windows environment. The latter method is not recommended
because, depending on the application, the Project Manager may not
be started and would not be available to track the project properly.

Contents Tab

The Contents tab displays info related to the object currently selected
(file, library, etc.) from the hierarchy tree on the Files tab. It displays

the full pathname of the object selected as well as the date the object
was last modified.

Reports Tab

Select this tab to access and display reports that have been generated
in the design process.

Synthesis Tab (Schematic Flow Only)

Using the Synthesis tab, you can update or synthesize VHDL,
Verilog, ABEL, and State Machine macros. Refer to the “Synthesis
Tools” section later is this chapter for more information on this tab.
(This tab is unnecessary in an HDL Flow project because the entire
project is synthesized.)

Messag es Area
The tabs included in the Messages area display general project
messages and specific HDL processing messages.
Console Tab

The Console tab displays the contents of the project log.

Foundation Series 4 User Guide 2-11

Foundation Series 4 User Guide

HDL Errors Tab (HDL Flow Only)

This tab displays any errors encountered during HDL source file
analysis, for the object selected in the Hierarchy Browser.

HDL Warnings Tab (HDL Flow Only)

This tab displays warnings generated during HDL source file
processing, for the object selected in the Hierarchy Browser.
HDL Messages Tab (HDL Flow Only)

This tab displays messages other than errors or warnings generated
during HDL source file processing, for the object selected in the Hier-
archy Browser.

Accessing LogiBLOX

LogiBLOX is a graphical interactive tool for creating high-level
modules, such as counters, shift registers, and multiplexers. Logi-
BLOX includes both a library of generic modules and a set of tools for
customizing them. You can access LogiBLOX from the Project
Manager by selecting Tool s - Design Entry - Logi BLOX
nodul e gener at or, from the Schematic Editor by selecting Tool s
- Logi BLOX nodul e gener at or or from the HDL Editor by
selecting Tool s — Logi BLOX. For details about creating LogiBLOX
modules, refer to the “Creating LogiBLOX Modules” section of the
“LogiBLOX” chapter.

Note LogiBLOX supports all Xilinx architectures except Virtex.

Accessing the CORE Generator System

2-12

The Xilinx CORE Generator is a graphical interactive tool that gener-
ates and delivers parameterizable cores optimized for Xilinx FPGAs.
You can access the CORE Generator system from the Project Manager
by selecting Tool s - Design Entry - CORE Generator or
from the Schematic Editor or HDL Editor by selecting Tool s -
CORE CGener at or . For more information on the CORE Generator
system, refer to the CORE Generator online help.

Xilinx Development System

Project Toolset

Documenting Your Design

To attach text files or other files to the Project, perform the following
steps.

1. Select Docunment - Add.

2. Inthe Add Document dialog box, select the documents from the
Files list box.

3. Click &K

The files are then displayed in the Hierarchy Browser area. This is a
convenient way to provide documentation for your design. Note that
you can add almost any kind of file to the project.

Project Archiving

Foundation 4 supports automatic project archiving. Any or all of the
following project components: project files, design source files,
synthesis files, implementation files, or documentation files can be
zipped into a single file or into multiple files. When you select Fi | e
- Archive Project from the Project Manager, the Archive
Project Wizard - Setup window appears. In this window, you can
specify the location for the archive .zip file, add comments, provide a
password, or modify the compression factor. A second window, the
Project Components window, allows you to select the parts of the
project to be archived. Likewise, the Foundation Project Manager
contains a Restore Project option to automatically unzip archived
projects. (Fil e -~ Restore Project).

Project archiving maintains revision control. The resultant files from
each implementation revision are archived in the project directory.
The source design for each version is not archived, only the resulting
netlists and files for each revision. Therefore, if you want to save iter-
ations of the source design (schematics, HDL files, for example), you
must back those up yourself.

Foundation 4 also supports archiving of symbol libraries as well as
any other user files (release notes, application notes, etc.) you want to
save. To archive symbol libraries or other user files, perform the
following steps:

1. SelectFile - Archive Project.

2. Select Next from the Archive Project Wizard - Setup window.

Foundation Series 4 User Guide 2-13

Foundation Series 4 User Guide

5.

Select Next from the Project Components window to display the
User Files window.

Select Add Li br ari es and then select the libraries from the list
box that you want to archive. Or, select Add Files to select any
additional files to archive.

Select St art to begin archiving.

Design Entry Tools

This section describes the design entry tools. Foundation includes a
suite of tools for creating digital circuit designs. These tools provide
the following design entry capabilities.

2-14

Top-level schematic entry with the Xilinx Unified libraries
components, LogiBLOX symbols, CORE Generator modules,
HDL macros, and State Machine macros

Top-level HDL design entry and synthesis

Top-level HDL designs with state machine, CORE Generator, or
LogiBLOX instantiated components

Finite state machine diagram entry

Schematic Editor

With the Schematic Editor, you can create multi-sheet hierarchical
schematics. The editor features include the following.

Multiple sheet and hierarchical schematic support
Viewlogic schematic import

Board-level and PLD schematic support (requires the Active-
CAD tool)

Export of schematic netlists to XNF, EDIF, VHDL, and Verilog
formats

Integration with synthesis design tools (HDL Editor and State
Diagram editor)

Integration with the Logic Simulator

Xilinx Development System

Project Toolset

For detailed information about the Schematic Editor, select Hel p -
Foundation Hel p Contents - Schematic Editor.Also, see
the “Schematic Design Entry” chapter.

State Editor

State machine designs typically start with the translation of a concept
into a “paper design,” usually in the form of a state diagram or a
bubble diagram. The paper design is converted to a state table and
finally into the source code itself. The State Editor, which allows you
to create state machine designs, also supports the following func-
tions:

* Generates behavioral VHDL, Verilog, or ABEL (Schematic Flow
only) code from the state diagram

* Invokes the Express or XABEL compiler to convert the behavioral
description into a gate-level netlist

» Simulates a state diagram macro graphically

For more information about how to use the State Editor, select Hel p
- Foundation Help Contents - State Editor.

HDL Editor

The HDL Editor, a text editor, is designed to edit HDL source files
created in the VHDL, Verilog, or ABEL (Schematic Flow only)
languages. The HDL Editor utilizes syntax coloring for the VHDL,
Verilog, and ABEL languages. The HDL Editor allows you to check
HDL language syntax as well as create HDL macro symbols for place-
ment on a schematic.

The Language Assistant tool (Tool s - Language Assi stant in
the HDL Editor) furnishes the following templates with source code
for VHDL, Verilog, and ABEL.

« Language templates with basic language constructs

e Synthesis templates of functional blocks such as counters, flip-
flops, multiplexers, and Xilinx architectural features such as
Boundary Scan and RAM

For detailed information about the HDL Editor, select Hel p -
Foundati on Hel p Contents - HDL Editor. Also, refer to the
“HDL Design Entry and Synthesis” chapter.

Foundation Series 4 User Guide 2-15

Foundation Series 4 User Guide

Symbol Editor

With the Symbol Editor, you can edit features of component symbols
such as pin locations, pin names, pin numbers, pin shape, and pin
descriptions.

From the Project Manager, you can access the Symbol Editor by
selecting Tool s - Design Entry - Synbol Editor.

For more details on how to use the Symbol Editor, select Hel p -
Foundati on Hel p Contents — Advanced Tools - Synbol
Edi t or.

Synthesis Tools

2-16

Synthesis tools are available for both HDL Flow projects and Sche-
matic Flow projects. If you are using the Base or Standard product,
synthesis tools are available for Finite State Machine ABEL macros
only.

Synthesis Button (HDL Flow)

For design synthesis, Base Express and Foundation Express users
have access to FPGA Express from Synopsys, the industry-leading
synthesis technology. The Express synthesis tools provide the
following capabilities.

» Architecture-specific optimization

e Verilog, VHDL, or mixed HDL synthesis

» Automatic Finite State Machine extraction
* Automatic GSR and I/0 insertion

e Graphical constraints editor. The Express Constraints Editor GUI
is available to Foundation Express users only. It is used to set
design constraints and view estimated design performance.

Synthesis Tab (Schematic Flow)

In a Schematic Flow project, the necessary synthesis of any under-
lying HDL macros in the design can be initiated in the various design
entry tools.The Synthesis tab provides the capability to synthesize
any or all of the HDL macros (FSM, ABEL, VHDL, or Verilog) in the
current project and update the macro symbol and netlist without

Xilinx Development System

Project Toolset

searching manually through the project and synthesizing/updating
them individually.

Simulation/Verification

Simulation and verification tools are available for both Schematic and
HDL Flow projects to determine if the timing requirements and func-
tionality of your design have been met.

Logic Simulator

The Logic Simulator is a real-time interactive design tool for both
functional and timing simulation of designs. You access the Logic
Simulator from the project flowchart when you click the Si nul a-
t i on button or the Timing Simulation icon on the Veri fi cati on
button.

The Logic Simulator creates an electronic breadboard of your design
directly from your design’s netlist. The breadboard is tested with
signals called test vectors. Each test vector lists logical states of all
stimulus signals at a selected time interval. See the “Functional Simu-
lation” chapter and the “Verification and Programming” chapter for
more information on simulations. For details on how to use the Logic
Simulator, select Hel p - Foundation Hel p Contents -

Logi ¢ Si nul at or.

Timing Analyzer

Select the Timing Analyzer icon on the Ver i f i cat i on button on the
project flowchart to access the Timing Analyzer for verification based
on the post-layout timing netlist. The Timing Analyzer is used to
verify that the delay along a given path or paths meets your specified
timing requirements. It creates timing analysis reports that you
customize by applying filters. It organizes and displays data that
allows you to analyze the critical paths in your circuit, the cycle time
of the circuit, the delay along any specified paths, and the paths with
the greatest delay. It also provide a quick analysis of the effect of
different speed grades on the same design.

Foundation Series 4 User Guide 2-17

Foundation Series 4 User Guide

Specialized Simulation Controls

Typically, the Simulation and Verification functions are invoked from
the project flowchart buttons. You can access the following individual
functions from the Project Manager toolbar, if needed.

Gate Simulator

When you select Tool s -~ Si nmul ati on/ Verification -
Gat e Si nul at or from the Project Manager toolbar, you access
three startup options for the simulator.

¢+ Opening the simulator with the netlist from the currently
open Foundation project

¢ Selecting the netlist manually
¢+ Opening the simulator without loading a netlist
Checkpoint Gate Simulation Control

Checkpoint simulation pulls simulation data from the current
stage of the design database. If you want to select which netlist
(hierarchical or flat NGA netlist) to use for timing simulation,
you can access the Checkpoint Gate Simulation Control dialog by
selecting Tool s - Sinul ation/ Verification - Check-
poi nt Gate Sinulation Control on the Project Manager
toolbar.

HDL Behavioral Simulation Capabilities

Foundation Series 4 allows you to add HDL behavioral simulation
capabilities to all design flows. HDL simulators from Aldec, Incorpo-
rated, and from MTI can be added to your Xilinx software. Sale and
support for Aldec’s ACTIVE-VHDL Behavioral Simulator and for
MTI’s ModelSim product are handled directly by those vendors.

Constraints Editors

Two Constraints Editor GUIs are available in Foundation to assist
with constraining elements of your design to obtain the desired
performance.

2-18

Xilinx Development System

Project Toolset

Express Constraints Editor (HDL Flow)

The Express Constraints Editor is a feature available in the Founda-
tion Express product only. The Express Constraints Editor is a GUI
that allows you to set performance constraints, attributes, and optimi-
zation controls in the Synthesis phase before you start to optimize a
design. Constraint entry is in the form of constraints tables for logi-
cally related groups (clocks, ports, paths, modules). Design-specific
information based on the architecture specified for the selected
version of the design is automatically extracted and displayed in the
tables.

Xilinx Constraints Editor

The Xilinx Constraints Editor GUI allows you to create and edit
certain constraints after the translation step in the Implementation
phase of the design without directly editing the UCF (User Constraint
File).

You can start the Constraints Editor from the Project Manager by
selecting Tools - Inplenentation - Constraints
Edi t or.

You can also invoke the Xilinx Constraints Editor by selecting St ar t
- Programs - Xilinx Foundation Series 4 - Acces-
sories — Constraints Editor.

The Xilinx Constraints Editor is not the same as the Express
Constraints Editor available in the HDL Flow and is most useful for
schematic and ABEL designs in Schematic Flow projects.

For more on the Constraints Editor, refer to the Constraints Editor
Guide, an online book.

Implementation Tools

Once you have completed design entry and are ready for physical
implementation of the design, you begin implementation processing
by clicking the | npl enment at i on button on the project flowchart.
All the steps needed to obtain the final results are invoked automati-
cally. Refer to the “Design Implementation” chapter for more infor-
mation.

Foundation Series 4 User Guide 2-19

Foundation Series 4 User Guide

2-20

Control Files

You can control the implementation of your design with a user
constraints file, an implementation guide file, or a Floorplanner file.
You can set these files by selecting | npl ement ati on - Set

Guide File(s),orSet Floorplan File(s),orSet
Constraints Fil e(s) from the Project Manager. Or, you can
access a dialog box to set the files by clicking the Control Files SET
button in the Physical Implementation Settings section of the window
that appears when you implement a new version or revision of your
design.

User Constraints File

Constraints can be applied to control the implementation of a design.
Location constraints, for example, can be used to control the mapping
and positioning of logic elements in the target device. Timing
constraints can be used to identify critical paths that need closer
placement and faster routing. For a list of the constraints that can be
applied for the various devices, refer to the Constraints Guide.

The User Constraints File (UCF) is a user-created ASCI|I file that holds
the constraints. You can enter the constraints directly in the input
design. However, putting them in the UCF separates them from the
input design files and provides for easier modification and reduces
re-synthesis of your design. You can create the UCF using a text
editor or you can use the Xilinx Constraints Editor to produce the
UCF for you. UCF files can also be reused from design to design.

Implementation Guide File

Guide files from a previous implementation can be used to speed up
the current implementation. When an implementation guide file is
specified, only the sections of the current revision that are different
from the specified guide file for the previous revision are processed.

Floorplanner File

The Floorplanner tool generates an MFP file that contains mapping
and placement information. You can use this file as a guide for
mapping an implementation revision for the XC4000, Spartan, and
Virtex device families only. For Floorplanner guide files information,
refer to the Floorplanner Guide, an online manual.

Xilinx Development System

Project Toolset

Implementation Tools Menu

Typically, designs are implemented by using the Implementation
button on the project flowchart. However, you can access certain
specialized functions from the Project Manager Tools menu.

Constraints Editor

The Constraints Editor accessed from the Project Manager by
selecting Tool s — I nplenentation - Constraints Editor
is the Xilinx Constraints Editor. It becomes available for design imple-
mentation after the translation step in Flow Engine has completed.
For more on the Constraints Editor, refer to the Constraints Editor
Guide, an online book.

Flow Engine

The Flow Engine processes the design, controls the implementation
of the design, and guides the implementation revisions. When initi-
ated by selecting Tool s - | npl enentati on - Fl ow Engi ne,
the Flow Engine is run as a standalone program. The project is not
automatically brought up-to-date as it is when initiated by the Imple-
mentation button on the project flowchart. For more information, see
the “Implementing a Design” section of the “Design Implementa-
tion” chapter.

Floorplanner

Selecting Tool s - I nplenentation - Floor Planner from
the Project Manager window, accesses the Floorplanner tool (for
FPGAs only).The Floorplanner creates a file that contains mapping
information, which can be used by the Flow Engine as a guide for
mapping an FPGA implementation revision. For more information
on the Floorplanner, see the Floorplanner Guide, an online book.

FPGA Editor

Selecting Tool s - I nplenentation - FPGA Editor from the
Project Manager window opens the FPGA Editor. The FPGA Editor
provides a graphic view of your placed and routed design, allowing
you to make modifications. This option is supported for FPGAs only.

For more information on using the FPGA Editor, see the FPGA Editor
Guide, an online book.

Foundation Series 4 User Guide 2-21

Foundation Series 4 User Guide

CPLD ChipViewer

Selecting Tool s - Inplenmentation - CPLD ChipVi ewer
from the Project Manager window opens the ChipViewer. The Chip-
Viewer provides a graphical view of the CPLD fitting report. With
this tool you can examine inputs and outputs, macrocell details,
equations, and pin assignments. You can examine both pre-fitting
and post-fitting results.

More information on using the CPLD ChipViewer is available in that
tool’s online help or from the Umbrella Help menu accessed by Hel p
- Foundation Hel p Contents - Advanced Tools -

Chi pVi ewer.

Automatic Pin Locking

170 pins can be locked to a previous revision by clicking on the revi-
sion in the Versions tab of the Project Manger and selecting Tool s -
I npl enentation — Lock Device Pins.The Lock Pins Status
dialog appears upon completion. You can click Vi ew Lock Pi ns
Report from the Lock Pin Status dialog or select Tool s - | npl e-
mentation - View Locked Pins Report toaccessthe Lock
Pins Report. The Lock Pins Report contains information on any
constraint conflicts between the pin locking constraints in the existing
UCEF file and the design file.

Device Programming

When the design meets your requirements, the last step in its
processing is programming the target device. To initiate this step,
click the Pr ogr anmi ng button in the project flowchart. The Select
Programming dialog appears listing one or more of the following
device programming tools: iIMPACT and PROM File Formatter.

IMPACT

The iIMPACT tool downloads, reads back, and verifies FPGA and
CPLD design configuration data. It can also perform functional tests
on any device and probe the internal logic states of your design.

2-22 Xilinx Development System

Project Toolset

PROM File Formatter

The PROM File Formatter is available for FPGA designs only. The
PROM File Formatter provides a graphical user interface that allows
you to do the following.

* Format BIT files into a PROM file compatible with Xilinx and
third-party PROM programmers

» Concatenate multiple bitstreams into a single PROM file for daisy
chain applications

» Store several applications in the same PROM file
Utilities
Foundation contains multiple utilities to help you manage and orga-

nize your project. Those available from the Project Manager’s Tool s
- Uilities menu are described below.

Schematic Symbol Library Manager

The Library Manager allows you to perform a variety of operations
on the design entry tools libraries and their contents, such as copying
macros from one project to another. These libraries contain the primi-
tives and macros that you use to build your design.

The Foundation design entry tools contain two types of libraries;
system libraries and user libraries.

« System libraries, which are supplied with the Foundation design
entry tools, contain sets of components for each device family as
well as for simulation. System library contents cannot be modi-
fied. The Foundation system libraries include: simprims,
xabelsim, xc4000e, xc4000x, xc9500, spartan, spartanx, and virtex.

e User libraries contain user-defined components. Each project has
at least one user library known as the project working library. The
project working library is named the same as the project and is
located in the LIB subdirectory of the project directory. The
Library Manager automatically places any user-created macro in
the current project’s working library:.

You can access the Library Manager from the Project Manager by
selectingTools - Uilities - Schematic Synbol Library
Manager . Refer to the online help accessed from the Library

Foundation Series 4 User Guide 2-23

Foundation Series 4 User Guide

Manager window for details on how to use the Library Manager. Or,
selectHel p - Foundation Hel p Contents- Advanced
Tool s - Synbol Library Manager.

Command History

Command History (Tools - Utilities — ConmandHi story)
sequentially lists the processes that have been performed for the
selected revision. You can select from two different modes: 1) Process,
which displays the name of the process only, and 2) Command Line,
which displays the full command line of each process. An option to
display the date and time for each command is also available.

Project Notes

Project Notes (Tools — Uilities — Project Notes)opensa
standard text editor of your choice in which you can make notes for
the current project. Specify the text editor in the Configuration dialog
(File - Preferences - Configuration).

Implementation Template Manager

The Implementation Template Manager can create or modify three
types of templates for a selected device: implementation, simulation,
and configuration. Implementation templates control how an FPGA
design is mapped, optimized, placed, and routed and how a CPLD
design is fitted. Simulation templates control the creation of netlists
for front- and back-end simulation. Configuration templates control
the configuration startup, readback, and parameters for the device.

To access the Template Manager window, select Tool s - Uil i -
ties— Inplenentation Tenpl ate Manager from the Project
Manager. For details on how to use the Implementation Templates
refer to the online help available from the Template Manager
window.

ABEL to VHDL/Verilog Converter

The ABEL2HDL utility accessed from Tool s - Utilities -
ABEL2HL in the Project Manager allows you to select an ABEL (.abl)
file and have it converted to a VHDL (.vhd) or Verilog (.v) file.

2-24 Xilinx Development System

Project Toolset

Altera HDL to VHDL/Verilog Converter

The AHDL2HDL utility accessed from Tool s - Uilities -
AHDL2HDL in the Project Manager allows you to select an Altera HDL
(.tdf) file and have it converted to a VHDL (.vhd) or Verilog (.v) file.

Foundation Series 4 User Guide 2-25

Foundation Series 4 User Guide

2-26 Xilinx Development System

Chapter 3

Design Methodologies - Schematic Flow

This chapter describes various design methodologies supported in
the Schematic Flow project subtype.

This chapter contains the following sections.

“Schematic Flow Processing Overview”

“Top-Level Designs”

“All-Schematic Designs”

“Schematic Designs with Instantiated HDL-Based Macros”
“Schematic Designs With Instantiated LogiBLOX Modules”
“Schematic Designs With Instantiated CORE Generator Cores”
“Schematic Designs With Finite State Machine (FSM) Macros”
“Finite State Machine (FSM) Designs”

Schematic Flow Processing Overview

Refer to the“Project Toolset” chapter for information on how to create
a Schematic Flow project and for an overview of the tools available
for such projects.

The following figure illustrates the processing performed at the
various stages of a Schematic Flow project.

Foundation Series 4 User Guide — PN Online 3-1

Foundation Series 4 User Guide

Create
Project

Select
Schematic Flow

Select
Target

Design Entry

Create
Top-Level
Schematic

Add Macros
Schematic, FSM, LogiBLOX,
HDL, CORE Generator

Optional

Implementation

Netlist Translation

Xilinx
Constraints Editor

Map (FPGA)
or FIT (CPLDs)

Analyze Timing

Place and Route
(FPGAs only)

Timing
Simulation
Analyze Timing

Create Bitsream

|

Reports
Programming
Download
X8773 Bitstream

Figure 3-1 Schematic Flow Project Processing

3-2 Xilinx Development System

Design Methodologies - Schematic Flow

Top-Level Designs

Schematic Flow projects can have top-level schematic or Finite State
Machine (ABEL) designs. A top-level design can have any number of
underlying schematic, HDL, LogiBLOX, CORE Generator, ABEL, or
Finite State Machine (FSM) macros. Although individual modules
may require some form of synthesis, the entire project is not synthe-
sized and the netlist that is exported for implementation is not opti-
mized across module boundaries as in an HDL Flow project.

All-Schematic Designs

The following procedure describes how to create a top-level sche-
matic design that contains schematics only, that is, there are no
instantiated HDL or State Machine macros.

Creating the Schematic and Generating a Netlist

This section lists the basic steps for creating a schematic and gener-
ating a netlist from it.

1. Open the Schematic Editor by selecting the Schematic Editor icon
from the Design Entry box on the Project Manager’s Flow tab.

ESIGHN ENTR k it S1
L Schematic Editar

2. Select Mode - Synbol s to add components to your new sche-
matic. Select specific components from the SC Symbols window.

3. Complete your schematic by placing additional components
from the Symbol toolbox including 170 ports, nets, buses, labels,
and attributes.

4. Save your schematic by selecting Fil e - Save.

For more information about schematic designs, see the “Sche-
matic Design Entry” chapter or in the Schematic Editor window,
selectHel p - Schematic Editor Help Contents.

Foundation Series 4 User Guide 3-3

Foundation Series 4 User Guide

Performing Functional Simulation

1. Open the Logic Simulator by clicking the Functional Simulation
icon in the Simulation box on the Project Manager’s Flow tab.

[

SIMULATION

Functional Simulation

The design is automatically loaded into the simulator. The Wave-
form Viewer window displays on top of the Logic Simulator
window.

2. Add signals by selecting Si gnal - Add Signal s.

3. From the Signals Selection portion of the Components Selection
for Waveform Viewer window, select the signals that you want to
see in the simulator.

4. Use CTRL-click to select multiple signals. Make sure you add
output signals as well as input signals.

5. Click Add and then O ose. The signals are added to the Wave-
form Viewer in the Logic Simulator screen.

6. SelectSignal - Add Stimul at or s from the Logic Simulator
menu. The Stimulator Selection window displays.

7. Inthe Stimulator Selection window, create the waveform stim-
ulus by attaching stimulus to the inputs. For more details on how
to use the Stimulus Selection window, click the Help button.

8. After the stimulus has been applied to all inputs, click the Simu-
lation Step icon on the Logic Simulator toolbar to perform a
simulation step. The length of the step can be changed in the
Simulation Step Value pulldown menu to the right of the Simula-
tion Step box. (If the Simulator window is not open, select Vi ew
- Mai n Tool bar

3-4 Xilinx Development System

Design Methodologies - Schematic Flow

Eﬁ Logic Simulator - Xilink Foundation F4.1i [watch_sc] - Waveform Yiewer 0 - c:\emera... — |EI|£|
== File Signal Waveform Device Options Tools Wiew Window Help - |5’|ﬂ

ElEI%I Eﬁul:[sfl @I Timing j c._"NI ﬁl |EDDns j| @I |Break jl Elﬁl
[=2 c=ii== == |=—=|me|[sions

9. \Verify that the output waveform is correct. Click the Step button
repeatedly to continue simulating.

10. To save the stimulus for future viewing or reuse, selectFil e -
Save Wavef or m Enter a file name with a .tve extension in the
File name box of the Save Waveform window. Click OK.

For more information about saving and loading test vectors, from the
Logic Simulator window, select Hel p - Logi ¢ Si mul at or Hel p
Cont ent s . Then select Si mul at or Ref erence - Wrki ng

Wt hWavef ornms - Saving and Loadi ng Wavef or mrs.

Implementing the Design

1. Click the Implementation icon in the Implementation box on the
Project Manager’s Flow tab.

e

mplementation

2. The Implement Design dialog box appears.

Implement Design x|

Device ISDEPCS4 j Speed I3 jv

Wersion name; I‘\‘Ef'I

Revigion name: I“BV"I

Cantral Files: Set.. Options. .. |

0k | Cancel | Help |

By default, the Implementation targets the device that was previ-
ously selected when you created the project. If you want to

Foundation Series 4 User Guide 35

Foundation Series 4 User Guide

3-6

retarget the design to a different device, use the Implement
Design dialog box. If you want to retarget to a new device family,
you must first do so in the Foundation Project Manager by
selectingFil e - Project Type.

The first time you implement the design, a new version of the
design is created and given the default version and revision name
shown in the Implement Design dialog box. You can modify the
version and revision names as desired.

In the Implement Designs dialog box, select Set. The Settings

dialog box appears.

Settings
Implementation control files |

— Current Revizion Control File Settings:

X]

Usge Congtraints file from: INone j
Copy Guide file from: INone j
Copy Floorplan files from: INDne j

 Current Revizion Control file uze:

™ Enable Guided MAP and PR

[Enable Floorplanning

[u]4 I Cancel |

Help |

Specify control files if desired. Click OK to return to the Imple-

ment Design dialog box.

In the Implement Design dialog box, select Opt i ons. The

Options dialog box displays.

Xilinx Development System

Design Methodologies - Schematic Flow

D[Ll\\ixons

— Place & Route Effort Level
Fastest ' I L High
Runtime ' 4 v Effart
— Program Optian:
Implementation: IDefauIt j Edit Optiong... |
Simulation: | Foundation EDIF =] EdiOptons. |
LConfiguration: IDefauIt j Edit Options... |

QK I Cancel | Help |

6. Choose any desired implementation options.
7. Click OKto return to the Implement Design dialog box.

8. Click Run to implement your design. The Flow Engine displays
the progress of the implementation.

When Implementation is complete, a dialog box appears indi-
cating whether implementation was successful or not.

For more information on the Flow Engine, refer to the “Design
Implementation” chapter or select Hel p - Foundati on Hel p
Contents - Fl ow Engi ne.

9. Select the Reports tab on the Project Manager window and then
double click the Implementation Report Files folder. Double click
a report icon to review your design reports.

Creating a New Revision

If you modify the design, then click the Implementation button to re-
implement the design after the first revision of a design version has
been implemented, the existing revision is overwritten. A warning
box appears to allow you to verify the overwrite operation.

Warning = |

Revision verl-xrevl (Implemented, 0K exists.
Do you want bo ovenwrite this revision?

LCancel | Help |

™ Don't display this message again

Foundation Series 4 User Guide 3-7

Foundation Series 4 User Guide

You do not access the Implement Design dialog box for subsequent
versions/revisions.

If you want to implement a new revision of the design (for any
version), you must first create the new revision by selecting Pr oj ect
- Create Revision. This accesses the Create Revision dialog box
that has the same fields as the Implement Design dialog box. The
revision name is automatically entered. Modify the names, control
files, and/or options and run the Flow Engine as described previ-
ously for the first version/revision.

Create Revision x|

Device ISDEPCS4 j Speed I3 jv

Wersion name; IVET2

Revigion name: I"W2

Cantral Files: Set.. Options. .. |

0k | Cancel | Help |

Creating a New Version

If you want to implement a new version of the design (after the initial
implementation), you must first create the new version by selecting-
Project - Create Version.Thisaccessesthe Create Version
dialog box that has the same fields as the Implement Design dialog
box. The version name is automatically entered. Modify the names,
control files, and/or options and run the Flow Engine as described
previously for the first version/revision.

Create Yersion x|

Device ISDEPCS4 j Speed I3 jv

Yersion hame: |ver2

Bevizion name: I”B\"'I

Control Files: Set.. Optigng... |

K | LCancel | Help |

Xilinx Development System

Design Methodologies - Schematic Flow

Editing Implementation Constraints

Constraints are instructions placed on symbols or nets in a schematic
(or textual entry file such as VHDL or Verilog). They affect how the
logical design is implemented in the target device. Applying
constraints helps you to adapt your design’s performance to expected
worst-case conditions. The user constraint file (.ucf) is an ASCII file
that holds timing and location constraints. It is read (by NGDBuild)
during the translate process in the Flow Engine and is combined with
an EDIF or XNF netlist into an NGD file.

In Foundation, a UCF file is automatically associated with a Revision.
This UCF file is copied and used as your UCF file within a new revi-
sion. You can directly enter constraints in the UCF file or you can use
the Xilinx Constraints Editor.

1. The Constraints Editor is a Graphical User Interface (GUI) that
you can run after the Translate program to create new constraints
in a UCF file. To access the Constraints Editor, select Tool s -
| npl enentation - Constraints Editor from the Project
Manager.

The following figure shows an example of the Global tab of the
Implementation Constraints Editor.

Foundation Series 4 User Guide 3-9

Foundation Series 4 User Guide

3-10

5 Constraints Editor - [Global - jct_schu.ngd / jot_schu ucf] - (ol x|
File View Window Help
D] 2]
Clock Het Hame: | Period | Pad to Setup | Clock to Pad |
B3 | [[|
Pad toPad..
Clogal | Pots | Advanced

L7 Editable Gonstraints | *5 Source Constrairts (read-only)

=

4| L'_I
AT TR Errors £ Wamings oo Messages J

For Help, press F1

I | 7

2.

Design-specific information is extracted from the design and
displayed in device-specific spreadsheets. Click the tabs to access
the various spreadsheets.

Right-click on an item in any of the spreadsheets to access a
dialog box to edit the value. Use the online help in the dialog
boxes to understand and enter specific constraints and options.
Or, refer to the online software document, Constraints Editor Guide
for detailed information.

The following figure shows an example of the Pad to Setup
dialog box accessed when you right click anywhere on the CLR
Port row on the Ports tab of the Implementation Constraints
Editor and then select Pad t o Set up.

Xilinx Development System

Design Methodologies - Schematic Flow

-al:un:tlainl: Editor - [Ports - jct_schu.ngd / jct_schu.ucf] _|EI LI
Ele Yiew Window Help
SIET=TRRAL)
Port Hame Port Direction Location Pad to Setup Clock to Pad
CE INPLIT i,
CLK IMPUT Mr&, Mr&,
Q0 QuUTPUT i,
[CUTPLT L7 | |
= ST Pad to Setup x|
Pad Groups Pad Net e
" 140 Configuration Options Group Mame, Help |
Time Requirement———————————————————————
Erohibit 170 Locations. |
IZU Uits: Ins =l
Glabal Ports Achvanced I
Relative to Clack Pad Het |33 =l

+%2Editable Consiraints I +% Source Constraints (read-only) I

g _’l_l
A TR TR Emors A wamings A, Irfo Messages

For Help. press F1

|

Figure 3-2 Implementation Constraints Editor - Ports Tab

4.

After you finish editing the constraints, click Save to close the
Constraints Editor window

You must rerun the Translate step in the Flow Engine to have
your new constraints applied to the design.

Click the Implementation icon on the Project Manager’s Flow tab
to rerun Translate (and the other phases).

Or, to just rerun the Translate phase, select Tool s - | npl e-
mentati on - Fl ow Engi ne. Click Yes to start at the Translate
phase when prompted. Then click the Step button at the bottom
of the Flow Engine Window window. Exit the Flow Engine when
the Translate phase is Completed.

Foundation Series 4 User Guide 3-11

Foundation Series 4 User Guide

Verifying the Design

Performing a Static Timing Analysis (Optional)

1. Click the Timing Analyzer icon in the Verification box on the
Project Manager’s Flow tab.

PR

YERIFICATION

Timing &nalyzer

2. Perform a static timing analysis on mapped or placed and routed
designs for FPGAs.

For FPGAs, you can perform a post-MAP or post-place timing
analysis to obtain rough timing information before routing delays
are added. You can also perform a post-implementation timing
analysis on CPLDs after a design has been implemented using
the CPLD fitter.

For details on how to use the Timing Analyzer, selectHel p -
Foundation Hel p Contents - Tining Analyzer.

Performing a Timing Simulation

1. Open the Timing Simulator by clicking the Timing Simulation
icon in the Verification box on the Project Managers’s Flow tab.
The implementation timing netlist will be loaded into the simu-
lator.

Timing Simulation

2. The Waveform Viewer window displays on top of the Logic
Simulator window.

3-12 Xilinx Development System

Design Methodologies - Schematic Flow

Refer to the “Performing Functional Simulation” section for
instructions on simulating the design. (The operation of the simu-
lator is the same for functional and timing simulation.)

3. If you have already saved test vectors (for instance, in the func-
tional simulation), you may load these vectors into the timing
simulator by selecting Fi | e - Load Waveform

Programming the Device

1. Click the Device Programming icon in the Programming box on
the Project Manager’s Flow tab.

Device Programming

2. From the Select Program box, choose iMPACT, or the PROM File
Formatter.

For iMPACT can also be used for both FPGA and CPLD designs.
For instructions, select Hel p - Foundati on Hel p
Contents - i MPACT.

Schematic Designs with Instantiated HDL-Based
Macros

This section explains how to create HDL macros and then add them
to a schematic design.

Creating HDL Macros

After you create an HDL macro, the macro is available from the SC
Symbols window in the Schematic Editor. Following are the steps to
create HDL macros.

1. Open the HDL Editor by clicking the HDL Editor icon in the
Design Entry box on the Project Manager’s Flow tab.

Foundation Series 4 User Guide 3-13

Foundation Series 4 User Guide

3-14

ESIGN ENTRY
HOL Editor

When the HDL Editor appears, you may select an existing HDL
file or create a new one. The following steps describe creating a
new HDL file with the Design Wizard.

In the HDL Editor dialog box, select Use HDL Desi gn W zar d.
Click OK.

From the Design Wizard window, select Next and then choose
VHLD,Ver i | og, orABEL and select Next . (You must have Base
Express or Foundation Express to select VHDL or Verilog.)

Enter a name for your macro in the Design Wizard - Name
window and then select Next .

Define your ports in the Design Wizard-Ports window.

Click Fi ni sh. The Wizard creates the ports and gives you a
template in which you can enter your macro design.

Complete the design for your macro in the HDL Editor.

Create a macro symbol by selecting Pr oj ect - Create Macro
from the HDL Editor window.

The synthesizer will not insert top level input and output pads
for this macro. Instead the top level schematic, which contains the
macro, includes all top level input and output pads required for
implementation.

For more information about creating HDL macros, from the
Project Manager window, select Hel p — Foundati on Hel p
Contents — HDL Edi t or.

Creating the Schematic and Generating a Netlist

Open the Schematic Editor by clicking the Schematic Editor icon
in the Design Entry box on the Project Manager’s Flow tab.

Select Mode - Synbol s to add components to your new sche-
matic.

Xilinx Development System

Design Methodologies - Schematic Flow

Any macros that you have created display in the SC Symbols
toolbox under the project working library’s heading.

3. Select the HDL macro that you created by clicking its name.

4. Move your cursor to the schematic sheet and place the macro
symbol by clicking.

5. Complete your schematic by placing additional components
from the Symbol toolbox including 170 ports, nets, buses, labels,
and attributes.

6. Save your schematic by selecting Fi | e - Save.

For more information about schematic designs, see the“Design
Implementation” chapter or, in the Schematic Editor window, select
Help - Schematic Editor Help Contents.

To complete the design, read the following sections in the order
listed:

e “Performing Functional Simulation”
e “Implementing the Design”
e “Verifying the Design”

e “Programming the Device”

Schematic Designs With Instantiated LogiBLOX
Modules

LogiBLOX modules can be used in schematic designs. First, the
module must be created. The module can then be added to the sche-
matic like any other library component.

Creating LogiBLOX Modules

To use the program in a schematic-based environment, follow these
steps:

1. With a project open, invoke the LogiBLOX Module Selector from
within the Schematic Editor (Tool s - Logi BLOX Modul e
Gener at or).

2. Select a name and a base module type (for example, counter,
memory, or shift-register).

Foundation Series 4 User Guide 3-15

Foundation Series 4 User Guide

3-16

8.

Customize the module by selecting pins and specifying
attributes.

After completely specifying a module, click OK. Selecting OK
initiates the generation of a schematic symbol and a simulation
model for the selected module. The schematic symbol for the
LogiBLOX component is incorporated into the project library and
is automatically attached to the cursor for immediate placement.

Place the module on your schematic.

Connect the LogiBLOX module to the other components on your
schematic using ordinary nets, buses, or both.

Complete your schematic by placing additional components
from the symbol toolbox including 1/0 ports, nets, buses, labels,
and attributes.

Save your schematic by selectingFil e - Save.

Importing Existing LogiBLOX Modules

You can also import LogiBLOX modules that already exist (for
example, from another project).

To convert an existing LogiBLOX module to a binary netlist and save
the component to the project working library, perform the following

steps.

1. Inthe Schematic Editor, select Tool s - | nport Logi BLOX.

2. From the Import LogiBLOX from MOD File dialog box, select the
MOD file for the LogiBLOX module that you want to import.
Click K.

The schematic symbol for the LogiBLOX component is incorpo-
rated into the SC Symbol window in the Schematic Editor.

3. Follow Steps 5 through 8 in the previous section—to instantiate

your module.

To complete the design, read the following sections in the order
listed:

“Performing Functional Simulation”
“Design Implementation”

“Verifying the Design”

Xilinx Development System

Design Methodologies - Schematic Flow

* “Programming the Device”

Schematic Designs With Instantiated CORE
Generator Cores

Cores generated in the CORE Generator tool can be used in schematic
designs. After the core is selected and customized, its schematic
symbol is generated by the CORE Generator tool. The core can then
be added to the schematic like any other library component.

Creating Core Symbols

To use the CORE Generator tool in a schematic-based environment,
follow these steps:

1. With a project open, invoke the CORE Generator tool from within
the Schematic Editor (Tool s - CORE Cener at or).

2. SelectProject - Project Options. Ensure that Design Entry
is Schematic and that the Vendor is Foundation in the Project
Options dialog box. The Family entry should reflect the project’s
target device. Click OK to exit the Project Options dialog box.

3. To aid selection, the available Cores are categorized in folders on
the View Mode section of the main CORE Generator window.
Double click a folder to see its sub-categories. When you double
click a sub-category folder, the available Cores are listed in the
“Contents of” section of the main CORE Generator window.

If you double click the name of the desired core, a new window
opens to allow you to view its description or access its data sheet.
(Acrobat Reader is required to view the data sheet.)

4. To select acore to instantiate into a schematic, highlight the core’s
name (click once) in the “Contents of” window and then select
Cor e - Cust oni ze and enter a name for the core in the Compo-
nent Name field.

The name must begin with an alpha character. No extensions or
uppercase letters are allowed. The name may include numbers
and/or the underscore character.

5. Other available customization options are unique for each core.
Customize the core as necessary.

Foundation Series 4 User Guide 3-17

Foundation Series 4 User Guide

10.

11.

Select Gener at e to create a schematic symbol and a simulation
model for the selected core. The schematic symbol for the core is
incorporated into the project library and can be selected from the
SC Symbols list.

Select Fi | e — Exi t to return to the Schematic Editor.

In the Schematic Editor, select the symbol from the SC Symbols
list (Mode - Synbol s) and place the core on your schematic.

Connect the core to the other components on your schematic
using ordinary nets, buses, or both.

Complete your schematic by placing additional components
from the symbol toolbox including 1/0 ports, nets, buses, labels,
and attributes.

Save your schematic by selecting Fi | e - Save.

To complete the design, read the following sections in the order
listed:

“Performing Functional Simulation”
“Implementing the Design”
“Verifying the Design”

“Programming the Device”

Schematic Designs With Finite State Machine (FSM)

Macros

3-18

This section explains how to create state machine macros and instan-
tiate them in schematic designs.

Creating FSM Macros

After a macro is created, it is available from the SC Symbols window

in the Schematic Editor. These are the steps you follow to create State
Machine macros.

1.

Open the Finite State Machine (FSM) editor by clicking the FSM
Editor icon in the Design Entry box on the Project Manager’s
Flow tab.

Xilinx Development System

Design Methodologies - Schematic Flow

£

FSM Editor

2. When the State Editor window appears, you may select an
existing FSM macro or create a new one. The following steps
describe creating a new FSM macro with the Design Wizard.

3. Select Use HDL Desi gn W zar d. Click OK.
4. From the Design Wizard window, select Next .

5. From the Design Wizard - Language window, choose VHDL,
Veri | og, or ABEL. Click Next . (You must have Base Express or
Foundation Express to select VHDL or Verilog.)

6. Enter a name for your macro in the Design Wizard - Name
window. Select Next .

7. Define your ports in the Design Wizard-Ports window. Select
Next .

8. In the Design Wizards - Machines window, select the number of
state machines that you want. Click Fi ni sh. The Wizard creates
the ports and gives you a template in which you can enter your
state machine design.

9. Create the design for your state machine in the State Editor.

10. When you are finished creating your state machine, create a
macro symbol by selecting Proj ect - Create Macro.

The synthesizer will not insert top level input and output pads
for this macro. Instead the top level schematic, which contains the
macro, includes all top level input and output pads required for
implementation.

For more information about state machines, selectHel p -
Foundation Hel p Contents - State Editor.
Creating the Schematic and Generating a Netlist

1. Open the Schematic Editor.

Foundation Series 4 User Guide 3-19

Foundation Series 4 User Guide

2. Select Mode - Synbol s to add components to your new sche-
matic.

Any macros that you have created display in the SC Symbols
toolbox under the project working library’s heading.

3. Select the state machine macro from the toolbox by clicking its
name.

4. Move your cursor to the schematic sheet and place the macro
symbol by clicking.

5. Complete your schematic by placing additional components
from the SC Symbols toolbox including 1/0 ports, nets, buses,
labels, and attributes.

6. Save your schematic by selecting Fi | e - Save.

For more information about schematic designs, see the “Schematic
Design Entry” chapter or, in the Schematic Editor window, select
Help - Schematic Editor Help Contents.

To complete the design, read the following sections in the order
listed:

e “Performing Functional Simulation”
e “Implementing the Design”
e “Verifying the Design”

e “Programming the Device”

Finite State Machine (FSM) Designs

3-20

The FSM Editor allows you to specify functionality using the "bubble
state diagram" concept. Once you have described the state machine
(or machines) using the FSM Editor's available graphics objects, the
State Editor generates behavioral VHDL, Verilog, or ABEL code
(depending on which language type was selected when the state
diagram was begun). This code can then be synthesized to a gate-
level netlist.

A schematic project can have a top-level ABEL design created with a
text editor or with the FSM Editor. (Top-level ABEL designs are not
recommended for FPGA projects.)

Xilinx Development System

Design Methodologies - Schematic Flow

The Finite State Machine Editor can also generate ABEL, VHDL, or
Verilog macros that can be included in top-level schematic or ABEL
designs.

This section describes using the FSM Editor to produce a top-level
ABEL design for a Schematic Flow project. It also includes informa-
tion on using the FSM Editor to produce underlying ABEL, VHDL, or
Verilog macros for inclusion into a top-level design in a Schematic
Flow project.

Creating a State Editor Design

8.

Click the FSM Editor icon in the Design Entry box on the Project
Manager’s Flow tab.

When the State Editor window appears, you may select an
existing FSM macro or create a new one. The following steps
describe creating a new FSM macro with the Design Wizard.

From the Design Wizard window, select Next .

From the Design Wizard - Language window, choose VHDL,
Veri | og, or ABEL (Schematic Flow only) and select Next .

In the Design Wizard - Name window, enter a name for your
design. Select Next .

Define your ports in the Design Wizard-Ports window. Select
Next .

In the Design Wizards - Machines window, select the number of
State Machines that you want. Click Fi ni sh. The Wizard creates
the ports and gives you a template in which you can enter your
macro design.

Define the states in the FSM Editor.

Defining States

Foundation Series 4 User Guide 3-21

Foundation Series 4 User Guide

3-22

1. From the State Editor window, select FSM - St at e or click on
the State button in the vertical toolbar.

2. Place the state bubble. The default state name is S1.

3. Click on the state name to select it, then click again to edit the
text.

4. Type the desired state name.

5. Click on the state bubble to select it. Click and drag the small
squares to change the size and shape of the bubble. When the
state bubble is large enough to hold the name, click and drag the
state name to center it in the bubble.

6. Repeat steps 1-4 to create new states.

To ensure that the state machine powers up in the correct state,
you must define an asynchronous reset condition. This reset will
not be connected in the schematic, but its presence directs the
compiler to define the state encoding so that the machine will
power up in the correct state.

7. Select FSM - Reset, or click Reset in the vertical toolbar.

8. Place the reset symbol in the state diagram. Click inside a state
bubble to define this as the reset state.

9. To define the reset as asynchronous, right-click on the reset
symbol and select Asynchr onous.

10. Define the transition, conditions, and actions for the state
diagram.

11. When you have completed the state diagram, selectFi | e —
Save.

Defining Transitions, Conditions, and Actions

Transitions define the changes from one state to another. They are
drawn as arrows between state bubbles.

If there is more than one transition leaving a state, you must associate
a condition with each transition. A condition is a Boolean expression.
When the condition is true, the machine moves along the transition
arrow.

Xilinx Development System

Design Methodologies - Schematic Flow

Actions are HDL statements that are used to make assignments to
output ports or internal signals. Actions can be executed at several
points in the state diagram. The most commonly used actions are
state actions and transition actions. State actions are executed when
the machine is in the associated state. Transition actions are executed
when the machine goes through the associated transition.

Adding a Top-Level ABEL Design to the Project

ABEL FSM designs can be used as top-level designs in a Schematic
Flow project. After you have created an ABEL macro using the FSM
Editor, perform the following steps to add the design to the project.

1. From the State Editor window, select Fi | e - Save to save the
ABEL state diagram.

2. SelectProject — Addto project.
3. Select Synt hesi s — Synt hesi ze.

To complete the design, read the following sections in the order
listed:

* “Performing Functional Simulation”
* “Implementing the Design”
* “Verifying the Design”

* “Programming the Device”

Foundation Series 4 User Guide 3-23

Foundation Series 4 User Guide

3-24 Xilinx Development System

Chapter 4

Schematic Design Entry

This chapter contains the following sections:

* “Managing Schematic Designs”

» “Hierarchical Schematic Designs”

* “Manually Exporting a Netlist”

» “Creating a Schematic from a Netlist”

» “Miscellaneous Tips for Using the Schematic Editor Tool”

Refer to the “Top-Level Designs” section of the “Design Methodolo-
gies - Schematic Flow” chapter for several examples of top-level sche-
matic designs.

Managing Schematic Designs

The following subsections describe various features of the schematic
design tool.

1. To access Schematic Editor, click the Schematic Editor icon in the
Design Entry box on the Project Manager Flow tab.

ESIGM ENTR k 4 S1
¥ Schernatic E ditor

2. The Schematic Editor window opens.

Foundation Series 4 User Guide — PN Online 4-1

Foundation Series 4 User Guide

4-2

*}Schematic Editor - [COUNT111.5CH] - 10 x|
EEiI%Edit Mode Dptions Hierarchy Yiew Digplay Tool: Window Help _|E'|5|

el) N e e e B R = e]

IE -
a 3
LD,
|
=
E
El
=]
&
4] | _>I;I
" COUNTTI |
[o1, 00 | Select and Drag

Design Structure

You can create Foundation schematic editor designs that have the
following structures:

* Single sheet designs
* Multi-sheet designs
» Hierarchical designs

Selecting a structure depends on the design size (number of symbols
and connections), purpose (board or chip design), and company stan-
dards. The following sections describe each of these design types.

Single Sheet Schematic

Single sheet designs are typically used for small designs. The largest
page size is 44 x 34” (size E). The major advantage of a single sheet
schematic is that you can use physical connections for an entire
design, which makes tracking of the connections easier.

The disadvantages of using large pages are:

Xilinx Development System

Schematic Design Entry

» Schematics redraw slowly. A schematic with many symbols may
take a long time to scroll.

» Large schematics must be printed on plotters instead of laser
printers.

Multi-sheet Flat Schematic

If a design is too large to print on a single sheet, you can use a multi-
sheet design structure. When you create a new sheet, it is automati-
cally added to the current project. To make connections between sche-
matic sheets, you must make logical connections by using the same
net names. For example, if you use the net CLOCK on sheet 1 and net
name CLOCK on sheet 2, then both net segments are logically
connected.

These connections can be confirmed by using the Query option. To
activate the Query option, select Mode - Query from the Schematic
Editor main window and then select items on the schematic. To find
out more about Query options, select Hel p -~ Schemat i ¢ Edi t or
Hel p Cont ent s from the Schematic Editor main window. Select the
Index tab. Type Query in the search list box. Double click quer yi ng
connecti ons.

Following are the advantages of using the multi-sheet design struc-
ture.

» Small sheet sizes that print on laser printers
* Unlimited design sizes without condensing the schematics

Note All reference designators for symbols in the multi-sheet sche-
matics must be unique. The Foundation design entry tools automati-
cally assign these unique numbers. If you manually assign the same
reference numbers to two different devices, an error is reported when
you create a netlist.

Hierarchical Schematic

Since large number of symbols are used in FPGA and CPLD designs,
handling large designs using the multi-sheet design structure can
become very difficult and complex. Large designs typically require
thousands of simple primitives like gates and flip-flops. To simplify
schematics, designers prefer to use high-level components that have
clear functionality. These high-level components are implemented

Foundation Series 4 User Guide 4-3

Foundation Series 4 User Guide

4-4

using hierarchical macros. A hierarchical macro, a device in the
library that looks like a standard component, is implemented as a
symbol with an underlying schematic or netlist. For example, you can
create an equivalent of a counter by drawing a macro schematic with
only gates and flip-flops. This macro can then be saved and reused in
your designs. All FPGA and CPLD libraries already contain many
hierarchical macros.

Hierarchical designs are very effective with IC designs. In hierar-
chical macro schematics, all net names and reference names are local,
which means that you can use the same signal names in different
macros.

The connections between hierarchical macro symbols and the under-
lying schematic is made via hierarchy connectors. Use the Hierarchy
Connector icon (shown below) in the Schematic Editor toolbar to
place hierarchy connectors.

D—

These connectors are converted into hierarchical symbol pins as illus-
trated in the following figure.

Hierarchy connector
becomes a macro pin

X8775

Xilinx Development System

Schematic Design Entry

After the macro symbol is placed on the schematic sheet, you can
connect wires to these pins on the macro. Only the signals shown as
symbol pins can be connected.

Some advantages of hierarchical designs follow:

The symbols in a hierarchical schematic library can represent

large functional blocks implemented in detail on a lower level. By
viewing the high level schematic, you can see the general design
structure without being overwhelmed by the lower level details.

Top-down or bottom-up methodology assists in team develop-
ment by defining design sections for each designer. All conflicts
between design sections are eliminated by allowing interfaces
only to explicitly defined pins and bus pins.

You can use multiple instances of the same macro. If you use a
schematic sheet in a flat design, you must duplicate the macro for
each instance. If you then make a correction to the macro, you
must edit all instances. The hierarchical macro is modified once
and all instances are then updated.

Macros can be used in multiple projects. You can develop a set of
reusable modules that are stored as hierarchical macros and used
in several designs.

Following are some of the disadvantages of hierarchical designs:

Netlist names can become very long because you must specify
the complete hierarchical path. The method used to create unique
reference identifiers adds the hierarchy reference name to each
symbol reference. For example, a symbol U58 in a macro called
H8 will be called H8/U58. In multilevel hierarchical designs,
these names can become very long depending on the number of
hierarchy levels.

Updating macros often requires changing their symbols, which
then means that you must correct all schematics that use that
macro.

Adding New Sheets to the Project

To create a new empty sheet, select Fi | e —~ NewSheet . The new
sheet receives the name of the project with the sequential sheet
number assigned to it automatically. You can save the sheet with a
different name by selecting Fi | e —» Save As. Each new sheet is auto-

Foundation Series 4 User Guide 4-5

Foundation Series 4 User Guide

matically added to the project contents in the Hierarchy Browser. All
schematic sheets that have been added to the project are visible in the
Files tab of the Hierarchy Browser.

To open a sheet that does not belong to the project, select Tool s —
Scr at chpad. To add a scratchpad sheet to the project, use the Fi | e
- Save As option to define the schematic name. Then select Hi er -
archy - Add Current Sheet to Proj ect.

Adding Existing Sheets to the Project

To add an existing schematic sheet to your project, select Hi er ar chy
— Add Sheet st o Proj ect . In the Add to Project window, select the
schematic file(s) you want to add and click the Add button. The sche-
matic editor loads each added sheet and verifies that the symbols
used in these schematics are available and that there are no duplicate
reference numbers. The list of project sheets is then updated.

Note The schematic editor automatically adds libraries used by its
schematic sheets to the current project even if they are not listed in
the project libraries. The libraries are added when you open a sche-
matic file and symbols are not found in the current project libraries.

Opening Non-project Sheets

When you select Fi | e — Qpen, only the sheets that belong to the
current project are shown. If you want to open a sheet that does not
belong to the current project, use the Browse button to select a sche-
matic file from any disk. The schematics opened with the Browse
option display the Cannot Edit message in their title bar. These sheets
can only be viewed. They cannot be edited.

To edit such schematics, select Hi er ar chy - Add Current Sheet

t o Proj ect . The currently selected sheet, which is then added to the
current project, can then be edited. The schematic is copied to the
current project directory, so the changes do not affect other projects.

Removing Sheets from the Project

To remove a sheet from the project, from the Project Manager Files
tab, select the schematic sheet that you want to remove and select
Docunent - Renove. Click Yes.

4-6 Xilinx Development System

Schematic Design Entry

Note Deleting the sheet from the project does not delete the sche-
matic file from the disk. If you want to delete unwanted files, you can
use the Windows Explorer and delete *.SCH files from the project
directory.

Renumbering Symbol References

The reference numbers are assigned sequentially in the order that you
place symbols on different sheets. As a result, the symbol reference
numbers in the multi-sheet schematics can be random. To order the
symbol numbers, you may want the symbol reference numbers to
correspond to different sheets. For example, symbols on the first
sheet may start with U100, and symbols on the second sheet may
start with U200.

To renumber project sheets and the associated symbol reference
numbers, from the Schematic Editor window proceed as follows:

1. Select Opti ons — Annot at e.

2. The Annotation dialog box appears.

Annotation x|

Sheet: [MDTHWACTIVENPROJECTSAFILTERMFILTERT.SCH

—Annotate Referepices—————
% Curent sheet ar macio " Selected |$I "I
" whole project Lol First #: |1IJD

™ Rename I
—Hi b
IS Annotate |
= Hierarchmieszent
—
Inerement: 0
Help |

3. From the Annotation window, click Whol e Proj ect.

4. Inthe References section, click Al | to apply the numbering to all
symbols.

5. Enter 100 in the First # field.
6. Pressthe Annot at e button.

7. Press the Cl ose button.

Foundation Series 4 User Guide 4-7

Foundation Series 4 User Guide

Copying a Section of a Schematic to Another Sheet

If you want to move or duplicate a section of a schematic to another
sheet, perform the following steps:

1.

Place the cursor at the corner of the area to be copied, depress the
mouse button and drag the cursor to outline a rectangular area
for selection. All items within the selected area are selected when
you release the mouse button.

To select additional objects on the schematic sheet without dese-
lecting the currently selected object, use the Shift key.

Use the Copy or Cut options in the Edit menu. The Copy option
copies the selected objects to the clipboard. The Cut option copies
the selected block to the clipboard and deletes it from the sche-
matic. The clipboard is a temporary sheet that stores the copied
objects.

Go to the sheet where you want to paste the schematic objects
and select the Past e option from the Edit menu. A rectangle is
displayed at the cursor position. You can move it around the
schematic to position the copied block to the desired location.

Press the mouse button to confirm the location of the pasted
block.

Note The selected schematic block contains all wires internal to the
block, that is, between symbols or labels within the selected area. All
wires connected to symbols outside the area are not copied to the
clipboard.

Troubleshooting Project Contents

If a netlist creation error is reported, try removing one sheet at a time
from the project until the netlist can be successfully created. Then
analyze the last-removed sheet for any possible errors.

Hierarchical Schematic Designs

A design has a hierarchical structure if any of the symbols on the
schematic sheet contain an underlying netlist or schematic. The hier-
archical macros may be user-created or may already exist in a library.
If you use one of these symbols, your design becomes hierarchical.

4-8

Xilinx Development System

Schematic Design Entry

Creating a Schematic Macro (Bottom-Up
Methodology)

To create a schematic macro using a bottom-up methodology;,
perform the following steps.

» Before you start drawing a schematic, make sure that the neces-
sary libraries have been assigned to the project. You can view the
currently attached project libraries in the Files tab of the Project
Manager.

¢+ To add additional libraries, select Fi | e - Pr oj ect
Li brari es from the Project Manager.

¢+ When the Project Libraries window displays, select the
appropriate libraries and then click Add.

This operation transfers the selected libraries from the
Attached libraries window to the Project Libraries window,
which makes these libraries available to the Schematic Editor.

« Enter your schematic design in the Schematic Editor, just like any
other flat design, with the following constraints:

+ Each macro is a self-enclosed entity. Any connection to the
top-level sheet can only be performed through hierarchy
connectors.

+ The hierarchy connectors must be specified explicitly as
Input, Output, or Bidirectional. This specification is impor-
tant because the design entry tools automatically generate a
symbol. The location of the pins on the symbol depends upon
their schematic 170 definition (only inputs are on the left-
side of the symbol outline). If needed, edit this symbol in the
Symbol Editor.

e To create the macro symbol, select H er archy - Creat e Macr o
Synbol fromCurrent Sheet from the Schematic Editor
window. The new symbol is automatically placed in the current
project’s working library.

Recognizing Hierarchical Macros

You can recognize hierarchical macro symbols by their color. By
default, the schematic-based macros are dark blue. The netlist-based

Foundation Series 4 User Guide 4-9

Foundation Series 4 User Guide

macros are purple. You can change these default colors by selecting
Vi ew - Preferences - Col ors.

Navigating the Project Hierarchy

You can view the schematic of a hierarchical symbol by selecting

Hi er archy - Push. When the H cursor is active, double click on a
symbol to display its underlying schematic. You can use the tabs at
the bottom of the Schematic Editor window to navigate between the
top schematic (CALC in the following example) and its opened
macro schematics (CONTROL and MUXBLK2A in the following

example).
4 Schematic Capture - [Macro - MUXBLE.24] =lB] x|
[E] F¢ Edit Mode Options Hierarchy Wiew Display ‘window Help LlE] x|

B|s{EE|8] & B0 Nl o] - il E[E ol

el e SN [2

oo_p) p——————
01 g0 W

Hilim Carpargian Proed: |Hang]
2100 Logic Drive Macra: MUXBLK2,
San Jase. &0 T D OSA0097
CaLC [COMTROL | MUSELE24 |
0.3, 0.0 | | Hierarchy Push/Pop

If you double click on a symbol that does not have an underlying
schematic, HDL, or FSM file, the following message displays:

Synbol is a primtive cell.

To exit the H cursor mode, select Hi er archy - Pop.

4-10 Xilinx Development System

Schematic Design Entry

You can also navigate the hierarchical structure of the design from the
Files tab on the Project Manager window shown in the next figure.

Files * “ersions

B~ calo_4ke.pdf

cale.uct

readme .t

=By calc.sch

§i1 - ipads

h1 - bardec

ha - switch T

h3 - debounce

B h4- control

- hl- musblkZa
ha - alu
hi - stack
h7 - seg7dec
oscillator? - clockgen

calc_dke

simprims

x¥c4000e

[

- [F
e

Hierarchy sublevels can be expanded or collapsed by clicking on the
+ or - icons.

The Hierarchical Browser window shows the hierarchical design tree.
A plus (+) designates a hierarchy with additional hierarchical
sublevels. You can open them by single clicking on these icons.

A minus (-) denotes a hierarchy that already shows lower hierarchy
levels. Clicking on the - symbols inside the icons reduces the hier-
archy to the higher levels, which simplifies the viewing of very
complex designs.

An icon with no symbol indicates that the given hierarchical level has
no additional hierarchical sheets.

Note Double clicking on the top schematic name or the name of any
of its underlying schematic macros loads that schematic to the screen
for viewing and editing.

Foundation Series 4 User Guide 4-11

Foundation Series 4 User Guide

4-12

Modifying Existing Macros

If you want to make some changes to an existing macro schematic,
perform the following steps:

1.

2.

3.

Push into the schematic macro by clicking the Hierarchy Push/
Pop icon and double clicking on the macro symbol.

mk
Select the Select and Drag toolbar button to enter edit mode.

I[}

Make changes to the schematic.

4., SelectFile - Save.

When you change and save a hierarchical macro, you change all
instances of this macro in the entire design. If the modified macro
schematic has different 1/0 pins, its symbol changes and the pins
may not match their previous locations on the schematics. If this
happens, the wrong wires are automatically disconnected and
will be marked with crossed circles. These wires must be manu-
ally reconnected by dragging the crossed circles over the target
pins and then releasing the mouse button.

If you edit a macro from the system library that comes with the
product, you cannot save it in the system library. You can only
save it into a project library. For clarity, use a different name for
the modified macro so that you can always be sure which
symbols are currently used on the schematics.

Difference between a Macro and a Schematic

The following example explains what happens with the hierarchical
schematic when you create a macro. Assume that the project TEST
contains the schematic sheets TEST1 and TEST2. Create a macro for
the schematic sheet TEST2 as follows:

1.

Using the Hi er archy - Creat e Macr o Synbol From
Cur rent Sheet option, convert the TEST2 schematic into a
macro called MACROL1 in the TEST project library.

Xilinx Development System

Schematic Design Entry

The old schematic sheet TEST2 still resides in the project direc-
tory. You can open this schematic file, but there is no longer any
relationship between the TEST2.SCH schematic file and the TEST
project or MACROL1.

2. Use the Windows Explorer to delete the file TEST2.SCH from the
project directory.

Hierarchy Symbol Changes

If you update a hierarchical macro, its symbol is not modified unless
170 pins change. When pin change, a new symbol is generated based
on the new 1/0 pins, which may result in incorrect connections on
the schematics that have previously used the symbol. The schematics
that are currently open are automatically updated with the new
symbol when you make the change. Other schematics are updated
when you open them in the Schematic Editor.

When the symbols do not match the previous connections, the wires
are automatically disconnected from that symbol, and a crossed circle
is displayed at the end of these wires. To correct these connections,
you can drag the circles and drop them at the appropriate pins.

You can edit the newly created symbol in the Symbol Editor program
so that it matches the old pin locations.

Using a Top-down Methodology

To implement a top-down design, you first create a symbol for the
hierarchical macro and then create the underlying schematic.

1. To create an empty symbol, select Tool s - Synbol W zard
from the Schematic Editor.

2. Click Next .

3. Inthe Design Wizard - Contents dialog box, choose Schemat i ¢
in the Contents section. Enter the Symbol Name and then select
Next .

4. Inthe Design Wizard - Ports dialog box, select New.

5. Enter all ports including bus pins and power supply pins, if any.
Select Next .

6. Inthe Design Wizard - Attributes, enter a reference for the new
symbol. Select Next .

Foundation Series 4 User Guide 4-13

Foundation Series 4 User Guide

7. Click Fi ni sh in the Design Wizard - Contents window.

8. Place the symbol on a schematic sheet and make the required
connections.

9. Push down into the symbol by clicking the Hierarchy Push/Pop
function and double clicking on the macro symbol.
[{Ik

An empty schematic sheet appears with the selected symbols’
input pins located to the left and the output pins located to the
right.

10. Enter the design and then selectFi | e —» Save.

Hierarchical Design Example
This example explains how to create and use a hierarchical design.
1. Create a new project called MACROS.
a) From the Project Manager, select Fi | e - NewPr oj ect .

b) Inthe Name field of the New Project window, enter MACROS
and click OK.

2. Create the MACROSL schematic.
a) Click the Schematic Editor icon on the Design Entry button.

b) .Select the Symbol mode in the schematic toolbar and in the
SC Symbols toolbox, select the NAND2 symbol.

¢) Draw the schematic shown in theFigure 4-1 including the
input terminals, (INA, INB, INC) and output terminal (OUT).

d) Use the Hierarchy Connector icon (shown below) to draw the
input and output terminals. Make sure you add the input
and output buffers.

C=
e) Connect the symbols (Mode — Draw W r es).

You can edit symbol dimensions and pins using the Symbol
Editor. To open the Symbol Editor, select Tool s - Synbol

4-14 Xilinx Development System

Schematic Design Entry

Edi t or from Schematic Editor, or double click on the placed
symbol, and click the Symbol Editor button on the Symbol
Properties dialog box. For more information on using the
Symbol Editor, refer to the Symbol Editor’s online help

(Hel p - Contents).

f) Save the schematic using Fi | e — Save. The schematic is
automatically named as MACROS1.

we C—
BUF
[T —
IBUF MANDZ
— e
wa > D DO_ GBUF
1BUF HANDZ

Figure 4-1 MACROS1 Schematic
3. Create the MACROS1 symbol.

a) SelectHi erarchy - Create Macro Symbol From
Current Sheet . The Create Symbol window should
display the symbol name MACROSL. Click that name and
change it to ONE, which will be the name of the hierarchical
macro symbol. In the Input pins section, make sure that the
following list of pins is entered: | NA, | NB, | NC. Ensure
that QUT is entered in the Output field.

b) Click OK. The netlist and the MACROS1 schematic are saved
in the project library and a graphical symbol is automatically
created. A verification message displays to allow you to edit
the macro, if necessary, before continuing. Click No.

Sténematic Capture |
@ Sheet [D:AFMDTHAACTIVENPROJECT SAMACR DS \macros1.5CH]

has been zaved into library as hierarchical symbol [OMNE]
Do pou want to edit it?

4. Create the second schematic (MACROS2).

Foundation Series 4 User Guide 4-15

Foundation Series 4 User Guide

4-16

a)

b)

d)

Select Fil e - New Sheet . A new schematic MACROS2 is
automatically opened.

Select the Symbol mode in the schematic toolbar. In the SC
Symbols toolbox, select the FD symbol.

Draw the schematic shown in the including the input termi-
nals (D, CLK) and output terminal (OUT). Use the 1/0
Terminal icon to draw the terminals. Make sure you add the
input and output buffers.

Connect the symbols (Mbde - Draw W res).

You can edit symbol dimensions and pins using the Symbol
Editor. To open the Symbol Editor, select Tool s - Synbol
Edi t or from the Schematic Editor, or double click on the
placed symbol, and click the Symbol Editor button on the
Symbol Properties dialog box. For more information on using
the Symbol Editor, refer to the Symbol Editor’s online help
(Hel p - Cont ent s)

FD

>——| R Q————| Do
IRLIF

ok [

-
MU

Figure 4-2 MACROS2 Schematic

€)

Save the schematic using Fi | e - Save. The schematic is
automatically named as MACROS2.

5. Create the MACROS2 symbol.Select

a)

Hi erarchy - Create Macro Symbol From Current
Sheet . The Create Symbol window should display the
symbol name MACROS2. Click that name and change it to
TWO, which will be the name of the hierarchical macro
symbol. In the Input pins section, enter pins: CLK, D. Enter
QUT in the Output field. Note that only 1/0 terminals are
recognized as pins for the symbol.

Xilinx Development System

Schematic Design Entry

b) Click OK. The netlist and the MACROS2 schematic are saved
in the project library and a graphical symbol is automatically
created.

c) Save the schematic using the Save option.
6. Create a new sheet for the top level.

a) SelectFile - New Sheet.The empty sheet called
MACROS3 opens.

b) Select Mode - Synbol s and find symbol ONE in the SC
Symbols toolbox. Place two copies of that symbol, which are
automatically called H1 and H2, on the schematic. Similarly,
place two copies of the TWO symbol on the schematic. These
symbols are automatically named H3 and H4. Refer to the
following figure for placement details.

H1 H3
i L
o
— HE
CLEOUT |—
—— W OUT)
ONE TWO
H2
H4
i L
—MHE o
— W& OUT) CLOUT |—
OME TWO

7. Use the Push/Pop option to view schematics.

Select Hi erarchy - Hierarchy Push. A cursor with the
letter H displays. Point the cursor at the Symbol H1 and double
click the mouse button. The schematic ONE opens showing you
the schematic of the symbol H1.

8. View the project contents in the Files tab (shown in the following
figure) of the Project Manager.

Foundation Series 4 User Guide 4-17

Foundation Series 4 User Guide

Files * “ersions
B~ macros.pdf
macros.uct
E}J macrog3.sch
: hl - ane
; h2 - one
B h3-two
S it
B hd-two
L gt -Td
macros
simprims
¥c4000e

Manually Exporting a Netlist
External programs used in the Foundation Series software require
netlist in proprietary text formats such as XNF, EDIF, and structural
VHDL or Verilog.
To export the project netlist, perform the following steps from the
Schematic Editor:
1. Select Options - Export Netlist. The Export Netlist

dialog box displays.

Export Netlist 2lx|

Loskjm |53 Macros =l =
[Lib

D:-tproi

macros.alb

File name: Imacros.alb Open I
Files of type: [Edif 200 [EDN] i Cancel |

2. From the File of Type pulldown menu, select the desired format.

3. Choose the source netlist ALB file. By default, the project netlist is
automatically selected.

4-18 Xilinx Development System

Schematic Design Entry

4.

Click OPEN to start exporting.

Note The EDIF netlist format is recommended for use with the Xilinx
Design Implementation Tools.

Creating a Schematic from a Netlist

You can generate a schematic from an existing netlist. The Schematic
Editor generates a schematic file and inserts it into the project direc-
tory as a non-project document. You canthenuse Fil e - Open or
add it to the project with Hi erarchy - Add Sheet to Project.
The names of automatically generated schematic files begin with the
underline character (). The underline character is followed by four
initial letters of the project name and a three-digit suffix: 001 for the
first file, 002 for the second, and so forth.

To generate a schematic from a netlist, perform the following steps:

1.

7.

SelectFi |l e -~ Generate Schemati c fromNet!li st from the
Schematic Editor window. The Generating Schematic dialog box
displays.

Select the desired netlist type from the List Files of Type list box.
Then select the desired netlist file.

Click the Opt i ons button to display the Page Setup dialog box
which allows you to select the desired page size and orientation.

Select the page size to be used for the generated schematics. The
smaller the page size you select, the more numerous are the sche-
matic files that are generated.

Select Landscape or Portrait.

Select W r el ess to implement all connections using the connect-
by-name method.

Click OK.

Miscellaneous Tips for Using the Schematic Editor

Tool

This section describes various tips for creating schematic designs.

Foundation Series 4 User Guide 4-19

Foundation Series 4 User Guide

Color-coded Symbols
Symbols are color-coded to represent their type.
» Schematic user macros — blue
* Primitives and empty symbols — red
» HDL, State Editor, and netlist macros — purple
e State Editor macros — purple
» Library macros — black

These color codes are the default values. If you wish to change the
defaults, select Vi ew — Pr ef er ences - Col or s from the Sche-
matic Editor.

Using the Hierarchy Connector

Only use the Hierarchy Connector when specifying pins for a sche-
matic macro. Never use hierarchy connectors on top-level schematic
sheets.

D—

Using Input and Output Buffers

Xilinx schematics require that you use input and output buffers
between input and output pads. The following figures illustrate
incorrect and correct input and output port design.

D—

| IFAD [

—
| IFaD

HANDZ

Figure 4-3 Incorrect Port Design (Without Buffers)

4-20 Xilinx Development System

Schematic Design Entry

FL

[aT)

[,
Bu

F

Figure 4-4 Correct Port Design (With Buffers)

Schematic Tabs

Tabs on a schematic sheet facilitate navigation between schematic
sheets. The following example shows the tabs that display after
opening the schematics for the “lock” project.

*}Schemalic Capture - [LOCK1.5CH]
Eile Edit Mode DOptions Hierarchy “iew Display Window Help

al|e|5|s] 4 (e] NalE]| = [alde] O] El2 o

=0l
==

% 4
i
X 11 .
= e conen , St Mashine WORD[2:0]
= e = — VWORD_MEM2:
E START_INT ——— START oRal
T WE
=1 GENER -
D = IHIT
? %y CLE_RAM CLE_INIT
ﬁ 15 AN 7
_I State Machine WORD_NO[SO]

\woRD_oK

\WORD_HO e WORDS

aeser WORD_HG L)

EPEH L | IU4
PR hdl cods -
L S el

Lockl |

LOCK2

[oo, 08 |

I Select and Drag

Note the LOCK1 and LOCK?2 tabs in the lower left corner of the
figure. Clicking on the LOCK2 tab navigates to the LOCK2 schematic
sheet. For every new schematic sheet added to the design, a new tab

displays.

In addition, if you use Hi er ar chy - Push to display the schematic
for a component or macro, a new tab also displays in the lower left

corner.

Foundation Series 4 User Guide

4-21

Foundation Series 4 User Guide

Simulate Current Macro
In Foundation, you can simulate a macro in a schematic design:
1. Select the macro in your design.
2. Click Hi erarchy - Push and then double click the design.

3. After the design displays, select Opti ons - Sinul ate
Current Macro. When the Logic Simulator window displays,
you can perform a functional simulation of the macro. Refer to
the “Functional Simulation” chapter for details.

4-22 Xilinx Development System

Chapter 5

Design Methodologies - HDL Flow

This chapter describes various design methodologies supported in
the HDL Flow project subtype.

This chapter contains the following sections.

“HDL Flow Processing Overview”
“Top-level Designs”

“All-HDL Designs”

“HDL Designs with State Machines”

“HDL Designs with Instantiated Xilinx Unified Library Compo-
nents”

“HDL Designs with Black Box Instantiation”

“Schematic Designs in the HDL Flow”

HDL Flow Processing Overview

Refer to the“Project Toolset” chapter for information on how to create
an HDL Flow project and for an overview of the tools available for
such projects.

The following figure illustrates the processing performed at the
various stages of an HDL Flow project.

Foundation Series 4 User Guide — PN Online 5-1

Foundation Series 4 User Guide

Create
Project

Select
HDL Flow

Design Entry
Add
Source
Analyze
(Check Syntax)
""""""""""""""""" Synthesis

Select

Top Level
Select l
Target Optional

Synthesize
(Elaborate) Express Constraints
Editor

Enter
Constraints

&

Optimize

Functional
Simulation

Express Time Tracker

Analyze Timing

Implementation
Netlist Translation

Map (FPGAs)
of Fit (CPLDs)

Analyze Timing

3

Place and Route

(FPGAs only)

- Timing
Simulation

Optional

Analyze Timing

it 0

3

Create Bitsream

i

I Reports

Programming
Download
Bitstream

Figure 5-1 HDL Flow Project Processing

X8772

5-2 Xilinx Development System

Design Methodologies - HDL Flow

Top-level Designs

HDL Flow projects do not require the designation of a top-level
design until synthesis. VHDL, Verilog, and schematic files can be
added to an HDL Flow project. VHDL and Verilog source files can be
created by the HDL Editor, Finite State Machine Editor, or other text
editors. When you initiate the synthesis phase, you designate one of
the project’s entities (VHDL), modules (Verilog), or schematics as the
top-level of the design. The list of entities, modules, and schematics is
automatically extracted from all the source files added to the project.
Synthesis processing starts at the designated top-level file. All
modules below the top-level file are elaborated and optimized.

HDL designs can contain underlying LogiBLOXs, CORE Generator
modules, and XNF/EDIF files that are instantiated in the VHDL and
Verilog code as “black boxes.” Black box modules are not elaborated
and optimized during synthesis. (Refer to the “HDL Designs with
Black Box Instantiation” section for more information on Black
Boxes.)

All-HDL Designs

The following procedure describes the HDL flow for designs that are
HDL only, that is, there are no schematics or instantiated LogiBLOX,
netlist, or state machine macros.

Creating the Design

1. Open the HDL Editor by clicking the HDL Editor icon in the
Design Entry box on the Project Manager’s Flow tab.

£

2. When the HDL Editor window appears, you may select an
existing HDL file or create a new one. The following steps
describe creating a new HDL file with the Design Wizard.

3. When the HDL Editor dialog box displays, select Use HDL
Desi gn W zar d. Click OK.

Foundation Series 4 User Guide 5-3

Foundation Series 4 User Guide

5-4

4. Click Next in the Design Wizard window.

5. From the Design Wizard - Language window, select VHDL or
Veri | og. Click Next .

Note For top-level ABEL designs, you must use the Schematic
Flow.

6. In the Design Wizard - Name window, enter the name of your
design file. Click Next .

7. Define your ports in the Design Wizard-Ports window by
clicking NEW entering the port name, and selecting its direction.
Click Fi ni sh. The Wizard creates the ports and gives you a
template (in VHDL or Verilog) in which you can enter your
design.

8. Create the design in the HDL Editor. The Language Assistant is
available to help with this step. It provides a number of language
templates for basic language constructs and synthesis templates
for synthesis-oriented implementation of basic functional blocks,
such as multiplexers, counters, flip-flops, etc. Access the
Language Assistant by selecting Tool s - Language Assi s-
tant.

9. Add the design to the project by selecting Proj ect - Add to
Pr oj ect.

10. Exit the HDL Editor.

For more information about HDL designs, see the*““HDL Design Entry
and Synthesis” chapter or, in the HDL Editor window, select Hel p
- Hel p Topics.

Analyzing Design File Syntax

Syntax is checked automatically when the design is added to the
project. You can initiate a syntax check in the HDL Editor by selecting
Synthesis - Check Syntax. You can also analyze syntax by
selecting Proj ect - Analyze All Sources from the Project
Manager.

Use the HDL Error and HDL Warnings tabs in the messages area at
the bottom of the Project Manager to view any syntax errors or
messages output during analysis.

Xilinx Development System

Design Methodologies - HDL Flow

Performing HDL Behavioral Simulation (Optional)

If you installed an HDL simulation tool such as ACTIVE-VHDL or
ModelSIM, you can perform a behavioral simulation of your HDL
code. Please refer to the documentation provided with these tools for

maore

Synthesizi

information.

ng the Design

After the design files have been successfully analyzed, the next step is
to translate the design into gates and optimize it for a target architec-
ture. These steps are performed by running the Synthesis phase.

1. Set the global synthesis options by selecting Synt hesi s -
Opt i ons from the Project Manager. In the Synthesis Options
dialog, you can set the following defaults:

¢

¢

¢

Default clock frequency

Export timing constraints to the place and route software

Input XNF bus style

FSM Encoding (One Hot or Binary)

FSM Synthesis Style

Synthesiz Dptions

— FSM Synthesiz: Default encoding
&' One Hot ' Binam

X

" Zero One Hat

— F5M synthesis: Interpretation of YHDL "when others'

 Fastest & smallest [only defined states) ﬂl

" Safest [all possible, including ilegal, states)

Cancel |

r— Export schematics to

Ao & Sfhd| = HMF Edif

"Verilog 'ifdef support

" Enable ¥ Disable

Input #=MF Bug Style Faidy

Default Frequency IED

2. Click OKto close the Synthesis Options dialog

Foundation Series 4 User G

uide

5-5

Foundation Series 4 User Guide

3. Click the Synthesis icon on the Synt hesi s button on the Flow
tab.

4. The Synthesis/Implementation dialog box is displayed if this is
the first version and revision of a project. (By default on subse-
guent runs, the same settings are used and the given version is
overwritten. To create a new version, or to change settings, select
Project - Create Version)

Syntheziz/Implementation settings il
Top level: I freqm j Bun I
Wersion name: Iveﬂ Ok |
Synthesiz Settings: SET | Cancel |

Help |

Target Device

Farmily: ISF'AF!T.&NXL vl
Device: |505><LF'C84 'I Speed: |-5 'I

W Edit Synthesis/mplementation constraints

[V iiew E stimated Performance after Optimizatiore

I it Fruar e itatior tonl:
Phyzical [mplementation setting:

Revizion name: Ireﬂ it |

Control Files: SE

5. Select the name of the top-level module. Processing will start
from the file named here and proceed through all its underlying
modules.

6. Enter a version name.
7. Select the target device.

8. If you have Foundation Express, you have the following two
options.

5-6 Xilinx Development System

Design Methodologies - HDL Flow

¢ Edit Synthesis/Inplenmentation Constraints.
Selecting this options pauses synthesis processing after the
elaboration phase to allow you to specify constraints for the
design using the Express Constraints Editor GUI. For more
information refer to the “Express Constraints Editor” section.

¢ ViewEstinmted Performance after Optim zati on.
Select this option to view the estimated performance results
after design optimization using the Express Time Tracker
GUIL. For more information refer to the “Express Time
Tracker” section.

9. Click Set to access the Settings dialog box containing Synthesis
Setting for this version.

Settings x|
Synthesis Settings | Implementation cantrol files |
Optimize for: Effort Level:
" High
" irea & Low

Target Clock Frequency: IED

[Expart timing constraints
¥ Insert 1/0 pads

™ Preserve hierarchy

QK I Cancel | Help |

Modify the Synthesis Settings as desired.

+ Modify the target clock frequency
+ Select the optimization strategy as speed or area
¢ Select the effort level as high or low

+ Select the optimization strategy as speed or area Select
whether I/0 pads should be inserted for the designated top-
level mod

Foundation Series 4 User Guide 5-7

Foundation Series 4 User Guide

5-8

10.

Click OK to return to the Synthesis/Implementation Settings
dialog box.

Click OK to synthesize the designated top-level design and its
underlying modules. (Or, click Run to synthesis and implement
the design.)

The synthesis compiler automatically inserts top-level input and
output pads required for implementation (unless instructed not
to do so in the Synthesis Settings).

Express Constraints Editor

The Express Constraints Editor is available with the Foundation
Express product only. It allows you to set performance constraints
and attributes before optimization of FPGA designs.

1.

The Express Constraints Editor window automatically displays
during Synthesis processing if you checked the Edit Synthesis/
Implementation Constraints box on the Synthesis/Implementa-
tion dialog.

Alternatively, you can access the Express Constraints Editor via

the Versions tab by right-clicking on the functional structure of a
project version or functional structure in the Hierarchy Browser

and then selecting Edi t Synt hesi s Constraints.

The following figure shows an example of the Clocks tab of the
Express Constraints Editor.

Xilinx Development System

Design Methodologies - HDL Flow

M ver3 [Constraints

—loi x|

Clacks | Paths I Farts I Modulesl Hilire Dptions

Hame

Clock

1 =default=

200010

2 Mver3ICLK

QK I Export Congtraints. .. | Import Constraints... |

Figure 5-2 Express Constraints Editor - Clocks Tab

2.

Design-specific information is extracted from the design and
displayed in device-specific spreadsheets. Click the tabs to access
the various spreadsheets.

If you unchecked | nsert 1/ O pads on the Synthesis/Imple-

mentation dialog, only the Modules and Xilinx Options tabs are
shown. The Clocks, Ports, and Paths tabs apply only to top-level
HDL designs.

Right-click on an item in any of the spreadsheets to edit the value,
access a dialog box to edit the value, or access a pulldown menu
to select a value. Use the online help in the dialog boxes to under-
stand and enter specific constraints and options.

The following figure shows an example of the dialog box
accessed when you right click on an output delay value
displayed on the Ports tab of the Express Constraints Editor.

Foundation Series 4 User Guide 5-9

Foundation Series 4 User Guide

5-10

ver3 [Constraints] =l
Clocksl Paths Ports | Modulesl Hilirs Dpt\onsl
_ - Input Delay Output Delay Pad| . Input Reg Use Slew
Hame |Direction (ns} (ne} Global Buffer Dir Delay 110 Reg Rate
1 =defalt= AUTOMATIC NONE DELAY TRUE SLOW
2 CE input 20/(RC,CLK)
3 CLK input 20/(RC, CLK)
4 CLR input 20/(RC, CLK)
5 LSBSEC=3= |output 20/{AC, CLE) |
B LSBSEC=2= |output Z0/(RC, CLE) Define Delay]
7 LSBSEC=1= |output 20/4RC, CLE) n
E LSBSEC=0= |output 20(RC, CLK) Masimum Dielay N
g MSBSEC=3= output 20/4RC, CLE) n
10 MSBSEC=2= output 20(RC, CLK) |PU = Cancel | N
11 MSBSEC=1= output 20/4RC, CLE) n
12 MSBSEC=0= autput 20/(RC,CLK) . = |
Relative ta group: —
4] | [RC.CLK) - FFs clocked by fising /ver3/CLE 2 |
ak I Export Congtraints... | Import Constraints. .. |

Figure 5-3 Express Constraints Editor - Ports Tab

4.

Optionally, you can import a constraints file (.exc) to use now
(click I mport Const r ai nt s) or you can export the entered
constraints to a constraints file (.exc) for reuse (click Expor t
Constrai nts).

After you finish editing the constraints, click OK to close the
Constraints window and continue the synthesis using the speci-
fied constraints.

Express Time Tracker

The Express Time Tracker is available with the Foundation Express
product only. It allows you view estimated performance results after
optimization of your design.

1.

The Optimized (Constraints) window, shown in the figures at the
end of this section, automatically displays after Synthesis
processing if you checked the View Estimated Performance after
Optimization box in the Synthesis/Implementation dialog
window.

Alternatively, you can access the Optimized (Constraints)
window via the Versions tab by right-clicking on an optimized

Xilinx Development System

Design Methodologies - HDL Flow

structure in the Hierarchy Browser and then selecting Vi ew
Synt hesi s Results.

2. Click the tabs to access the performance results in the various
spreadsheets.

If you unchecked | nsert |/ Opads on the Synthesis/Imple-
mentation dialog, only the Models and Xilinx Options tabs are
shown. The Clocks, Ports, and Paths tabs apply only to top-level
HDL designs.

3. After you finish viewing the results, click OK to close the Opti-
mized (Constraints) window.

=default=
Mver3-Optimized"/CLK_BUF Ged

Figure 5-4 Express Time Tracker - Clocks Tab

Foundation Series 4 User Guide 5-11

Foundation Series 4 User Guide

ver3-Optimized [Constraints] loix|
Elocksl Paths ~ Ports |M0dules| Hilirs Dptionsl
= - |Input Delay| Input Output Delay Output| Global Pad|_ . Input Reg| Use | Slew
Mame | Direction| = o0y slack tns) Slack | Buffer | Dir Delay (110 Reg| Rate |P29L
1 =default= ALTOMATIC NONE DELAY TRUE | SLOW
2 CE Lt [el] Fis,
3 CLK inpLt o) Fis, BUFG
4 CLR inpLt o) Fis,
5 LSBSEC=3= |output 20HRC,CLK_BUFGed) | 110
& LSBSEC=2= |output ZONRC, CLE_BUFGed)| 107
7 LSBSEC=1= |output ZONRC, CLE_BUFGed)| 107
& LSBSEC=0= |output ZONRC, CLE_BUFGed)| 105
] MSBSEC=3= | output R, CLE_BUFGed)| 110
10 MSBSEC=2= |output ZONRC, CLE_BUFGed)| 107
11 MSBSEC=1 = | output ZONRC, CLE_BUFGed)| 107
12 MSBSEC=0= |output ZONRC, CLE_BUFGed)| 105
il | 2

5-12

Figure 5-5 Express Time Tracker - Ports Tab

Performing Functional Simulation

Functional Simulation may be performed to verify that the logic you
created is correct. Gate-level functional simulation is performed after
the design is synthesized.

Note There are several ways to apply stimulus and simulate a design.
This section discusses one way: using the stimulator dialog. For more
information on using the simulator, refer to its online help.

1. Open the Logic Simulator by clicking the Functional Simulation
icon in the Simulation box on the Project Manager’s Flow tab.

» 3

SYNTHESIS SIMUL

A4

2. The design is automatically loaded into the simulator. The Wave-
form Viewer window displays inside of the Logic Simulator
window.

Functional Simulation

Xilinx Development System

Design Methodologies - HDL Flow

Bl Logic Simulator - Xilink Foundation F1.5 [watchvhd] I =1 3|
File Signal “Waveform Device Options Tools Wiew ‘Window Help

i = e) e Y e | e -1

F= Waveform Yiewer 0 =lo] x|]
o e =1l == = || mer | 0.0
'-'-'-”-'-'-”I S0ns/div |‘—‘—|—UI EO0ns |lus 1.5us [|Fus Z_ Eus |3us |
| o.o ||||||||| ||||||||| ||||||||| ||||||||| ||||||||| ||||||||| ||||||||| |||||
4 | Ao [
Metlist loaded successfully [0.0

3. Add signals by selecting Si gnal - Add Signal s.

4. From the Signals Selection portion of the Components Selection
for Waveform Viewer window, select the signals that you want to
see in the simulator.

5. Use CTRL-click to select multiple signals. Make sure you add
output signals as well as input signals.

6. Click Add and then O ose. The signals are added to the Wave-
form Viewer in the Logic Simulator screen.

7. SelectSignal - Add Stimul at or s from the Logic Simulator
menu. The Stimulator Selection window displays.

Foundation Series 4 User Guide 5-13

Foundation Series 4 User Guide

5-14

Stimulator Selection =10 =]
Heyboard: Clocks:

DuPLVLDE0 6]/
PEE LT P |l
3]] [[cs

[4 1]
Be: OOOO' 0000' 0000' OOOOI
NBc:
Form GOEE

[T [Fedeey
Furmula...l Close | Help |

8. Inthe Stimulator Selection window, create the waveform stim-
ulus by attaching stimulus to the inputs. For more details on how
to use the Stimulus Selection window, click Hel p.

9. After the stimulus has been applied to all inputs, click the Simu-
lator Step icon on the Logic Simulator toolbar to perform a simu-
lation step. The length of the step can be changed in the
Simulation Step Value box to the right of the Simulation Step box.
(If the Simulator window is not open, select Vi ew - Mai n
Tool bar.)

@Lugic Simulator - Xilinx Foundation F4.1i [watch_sc] - [Waveform Viewer 0 - c:\emera... ;[Qlill
== File Signal ‘Wavefom Device Options Tools View Window Help =
=|a|8| &< 4l] 5 T | T
[2o |t—=1—[== 2 || mne | 610ns

10. To save the stimulus for future viewing or reuse, selectFil e -

Save Wavef or m Enter a file name with a .tve extension in the
File name box of the Save Waveform window. Click OK.

For more information about saving and loading test vectors,
selectHel p - Logic Simul ator Hel p Cont ents fromthe
Logic Simulator window. From the Help Index, select Wr ki ng
Wth Wavefornms - Saving and Loadi ng Wavef or ns.

Implementing the Design

Design Implementation is the process of translating, mapping,
placing, routing, and generating a Bit file for your design. Optionally,
it can also generate post-implementation timing data.

Xilinx Development System

Design Methodologies - HDL Flow

1. Click the Implementation icon on the Implementation phase
button on the Project Manager’s Flow tab.

2o » [ﬂ '3
IMPLEMENTATIA

r
mplementation

2. The Synthesis/Implementation dialog box appears if the imple-
mentation is out-of-date.

A revision represents an implementation run on the selected-
version. Modify the name in the Revision Name box, if desired.
The synthesis settings are grayed out if synthesis has already

been run.

Synthesis/Implementation settings x|
Top level: Ifreqm'l j Bun I
ersion name: |ver'| Ok, |
Synthesiz Settings: SET | Cancel |

Help |

Target Device

Farnily: ISP.-’-‘-.F!TANHL 'I
Dievice: |S|35><LP|:84 VI Speed: |-5 vl

Iv Edit SyrithesizAmplementation constraints

Iv Aiew E stimated Performance after O ptimizatior:

= st B [mplementation feels
Physzical Implementation zettings

Revizion name: IIB\-"I |10 |

Cantral Files: i)

3. Click Set to access the Implementation control files dialog box.
Identify any guide file, constraints file, or Floorplan file to use for
this implementation.

Foundation Series 4 User Guide 5-15

Foundation Series 4 User Guide

5-16

Click OK to return to the Synthesis/Implementation Settings
dialog box.

Click Opt i ons on the Synthesis/Implementation dialog box to
set the Place and Route Effort level and edit implementation,
simulation, or configuration options, if desired.

—_—

Dot
Foundation EDIF Ed
et =] | Ediopions. |

Click OK to return to the Settings/Implementation Settings dialog
box.

Xilinx Development System

Design Methodologies - HDL Flow

5. Click Run to implement the design. The Flow Engine displays the
progress of the implementation.

The Project Manager displays a status message when Implemen-
tation is complete. View the Console tab on the Project Manager
window for the results of all stages of the implementation. The
Versions tab also indicates the status of the implemented revi-
sion.

6. To view design reports, select the desired revision in the Versions
tab of the Project Manager. Then select the Reports tab in the
Project Manager Flow window.

Click on the Implementation Report Files icon to view the imple-
mentation reports. Click on the Implementation Log File icon to
view the Flow Engine’s processing log.

For more information on the Flow Engine, selectHel p -
Foundation Hel p Contents - Flow Engi ne.

Editing Implementation Constraints

Design constraints affect how the logical design is implemented in
the target device. Applying constraints helps you to adapt your
design’s performance to expected worst-case conditions. The user
constraint file (.ucf) is an ASCII file that holds timing and location
constraints. It is read (by NGDBuild) during the translate process in
the Flow Engine and is combined with an EDIF or XNF netlist into an
NGD file.

Each revision contains an associated UCF file. The UCF file may be a
default (empty) UCF or one that you customize yourself. You can
directly enter constraints in the UCF file through a text editor or you
can use the Xilinx Constraints Editor.

1. The Constraints Editor is a Graphical User Interface (GUI) that
you can run after the Translate program to create new constraints
in a UCF file. To access the Constraints Editor, select Tool s -

I npl enentation - Constraints Editor from the Project
Manager.

The following figure shows an example of the Global tab of the
Implementation Constraints Editor.

Foundation Series 4 User Guide 5-17

Foundation Series 4 User Guide

File “iew ‘wWindow Help

5-18

Design-specific information is extracted from the design and
displayed in device-specific spreadsheets. Click the tabs to access
the various spreadsheets.

Right-click on an item in any of the spreadsheets to access a
dialog box to edit the value. Use the online help in the dialog
boxes to understand and enter specific constraints and options.
Or, refer to the online software document, Constraints Editor Guide
for detailed information.

The following figure shows an example of the Pad to Setup
dialog box accessed when you right click anywhere on a Port row
on the Ports tab of the Implementation Constraints Editor and
then select Pad t o Set up.

Xilinx Development System

Design Methodologies - HDL Flow

File “iew ‘wWindow Help

D[] [

Port Hame Port Direction

Location

Pad to Setup

Clock to Pad

CE NPT

A,

CLK INPLT

Q== OUTPUT

[

A,

[

Q== QUTRUT

| ‘NJA

Q==
G=3=

OUTPUT
OUTPUT

Pad Groups—
’V Group Mame:

I 1/0 Configuration Options

Erohibit 170 Locations...

Pad to Setup

Pad Net:

x|
Cancel

Help |

Global

I Advanced

Forts

Time Requirement
’7 |2D Units:

Ins

|

FRelative to Clock Pad Net:

JcLk

+L1Editable Constraints | * & Source Constrainfs [read-onky]

J

e

<|
A TR TR Erors £ miamings A nfo Messages [

For Help, press F1

e

Figure 5-6 Implementation Constraints Editor - Ports Tab

4. After you finish editing the constraints, click Save to close the
Constraints Editor window

5. You must rerun the Translate step in the Flow Engine to have
your new constraints applied to the design.

6. Click the Implementation icon on the Project Manager’s Flow tab
to rerun Translate and the rest of the flow.

Verifying the Design

After the design has been implemented, the Timing Analyzer or the
Timing Simulator can be used to verify the design. The Timing
Analyzer performs a static timing analysis of the design. The Timing
Simulator uses worst-case delays and user input stimulus to simulate
the design.

Foundation Series 4 User Guide

5-19

Foundation Series 4 User Guide

Performing a Static Timing Analysis

1. Click the Timing Analyzer icon in the Verification box on the
Project Manager’s Flow tab to perform a static timing analysis.

%";E} Jlt K

IMPLEMENTATION VERIFICATIO

Timirg Analyzer

2. For FPGAs, you can perform a post-MAP, post-place, or post-
route timing analysis to obtain timing information at various
stages of the design implementation. You can perform a post-
implementation timing analysis on CPLDs after a design has
been fitted.

For details on how to use the Timing Analyzer, selectHel p -
Foundation Hel p Contents - Timng Analyzer.

Performing a Timing Simulation

1. Open the Timing Simulator by clicking the Timing Simulation
icon in the Verification box on the Project Managers’s Flow tab.
The implementation timing netlist with worst-case delays will be
loaded into the simulator.

%;Eﬂ p ﬁ[@

IMPLEMENTATION i VERIF

Timing Simulation

The Waveform Viewer window displays inside the Logic Simu-
lator window.

2. Refer to the “Performing Functional Simulation” section earlier
in this chapter for instructions on simulating the design. (The
operation of the simulator is the same for functional and timing
simulation.)

3. If you have already saved test vectors (for instance, in the func-
tional simulation), you may load these vectors into the timing
simulator by selecting Fil e - Load Waveform

5-20 Xilinx Development System

Design Methodologies - HDL Flow

Programming the Device

1. Click the Device Programming icon in the Programming box on
the Project Manager’s Flow tab.

Device Programming

2. From the Select Program box, choose iMPACT, or PROM File
Formatter. IMPACT can be used for both FPGA and CPLD
designs. For instructions, select Hel p — Foundati on Hel p
Contents - i MPACT.

HDL Designs with State Machines

This section explains how to create a state machine and add it into a
HDL Flow project.

The Files tab in the Hierarchy Browser displays the state machine
name. HDL code is automatically generated from the FSM diagram.
The module (VHDL) or entity (Verilog) name is automatically added
to the top-level selection list.

Creating a State Machine Macro

1. Open the State Editor by clicking the FSM icon in the Design
Entry box on the Project Manager’s Flow tab.

2. SelectUse the HDL Design W zard. Click OK.
3. From the Design Wizard window, select Next .

4. From the Design Wizard - Language window, choose VHDL or
Veri | og and select Next .

5. Inthe Design Wizard - Name window, enter a name for your
macro. Select Next .

6. Define your ports in the Design Wizard-Ports window. Select
Next .

Foundation Series 4 User Guide 5-21

Foundation Series 4 User Guide

5-22

In the Design Wizards - Machines window, select the number of
state machines that you want. Click Fi ni sh. The Wizard creates
the ports and gives you a template in which you can enter your
macro design.

Complete the design for your FSM in the State Editor.

Add the macro to the project by selecting Proj ect - Add to
Pr oj ect from the Project Manager.

You will see the FSM modaule listed in the Files tab of the Project
Manager.

Following is an example of VHDL code (my_fsm.vhd) generated
from the State Editor for a state machine macro.

library |EEE;
use | EEE.std | ogic_1164.all;
use |EEE. std logic_arith.all;
use | EEE. std_| ogi c_unsigned. al | ;
entity ny fsmis
port (clk: in STD LOQ C;
in_a: in STD LQJ C;
in_b: in STD LOG C
in_c: in STD LQQ C;
reset: in STD LOG C,
out _a: out STD LOQ G
out _b: out STD LOd C;
out _c: out STD LOd O);
end;
architecture my_ fsmarch of ny fsmis
-- SYMBOLI C ENCODED st ate nachi ne: Sreg0
type Sreg0 type is (S1, S2, S3);
signal Sreg0O: SregO_type;
begi n

Xilinx Development System

Design Methodologies - HDL Flow

--concurrent signal assignhments

--di agram ACTI ONS

process (clk)

begi n

if clk’ event and clk
if reset="1 then
Sreg0 <= S1,

el se

case Sreg0 is

when S1 =>
if in.a="1 then
Sreg0 <= 32,
end if;
when S2 =>
if in_b="1 then
end if;
when S3 =>
if inc ='1 then
Sreg0 <= S1,
end if;

when ot hers =>
nul | ;

end case;

end if;

end if;

end process;

Foundation Series 4 User Guide

1" then

Sreg0 <= S3;

5-23

Foundation Series 4 User Guide

-- signal assignnment statements for
conbi nat ori al

-- outputs

out_ ¢ <='0" when (Sreg0 = S2) else
"0’ when (Sreg0 = S3) el se
V

out_a <= '1" when (Sreg0 = S2) else
"0’ when (Sreg0 = S3) el se
o

out b <= '0" when (Sreg0 = S2) else
"1 when (Sreg0 = S3) el se
o

end my_fsm arch;

For more information about creating state machine modules,
refer to the*State Machine Designs” chapter. Or, select Hel p -
Foundati on Hel p Cont ents andthen Click St ate Editor.

HDL Designs with Instantiated Xilinx Unified Library
Components

5-24

It is possible to instantiate certain Xilinx Unified Library components
directly into your VHDL or Verilog code. In general, you will find this
most useful for components that the Express compiler is unable to
infer, such as BSCAN, RAM, and certain types of special Xilinx
components. The “Instantiated Components” appendix lists the most
commonly instantiated components, including descriptions of their
function and pins.

When instantiating Unified Library components, the component
must first be declared before the begi n keyword in VHDL the archi-
tecture and then may be instantiated multiple times in the body of the
architecture.

The following example shows how to instantiate the STARTUP
component in a VHDL file, which in turn allows use of the dedicated
GST (global/reset) net.

Xilinx Development System

Design Methodologies - HDL Flow

The following sample written in VHDL shows an example of an
instantiated Xilinx Unified Library component, STARTUP.

i brary | EEE;
use | EEE. std_| ogic_1164. all;
entity gsr_test is
port (
CLK: in STD LQG C,
DIN in STD LOG C
RESET: in STD LCd C
Q QUT: out STD LOG C
)
end gsr_test;
architecture gsr_test _arch of gsr_test is
conponent STARTUP
port (GSR in std |ogic);

end comnponent;
begi n
Ul: STARTUP port map (GSR=>RESET);
process (CLK)
begi n
if (CLK event and CLK="1") then
QQUT <= D IN
end if;
end process;
end gsr_test_arch;

1. The HDL code must be added to the project. Select Pr oj ect -
Add to Project fromthe HDL Editor or select Docunent -
Add from the Project Manager.

2. Synthesize the design by selecting the Synt hesi s button on the
Project Manager Flow tab.The synthesizer will automatically
include top level input and output pads for the designated top-
level design.

For more information about HDL designs, see the “HDL Design
Entry and Synthesis” chapter or, in the HDL Editor window,
selectHel p - Hel p Topics.

3. To complete the design, refer to the “Synthesizing the
Design”through the “Programming the Device” sections under
the “All-HDL Designs” section.

Foundation Series 4 User Guide 5-25

Foundation Series 4 User Guide

HDL Designs with Black Box Instantiation

5-26

LogiBLOXs, CORE Generator modules, ABEL modules, and EDIF
and XNF files can be instantiated in the VHDL and Verilog code
using the “black box instantiation” method.

The Files tab in the Hierarchy Browser does not display the black box
module name under the HDL file(s) in which it is instantiated. The
Express compiler does not synthesize the black box. It is left as an
unlinked cell and resolved in the Translate phase of the implementa-
tion.

This section describes how to create HDL designs that instantiate
black boxes.

LogiBLOX Modules in a VHDL or Verilog Design

LogiBLOX modules may be generated in Foundation and then
instantiated in the VHDL or Verilog code. This flow may be used for
any LogiBLOX component, but it is especially useful for memory
components such as RAM. Never describe RAM behaviorally in the
HDL code, because combinatorial feedback paths will be inferred.

The module being instantiated must be located in the HDL project
directory (that is, the directory where the top-level HDL file resides).
Running LogiBLOX from the Foundation project ensures this condi-
tion is met.

LogiBLOX provides a template tool for generating the VHDL or
Verilog component declaration statement.

VHDL Instantiation

This section explains how to instantiate a LogiBLOX module into a
VHDL design using Foundation. The example described below
creates a RAMA48X4S using LogiBLOX.

1. Access the LogiBLOX Module Selector window using one of the
following methods. Its operation is the same regardless of where
it is invoked.

¢+ From the Project Manger, select Tool s - DesignEntry
- Logi BLOX nodul e gener ator

¢+ From the HDL Editor, select Tool s - Logi BLOX

Xilinx Development System

Design Methodologies - HDL Flow

¢+ From Schematic Editor, select Entry - Logi BLOX
nodul e gener at or

2. Click Set up on the LogiBLOX Module Selector screen. (The first
time LogiBLOX is invoked, the Setup screen appears automati-

cally.)
3. Inthe Setup window, enter the following items.
¢ Under the Device Family tab, use the pulldown list to select
the target device family (SpartanXL, for example).
Setup |
Wendor | Project Directory Device Family | Options |

Device Family:

Ispaltanxl j

Ok | Cancel | Ay | Help |

¢ Under the Options tab, select the Simulation Netlist and
Component Declaration template.To instantiate the Logi-
BLOX module in VHDL code, select VHDL t enpl at e in the
Component Declaration area. If you plan to perform a behav-
ioral simulation, select Behavi oral VHDL net | i st inthe
Simulation Netlist area, as shown below. Click OK.

Foundation Series 4 User Guide 5-27

Foundation Series 4 User Guide

4. Inthe LogiBLOX Module Selector window, define the type of
LogiBLOX module and its attributes. The Module Name speci-
fied here is used as the name of the instantiation in the VHDL

code.

e
-
Qo = [~

5. When you click OK the LogiBLOX module is created automati-
cally and added to the project library.

5-28 Xilinx Development System

Design Methodologies - HDL Flow

The LogiBLOX module is a collection of several files including
those listed below. The files are located in your Xilinx project
directory for the current project.

component_name.ngc Netlist used during the Translate
phase of Implementation

component_name.vhi Instantiation template used to add a
LogiBLOX module into your VHDL
source code

component_name.vhd VHDL file used for functional simu-
lation

component_name.mod Configuration information for the
module

logiblox.ini LogiBLOX configuration for the
project

The component name is the name given to the LogiBLOX module
in the GUI. The port names are the names provided in the .vhi
file.

6. Inthe HDL Editor, open the LogiBLOX-created .vhi file
(memory.vhi) located under the current project. The .vhi file for
the memory component created in the previous steps is shown
below.

-- Logi BLOX SYNC _RAM Modul e "nenory"
-- Created by Logi BLOX version C. 16
- - on Tue Jun 01 16:46: 04 1999
-- Attributes

- - MODTYPE = SYNC_RAM

-- BUS WDTH = 4

-- DEPTH = 48

-- STYLE = MAX_SPEED

-- USE_RPM = FALSE

Foundation Series 4 User Guide 5-29

Foundation Series 4 User Guide

5-30

-- Component Decl aration

conponent nenory

PORT(

A: IN std_ | ogic_vector(5 DOANTO 0);
DO QUT std | ogic_vector(3 DOANTO 0);
Di: INstd_|ogic vector(3 DOANNTO 0);
WR EN. I N std_I ogic;

WR CLK: IN std logic);

end comnponent;

-- Conponent Instantiation

i nstance_name : nmenory port map
(A =>,

DO => ,

D =>,

WR EN => |

WR CLK =>);

Open a second session of the HDL Editor. In the second HDL
Editor window, open the VHDL file in which the LogiBLOX
component is to be instantiated.

Note Instead of opening a second sesssion, you could use Edi t
- Insert Fil e fromthe HDL Editor tool bar to insert the file
into the current HDL Editor session.

Cut and paste the Component Declaration from the LogiBLOX
component’s .vhi file to your project’s VHDL code, placing it
after the architecture statement in the VHDL code.

Xilinx Development System

Design Methodologies - HDL Flow

Cut and past the Component Instantiation from the LogiBLOX
component’s .vhi file to your VHDL design code after the
“begin” line. Give the inserted code an instance name. Edit the
code to connect the signals in the design to the ports of the Logi-
BLOX module.

The VHDL design code with the LogiBLOX instantiation for the
component named memory is shown below. For each .ngc file
from LogiBLOX, you may have one or more VHDL files with the
.ngc file instantiated. In this example, there is only one black box
instantiation of memory, but multiple calls to the same module
may be done.

library |EEE;
use | EEE.std | ogic_1164.all;
use |EEE. std logic_arith.all;

entity top is
port (D in STDLOGAC, CE in STD LOGC
CLK: in STD_ LOAJ C, Q out STD LOG G
Atop: in STD LOG C VECTOR (5 downto 0);
DOt op: out STD LOG C VECTOR (3 downto 0);
Ditop: in STD LOG C VECTOR (3 downto 0);
WR _ENtop: in STD LOG C
WR _CLKtop: in STD LOG C);
end top;

architecture inside of top is
conponent userff
port (D. in STDLOAC, CE in STD LOG G

CLK: in STDLOAC, @ out STD LOG O);

end comnponent;

Foundation Series 4 User Guide 5-31

Foundation Series 4 User Guide

conponent nenory
port (A© in STD LOd C VECTOR (5 downto 0);
Di: in STD LOG C VECTOR (3 downto 0);
WR EN in STD LOGE G
WR CLK: in STD LOG C
DO out STD LOG C VECTOR (3 downto 0));

end comnponent;

begi n

UO userff port map (D=>D, CE=>CE, CLK=>CLK,
&>Q;

Ul: menory port
map(A=>At op, DI =>DI t op, WR_EN=>WR_ENt op,

WR_CLK=>WR_CLKtop, DO=>DOtop);
end inside;

8. Check the syntax of the VHDL design code by selecting
Synt hesis - Check Synt ax inthe HDL Editor. Correct any
errors. Then save the design and close the HDL Editor.

9. The design with the instantiated LogiBLOX module can then be
synthesized (click the Synt hesi s button on the Flow tab).

Note When the design is synthesized, a warning is generated that
the LogiBLOX module is unlinked. Modules instantiated as black
boxes are not elaborated and optimized. The warning message is
just reflecting the black box instantiation.

10. To complete the design, refer to the “Synthesizing the
Design”’through the “Programming the Device” sections under
the “All-HDL Designs” section.

5-32 Xilinx Development System

Design Methodologies - HDL Flow

Verilog Instantiation

This section explains how to instantiate a LogiBLOX module into a
Verilog design using Foundation. The example described below
creates a RAMA48X4S using LogiBLOX.

1. Access the LogiBLOX Module Selector window using one of the
following methods. Its operation is the same regardless of where
it is invoked.

¢ From the Project Manger, select Tool s - DesignEntry
- Logi BLOX nodul e gener at or.

¢+ From the HDL Editor, select Tool s - Logi BLOX.

¢ From Schematic Editor, select Tool s - Logi BLOX
Modul e Generat or.

2. Click Set up on the LogiBLOX Module Selector screen. (The first
time LogiBLOX is invoked, the Setup screen appears automati-
cally)

3. In the Setup window, enter the following items.

¢ Under the Device Family tab, use the pulldown list to select
the target device family (XC4000E, for example).

Setup x|
Vendorl Project Directory - Device Family | Dptionsl
Device Family:
Ispartan:-:l j
Qg | Cancel | Aol | Help |

¢ Under the Options tab, select Veri | og t enpl at e in the
Component Declaration area. If you plan to perform a behav-
ioral simulation, select St ruct ural Verilognetlist in
the Simulation Netlist area, as shown below. Click OK.

Foundation Series 4 User Guide 5-33

Foundation Series 4 User Guide

4. Inthe LogiBLOX Module Selector window, define the type of
LogiBLOX module and its attributes. The Module Name speci-
fied here is used as the name of the instantiation in the Verilog

code.

Masimum Speed 7]
-
Iinimm= [~

5. When you click OK, the LogiBLOX module is created automati-
cally and added to the project library.

5-34 Xilinx Development System

Design Methodologies - HDL Flow

The LogiBLOX module is a collection of several files including
those listed below. The files are located in your Xilinx project
directory for the current project.

component_name.ngc Netlist used during the Translate
phase of Implementation

component_name.vei Instantiation template used to add
LogiBLOX module into your
Verilog source code

component_name.v Verilog file used for functional
simulation

component_name.mod Configuration information for the
module

logiblox.ini LogiBLOX configuration for the
project

The component name is the name given to the LogiBLOX module
in the GUI. The port names are the names provided in the .vei
file.

6. Inthe HDL Editor, open the LogiBLOX- created .vei file
(memory.vei) located under the current project. The .vei file for
the memory component created in the previous steps is shown
below.

/1 Logi BLOX SYNC_RAM Mbdul e "nenory"
/1 Created by Logi BLOX version C. 16
/1 on Wed Jun 01 10:40: 25 1999
/] Attributes

/1 MODTYPE = SYNC_RAM

/1 BUS WDTH = 4

/1 DEPTH = 48

/1 STYLE = MAX_SPEED

/1 USE_RPM = FALSE

menory i nstance_nane

Foundation Series 4 User Guide 5-35

Foundation Series 4 User Guide

5-36

(-AQ),
- D),
.DI(),
VMR_EN(),
.MR_CLK());

nodul e nenory(A, DO, D, WR EN, WR CLK);
i nput [5:0] A

out put [3:0] DO

input [3:0] DI;

i nput VR _EN;

i nput WR _CLK;

endnodul e

Open a second session of the HDL Editor. In the second HDL
Editor window, open the Verilog design file in which the Logi-
BLOX component is to be instantiated.

Note Instead of opening a second sesssion, you could use Edi t
- Insert Fil e fromthe HDL Editor tool bar to insert the file
into the current HDL Editor session.

Cut and paste the module declaration from the LogiBLOX
component’s .vei file into the Verilog design code, placing it after
the “endmodule” line within the architecture section or the
Verilog design code.

Cut and paste the component instantiation from the .vei file into
the design code. Give the added code an instance name and edit
it to connect the ports to the signals.

The Verilog design code with the LogiBLOX instantiation for the
component named memory is shown below. For each .ngc file
from LogiBLOX, you may have one or more VHDL files with the
.ngc file instantiated. In this example, there is only one black box
instantiation of memory, but multiple calls to the same module
may be done.

modul e top (D, CE, CLK, Q

Xilinx Development System

Design Methodologies - HDL Flow

At op, DCtop, Ditop, WR ENt op,
WR_CLKt op) ;

i nput D

i nput CE;
i nput CLK;
out put Q

i nput [5:0] Atop;
output [3:0] DO op;
input [3:0] Ditop;

i nput VWR_ENt op;

i nput VR _CLKt op;

userff U0 (.D(D),.CE(CE),.CLK(CLK),.QQ):

menory UL (.A(Atop),
. DO (DOt op),
.DI (Dltop),
.W\R_EN (WR_ENt op),
.WR_CLK (WR_CLKtop));
endnodul e

Note An alternate method is to place the module declaration
from the .vei file into a new, empty Verilog file (MEMORY.V) and
add the new file (shown below) to the project.

/1 Logi BLOX SYNC_RAM Mbdul e "nenory"

/1 Created by Logi BLOX version C. 16
/1 on Wed Jun 01 10:40: 25 1999

Foundation Series 4 User Guide 5-37

Foundation Series 4 User Guide

/1 Attributes

11 MODTYPE = SYNC_RAM
/1 BUS W DTH = 4

/1 DEPTH = 48

/1 STYLE MAX_SPEED
/1 USE_RPM = FALSE

nodul e MEMORY (A, DO, DI, WR EN, WR CLK);
i nput [5:0] A

out put [3:0] DO

input [3:0] DI;

i nput VR _EN;

i nput WR _CLK;

endnodul e

8. Check the syntax of the Verilog design code by selecting
Synt hesis - Check Synt ax inthe HDL Editor. Correct any
errors and then save the design and close the HDL Editor.

9. The design with the instantiated LogiBLOX module can then be
synthesized (click the Synt hesi s button on the Flow tab).

Note When the design is synthesized, a warning is generated that
the LogiBLOX module is unlinked. Modules instantiated as black
boxes are not elaborated and optimized. The warning message is
just reflecting the black box instantiation.

10. To complete the design, refer to the “Synthesizing the Design”
section through the “Programming the Device” section under the
“All-HDL Designs” section in this chapter.

CORE Generator COREs in a VHDL or Verilog Design

CORE Generator COREs may be generated in Foundation and then
instantiated in VHDL or Verilog code. COREs can be generated for
valid Foundation projects only.

5-38 Xilinx Development System

Design Methodologies - HDL Flow

This flow may be used for any CORE Generator CORE. The CORE
being instantiated must be located in the HDL project directory (that
is, the directory where the top-level HDL file resides). Running Logi-
BLOX from the Foundation project ensures this condition is met.

VHDL Instantiation

This section explains how to instantiate a CORE component into a
VHDL design using Foundation.

1. With a valid Foundation project open, access the CORE Gener-
ator window using one of the following methods. Its operation is
the same regardless of where it is invoked.

¢ From the Project Manger, select Tool s - DesignEntry
- CORE Cener at or

¢+ From the HDL Editor or Schematic Editor, select Tool s -
CORE Cener at or

2. SelectProject - Project Options.IntheProject Options
dialog box, ensure that Design Entry is VHDL, that Behavioral
Simulation is VHDL, and that the Vendor is Foundation. The
Family entry should reflect the project’s target device. Click OK to
exit the Project Options dialog box.

3. To aid selection, the available COREs are categorized in folders
on the View Mode section of the main CORE Generator window.
Double click a folder to see its sub-categories. When you double
click a sub-category folder, the available COREs are listed in the
“Contents of” section of the main CORE Generator window.

Foundation Series 4 User Guide 5-39

Foundation Series 4 User Guide

Efilink CORE Generator
File Project Core Tools Help

S [= e

[Ij’| CurrentPrnject'|C'\XlIln)(\act\ve\prnjects\ACADEMY LI |E£(| & &=

View Catalog Ihy’ Function 'I

[Target Famihs !ﬂ?}i SPARTAMNZ Contents of:
%I Basic Elements Mame I Type IVErlenIEI@'\,l{?ﬂ\glﬂl “endaor I
| Communication & Networking

1 Digital Signal Processing

1 Math Functions

1 Memories & Storage Elements

1 Microprocessars, Cantrollers & Peripherals
1 ProtoType & Development Hardware Products
"1 Standard Bus Interfaces

" |“iden, Audio & Image Processing

ol | 2l

-

Generated Modules:

Component Mame | Core Mame Yersion |Fam|ly| Yendor Generated |

tenths_decode Binary Decader a0 a5 sdiing, Inc. Jul 1o, 2001

Set current Project to Chxilindactiveiprojects\ACADEMY

ISR S
4. To select a CORE, double click on the CORE’s name in the
“Contents of” window. A new window opens to allow you to
view a description of the CORE or its data sheet, to customize the
CORE for your application, and to generate the customized
CORE. (Acrobat Reader is required to view the data sheet.)

5-40 Xilinx Development System

Design Methodologies - HDL Flow

5. When the CORE’s window appears, enter a name for the compo-
nent in the Component Name field.

The name must begin with an alpha character. No extensions or
uppercase letters are allowed. After the first character, the name
may include numbers and/or the underscore character.

6. Other available customization options are unique for each CORE.
Customize the CORE as necessary.

7. Select Gener at e to create the customized CORE and add its files
to the project directory.

Foundation Series 4 User Guide 5-41

Foundation Series 4 User Guide

The customized CORE component is a collection of several files
including those listed below. The files are located in your Xilinx
project directory for the current project.

component_name.coe ASCII data file defining the coeffi-
cient values for FIR filters and
initialization values for memory
modules

component_name.xco CORE Generator file containing the
parameters used to generate the
customized CORE

component_name.edn EDIF implementation netlist for the
CORE

component_name.vho VHDL template file

component_name.mif Memory Initialization Module for

Virtex Block RAM modules

The component name is the name given to the CORE in the
customization window. The port names are the names provided
in the .vho file.

An exanple .vho file is shown bel ow.

-- This file is owned and controlled by Xilinx and nust be used --
-- solely for design, sinulation, inplenentation and creation of -
-- designfileslimtedto Xilinx devices or technol ogi es. Use -
-- with non-Xilinx devices or technol ogies is expressly prohibited
-- and i medi ately term nates your license. --
-- Xilinx products are not intended for useinlife support --
-- appliances, devices, or systens. Use in such applications are --
-- expressly prohibited. --

-- Copyright (C 2001, Xilinx, Inc. Al Ri ghts Reserved. --
-- The followi ng code nust appear in the VHDL architecture header:
————————————— Begi n Cut here for COVPONENT Declaration ------
COVP_TAG

conponent testvhd

port (

addr: IN std | ogic VECTOR(7 downto 0);

clk: I'N std_|ogic;

5-42 Xilinx Development System

Design Methodologies - HDL Flow

din: IN std_|l ogi c_VECTOR(15 downto 0);
dout: OUT std_ | ogic_VECTOR(15 downto 0);
we: |IN std_|l ogic);
end comnponent;
-- COW_TAG END ------ End COVPONENT Decl aration ------------
-- The follow ng code nust appear in the VHDL architecture
-- body. Substitute your own instance nane and net names.
------------- Begi n Cut here for | NSTANTI ATION Tenpl ate -----
| NST_TAG
your i nstance_nane : testvhd
port map (
addr => addr,
clk => clk,
din => din,
dout => dout,
we => we);
-- INST_TAG END ------ End | NSTANTI ATI ON Tenpl ate ------------
-- You nust conpile the wapper file testvhd.vhd when sinmulating
-- the core, testvhd. Wien conpiling the wapper file, be sure to
-- reference the XilinxCoreLib VHDL sinmulationlibrary. For detail ed
-- instructions, please refer to the "Coregen Users Guide".

8. SelectFil e » Exit toclose the CORE Generator.

9. Inthe HDL Editor, open the CORE’s .vho file
(component_name.vho) located under the current project.

10. Open a second session of the HDL Editor. In the second HDL
Editor window, open the VHDL file in which the CORE compo-
nent is to be instantiated.

Note Instead of opening a second sesssion, you could use Edi t
- Insert Fil e fromthe HDL Editor tool bar to insert the file
into the current HDL Editor session.

11. Cut and paste the Component Declaration from the CORE
component’s .vho file to your project’s VHDL code, placing it
after the architecture statement in the VHDL code.

Cut and past the Component Instantiation from the CORE
component’s .vho file to your VHDL design code after the
“begin” line. Give the inserted code an instance name. Edit the
code to connect the signals in the design to the ports of the CORE
component.

Foundation Series 4 User Guide 5-43

Foundation Series 4 User Guide

5-44

12.

13.

14.

Check the syntax of the VHDL design code by selecting
Synt hesis - Check Synt ax inthe HDL Editor. Correct any
errors. Then save the design and close the HDL Editor.

The design with the instantiated CORE module can then be
synthesized (click the Synt hesi s button on the Flow tab).

Note When the design is synthesized, a warning is generated that
the CORE module is unexpanded. Modules instantiated as black
boxes are not elaborated and optimized. The warning message is
just reflecting the black box instantiation.

To complete the design, refer to the “Synthesizing the
Design”’through the “Programming the Device” sections under
the “All-HDL Designs” section.

Note The instantiated module must be in the same directory as
the HDL code in which it is instantiated.

Verilog Instantiation

This section explains how to instantiate a CORE component into a
Verilog design using Foundation.

1.

With a valid Foundation project open, access the CORE Gener-
ator window using one of the following methods. Its operation is
the same regardless of where it is invoked.

¢ From the Project Manger, select Tool s - DesignEntry
-~ CORE Cener at or

¢+ From the HDL Editor, select Tool s - CORE CGener at or

Select Proj ect - Project Options. Inthe Project Options
dialog box, ensure that Design Entry is Verilog, that Behavioral
Simulation is Verilog, and that the Vendor is Foundation. The
Family entry should reflect the project’s target device. Click OK to
exit the Project Options dialog box.

To aid selection, the available COREs are categorized in folders
on the View Mode section of the main CORE Generator window.
Double click a folder to see its sub-categories. When you double
click a sub-category folder, the available COREs are listed in the
“Contents of” section of the main CORE Generator window.

Xilinx Development System

Design Methodologies - HDL Flow

HXilinx CORE Generator
File Project Gaore Tools Help

;Iﬂléli

0 D”‘ Gurrent Project; |ClinactivelnrajectsWCADEMY 7] ‘ﬁg ‘ & &

Yiew Catalog:lbv Function vl

[Target Famiy: &*ﬁ SPARTAN?

Contents of:

1 Basic Elements

] Communication & Metwarking

1 Digital Signal Processing

1 Math Functions

] Memaries & Storage Elements

1 Microprocessars, Controllers & Peripherals
1 ProtoType & Development Hardware Products
1 Standard Bus Interfaces

] Video, Audio & Image Processing

Name

I Tyne |Versi0n|£|@|\,|%§’ﬂ\#lf§| yendar

B

| 2

F S

Generated Modules:

Component Name |

Care Mame

| Version |Family{ Yendor | Generated |

4. To select a CORE, double click on the CORE’s name in the
“Contents of” window. A new window opens to allow you to
view a description of the CORE or its data sheet, to customize the
CORE for your application, and to generate the customized
CORE. (Acrobat Reader is required to view the data sheet.)

Foundation Series 4 User Guide

5-45

Foundation Series 4 User Guide

5. When the CORE’s window appears, enter a name for the compo-
nent in the Component Name field.

The name must begin with an alpha character. No extensions or
uppercase letters are allowed. After the first character, the name
may include numbers and/or the underscore character.

6. Other available customization options are unique for each CORE.
Customize the CORE as necessary.

7. Select Gener at e to create the customized CORE and add its files
to the project directory.

The customized CORE component is a collection of several files
including those listed below. The files are located in your Xilinx
project directory for the current project.

5-46 Xilinx Development System

Design Methodologies - HDL Flow

component_name.coe ASCII data file defining the coeffi-
cient values for FIR filters and
initialization values for memory
modules

component_name.Xco CORE Generator file containing the
parameters used to generate the
customized CORE

component_name.edn EDIF implementation netlist for the
CORE

component_name.veo Verilog template file

component_name.mif Memory Initialization Module for

Virtex Block RAM modules

The component name is the name given to the CORE in the
customization window. The port names are the names provided
in the .veo file.

An example .veo file produced by the CORE Generator system
follows.

/

LR R R R R R EEEEEEEEREEEEEEEREEEEEEEREEEEEEEEEEEEEREEEEEEEEE SRR EEEE SRS EEEE]

*

* This file is owned and controlled by Xilinx and nust be used

* solely for design, simulation, inplenentation and creation of *
* design files limted to Xilinx devices or technol ogi es. Use *
* with non-Xilinx devices or technol ogies is expressly prohibited *
* and i nmedi ately term nates your |icense. *
* *
* Xilinx products are not intended for use in life support *
* appliances, devices, or systens. Use in such applications are *
* expressly prohibited. *
* *
* Copyright (C 2001, Xilinx, Inc. Al R ghts Reserved. *
EE R I I R R S R I I I b S I I I I I I I S S b S R R O S I I I O

*/

/1 The synopsys directives "translate off/translate_on" specified
/1 bel ow ar e supported by XST, FPGA Express, Exenplar and Synplicity
/1 synthesis tools. Ensure they are correct for your synthesis
t ool (s).

Foundation Series 4 User Guide 5-47

Foundation Series 4 User Guide

/1 You rmust conpile the wapper file testver.v when simnulating
/1 the core, testver. Wen conpiling the wapper file, be sure to
/1 reference the XilinxCoreLib Verilog sinulation library. For
detail ed
/1 instructions, please refer to the "Coregen Users Cuide".
nodul e testver (
addr,
cl k,
di n,
dout ,
we) ;
input [7 : 0] addr;
i nput clk;
input [15 : 0] din;
output [15 : 0] dout;
i nput we;
/'l synopsys translate off
BLKMEMSP_V3_1 #(
8, // c_addr_width
"0", // c_default _data
256, // c_depth
/1 c famly
/1 c_has_default_data
/1 c¢c_has_din
/1 c_has_en
/1 c_has |imt _data pitch
/1 c¢_has_nd
/1 c_has_rdy
/1l ¢c_has_rfd
/1 c_has_sinit
/1 c_has_we
, I/ c_limt _data_pitch
"mf file 16 1", // c_nmeminit _file
0, /1 c_pipe_stages
0, /1 c_reg_inputs
"0", // c_sinit_value
16, // c_width
0) /1 c_wite_node
i nst (
. ADDR(addr) ,
. CLK(cl k),
. DIN(di n),

OFrPOO0OO0OO0OO0OORrErOo

5-48 Xilinx Development System

Design Methodologies - HDL Flow

. DQUT(dout),
- VE(ve)) ;

/1 synopsys transl ate_on

endrmodul e

10.

11.

12.

13.

14.

SelectFil e — Exit toclosethe CORE Generator.

In the HDL Editor, open the CORE’s .veo file
(component_name.veo) located under the current project.

Open a second session of the HDL Editor. In the second HDL
Editor window, open the Verilog file in which the CORE compo-
nent is to be instantiated.

Note Instead of opening a second sesssion, you could use Edi t
- Insert Fil e fromthe HDL Editor tool bar to insert the file
into the current HDL Editor session.

Cut and paste the Component Declaration from the CORE
component’s .veo file to your project’s Verilog code, placing it
after the architecture statement in the Verilog code.

Cut and past the Component Instantiation from the CORE
component’s .veo file to your Verilog design code after the
“begin” line. Give the inserted code an instance name. Edit the
code to connect the signals in the design to the ports of the Logi-
BLOX module.

Check the syntax of the VHDL design code by selecting
Synt hesi s - Check Synt ax inthe HDL Editor. Correct any
errors. Then save the design and close the HDL Editor.

The design with the instantiated CORE module can then be
synthesized (click the Synt hesi s button on the Flow tab).

Note When the design is synthesized, a warning is generated that
the CORE module is unexpanded. Modules instantiated as black
boxes are not elaborated and optimized. The warning message is
just reflecting the black box instantiation.

To complete the design, refer to the “Synthesizing the
Design”’through the “Programming the Device” sections under
the “All-HDL Designs” section.

Note The instantiated module must be in the same directory as
the HDL code in which it is instantiated.

Foundation Series 4 User Guide 5-49

Foundation Series 4 User Guide

Schematic Designs in the HDL Flow

5-50

To take advantage of cross-boundary optimization and top-down
synthesis methodology, you can use the HDL flow instead of the
Schematic flow for top-level schematic designs with underlying HDL
macros. In the HDL flow, your entire design is synthesized and opti-
mized resulting in overall design performance improvement. The
HDL flow is recommended for schematic top-level designs that
contain underlying HDL macros. Used in this way, the tool behaves
like an HDL block level diagram editor.

The following sections describe the HDL flow procedure for top-level
schematic designs containing underlying HDL macros.

Adding a Schematic Library

In an HDL flow project, the device family is not selected until the
design is synthesized. Therefore, you need to add a Xilinx library
manually to make the Xilinx components available for schematic
entry.

1. From the Project Manager window, select Fi | e - Proj ect

Li brari es.

Project Libraries x|
Attached Libraries: Project Libraries:
MEM_riew Eade abc
simprims _I I_I simprims

spartan e spartans
spartans ﬂl wid 00w
wabelzim

+cA00De Ll

«c4 000

w500 L|b Manager

Attach... LCloge | Help |

2. Select the target library for the desired device in the Attached
Libraries window.

3. Click Add to add the library to your project. The library name will
appear in the Files tab.

Note If you want to create a top-level schematic to act only as a
block diagram for your HDL designs, you do not need to add a
schematic library.

Xilinx Development System

Design Methodologies - HDL Flow

Creating HDL Macros

Use the following procedure to create a macro from an HDL file (or
State Machine) for use in a schematic.

1. Click the HDL Editor on the Design Entry button on the Project
Manager’s Flow tab.

2. Create or open an HDL file in the HDL Editor.

3. To create a symbol for the HDL file after you have finished
editing or creating the file, select Proj ect - Create Macro
from the HDL Editor. The symbol is created and added to the SC
Symbols list.

(If you are asked for an initial target device when the macro is
being created, enter any device. The synthesis that is done here is
only necessary to create the symbol.)

Note If the Create Macro or Update Macro option is hot available,
check whether the HDL file has already been “added” to the
project. If it is listed in the Files tab of the Project Manager, it is
currently “added” to the project. Remove the file from the project
by selecting it and choosing Docunment - Renpve. You can
now create the macro. The file will be automatically added to the
project when the entire design is analyzed later.

Creating the Schematic and Generating a Netlist

This section lists the basic steps for creating a schematic and gener-
ating a netlist from it.

1. Open the Schematic Editor by selecting the Schematic Editor icon
from the Design Entry box on the Project Manager’s Flow tab.

ESIGHN ENTR k it S1
L Schematic Editar

2. Select Mode - Synbol s to add components to your new sche-
matic. Select specific components from the SC Symbols window.

3. To define the ports, use Hierarchy Connectors.

Foundation Series 4 User Guide 5-51

Foundation Series 4 User Guide

5-52

C=
Hi rchy Connector

Do not use pad components (IPAD, OPAD, etc.) from the Xilinx
Unified Libraries. Foundation will synthesize the design from the
top down and will add ports as well as buffers, if necessary.

Care must be taken when adding attributes to the schematic as
follows:

¢ Pinlocations, slew rates, and certain other design constraints
may be added to the design using the Express Constraints
Editor or a UCF file.

+ Pin location or slew rate constraints may be placed on the I/
O buffer (or flip-flop or latch) on the schematic. Do not place
them on the net or the hierarchy connector.

Save your schematic by selectingFil e - Save.

Add the schematic to your project by selecting Hi erarchy -
Add Current Sheet to Project.Theschematic is netlisted
and added to the project. The schematic (as well as any under-
lying HDL files) appear in the Files tab.

Note If the HDL macros in the schematic have lower levels of
hierarchy or use user-defined libraries, you must add the files for
the lower levels to your project manually. Select Docunent -
Add from the Project Manager to add the files. Foundation needs
access to all the design files before synthesis can occur.

Selecting a Netlist Format

When a schematic is added to the project or when Foundation
analyzes the schematic portion of the design, the schematic is
netlisted into one of three formats: VHDL, XNF, or EDIF. (By default,
VHDL is used.)

From the Project Manager, select Synt hesis - Opti ons and
choose a netlist format in the “Export schematics to” section based on
the following criteria.

If the design is only a block diagram (there are no Unified Library
components), use VHDL.

Xilinx Development System

Design Methodologies - HDL Flow

* If noattributes are passed from the schematic (including within
Xilinx macros), use VHDL

» If the schematic includes XNF macros that contain RLOCs, use
VHDL or select the Preserve Hierarchy option (in the Synthesis
Settings dialog box).

» Ifany attributes have been applied within the schematic, then
select XNF or EDIF.

« Ifthe design targets a Virtex device, XNF may not be used.

Completing the design

Synthesize the design in the same manner you would a top-level
HDL design.

1. Click the Synthesis (or Implementation) button on the Flow tab.

2. Select the schematic as the top-level in the Synthesis/Implemen-
tation settings dialog box.

3. Inthe Target Device section, be sure to select the device family
that matches the schematic library you added to the project.

4. Click Run.

Foundation links all the project files and synthesizes the design
using the top-down methodology.

HDL files from the schematic are added to the project when the
schematic is analyzed. All HDL and State Machine files for which
schematic macros were created are added to the Files tab. You
may open and edit these files by double clicking on them in the
Files tab. However, you can only update the HDL macros by
opening them from the Schematic Editor and then selecting
Project - Update Macro.

For more information on completing an HDL flow project, refer
to the “Synthesizing the Design”through the “Programming the
Device” sections under the “All-HDL Designs” section.

Foundation Series 4 User Guide 5-53

Foundation Series 4 User Guide

5-54 Xilinx Development System

Chapter 6

HDL Design Entry and Synthesis

This chapter give an overview of HDL file selection for projects,
compares synthesis of HDL modules in Schematic Flow projects and
HDL Flow projects, explains how to manage large designs, and
discusses advanced design techniques.

This chapter contains the following sections:
* “HDL File Selection”

* “Synthesis of HDL Modules”

* “Managing Large Designs”

» “Design Partitioning Guidelines”

» “User Libraries for HDL Flow Projects”
» “Using Constraints in an HDL Design”

Refer to the*Design Methodologies - HDL Flow” chapter for several
examples of HDL designs.

HDL File Selection

To begin entering or editing a design in HDL, click the HDL Editor
icon, which is part of the Design Entry button on the Project
Manager’s Flow tab. The Editor dialog box displays and presents
options for a design file, as shown in the following figure.

Foundation Series 4 User Guide — PN Online 6-1

Foundation Series 4 User Guide

6-2

HDL Editor x|

— Create new document;

QI = Create Empty

— Open:
EI = Existing document
E‘I = 'memony. vhi
2| © Untitied vhd
il = 'memony. whd'

EI i 'DAFMD T A ctivetexeiU ntited.

(] I Cancel

* Create new document

¢ Use HDL Design Wizard
Use this option for new designs. The Wizard includes dialogs
for you to select the HDL language (VHDL or Verilog), enter
the design name, and create ports. When finished, “skeleton”
code pops up, complete with the library, entity, ports, and
architecture already declared.

¢+ Create Empty
Use this option for new designs. This option starts the HDL
Editor and displays a blank page.

* Open

¢+ Existing Document
Use this option to select an already existing HDL file.

¢ Active document

Use this option to select from the list of up to the last four
active documents.

Xilinx Development System

HDL Design Entry and Synthesis

Adding the File to the Project

After creating an HDL file for an HDL Flow project, you must “add”
the HDL file to the project. You can do this from within the HDL
Editor by choosing Proj ect - Add to Project. Alternatively,
you can add files to the project by selecting Synt hesi s - Add
Source File(s) orDocunent - Add from the Project Manager.

In an HDL Flow project, the top level of the design is chosen prior to
design “elaboration” in the Synthesis phase. For Verilog, it is not
necessary to add files in a specific order. For VHDL, it is important to
add the files in the order in which they must be analyzed. Any files
depending on the successful analysis of another must appear below
that file in the Files tab.

Removing Files from the Project

You can remove files from a project by clicking on the file and
selecting Docunent - Renopve from the Project Manger.

Note Removing a file from a project does not erase the file from the
disk. It merely removes it from the project.

Getting Help with the Language

The Foundation HDL Editor provides HDL language assistance
through both the Language Assistant and the Online Synthesis Docu-
mentation. The Language Assistant, shown in theFigure 6-1, provides
templates to aid you in common VHDL logic functions, and architec-
ture-specific features. The Figure 6-2 shows the Verilog Language
Assistant that provides templates to aid in for editing Verilog files.
The Language Assistant also includes CORE Generator Instantiation
templates (see Figure 6-3) for modules created with the CORE Gener-
ator tool.

To access the Language Assistant, open the HDL Editor, and select
Tool s - Language Assi stant.

The HDL Editor also checks syntax. From the HDL Editor, select
Synthesis - Check Syntax toanalyze the file.

Refer to the HDL Editor’s online help for more information on the
Language Assistant.

Foundation Series 4 User Guide 6-3

Foundation Series 4 User Guide

Q Language Aszistant - YHDL

d 3

= T_emplates
-- Language templates
[=I- Swnthesis templates

- Banrel Shifter

OLRCE CircLit

- M-bit Camparatar, synchronous with reset |+ |
- Please define the value of M for & and B
- CLE. inSTD_LAOGIC;
RESET: in 5TD_LAGIC;
A, B inSTO_LOGIC_WVECTOR[M down
ALB, AGE: out STO_LOGIC;
ALER, AGER: out 5TD_LOGIC;
AER, AMER: out STD_LOGIC

-~ Decoder process|CLK, RESET] | |
- Encoder begin
[#- Flip Flops if [RESET ="1"1then
- Global Clock Buffer ALB <=
- HEX2LED Conveter AGB <=
[#- Latches | 0
[+ Multiplezers AER <=0,
- Pulldowr AMER <='0"
- Pullup ELSIF [CLE'event and CILll(="1"1then
if[& < B)then LB <="1";
~DArROM else ALB <= T =
- Readbac |
[+ Shift Benizters ﬂ g I I 4
Hide preview << | Use I Edit | [t | Deletel

Q Language Aszsiztant - Yerilog

Figure 6-1 VHDL Language Assistant

d 3

- Synthesis templates

Al

¢ N-bit Comparatar, synchronous with reset |+ |

. Barel Shifter :::: Flease EtleCﬁEE the value of W for & and B
inp :
¥ Bounday Scan 7/ inputFESET:
M input [M:0] &, B
ounce circuit I output ALE, AGB;
. Decoder I output ALEB, AGER;
- Encoder 4 output AER, AMEB;
- Flip Flops teg ALE, AGE. ALER. AGEE, AEB. ANEE:
- [alobal Clock Buffer .
- HEXZLED Corweerter always @[pogedge CLK. or pozedge RESET)
- Latch
- Latches it [RESET)
[+ Multiplexers begin
- Pulldowan ALB ¢=1b0;
- Pullup AGE ¢<=1b0;
. B /ROM - ALEB <=1b0;
- Readback igg%:?.;gn
[+ Shift Registers AMER <= 1'50;
[#- Startup _ILI
[+ State Machines ;I LI -
Hide preview << | Use I Edit | =5 | Deletel

Figure 6-2 Verilog Language Assistant

Xilinx Development System

HDL Design Entry and Synthesis

antiations

 Language Assistant - YHDL 2|
= Templates - Thiz file was created by the Xilins CORE Generator tool, and ;I
- ig [e] iliny, Inc, 1998, 1999, Mo part of this file may be J

- , _ . "
- transmitted to any third party [other than intended by ilins] -
: - or uged without a Xiline programmable or hardwire device without -

- #ilins's prior written permisszion. -

y_core
-- Language templates
-- Sunthesiz templates
i Uger templates

- The fallowing code must appear in the YHDL architecture header.

------------- Begin Cut here for COMPOMEMT Declaration - COMP_TAG
component my_core
port [
d: I std_logic WECTOR(T downta 0);
oo IN std_logic:
ce: 1M std_logic;

| 5f”

l

Edi | [ren| | oeEE]

Hide previsw << | Uze I

Figure 6-3 CORE Generator Templates in Language Assistant

Synthesis of HDL Modules

Foundation projects can be either Schematic Flow or HDL Flow
projects. Many of the HDL editing and synthesis operations
described in this section are the same for both flows; however, differ-
ences do exist and are noted where appropriate. This section
describes how to synthesize your design without also continuing
through implementation.

Schematic Flow Methodology

Foundation Series 4 User Guide

In a Schematic Flow project, VHDL and Verilog modules can only be
underlying modules in a top-level schematic design. Each HDL file is
synthesized and optimized separately. Top-level ABEL designs and
ABEL State Machine designs are only supported in the Schematic
Flow.

The Schematic Flow methodology can be beneficial if you have a few
HDL blocks in an otherwise schematic environment. In this case, you
synthesize each individual HDL module separately.

Following is the general procedure to synthesize HDL Modules in
Schematic Flow Projects.

1. Open the HDL file in the HDL Editor. This can be done by the
methods listed in the “HDL File Selection” section or by double

6-5

Foundation Series 4 User Guide

clicking on the .vhd (VHDL) or .v (Verilog) file in the Project
Manager.

2. Select Synt hesis - Opti ons to access the FPGA Express
Options window. In the General tab, select the optimization
options for the module.

3. Click on the Advanced tab. Select the top-level entity and archi-
tecture, and click OK.

4. To synthesize the module and create a symbol, choose Pr oj ect
- Create Macro fromthe HDL Editor window.

5. Repeat step 4 for each HDL module.

6-6 Xilinx Development System

HDL Design Entry and Synthesis

HDL Flow Methodology

In an HDL Flow project, all top-level VHDL and Verilog files and
schematics are exported to the synthesis tool and optimized. Pre-
Implementation constraint editing, cross-boundary optimization, and
auto 1/0 buffer insertion are only available in an HDL Flow Project.

The HDL Flow approach provides an easier method of compilation. It
requires only a single synthesis action for all HDL modules. In addi-
tion, this method includes optional cross-boundary optimization of
the entire design, editing of constraints prior to implementation, and
auto 1/0 buffer insertion.

Following is the general procedure to synthesize HDL modules in
HDL Flow Projects.

1. Besure that all HDL files are added to the project. See the
“Adding the File to the Project” section for instructions on
adding files to a project. Underlying HDL macros in top-level
schematics in HDL projects are an exception to this; files for those
HDL macros are added automatically during synthesis.

2. From the Project Manager window, set the global synthesis
options by selecting Synt hesi s — Opti ons to open the
Synthesis Options dialog box.

Synthesiz Dptions

x|
~ F5M Senthesiz Default encoding

&' One Hot " Binany " Zero One Hat

Cancel |

— F5M synthesis: Interpretation of YHDL 'when others'

 Fastest & smallest [only defined states) ﬂl

" Safest [all possible, including ilegal, states)

r— Export schematics to

Ao & Shdl " HNF O Edif

Werilog 'ifdef support
’7('" Enable ' Dizable

Input #<MF Buz Style Eakdy

Default Frequency IED

Foundation Series 4 User Guide 6-7

Foundation Series 4 User Guide

In the Synthesis Options dialog box, set the Default FSM
Encoding style, XNF Bus Style, and Default Frequency. Check the
Export Tim ng Constraint box if you want to have timing
and pin location constraints entered after the elaboration step to
be automatically exported to place and route tools.

For FSM Encoding style, use the following guidelines for best
results.

+ If your target device is an FPGA, choose One Hot.
+ If your target device is a CPLD, choose Binary.

Refer to the “Selecting a Netlist Format” section of the “Design
Methodologies - HDL Flow” chapter for information on setting
the “Export schematic to” option.

Click K when all desired options are set.

3. To synthesize the design, click the Synt hesi s button on the
Flow tab. This opens the Synthesis/Implementation dialog box.

Syntheziz/Implementation settings il
Top level: I freqm j Bun I
Wersion name: Iveﬂ Ok |
Synthesiz Settings: SET | Cancel |

Help |

Target Device

Farmily: ISF'AF!T.&NXL vl
Device: |505><LF'C84 'I Speed: |-5 'I

[™ Edit Synthesis/Implementation constraints

™ iew E stimated Perfarmance after Optimization

I it Fruar e itatior tonl:
Phyzical [mplementation setting:

Revizion name: Ireﬂ it |

Control Files: SE

4. Inthe Synthesis/Implementation dialog box, you can do the
following.

+ Select the name of the top-level entity or module from which
processing of the design hierarchy should begin

6-8 Xilinx Development System

HDL Design Entry and Synthesis

¢+ Enter a version name
+ Select the target device

¢ Choose to edit constraints after elaboration. This option
opens the Express Constraints Editor before the design is
optimized by the synthesis engine.

¢+ Choose to view the estimated performance after optimization
spreadsheets. This opens the Express Time Tracker and
displays the design’s pre-implementation timing estimates.

¢ Click SET to access the Synthesis Setting and modify the
synthesis settings as desired

When ready;, click Run to synthesize the design.

Managing Large Designs

The following subsections explain how to manage large designs.

Design Optimization

With Foundation, you can control optimization of the design on a
module-by-module basis. This means that you have the ability to, for
example, optimize certain modules of your design for speed and
some for area. In addition, an effort level for the optimization engine
can be set to either high or low.

For the Schematic Flow projects, the optimization goals may be set in
the HDL Editor, by selecting Synt hesis — Opti ons.

For Foundation HDL Flow projects, the optimization goals are set for
individual modules in the “module” tab of the Express Constraints
Editor. (The module tab is shown in the following figure.)

Foundation Series 4 User Guide 6-9

Foundation Series 4 User Guide

il ver1 [Constraints] o [3
Clocks | Paths | Ports Modules | siire Options |
.. Duplicate
Hame Hierarchy | Primitives Opera_tor Bpidllee Effort Register
Sharing for
Merge
1 X =default- Eliminate Prezerve on Speed Loy Dizakle
2 EHER Y TIMER
B [LINLINKED - Thi (TIMER)
4 B OSC4 - 05 Freserve
! | i

0k I Export Constraints. . | Import Canstraints. .. |

Setting Constraints Prior to Synthesis

With the Foundation Express product you can set performance
constraints and attributes to guide the optimization process on a
module-by-module basis. Select Edi t Synt hesi s/ | npl enment a-
tion Constrai nts in the Synthesis/Implementation settings
dialog box to access the Express Constraints Editor window. This
window contains tabs with spreadsheets and dialog boxes specific to
the target architecture. You need to select Vi ew Esti mat ed
Performance after Optim zati on inthe Synthesis/Implemen-
tation settings dialog box to view spreadsheets containing the results
obtained as a result of setting the constraints. Refer to the*“Using
Constraints in an HDL Design” section for more information on
constraints in HDL designs.

Design Partitioning Guidelines

6-10

The way in which a design is partitioned can affect how well the opti-
mizer can optimize the combinatorial logic. If a design is poorly parti-
tioned in the entry phase, logic optimization can suffer. Here are
some HDL coding and partitioning guidelines that will help improve
logic optimization.

* Avoid imposing boundaries on combinatorial paths.

If parts of a combinatorial logic path are compiled in separate
modules, no logic optimization can be performed across the
block boundaries.

Xilinx Development System

HDL Design Entry and Synthesis

Instead, partition the design so that combinatorial paths are not
split across multiple modules. This gives the software the best
opportunity to optimize combinatorial logic on the path.

COMB. COMB. ComMB

— LOGIC LOGIC LOGIC
REG A B c REG
A c

X8145

Figure 6-4 Combinatorial Logic Path Split Across Boundaries
(Inefficient Use of Design Resources)

REG

REG
A

X8146

Figure 6-5 Combinatorial Logic Path Grouped Into One Block
(Efficient use of Design Resources)

» Register all block outputs.

Partition the design into modules in such a way that all block
outputs are registered. This guarantees that no boundaries are
imposed on any combinatorial paths, as discussed previously.

User Libraries for HDL Flow Projects

In the Foundation Express environment, a user library is an HDL file
which is referenced by another file through a LIBRARY statement. A
user library can contain packages and/or entities.

Foundation Series 4 User Guide 6-11

Foundation Series 4 User Guide

Creating a New Library

User libraries are stored as part of the Foundation project. Following
are the basic steps to create new libraries in HDL Flow projects.

1. Select Synt hesis - New Li brary from the Project Manger.

2. Enter aname for the new library and click OK. The new library is
added to the list of project files on the Files tab.

3. Toadd files to the new library, right click on the library name in
the Files tab list.

4. Selectthe Add Source Files to “library_name” optionto
access the Add Document dialog window where you can select
the files to be added to the library. The files are analyzed auto-
matically as they are added.

Declaring and Using User Libraries

In the VHDL or Verilog code, user libraries for Foundation projects
are declared and used just like system libraries such as IEEE. For
example, to access the entities defined in the library mylib.vhd, use
the following VHDL syntax:

library MYLIB
use MyLIB. all;

User library directories that are part of a project are automatically
searched when referenced in VHDL.

Using Constraints in an HDL Design

The following sections provide information on adding constraints to
HDL designs.

Express Constraints Editor

Foundation Express users have access to the Express Constraints
Editor. The Express Constraints Editor includes a window with five
different tabs. The following three tabs represent constraints that can
be applied to the design prior to synthesis: Clock, Paths, and Ports.

» The Clocks tab allows you to specify overall speeds for the clocks
in a design.

6-12 Xilinx Development System

HDL Design Entry and Synthesis

il verl [Constraints]

The Paths tab allows you precise control of point-to-point timing
in a design.

The Ports tab allows OFFSETS, pullups/pulldowns, and pin loca-
tions to be specified in a design.

=0l x|

Elocksl Paths ~ Ports | Modulesl Hilirs Dptionsl

Output -
Hame |Direction el Delay Global Buffer Pad| o cist Input Reg e Sy Pad Locj

=default=

RESET

input

ns) Dir Delay 10 Reg Rate

(ns)

AUTOMATIC NONE DELAY TRUE SO

w0y

PUSHE

input

)

SPEED

input

)

DISP&A=6= |output

D

DISP&=5= |output

D

DISP&=4= | output

D

FEEEEEEE

DISP&=3= |output

() |

The

QK I Export Eonstraints...l Import Eonstraints...l

timing constraints specified in the Express Constraints Editor

tabs are translated into FROM:TO or PERIOD timespecs and placed
in an NCF file. Following is an example:

T

Cur
app

Exp

| MESPEC TS CLK = PERIOD “CLK’" 20 ns H GH 10;

rently, Express cannot apply all Xilinx constraints. Express can
ly the following constraints:

PERIOD

FROM:TO timespecs which use FFS, LATCHES, and PADS
Pin location constraints

Slew rate

TNM_NET

PULLUP /7 PULLDOWN

OFFSET:IN:BEFORE

OFFSET:OUT-AFTER

ress cannot apply the constraints listed below:

TPSYNC

Foundation Series 4 User Guide 6-13

Foundation Series 4 User Guide

6-14

e TPTHRU

e TIG

e user-RLOCs, RLOC_ORIGIN, RLOC_RANGE
* non-1/0 LOCs

» KEEP

e U_SET,H_SET, HU_SET

* user-BLKNM and user-HBLKNM

* PROHIBIT

Express can create its own timegroups by grouping logic with
common clocks and clock enables. In addition, you can form user-
created timing subgroups by right clicking on an existing timing path
and choosing New Sub Path.

Xilinx Logical Constraints

For constraints that cannot be applied using the Express Constraint
Editor, a UCF file can be used to specify logical constraints.
Constraints or attributes that can be applied within a schematic,
netlist, or UCF file are known as logical constraints. Logical
constraints ignore timing paths, prohibit pin locations, or constrain
placement of elements in an FPGA or CPLD design. In order to use a
logical constraint correctly, the "instance" name of the logic in a
design must be used.

For more information on Xilinx constraints, refer to the in the
Constraints Guide.

Reading Instance Names from an XNF file for UCF
Constraints

UCF constraints are applied by referencing instance names that are
found in the XNF file. Instance names for logic in a design can be
found by reading the XNF file. The following examples illustrate
valid entries within a UCF file.

A TNM constraint can be applied to an FF by using the instance
name from the XNF file. Similarly, a LOC/RLOC can be applied:

INST “current_state_reg<4>" TNVEgroupl;

Xilinx Development System

HDL Design Entry and Synthesis

I NST “current_state_reg<4>" LOC=CLB_R5C5;

By attaching a TNM to this flip-flop instance name, this flip-flop
can be referenced in a FROM:TO timing specification. Any
symbol that can have an M1 constraint applied is referenced by
using the string following the keyword: SYM.

» Apinonadevice may be locked to a package-specific position by
referencing the EXT record name and adding the .PAD string:

I NST “DATA. PAD’ LOC=P124;

* An attribute which can be placed on a net, like KEEP or TNM,
can be referenced by referencing the netname on the PIN record
or SIG record:

NET “current _state<4>" KEEP,
NET “current _state<4>" TNM=group2;

A final note on referencing instance names from a XNF file: match the
case; names are case-sensitive. If the case of names in the XNF file is
not followed exactly, the implementation software may not be able to
find (or may incorrectly find) an instance name for a constraint.

Instance Names for LogiBLOX RAM/ROM

In the Foundation Express methodology, whenever large blocks of
RAM/ROM are needed, LogiBLOX RAM/ROM modules should be
instantiated by the user in the HDL code. With LogiBLOX RAM/
ROM modules instantiated in the HDL code, timing and/or place-
ment constraints on these RAM/ROM modules and the RAM/ROM
primitives that comprise these modules, are specified in a .ucf file.

To create timing and/or placement constraints for RAM/ROM Logi-
BLOX modules, you must know how many primitives are used and
how the primitives inside the RAM/ROM LogiBLOX modules are
named.

Note LogiBLOX does not support Virtex. You can get a Virtex RAM
from the CORE Generator system.

Calculating Primitives for a LogiBLOX RAM/ROM
Module

When a RAM/ROM is specified with LogiBLOX, the RAM/ROM
depth and width are specified. If the RAM/ROM depth is divisible

Foundation Series 4 User Guide 6-15

Foundation Series 4 User Guide

6-16

by 32, then 32x1 primitives are used. If the RAM/ROM depth is not
divisible by 32, then 16x1 primitives are used instead. In the case of
dual-port RAMs, 16x1 primitives are always used. Based on whether
32x1 or 16x1 primitives are used, the number of RAM/ROMs primi-
tives can be calculated.

For example, if a RAM48x4 was required for a design, RAM16x1
primitives would be used. Based on the width, there would be four
banks of RAM16x1’s. Based on the depth, each bank would have
three RAM16x1’s.

Naming Primitives in LogiBLOX RAM/ROM Modules

Using the example of a RAM48x4, the RAM primitives inside the
LogiBLOX would be named as follows:

MEMD_O MEML_O MEM2_O MEMB_O
MEMD_1 MVEML_1 MEMR_1 MEMB_1
MEMD_2 MVEML_2 MEMR_ 2 MEMB_2

Each primitive in a LogiBLOX RAM/ROM module has an instance
name of MEMX_y, where y represents the primitive position in the
bank of memory, and where x represents the bit position of the RAM/
ROM output.

Referencing LogiBLOX Entities

This section is written in terms of the Verilog example, using the files
illustrated in Figures 6-6 through 6-9. This section also applies to the
VHDL example in Figures 6-10 through 6-13.

LogiBLOX RAM/ROM modules in an HDL Flow project are
constrained using a UCF file.

LogiBLOX RAM/ROM modules instantiated in the HDL code can be
referenced by the complete hierarchical instance name. If a LogiBLOX
RAM/ROM module is at the top-level of the HDL code, then the
instance name of the LogiBLOX RAM/ROM module is just the
instantiated instance name. In the case of a LogiBLOX RAM/ROM
that is instantiated within the hierarchy of the design, the instance
name of the LogiBLOX RAM/ROM module is the full hierarchical
path to the LogiBLOX RAM/ROM. The hierarchy level names are
listed from the top level down and are separated by a " _".

Xilinx Development System

HDL Design Entry and Synthesis

In the Verilog example, the RAM32X1S is named "memory". The
memory module is instantiated in the Verilog module "inside" with
an instance name "U1". "inside" is instantiated in the top-level
module "test” with an instance name "UQ". Therefore, the RAM32X1S
can be referenced in a UCF file as "UO0_U1". For example, to attach a
TNM to this block of RAM, the following line could be used in the
UCEF file:

I NST “U0_U1" TNME=bl ock1l;

Since U0_U1 is composed of two RAM primitives, a timegroup called
block1 is created; the blockl TNM can be used throughout the UCF
file as a timespec end/start point, and/or U0_U1 could have a LOC
area constraint applied to it. If the RAM32X1S has been instantiated
in the top-level file and the instance name used in the instantiation is
U1, then this block of RAM can just be referenced by U1.

Sometimes it is necessary to apply constraints to the primitives that
compose the LogiBLOX RAM/ROM module. For example, if you
choose a floorplanning strategy to implement your design, it may be
necessary to apply LOC constraints to one or more primitives inside a
LogiBLOX RAM/ROM module. Consider the RAM32X2S example.
Suppose that each of the RAM primitives needs to be constrained to a
particular CLB location.

Based on the rules for determining the MEMXx_y instance names,
using the example from above, each of the RAM primitives can be
referenced by concatenating the full-hierarchical name to each of the
MEMXx_y names. The RAM32x2S created by LogiBLOX will have
primitives named MEMO0_0 and MEM1_0. So, CLB constraints in a
.ucf file for each of these two items would be:

I NST “U0_UL/ MEMD_0” LOC=CLB_RLOCLO;
I NST “U0_UL/ MEMD_1" LOC=CLB_R11Cl1;

In the following figure, the LogiBLOX module is contained in the
“inside UO” component.

Foundation Series 4 User Guide 6-17

Foundation Series 4 User Guide

test.v:

module test(DATA,DATADUT,ADDR,C,ENB];
input [3:0] DATA;

output [3:0] DATAOUT:

input [5:0] ADDR;

input C:

input ENE;

wire [3:0] dataoutreg;

reqg [3:0] datares;

reqg [3:0] DATACUT;

reg [S5:0] addrreg;

inside U0 (.MDATA(datareq),.MDATAOUT (dataoutreg), . MADDR(addrreq),.C(C, WECENR)):

always®iposedge C
datareg = DATA;

alwaysa{posedge ()
DATAOUT = dataoutreg;

always@posedge CJ
addrreg = ADDR:

endmodule
Figure 6-6 Top-level Verilog File
The following figure illustrates the instantiated LogiBLOX module,
“memory U1”.
inside.v:
module inside(MDATA, HDATAOUT, MADDR, C,WE] ;
input [3:0] MDATA;
output [3:0] MDATAOUT;
input [5:0] MADDR;
input C:
input WE;
memary U1
{ .ACMADDR),
LDOCMDATAOUTY,
.DICMDATAY,
LWR_EM(WED,
JWR_CLECCID;
endmnodule
Figure 6-7 Verilog File with Instantiated LogiBLOX Module
When the LogiBLOX module is created, a .vei file is created, which is
used as an instantiation reference.
6-18

Xilinx Development System

HDL Design Entry and Synthesis

!

F7 LogiBLOKY SYNC_RAM Module “"memory”
£ Created by LogiBLO¥ wersion M1.4.12
i on Fri Dec 13 14:56:42 1337

Jf dttributes

r MODTYPES = SYNC_RAM

£ BUS_WIDTH = 4

r DEPTH = 48

memary instance_nhame
C.ai).,
Lo O3,
DT O,
CWR_EN),
CWRCLE (30

module memory C&, DO, DI, WR_EN, WR_CLK):
input [35:0] A

output [3:0] DO;

input WR_EN;

input WR_CLK;

endmodule

Figure 6-8 VEI File Created by LogiBLOX

test.ucf:

INST UD_U1 THM = uUsermem;
TIMESPEC T5_E= FROM : FF5 :TO: usermem: 30;
INST UO0_U1/mem0_0 LOC=CLB_R7CZ2:

Figure 6-9 UCF File for Verilog Example

Foundation Series 4 User Guide 6-19

Foundation Series 4 User Guide

6-20

test.vhd:
Tibrary IEEE;

use IEEE.STD_LOGIC_
use IEEE.STD_LOGIC_|

entity test is

1164.al1;
UMSIGMED.al11;

port{ DATA: in STD_LOGIC_VECTOR(I downto 03;
DATAOUT: out STD_LOGIC_VECTORC3 downto 03;
ADDR: in STD_LOGIC_VECTORES downto 03;

C,
gnd test;

EMB: in STD_LOGICH:

architecture details of test is
signal dataoutreqg,datareg: STO_LOGIC_VECTOR(S downto 03;

signal addrreg: STO_LOCIC_WECTOR(S downto 0J;

component inside

port{ MDATA: in STO_LOCIC_WECTOR(Z downto 03;

MDATAQUT: out STO_LOGIC_WECTOR(3 downto 03;

MADDR: in STD_LOCIC_VECTORCS downto 00;

C,WE: in STD_LOGIC);

end component;
begin
Ud: inside port

map (MDATA=>datareq.

process{ C 3

begin
if{C event
datareg <=
gnd 1f;

end process;

process(C)

begin
if(C event
DATAQUT <=
end if;

end process;

process{ C 3

begin
if(C event
addrreg <=
gnd 1f;

end process;

end details;

LMDATAOUT=>dataoutreg. ,MADDR=>addrreq,C=>C,WE=>ENB]; map

and C="1") then
DATA:

and C="1"1 then
dataoutreg;

and C="1") then
ADDR:

Figure 6-10 Top-level VHDL Example File

Xilinx Development System

HDL Design Entry and Synthesis

inside.vhd:

entity inside is
port{ MDATA: in STD_LOCIC_WECTORL3 downto 03
MDATAQUT: out STD_LOGIC_WECTOR(I downto 07;
MaDDR: in STO_LOCIC_WECTORES downto 03
C,WE: in STD_LOGCICY;
end inside;

architecture details of inside is

camponent memory

part{ Az in STD_LOCIC_VECTORCS downto 00
DO: out STD_LOGIC_WECTORC3 downto 0D;
DI: in STD_LOGIC_WECTOR(I downto 03;
WR_EN,WR_CLK: in STD_LOGCIC);

end component;

begin

U1: memory port map(a=>MADDR,DO=>MDATAOUT, DI=>MDATA, WR_EN=>WE , WR_CLK=>C];

end details:

Figure 6-11 VHDL File with Instantiated LogiBLOX Module

LogiBLOX SYHC_RAM Module “memory’
Created by LogiBLOX version C.16

on Tue Jun 22 12:57:86 1999
pattributes

MODTYPE = SYHC_RAM

BUS_MWIDTH = &

DEFTH = 16

STYLE = HAX_SPEED

USE_RPH = FALSE

component memory
PORT(

A: IN std_logic_vector{3 DOWNTOD @);
DO: OUT std logic_wvector{3 DOWNTO 8);
DI: IH std logic vector{3 DOWHTO 8);
WR_EHN: IH std logic;
WR_CLK: IH std_logic);

end component;

instance_name : memory port map
n =>,

oo => ,

DI => ,

WR_EH => ,

MR _CLK =>);

Figure 6-12 VHI File Created By LogiBLOX

Foundation Series 4 User Guide

6-21

Foundation Series 4 User Guide

test.ucf:
IHST UD_M1 THM = usermem;

TIMESPEC TS_E= FROM : FFS :tTO: usermem: 50;
INST U0_U1/mem0_0 LOC=CLB_R7CZ2;:

Figure 6-13 UCF File for VHDL Example

6-22 Xilinx Development System

Chapter 7

State Machine Designs

This chapter explains the basic operations used to create state
machine designs.

State machine design typically starts with the translation of a concept
into a “paper design,” usually in the form of a state diagram or a
bubble diagram. The paper design is converted to a state table and,
finally, into the source code itself. To illustrate the process of devel-
oping state machines, this chapter discusses an example in which a
state machine repetitively sequences through the five numbers 9, 5, 1,
2, and 4.

This chapter contains the following sections.
» “State Machine Example”

» “State Diagram”

» “State Machine Implementation”

* “Encoding Techniques”

Refer to the*Finite State Machine (FSM) Designs” section of the
“Design Methodologies - Schematic Flow” chapter for a detailed
procedure on creating a state machine design. For an example of how
to create a state machine, refer to the Foundation WATCH tutorial
accessed from the Xilinx Support web site at
http:\\support.xilinx.com.

For additional information, select Hel p - Foundati on Hel p
Cont ent s.Click St at e Edi t or under Toolsor The St ate Editor
under Tutorials in the Xilinx Foundation Series On-Line Help System
menu.

For information on creating state machine macros, refer to the “Sche-
matic Designs With Finite State Machine (FSM) Macros” section of
the “Design Methodologies - Schematic Flow” chapter and to the

Foundation Series 4 User Guide — PN Online 7-1

Foundation Series 4 User Guide

“HDL Designs with State Machines” section of the “Design Method-
ologies - HDL Flow” chapter.

State Machine Example

The state machine in this example has four modes, which can be
selected by two inputs: DIR (direction) and SEQ (sequence). DIR
reverses the sequence direction; SEQ alters the sequence by swapping
the position of two of the numbers in the sequence. When the
machine is turned on, it starts in the initial state and displays the
number 9. It then sequences to the next number shown, depending
on the input. This sequence is summarized in the following table.

Table 7-1 State Relationships

SEQ DIR Sequence of Displayed Number
1 1 9.5.1-2-459...
1 0 9.4.,2-1-5-9...
0 1 9.552-51-5459. ..
0 0 9.4-,1-2-5-9...

Conceptual descriptions show the state progression and controlling
modes, but they do not clearly show how change conditions result.

State Diagram

The state diagram is a pictorial description of state relationships.
Figure 7-1 gives an example. Even though a state diagram provides
no extra information, it is generally easier to translate this type of
diagram into a state table. Each circle contains the name of the state,
while arrows to and from the circles show the transitions between
states and the input conditions that cause state transitions. These
conditions are written next to each arrow.

7-2

Xilinx Development System

State Machine Designs

Display =9
Display =5 & \
S0¢ .,
@ S1 5% >
seq=1
&
dir=0
V
Display = 1 seq=1&dir=0 Display =2

or
seq=0&dir=1
X2025

Figure 7-1 State Diagram

State Machine Implementation

A state machine requires memory and the ability to make decisions.
The actual hardware used to implement a state machine consists of
state registers (flip-flops) and combinatorial logic (gates). State regis-
ters store the current state until the next state is calculated, and a logic
network performs functions that calculate the next state on the basis
of the present state and the state machine inputs. The following
figure shows the logic transitioning through the state registers to the
output decoder logic.

Foundation Series 4 User Guide 7-3

Foundation Series 4 User Guide

Feedback

_ State
Logic Gates Registers
Inputs

0 p

Outputs

D> Outputs

Logic Gates
Figure 7-2 Parts of a State Machine

The amount of logic used to calculate the next state varies according
to the type of state machine you are implementing. You must choose
the most efficient design approach, depending on the hardware in
which the design will be implemented.

Encoding Techniques

7-4

The states in a state machine are represented by setting certain values
in the set of state registers. This process is called state assignment or
state encoding.

There are many ways to arrange, or encode, state machines. For
example, for a state machine of five states, you can use three flip-flops
set to values for states 000, 001, 010, 011, 100, which results in a highly
encoded state machine implementation. You can also use five flip-
flops set to values 00001, 00010, 00100, 01000, 10000, that is, one flip-
flop per state, which results in a one-hot-encoded state machine
implementation. State encoding has a substantial influence on the
size and performance of the final state machine implementation.

Symbolic and Encoded State Machines

A symbolic state machine makes no reference to the actual values

stored in the state register for the different states in the state table.

Therefore, the software determines what these values should be; it
can implement the most efficient scheme for the architecture being
targeted or for the size of the machine being produced.

Xilinx Development System

State Machine Designs

All that is defined in a symbolic state machine is the relationship
among the states in terms of how input signals affect transitions
between them, the values of the outputs during each state, and in
some cases, the initial state.

An encoded state machine requires the same definition information
as a symbolic machine, but in addition, it requires you to define the
value of the state register for each state.

Symbolic state machines are supported for CPLDs, but they are less
efficient than encoded state machines.

Compromises in State Machine Encoding

A good state machine design must optimize the amount of combina-
torial logic, the fanin to each register, the number of registers, and the
propagation delay between registers. However, these factors are
interrelated, and compromises between them may be necessary. For
example, to increase speed, levels of logic must be reduced. However,
fewer levels of logic result in wider combinatorial logic, creating a
higher fanin than can be efficiently implemented given the limited
number of fanins imposed by the FPGA architecture.

As another example, you must factor out the logic to decrease the
gate count; that is, you must extract and implement shared terms
using separate logic. Factoring reduces the amount of logic but
increases the levels of logic between registers, which slows down the
circuit. In general, the performance of a highly encoded state machine
implemented in an FPGA device drops as the number of states grows
because of the wider and deeper decoding that is required for each
additional state. CPLDs are less sensitive to this problem because
they allow a higher fanin.

Binary Encoding

Using the minimum number of registers to encode the machine is
called binary, or maximal, encoding, because the registers are used to
their maximum capacity. Each register represents one bit of a binary
number. The example discussed earlier in this chapter has five states,
which can be represented by three bits in a binary-encoded state
machine.

Although binary encoding keeps the number of registers to a
minimum, it generally increases the amount of combinatorial logic

Foundation Series 4 User Guide 7-5

Foundation Series 4 User Guide

7-6

because more combinatorial logic is required to decode each state.
Given this compromise, binary encoding works well when imple-
mented in Xilinx CPLD devices, where gates are wide and registers
are few.

One-Hot Encoding

In one-hot encoding, an individual state register is dedicated to one
state. Only one flip-flop is active, or hot, at any one time. There are
two ways that one-hot encoding can significantly reduce the amount
of combinatorial logic used to implement a state machine.

As noted in the “Compromises in State Machine Encoding” section,
highly encoded designs tend to require many high fanin logic func-
tions to interpret the inputs. One-hot encoding simplifies this inter-
pretation process because each state has its own register, or flip-flop.
As aresult, the state machine is already “decoded,” so the state of the
machine is determined simply by finding out which flip-flop is
active. One-hot encoding reduces the width of the combinatorial logic
and, as a result, the state machine requires fewer levels of logic
between registers, reducing its complexity and increasing its speed.

Although one-hot encoding can be used for CPLDs and FPGAs, it is
better suited to FPGAs.

One-Hot Encoding in Xilinx FPGA Architecture

One-hot encoding is well-suited to Xilinx FPGAs because the Xilinx
architecture is rich in registers, while each configurable logic block
(CLB) has a limited number of inputs. As a result, state machine
designs that require few registers, many combinatorial elements, and
large fanin do not take full advantage of these resources. In general, a
one-hot state machine implemented in a Xilinx FPGA minimizes both
the number of CLBs and the levels of logic used.

Limitations

In some cases, the one-hot method may not be the best encoding tech-
nique for a state machine implemented in a Xilinx device. For
example, if the number of states is small, the speed advantages of
using the minimum amount of combinatorial logic may be offset by
delays resulting from inefficient CLB use.

Xilinx Development System

State Machine Designs

Encoding for CPLDs

CPLD devices generally implement binary-encoded state machines
more efficiently. Binary encoding uses the minimum number of regis-
ters. Each state is represented by a binary number stored in the regis-
ters. Using as few registers as possible usually increases the amount
of combinatorial logic needed to interpret each state.

CPLD devices have wide gates and a large amount of combinatorial
logic per register, so it is best to start with binary encoding. If the
complexity of the state machine logic is such that binary encoding
exhausts all product term resources of a CPLD, try a slightly less fully
encoded state machine.

The syntax used to specify one-hot encoded state machines for
FPGAs is also supported for CPLD designs.

Foundation Series 4 User Guide 7-7

Foundation Series 4 User Guide

7-8 Xilinx Development System

Chapter 8

LogiBLOX

LogiBLOX is an on-screen design tool for creating high-level modules
such as counters, shift registers, and multiplexers for FFGA and
CPLD designs. LogiBLOX includes both a library of generic modules
and a set of tools for customizing these modules. LogiBLOX modules
are pre-optimized to take advantage of Xilinx architectural features
such as Fast Carry Logic for arithmetic functions and on-chip RAM
for dual-port and synchronous RAM. With LogiBLOX, high-level
LogiBLOX modules that will fit into your schematic-based design or
HDL-based design can be created and processed.

This chapter contains the following sections.

o “Setting Up LogiBLOX on a PC”

e “Starting LogiBLOX”

* “Creating LogiBLOX Modules”

* “LogiBLOX Modules”

* “Using LogiBLOX for Schematic Designs”

» “Using LogiBLOX for HDL Designs”

* “Documentation”

Note LogiBLOX supports all Xilinx architectures except Virtex.

For information about instantiating LogiBLOX into designs, refer to
the “Schematic Designs With Instantiated LogiBLOX Modules”
section of the “Design Methodologies - Schematic Flow” chapter and
the**HDL Designs with Black Box Instantiation” section of the
“Design Methodologies - HDL Flow” chapter.

For an example of how to use a LogiBLOX module, refer to the in-
depth Foundation Watch tutorial available via the Xilinx web site at
http://support.xilinx.com.

Foundation Series 4 User Guide — PN Online 8-1

Foundation Series 4 User Guide

Setting Up LogiBLOX on a PC

LogiBLOX is automatically installed with the Xilinx design imple-
mentation tools and is ready to use from the Foundation Project
Manager interface when you start the product.

Starting LogiBLOX

8-2

LogiBLOX can be started from the Project Manager window using
Tools - DesignEntry - Logi BLOX nodul e generator.
LogiBLOX can also be started within Schematic Capture by selecting
Options — Logi BLOXor inthe HDL Editor by selecting

Synt hesi s - Logi BLOX The LogiBLOX Module Selector dialog
box then opens. See Figure 8-1 for an example.

The first time you access LogiBLOX, a Setup dialog appears. Or, you
can click Set up on the LogiBLOX Module Selector dialog box to
access the Setup dialog box.

Use the Device Family tab (shown below) to select a Device Family.

Setup |
\-"end-:rl Project Directary Device Family | Dptinn&l

Device Family:

Ispaltanxl j

Ok | Cancel | Ay | Help |

You can instantiate a LogiBLOX module in VHDL or Verilog code.
Use the Options tab to select appropriate Simulation Netlist and
Component Declaration template. For VHDL, select VHDL

t enpl at e and Behavi oral VHDL netli st (shown below). For
Verilog, select Veri |l og tenpl ate and Structural Veril og
netlist.

Xilinx Development System

LogiBLOX

Setup |
Wendar | Project Directary | Device Famiy Options |
 Simulation Metligt———— Component Declaration——

¥ Behavioral YHDL netiist I &
¥ | Gate [evel EDIE netlist [“erilog template

[Structural Verilog netist

[# | HEE File ¥ Stop Process on wWarning

— Implementation Netlist—‘ "LogiBLDX DRC

Ok I Cancel | Ay | Help |

You can use LogiBLOX components in schematics and HDL designs
for FPGAs and CPLDs. Once you are in the LogiBLOX GUI, you can
customize standard modules and process them for insertion into your
design.

Note Once a LogiBLOX module is created, do not change parameters
for the module on the schematic. Any changes to the module parame-
ters must be made through the LogiBLOX GUI and a new module
created.

You can also import an existing LogiBLOX module from another
directory or project into the current project library by selecting
Options — Inport Logi BLOXfrom the Schematic Capture
window and choosing the MOD file of the module you want to
import. For details, see the “Importing Existing LogiBLOX Modules”
section of the “Design Methodologies - Schematic Flow” chapter.

Foundation Series 4 User Guide 8-3

Foundation Series 4 User Guide

#" LogiBLOX Module Selector =le] =]
~ Selechion
DK
todule Hame: Module Type: Busz width: _I
|| j IAccumuIatols j |4 j Cancel |
— Details Setup |
Add/Sub Uzer Prefs
Carmy lnput v _l
Help |
-
— [G_0ouT
B +-
Load [~ II: Eeglj gverflgwt t
Clock Enable [# FEE L B
Clock
™ Overflow
Async. Contal [
Sync. Control ' Cany Output
CValue = I
Operation = IAdd.n"Subtract j
Style = IMaximum Speed j
Ercoding = ILInsigned j
Aaync. Yal = I
S, Yal= I

Figure 8-1 LogiBlox Module Selector - Accumulators

Creating LogiBLOX Modules

Once you have opened LogiBLOX, create a module as follows:

1. Enter the name of the module you want to create in the Module
Name field, or select an existing one from the list box.

2. Select the type of module from the Module Type list box.

3. Select the bus width for the module from the Bus width list box.

4. Select or deselect optional pins of the module symbol displayed
in the Details box by clicking the appropriate check boxes.

5. Click OK. LogiBLOX automatically creates the MOD file, which
contains symbol pins and a template for each module, and an

EDIF netlist for simulation.

8-4

Xilinx Development System

LogiBLOX

The Project Manager automatically converts the EDIF netlist and
reads the generic module file from the
\fndtn\active\config\logiblox directory and the MOD file to
customize the module symbol. The Project Manager then gener-
ates the ALR and ASX files containing the module’s binary netlist
and ports description and saves the module to the project
working library. The module is then ready to use in your project.

LogiBLOX Modules

LogiBLOX has many different modules that you can use in a sche-
matic or HDL synthesis design. The following is a list of the Logi-
BLOX modules.

Accumulator Adder/Subtracter Clock Divider

Comparator Constant Counter

Data Register Decoder Input/Output
(schematic only)

Memory Multiplexer Pad (schematic only)

Shift Register Simple Gates Tristate Buffers

Using LogiBLOX for Schematic Designs

LogiBLOX modules can be created for use in schematic designs. First,
the module is created. Then, the module is added to the schematic
like any other library component. For details on this procedure, refer
to the “Schematic Designs With Instantiated LogiBLOX Modules”
section of the “Design Methodologies - Schematic Flow” chapter.

Using LogiBLOX for HDL Designs

The tools for synthesis-based designs are described in the following
subsections.

Module-inferring Tools

Base Express and Foundation Express infer LogiBLOX components
where appropriate. Use the HDL Editor to create the HDL file; the
Design Wizard can help you with this process.

Foundation Series 4 User Guide 8-5

Foundation Series 4 User Guide

Module-instantiation Tools

You can instantiate the LogiBLOX components in your HDL code to
take advantage of their high-level functionality. Define each Logi-
BLOX module in HDL code with a component declaration, which
describes the module type, and a component instantiation, which
describes how the module is connected to the other design elements.
For more information, refer to the**HDL Designs with Black Box
Instantiation” section of the “Design Methodologies - HDL Flow”
chapter.

Documentation

8-6

The following documentation is available for the LogiBLOX program:

* The LogiBLOX Guide is available with the Xilinx online book
collection on the CD-ROM supplied with your software or from
the Xilinx web site at http://support.xilinx.com.

* You can access LogiBLOX online help from LogiBLOX or from
the Foundation online help system.

» The Xilinx Software Conversion Guide from XACTstep v5.X.X to
XACTstep vM1.X.X compares XBLOX and LogiBLOX. It describes
how to convert an XBLOX design to LogiBLOX. This document is
available on the Xilinx web site at http://support.xilinx.com.

Xilinx Development System

Chapter 9

CORE Generator System

The Xilinx CORE Generator System is a design tool that delivers
parameterizable COREs optimized for Xilinx FPGAs. It provides the
user with a catalog of ready-made functions ranging in complexity
frorm simple arithmetic operators such as adders, accumulators, and
multipliers, to system-level building blocks including filters, trans-
forms, memories.

This chapter contains the following sections:

“Setting Up the CORE Generator System on a PC” section
» “Accessing the CORE Generator System” section
» “Instantiating CORE Generator Modules” section

* “Documentation” section

Setting Up the CORE Generator System on a PC

The CORE Generator tool can be selected from the setup menu
during installation of the Foundation Series 4 Design Environment. If
you select to install it, it is ready to use from the Foundation Project
Manager interface when you start the product.

New COREs can be downloaded from the Xilinx web site and added
to the CORE Generator System. The URL for dowloadiCORES is

http:/www.xilinx.com/products/logicore/coregen

You can check this web site to verify you have the latest version of
each CORE and CORE data sheet.

Foundation Series 4 User Guide — PN Online 9-1

Foundation Series 4 User Guide

Accessing the CORE Generator System

In the Foundation Series 4 software, the CORE Generator System
must be started within a valid Foundation project. Within an open
project, it can be started from the Project Manager window using
Tools - Design Entry - CORE Generator. Itcanalso be
started within the HDL Editor or the Schematic Editor by selecting
Tool s - CORE Cenerator .

The Xilinx CORE Generator dialog box (an example is shown below)
then opens to allow selection of the available COREs. The COREs are
categorized on the left side of the window. The specific COREs are
selected in the “Contents of”” section of the window.

ﬂxilinx CORE Generator
File Project Core Tools Help

~Iniy

[@| CurrentF'roject:|C:‘L>{ilin)dactivetprojectsLACADEMY =l |“£(| = =

Wiewn Catalug.lb\; Function 'I

harget Family R?}i SPARTAMZ Contents of:

] Basic Elements

y Mame
| Communication & Metworking

Type |Version|£l¢|\yl%§%l\¥|ﬂl Yendor

1 Digital Signal Processing

1 Math Functions

1 Memaries & Storage Elements

1 Microprocessors, Controllers & Peripherals
] ProtoType & Development Hardware Praducts
1 Standard Bus Interfaces

1 widen, Audio & Image Processing il

I 2]

S, d

Generated Modules:

Caomponent Marme Core Mame

wversion |Family| vendor Generated |

tenths_decode Binary Decoder

20 S Xiling Inc. Jul 10, 2001

Set current Project to CEilimdactivelprojects\ACADEMY

g N X

You can selectPr oj ect

- Project Options toaccess the project

setup options. However, the Foundation Series software automati-
cally sets the Project Options (shown in the following figure) to the
appropriate values for the project. You do not need to set them manu-

ally.

9-2

Xilinx Development System

CORE Generator System

You select a CORE by clicking on its name in the “Contents of”
section of the CORE Generator window. This opens a new window
where you can customize the CORE for your use, view its data sheet,
and get other information concerning the CORE. The items that can
be customized for a particular CORE depend on what the CORE is.
The following figure shows that window that opens when you select
a single port block memory core for a Virtex project.

Foundation Series 4 User Guide 9-3

Foundation Series 4 User Guide

9-4

Click the Data Sheet button to view detailed information on the
CORE. You must have the Adobe Acrobat Reader installed on your
PC to view the data sheet.

After you customize the CORE for your project, you need to generate
the new CORE.

After the CORE has been successfully generated, the new CORE and
its related files are placed in the current Foundation project directory
for use in a schematic or HDL file.

You can select a schematic CORE from the SC Symbols menu in the
Schematic Editor. An example of a schematic CORE is shown in the
following figure.

Xilinx Development System

CORE Generator System

{-) SCHE_COR =
MU¥_CORE
MLk

(-} SPARTANX
MCC16
BCC4
ACCH

L

As shown in the figure below, the Language Assistant in the HDL

L1
CTSQREGen M'El?s'?H]E

50
Do[z:0]

D1[3:0]
D2[2:0]

D3[30]

MUX_CORE

Editor (Tool s - Language Assi st ant) includes CORE Gener-

ator Modules. You
VHDL or Verilog.

Q Language Assistant - YHDL

can get assistance with instantiating them in

=- T_emplates
=) Corefien Instantiations

- Language templates

2|
- This file wasz created by the Xiling CORE Generator tool, and —
- ig [c] Hilinx, [ne. 1998, 1939, No part of this file may be

- trangmitted ta any third party [other than intended by iling] - -

- or uged without a Xilirg programmable or hardwire dewce W|th0ut
- Hilins's prior written permission.

- Synthesiz templates
Lo | zer templates

Hide preview << | Usze I

K|

- The following code must appear in the YHOL architecture header:

------------- Begin Cut here for COMPOMEMNT Declaration - COMP_TAG
component muxd
port |
dl: IN td_logic_WYECTOR[3 downta 0);
d1: IN td_logic_VECTOR[3 dawnta 0);
d2: IN #td_logic_VECTOR[3 downta 0);
d3: IN td_logic_VECTOR[3 dawnta 0);
30: I std_logic:
210 I std_logic:
o OUT std_logic YECTOR[3 downto 0]);
end component;
- COMP_T&AG_EMD - End COMPOMENT Declaration -----------

e P NS

Foundation Series 4 User Guide

9-5

Foundation Series 4 User Guide

Instantiating CORE Generator Modules

For information on using COREs in schematic designs, refer to the
“Schematic Designs With Instantiated CORE Generator Cores”
section of the “Design Methodologies - Schematic Flow” chapter.

For information on using COREs in HDL designs, refer to the “CORE
Generator COREs in a VHDL or Verilog Design” section of the
“Design Methodologies - HDL Flow” chapter.

Documentation

9-6

The following documentation is available for the CORE Generator
System:

e The CORE Generator System User Guide is available from the
CORE Generator’s help menu by selectingHel p —» Onli ne
Docurent at i on. This book is in PDF format and requires the
Adobe Acrobat Reader to view it.

* You can access the CORE Generator Home Page and other web
resources from the CORE Generator’s help menu by selecting
Help - Help on the Wb.

Xilinx Development System

Chapter 10

Functional Simulation

For schematic and HDL designs, functional simulation is performed
before design implementation to verify that the logic you created is
correct. Your design methodology determines when you perform
functional simulation. Generally, for Schematic Flow projects, you
can perform functional simulation directly after you have completed
your design within the design entry tools. For HDL Flow projects,
you perform functional simulation after the design has been entered
and synthesized. However, if your design contains underlying
netlists (XNF or EDIF), the design must first be “translated” in the
Implementation phase in order to merge these additional netlists.

This chapter contains the following sections:
» “Basic Functional Simulation Process”
 “HDL Top-down Methodology”

+ “HDL with Underlying Netlists”

* “Simulation Script Editor”

* “Waveform Editing Functions”

Basic Functional Simulation Process

This section describes the basic process for performing simulation.

Invoking the Simulator

You can invoke the simulator from either the Project Manager or
directly from the Schematic Editor. To invoke the simulator (for func-
tional simulation) from the Project Manager, click on the Functional
Simulation icon in the Simulation button on the Flow tab.

Foundation Series 4 User Guide — PN Online 10-1

Foundation Series 4 User Guide

Note For a schematic design, you can invoke the simulator (for func-
tional simulation) from the Schematic Editor by clicking on the Simu-
lator toolbar button.

SIM

JLIL
i

Attaching Probes (Schematic Editor Only)

Prior to opening the Simulator, you can attach probes to signals in the
Schematic Editor to allow those signals to be automatically loaded
into the Simulator Waveform Viewer. Select Mode - Test

Poi nts. The SC probes toolbox displays. You can select both input
and output test points.

A

Figure 10-1 Input Test Points

Figure 10-2 Output Test Points

A gray box appears next to the signal hame, indicating the placement
of the probe. You can add probes at any point during the simulation
to add signals to the Waveform Viewer.

Adding Signals

Once in the Simulator, you can add signals by selecting the Add
Signals toolbar button.

—l

10-2 Xilinx Development System

Functional Simulation

Creating Buses

You can create buses by combini ng any set of signals. Highlight the
desired signals and then selecting Si gnal - Bus - Conbi ne.
This same menu may be obtained by right-mouse-clicking in the
signal list area of the Waveform Viewer. To expand or collapse the
bus, click on the Bus Expansion toolbar button.

Applying Stimulus

You can apply stimulus in a number of various ways.

Stimulator Selection Dialog

Click the St i mul at or Sel ecti on toolbar button (below) to
access the Stimulator Selection dialog.

|

Using Stimulator Selection dialog box, you can add stimulus using
keyboard keys, formulas, or output signals of an internal software-
generated 16- bit binary counter. For more information on these
methods, click Hel p in the Stimulator Selection dialog box.

Stimulator Selection =10 =]
Heyboard: Clocks:

DuPLVLDE0 6]/
PEE LT P |l
[T o o =S
Bc: @00;' 000;' 000;' OOO;I

HBc: OOOOI 0000' 0000' 0000'
e EHHHI HHHH' HHH!' HH!H'

(=]

Furmula...l Close | Help |

Foundation Series 4 User Guide 10-3

Foundation Series 4 User Guide

10-4

Waveform Test Vectors

A second method of applying stimulus is by editing and using wave-
form test vectors. Test vectors may be edited and/or created using the
Wavef orm - Edit... menu selection. Additionally, test vectors
and/or simulation results may be saved by selectingFi | e - Save
Wavef or m These test vector waveforms may then be loaded into the
simulator at any time by selecting Fil e - Load Waveform

For more information on using and saving waveforms, refer to the
onlineHelpatHel p - Logic Sinulator Help Contents -
Si nul at or Reference - Wdrking with Wavef or ns.

Script File Macro

A third method of applying stimulus is through a script file macro.
Stimulus is entered through commands in the script file (.cmd) and
the simulator displays the input and output response in the Wave-
form Viewer when the script is run.

Note Foundation contains a Macro Editor for creating simulation
scripts. See the “Simulation Script Editor” section.

Proper script syntax is documented in the online Helpat Hel p -
Logic Simulator Help Contents - Sinulator Refer-
ence - Sinulation Scripts.Torunacommand script, select
File - Run Script File,andchoose the appropriate .cmd file.
Additionally, you can edit the .cmd file by selecting Tool s -
Script Editor.

Running Simulation

Click the Simulator Step icon on the Logic Simulator toolbar to
perform a simulation step. The length of the step can be changed in
the Simulation Step Value box to the right of the Simulation Step box.
(If the Simulator window is not open, select Vi ew - Mai n

Tool bar.)

) Logee Simislalos - Milieo Fowssdation FA4.Ti fealch_sc] - Mo arelom Views [& i = oo =

[= El= Sigral ‘wWipeelome [Device Opiorc Took Wew shidow Heip ===
ST B e Y e - | e (AT
m&lgm = I_-I:I.n.r_ua-] ml alowe

Xilinx Development System

Functional Simulation

To start a simulation for an extended amount of time, select Opt i ons
- Start Long Sinul ation. Inthe dialog box, enter the desired
length of simulation.

Start Long Simulation il
Simulation Running Time: (00:00:10 =
w
Start Cancel | Help |

To interrupt the simulation while it is running, click the Stop button
in the toolbar.

Save Simulator results by selecting Fil e - Save Sinmul ation
State and File - Save Wavef or m Choosing Save Simulation
State saves the simulation results and current state of the simulation
only. On the other hand, Save Waveforms saves the waveforms in test
vector format, allowing you to resimulate the saved waveforms at a
later time.

For more information about simulator options and features, refer to
the online Help by selectingHel p - Logic Sinul ator Help
Cont ent s.

HDL Top-down Methodology

If your design has been created and synthesized as a top-level design,
then click the Functional Simulation icon on the Simulation button in
the Foundation Project Manager to automatically invoke the simu-
lator and load the netlist. The Functional Simulation icon is shown in
the following figure.

Functional Sirmulation

For a description of how to select signals, choose stimulators, and run
the simulation, refer to the online help tutorial by selectingHel p -
Foundati on Hel p Cont ent s. Then, under Tools, click on Logi ¢
Si mul at or . Double click onthe Getting Started Tutori al.

Foundation Series 4 User Guide 10-5

Foundation Series 4 User Guide

HDL with Underlying Netlists

10-6

If your design includes underlying netlists (XNF or EDIF), the design
must first be “translated” with the Xilinx Implementation tools in
order to merge these additional netlists. Follow the steps below to
successfully combine all of the individual modules into one netlist for
simulation by “translating” the design in the Xilinx Implementation
tools.

1. From the Project Manager, select Proj ect - Create
Ver si on. The Synthesis/Implementation dialog appears. The
new version is given the default name shown in the Version
Name box unless you change it. Click OK and the new version is
created.

2. From the Project Manager, select Proj ect - Create Revi -
si on. The New Revision dialog appears. The new revision is
given the default name shown in the Name box unless you
change it. Click OK and the new revision is added to the newly
created version from step 1.

3. From the Versions tab, right click on the newly created revision
and select | nvoke interactive Fl ow Engine.

4. From within the Flow Engine, select the Step button to translate
the design.

3

Step

5. After Translate is complete, go back to the Foundation Project
Manager, and select Tool s - Sinul ation/ Verification
- Checkpoint Gate Simulation Control.

6. Choose the appropriate NGD file from the Revision which was
just created, and click OK. This invokes the simulator and loads
the netlist.

For a description of how to select signals, choose stimulators, and
run the simulation, refer to Steps 2 through 10 in the“Performing
Functional Simulation” section of the “Design Methodologies -
HDL Flow” chapter.

Detailed information can also be found in the online help tutorial
by selecting Hel p — Foundati on Hel p Cont ents. Then

Xilinx Development System

Functional Simulation

clickonLogi ¢ Si nul at or . Double click on the Get ti ng
Started Tutori al . Another very detailed source can be found
by selecting Hel p — Foundati on Hel p Cont ents. Click
CPLDDesi gn Fl ows. Scroll down and click The Functi onal
Si mul ation Tutorial.YoucanalsoclickCreating a New
Test Vector Fil e tofind out detailed information about
creating stimuli.

Simulation Script Editor

The Simulation Script Editor facilitates script creation. To access this
editor, select Tool s - Scri pt Editor from the Logic Simulator.
The Script Editor includes the following features:

e A Script Wizard for creating new simulation script files
e Syntax highlighting of simulation commands

e Simulation scripts in Macro Assistant (Tool s - Macro
Assi st ant). The Macro Assistant contains examples of
Viewsim-compatible macros as well as Aldec® proprietary
macros.

e Script command reference (Hel p - SI M Macros Hel p)
« Debugging capabilities

e Anonline link to the simulator which allows single stepping
through command sequences and support for breakpoints

For a description of the Macro Editor and commands, selectHel p -
SIM Macros Hel p.

Waveform Editing Functions

Foundation supports dragging of signal transitions within the Wave-
form Editor. Following is an example.

1. Open the “watch_sc” project in the Project Manager.

2. Click the Functional Simulation icon in the Simulation button.
3. Inthe Logic Simulator, selectFil e - Load Waveform

4. Double click “watch_sc.tve” in the Load Waveform list box.
5

Right click the mouse button. Select Edit from the menu. The Test
Vector State Selection box displays.

Foundation Series 4 User Guide 10-7

Foundation Series 4 User Guide

A Test Vector State Selection [Norm__. x|

Lowr High Unkn_X High_Z
(e || (= || (= ||~
Del Bus Buz State
C_|oE]e

Hald Chrl key to drag tranzitions.
Cancell Murel Fast | Help |

6. After the Test Vector State Selection box displays, press and hold
the left mouse button at the point of the signal that you want to
begin altering the signal transition. Drag the mouse to the desired
endpoint. The following figure displays an example selection for
the STRTSTOP signal.

@Lugic Simulator - Xilink Foundation F4_1i [watch_sc] - [Waveform Viewer 0 - c:\emera... _ |EI|5'
File Signal ‘“waweform Device Options Tools Yiew ‘window Help - |5’|5|.

=88] k| 2| [rnie] &] o [5o0e 2] @f[oex o] &R
[e c—nl[== =2 |ornma || slons

”"'u""""l Sins/div |£I Stlrlns lu= 1.fus [Eus Z.Eus [Fus= 3. Eus [dus
| oo ‘lllllllll||
B[TENS . (he=)#4
B[ONES . (he=x)#4
B[TEHTHS . (hex 4
LCLE.
1|ISTRTSTOF
1[FESET.
LIGSE.
4 | il

7. Select High from the Test Vector State Selection box. The low
signal transforms to high.

10-8 Xilinx Development System

Chapter 11

Design Implementation

This chapter contains the following sections.
* “Implementing a Design”

* “Versions and Revisions”

» “Setting Control Files”

» “Selecting Options”

* “Flow Engine”

* “Implementation Reports”

» “Additional Implementation Tools”

Versions and Revisions

Each project may have multiple versions and revisions. You have
complete control over the creation of versions and revisions. They
may be used to create snapshots of the project. A generally accepted
project structure is to have versions represent logic changes in a
design and revisions to represent different implementations on a
single design version. The Project Manager graphically displays
information about versions and revisions in the Versions tab of the
Hierarchy Browser.

Schematic Flow Projects

In Schematic Flow projects, new versions of the design and revisions
on each version are associated with the Implementation phase. You
determine when to create a new version or revision. For example,
versions may represent logic changes in a design such as replacing an
AND gate with an OR gate. Revisions may represent different execu-
tions of the design flow on a single design version with new imple-

Foundation Series 4 User Guide — PN Online 11-1

Foundation Series 4 User Guide

mentation options (for example, changing to a different device in the

same device family).

Creating Versions

When you click the | npl enent at i on phase button, the current
version/revision is overwritten by default. If you want your changes
implemented in a new version, you must explicitly create the new
version. This is done by selecting Proj ect - Create Versionto
access the Create Version dialog box shown in the following figure.

Create Yersion

| so5PCas

Device

d
Speed I3 jv

Wersion name: |V3'2

Bevizion name: I'E"”'I

Contral Files: Set..

0k

LCancel | Help |

DOptions.... |

Creating Revisions

Revisions represent different implementations of a single design
version. You can create a new revision for a version by selecting
Project - Create Revision toaccess the Create Revision
dialog box shown in the following figure.

Create Revision

Device |so5PCas

Xl
Speed I3 jv

Wersion name: IVE'2

Bevision name: I'E“‘2

Control Files: Set...

0K

LCancel | Help |

Options... |

In either the Create Version or the Create Revision dialog box, you
can select a new device (in the same device family), a new speed for
the device, name the version, name the revision, or enter comments.

11-2

Xilinx Development System

Design Implementation

Click OK to create the new revision and/or version. When you are
ready to implement the new revision/version, click the | npl erren-
t ati on phase button.

Or, Click Run to create the new revision and/or version and run
implementation immediately.

HDL Flow Projects

In HDL Flow projects, new versions of the design are associated with
the Synthesis phase. Whenever you change the logic in the design or
select a new target device, you must synthesize the design. Revisions
on each version are associated with the Implementation phase. As in
the Schematic Flow, versions and revisions of a design are over-
written unless you explicitly create a new version or revision.

Creating Versions

You can create a new version of the design by selecting Pr oj ect -
Creat e Ver si on. This accesses the Synthesis/Implementation
settings dialog box (see Figure 11-1) where you can select the Top
Level design, name the version, select a target device.

Create VYersion x|
Top level: Icontrol j Bun I
YYersion name: Iver'l oK |
Synthesis Settings: SET | Cancel |

Help |

Target Device

F amily: r
Drevice: ISDE><LF'E84 j Speed: |-5 j

™ Edit Syrthesis/Implementation constraints

™ Wiew E stimated Performance after Optimization

™ Auto Fun Implemertation tools
Physical Implementation settings

Revizion name: Irev1 [ptiore |

Contral Files:)

Figure 11-1 Synthesis/Implementation Dialog Box

Foundation Series 4 User Guide 11-3

Foundation Series 4 User Guide

Updating Versions

If you click the Synthesis phase button to synthesize the design for
the first time, the Synthesis/Implementation settings dialog box also
appears. However, the Physical Implementation Settings at the
bottom of the screen are not available. In this case, the design will be
synthesized only, not implemented.

Clicking the Synthesis phase button after making changes to an
existing version, automatically updates the existing version. No new
version is created. You can also update an existing, synthesized
version by right-clicking on the functional structure or on the opti-
mized structure in the Versions tab and then selecting Updat e.

Creating Revisions

Revisions of HDL Flow projects represent different implementations
of a design version.

You implement the design and create a new revision by clicking the

| mpl ement at i on phase button. What happens after you click the
Implementation phase button depends on whether this is the first
revision for the version or if there are existing revisions of the version.

» If this is the first revision and the design has already been synthe-
sized, the Synthesis/Implementation dialog box shown in the
following figure appears. Only the Physical Implementation
Settings at the bottom of the screen are available at this point. You
can name the revision and/or click Opt i ons to access the
Options dialog box. When you click Run, the Flow Engine starts.

11-4 Xilinx Development System

Design Implementation

Syntheziz/Implementation zettings ll

Toplevel |CDATE S [An]
WErsion name: Iver2 Cancel |

Synthesiz Settings: SET] | Help |

Target Device

Farnily: ISP.-’-‘-.F!TANHL 'I
Dievice: |S|35><LP|:84 VI Speed: |-5 vl

= Edit Syrthesisd mulementation carstiaints

I v Bstimated Perfarmanice atter 0 ptimization

I st B [mplementation boals

Physzical Implementation zettings

Revizion name: IIB\-"I DOptionz |

Contral Files: seT | ok |

* For later revisions, if you change the design and then click the
| npl enent at i on phase button, the design can be automatically
updated, synthesized, and implemented. The Project Manager
displays a dialog box (shown in the following figure) to inform
you that the current version will be overwritten. Select OK to
overwrite the current version or Cancel to abort the update.

Warning: Source is out of date = |

Yersion verl will be ovensitten.
Cancel and create a new version to retain verl data.

LCancel | Help |

[Dan't dizplay this meszage again

e After you select OK, the current version is updated and another
dialog box (shown in the following figure) appears to inform you
that the current revision will be overwritten. Select OK to over-
write the current revision or Cancel to abort the update.

Warning x|

Revizion verl-rrev [Implemented, OK) exists.
Do you want to avenwrite this revision?

LCancel | Help |

[Dan't dizplay this meszage again

Foundation Series 4 User Guide 11-5

Foundation Series 4 User Guide

11-6

» After you select OK, the Flow Engine appears. If you want to
modify the implementation options, you must select | npl enmen-
tation - Opti ons from the Project Manager menu bar before
clicking the | npl enment at i on phase button.

* Ifyou click the | npl enent at i on phase button and you have
made no changes to the design, the completed Flow Engine
appears. You can then choose to re-start the Flow Engine in inter-
active mode.

% watch3([ver3->rev¥3] - Flow Engine =lol x|
Flow iew Setup Utiiies Help

=B 2 BB D

XCADDDE Design Flow [rewv3] Status: OK
Translate Map Place&Route Timing Configure
I Completed I Completed I Completed I Completed I Completed
-l

gopy watchi bit d:»~fndtn™activesprojects~watch3»watch3 bit

zcpy watchd 1l d:~indtn~active~projects~watchi~watchi 11 =
4| | 3
> 1 [» | [« 1 [m |
For Help, press F1 |<C4003E-1-PC84 [watch3uck [Mone 2

Creating a new Revision

After the design has been synthesized, you can manually create a
new revision for a version by selecting Proj ect - Create Revi -
si on. This accesses the Create Revision dialog box (shown below)
where you can name the revision, set the implementation options, or
choose to use a Guide or Floorplan file from a previous revision.

Xilinx Development System

Design Implementation

Create Revision x|
Top level: I control j Bun I
Wersion name: Iver‘l ak. |
Syrthesis Setings: SET I Cancel |

Help |

Target Device

Family: ISPAHTANXL 'l

Device: [S05<LPCE4 =] Speed |5 [7]

= Edit Synthesis Amplementation camstraiits

= iew Estimated Petonmanee aten [EtimEation

J¥ it B [pl Emertatian banl
Phyzical Implementation settings

Revizion name: Irev‘l Optionz |

Control Files: SET

Click OK to create the revision only. Click RUN to create the revision
and to start the Flow Engine to implement the newly created revision.

Note You can also right click on an optimized structure in the
Versions tab and select Tar get New Devi ce to access the Target
New Device dialog box shown in the following figure. You may select
a new device in the same family or a new speed grade. If you want to
target a new device family, you must create a new version and resyn-

thesize the design.

Foundation Series 4 User Guide

11-7

Foundation Series 4 User Guide

Target Hew Device 5|
Top level: I control j Bun I
Wersion name: Iver‘l ak. |
Synthesis Settings: S I Cancel |

Help |

Target Device

Family: |5PAHTAN><L v[
TPERE v Speed [5]

= Edit Synthesis Amplementation camstraiits

= iew Estimated Petonmanee aten [EtimEation

J¥ it B [pl Emertatian banl
Phyzical Implementation settings

Revizion name: Irev‘l Optionz |

Control Files: SET

Creating the First Version and Revision in One Step

If the design has not been synthesized, you can create the first version
and revision automatically in one step by selecting the | npl enent a-
t i on phase button immediately after design entry. When you click
the | npl enent at i on phase button without first synthesizing the
design, the Synthesis/Implementation dialog box shown in the
following figure appears. All fields are available—the Target Device
and Synthesis Settings associated with the synthesis phase as well as
the Physical Implementation Setting associated with the implementa-
tion phase. You can enter the version and revision information and
then click OK. The Project Manager performs all the necessary
processing to synthesis and implement the design to create the first
version and revision.

Xilinx Development System

Design Implementation

Synthesis/Implementation settings |
Toplevet [CNT_BCD ~] [Bun]
WErsion name: |ver1 Ok, |
Synthesis Settings: SET | LCancel |

Target Device

Farnily: ISF'AF!TANXL 'I

Device: ISDSXLPCEM j Speed: |-5 j

[Edit Spnthesiz/mplementation constraints

™ Wiew Estimated Perfomance after Optimization

IV &0t B (mplementation) ool

Phwzical Implementation setting

Revision name: Irev'l Options |

Cantrol Files: SET

Revision Control

Foundation maintains revision control, meaning that the resultant
files from each implementation revision are archived in the project
directory. Note that the source design for each version is not archived,
only the resulting netlists and files for each revision. Therefore, if you
wish to save iterations of the source design (Schematic, HDL files, for
example), you should use the project archive functions to archive the
appropriate files.

See the “Project Archiving” section of the “Project Toolset” chapter
for more information on the Foundation archiving feature.

Implementing a Design

You can implement your design automatically using the Implementa-
tion phase button on the Project Manager’s Flow tab or you can
implement your design by executing the Flow Engine steps sepa-
rately. The Implementation phase button method is described in this
section. Refer to the*“Flow Engine Controls” section under the “Addi-
tional Implementation Tools” section for information on controlling
the Flow Engine manually.

Foundation Series 4 User Guide 11-9

Foundation Series 4 User Guide

11-10

When you implement your design using the Implementation phase
button, the Project Manager invokes the Flow Engine and automati-
cally performs all steps needed to update your design for implemen-
tation.

1.

From the Project Manager, click the | npl enent at i on phase
button on the project flowchart.

Implementation

The implementation window that appears now depends on
whether your project is a Schematic Flow project or an HDL Flow
project.

a) If your project is a Schematic Flow project, the Implement
Design dialog box shown in the following figure appears.

Implement Design x|

Device ISEIEF'I:&1 j Speed I3 3

Wergion name: IVB"I

Bevizion name: I'E‘\"I

Cotitral Files: Set.. Dptions... |

0K | LCancel | Help |

By default, the implementation targets the device selected
when the project was created. You can specify a different
device within the same family and a new speed grade. If you
want to target a device in a different family, you must use
File — Project Type toselectanew family before you
click the | npl ement phase button.

Availability of fields in the Implement dialog box depend on
whether the design has been implemented before. After the

first implementation, only the revision name is available for
editing.

b) If your project is an HDL Flow project, the Synthesis/Imple-
mentation dialog box shown in the following figure appears

Xilinx Development System

Design Implementation

if the design has been synthesized and no revisions exist for
the current synthesized version. (Refer to the “HDL Flow
Projects”section in the Versions and Revisions section for a
description of the various paths available in HDL Flow
projects for creating new revisions and updating existing
ones for implementation.)

Synthesiz/Ilmplementation settings il
Top level: I freqmi j Bun I
YYersion name: Iver'l Ok |
Synthesis Settings: SET | Cancel |

Help |

Target Device

F arnily: I SPARTANSL ¥ I

Device: [505LPCa4 &l Speed: |5 |F]

™ Edit Sprthesis/dmplementation constraints

I e Estimated Perfarmance. after b ptimization

[Aot P mislermentation bools:
Physical Implementation settings

Fievizion name: Irev1 Options |

Contral Files: SET

3. Select Opt i ons in the Implement Design dialog box or in the
Synthesis/Implementation dialog box to access the Options
dialog box. (For HDL Flow projects, you may need to select
| npl enentation - Options from the Project Manager
menu bar to access the Options dialog box.) Use the Options
dialog box to set important implementation options such as
selecting a UCF file, specifying templates, or producing optional
design data.

Refer to the “ Selecting Options’ section for more information on
the Options dialog box.

4. After you have selected all of your options, you are ready to
initiate the Flow Engine to implement the design.

¢ InaSchematic Flow project click OK on the Options dialog
box to close it and return to the Implement Design dialog
box. On the Implement Design dialog box, click Run.

Foundation Series 4 User Guide 11-11

Foundation Series 4 User Guide

¢+ Inan HDL Flow project, click OK on the Options dialog box to
close it and return to the Synthesis/Implementation dialog
box. Click Run on the Synthesis/Implementation dialog box
to start the Flow Engine. (Refer to the “HDL Flow Projects” -
“Creating Revisions” section for additional ways the Flow
Engine is accessed when implementing HDL Flow projects.)

Refer to the*Flow Engine” section for more information.

Setting Control Files

You can designate a user constraints file, guide files, or Floorplan files
to control the current implementation. You can set the control files
from the Project Manager’s Implementation pulldown menu or via
the Control Files Set button on the Synthesis/Implementation dialog
box.

User Constraints File

User constraints files (design_name.ucf) contain logic placement and
timing requirements to control the implementation of your design.
Refer to the “Foundation Constraints” appendix for detailed informa-
tion on creating .ucf files and on constraint syntax.

If you want to control the implementation of your design with a user
constraints file, you can specify this file in the Set Constraints File
dialog box. The software implements your design to meet the speci-
fied timing requirements and other constraints specified in this file.

1. Inthe Project Manager, select | npl enentati on - Set
Constraints Fil e(s) toopen the dialog box shown in the
following figure.

Set Constraints File |

[V Copy Constraints Data From: INone 'I

Ok I Cancel | Help |

Figure 11-2 Set Constraints File Dialog Box
2. Make sure Copy Constraints Data From isselected.

11-12 Xilinx Development System

Design Implementation

3. Inthe drop-down list box, choose one of the following.

+ Arrevision that contains the user constraints file (UCF) you
want to use for this implementation

+ None if you do not want to copy constraints data
¢ Cust omto guide from a specific file

If you select Cust om the following dialog box appears. Type
the name of a specific file in the Constraints File field, or click
Br owse to open a file selection dialog box in which you can
choose an existing UCF file.

Custom x|

Lonstraints File: Iﬁlte'-ucﬂ Browze. . |

Ok I Cancel | Help |

Figure 11-3 Set Constraints File Custom Dialog Box
4. Inthe Set Constraints File dialog box, click OK.

When you implement the design, the Flow Engine uses the
copied data to constrain the implementation.

Guide Files

You can select a previously routed or fitted implementation revision
or a guide file to use as a guide for the current implementation. The
procedure for guiding your implementation is the same for FPGAs
and CPLDs. However, the way the design is implemented differs
between the two.

Guiding FPGA Designs

When guiding an FPGA design, the software attempts to use the
guide for placing logic and routing signals for the current implemen-
tation revision of the design. This ensures consistent implementations
between place and route iterations. Guiding a design for an FPGA
works as follows.

Foundation Series 4 User Guide 11-13

Foundation Series 4 User Guide

* Ifacomponent in the new design has the same name as that of
the guide design or file, it is placed as in the guide.

» Ifan unnamed component in the new design is the same type as a
component within the guide, it is placed as in the guide.

» Ifthe signals attached to a component in the new design match
the signals attached to the component of the guide, the pins are
swapped to match the guide, where possible.

e Ifthe signal names in the input design match the guide, and have
the same sources and loads, the routing information from the
guide design is copied to the new design.

After these components and signals are placed and routed, the
remainder of the logic is placed and routed. If you have made only
minor changes to your design and want the remaining logic placed
and routed exactly as in your guide design, select the Match Guide
Design Exactly option. This option locks the placement and routing
of the matching logic so that it cannot change to accommodate addi-
tional logic.

Note Setting the Match Guide Design Exactly option is not recom-
mended for synthesis based designs.

Guiding CPLD Designs

For CPLDs, each time you implement your design, a guide file is
created (design_name.gyd) which contains your pinout information.
You can reuse this file in subsequent iterations of your design if you
want to keep the same pinouts. If you select a valid implementation
revision or guide file name, the pinouts from that file will be used
when the design is processed.

Note You can override guide file locations by assigning locations in
your design file or constraints file.

Setting Guide Files

1. Inthe Project Manager, select | npl enentati on — Set
Gui de Fil e(s) to open the dialog box shown in the following
figure.

11-14 Xilinx Development System

Design Implementation

Set Guide File[z] il

¥ Enable Guide

v Match Guide Design Exactly

Ok I Cancel | Help |

Figure 11-4 Set Guide File(s) Dialog Box
2. Make sure Copy Gui de Data From is selected.

3. Inthe drop-down list box, choose one of the following.

¢ Arevision that contains the guide file you want to use for this
implementation

+ None if you do not want to copy a guide file

¢+ Cust om to guide from any mapped or routed file for FPGAs
or fitted file for CPLDs, including designs not generated from
within the Design Manager

If you select Cust om the following dialog box appears. Type
the name of a mapped, routed, or fitted file in the Guide File
field, or click Br owse to open a file selection dialog box in
which you can choose an existing file. Choose an NCD file for
FPGAs or a GYD file for CPLDs. You can also specify a
mapping guide file for FPGAs.

Custom x|

Guide File: | Browse_|
_rowse..|

Mapping Guide File: I Browse...

0K I Cancel | Help |

Figure 11-5 Set Guide File(s) Custom Dialog Box

Note The implementation revision or revision data is based on a
placed and routed design. Guide from a placed and routed file
rather than a mapped file to reduce runtime. To guide from a

Foundation Series 4 User Guide 11-15

Foundation Series 4 User Guide

11-16

mapped file, you must use the Custom option. If you use this
option, you cannot guide mapping using the Set Floorplan File(s)
command. Guided mapping is not supported for Virtex devices.

4. Inthe Set Guide File(s) dialog box, make sure Enabl e Cui de is
selected.

By default, this option is enabled and instructs the software to
use the specified guide file. If you do not want to guide your
design but want to keep your guide file intact, disable this option.

5. For FPGA devices, select Mat ch Gui de Desi gn Exactly if
you want to lock the placement and routing of matching logic.

If you do not select this option, the guide files are used as a
starting point only. This allows the mapper, placer, and router
greater flexibility in accommodating design modifications, often
resulting in greater overall success.

Note For synthesis-based designs, use the Match Guide Design
Exactly option only if the guide file is from the same design
version.

6. Click OK

When you implement the design, the Flow Engine uses the
copied data to guide the implementation.

Floorplan Files

When you use the Floorplanner, an MFP file is generated that
contains mapping information. You can instruct the Design Manager
to use this file as a guide for mapping an implementation revision
using the Set Floorplan File(s) command. To use this command, you
must select an implementation revision that has been mapped and
modified using the Floorplanner. For information on using the Floor-
planner, see the Floorplanner Guide.

Note If you use the Set Floorplan File(s) command you cannot guide
mapping using the Set Guide File(s) command Custom option. The
Set Floorplan File(s) command is available for the XC4000, Virtex,
and Spartan device families only.

1. From the Project Manager, select | npl enentati on - Set
Fl oor pl an Fil e('s) to open the dialog box shown in the
following figure.

Xilinx Development System

Design Implementation

Set Floorplan File(s] x|

Iv Copy Floorplan Drata From: Mone j

[Enable Floarplan

Ok I Cancel | Help |

Figure 11-6 Set Floorplan File(s) Dialog Box
2. Make sure Copy Fl oorpl an Data From is selected.
3. Inthe drop-down list box, choose one of the following.

¢ Avrevision that contains the floorplan files you want to use
for this implimentation

¢+ None ifyou do not want to copy floorplan data

¢ Cust om to guide from any mapped file in your file system,
including designs not generated from within the Design
Manager

If you select Cust om the following dialog box appears. Type
the name of a specific file in the Floorplanning File field, or
click Br owse to open a file selection dialog box in which you
can choose an existing file. Specify an FNF file for the Floor-
planning File field and an MFP file for the Floorplanned

Guide File field.
Custom x|
Floorplanning File: Ifilter.fnﬂ Browse... |
Floarplanned Guide File: Ifi"ET-me Browse... |

0k I Cancel | Help |

Figure 11-7 Set Floorplan File(s) Custom Dialog Box

4. Inthe Set Floorplan File(s) dialog box, make sure Enabl e
FI oor pl an is selected.

Foundation Series 4 User Guide 11-17

Foundation Series 4 User Guide

Note By default, this option is enabled and instructs the software
to use the specified Floorplanner file. If you do not want to guide
your design but want to keep your Floorplanner file intact,
disable this option.

5. Click &K

The Flow Engine uses the copied data to guide the implementa-
tion.

Selecting Options

For FPGAs, options spe cify how a design is optimized, mapped,
placed, routed, and configured. For CPLDs, they control how a
design is translated and fit. Implementation options are specified in
the Options dialog box.

In a Schematic Flow project, select Opt i ons on the Implement
Design dialog box to access the Options dialog box shown in the
following figure.

In an HDL Flow project, select Opt i ons on the Synthesis/Implemen-
tation dialog box to access the Options dialog box.

1] [l%ions

— Place & Foute Effart Lewvel

Eastest 1 * High
Riuntirne ' J ' ' ! Effart
— Program O ption

Implementation: IDefauIt j Edit Options... |
Simulation: IFDundation ECIF j Edit Optionz... |
Configuration; |Default j Edit Options... |

oK I Cancel | Help |

11-18 Xilinx Development System

Design Implementation

Place & Route Effort Level

The Place & Route Effort Level setting controls how much effort the
placer and router should use to best place and route a design at the
expense of longer runtimes.

Program Options

The Program Options are grouped into implementation, simulation,
and configuration options. These can be used to create customized
templates for various implementation styles you may want to try. For
example, one implementation style could be Quick Evaluation, while
another could be Timing Constraint Driven.

You can have multiple templates in a project. By choosing a template,
you are choosing an implementation, simulation, or configuration
style. In the Program Option portion of the Options Dialog, select
Edit Opti ons for Implementation, Simulation, or Configuration to
access the associated template. An example of the Implementation
Options dialog box is shown in the following figure. The options
shown in each template depends on the target device family. For
detailed information on the templates for each device family, refer to
the “Implementaton Flow Options” chapter of the Design Manager/
Flow Engine Guide.

Foundation Series 4 User Guide 11-19

Foundation Series 4 User Guide

11-20

XC4000 Implementation Options: Default x|

Optirize: and M ap | Place and FRoute | Timing Reparts | Interface

— Logic Optimization Dptions

W Beplicate Logic to dllow Logic Level Feduction

[Generate Slnput Functions

— Map Dptionz

CLE Packing Strategy: IFit Device "I
Pack CLE Reaisters for: IStructure 'I

Pack 1/0 Regizters/Latches inta 0B s for: IDH j

[Use Generic Clock Buffers [BLUFGs] in place of EUFGP: and ELIFGS:

kK I Cancel Drefault

Implementation Templates

Implementation templates control how the software maps, places,
routes, and optimizes an FPGA design and how the software fits a
CPLD design.

Simulation Templates

Simulation templates control the creation of netlists in terms of the
Xilinx primitive set, which allow you to simulate and back-annotate
your design. In back-annotation, physical design data is distributed
back to the logic design to perform back-end simulation. You can
perform front and back-end simulation on both pre- and post-routed
designs. Select a simulation template to use from the Simulation
drop-down list.

Configuration Templates (FPGAS)

Configuration templates control the configuration parameters of a
device, the startup sequence, and readback capabilities. Select a

Xilinx Development System

Design Implementation

configuration template to use in this implementation from the

Configuration drop-down list.

Note Configuration options are supported for the FPGA device fami-
lies only. There are no configuration options for the CPLD families.

Template Manager

To create new templates, or as an alternate way to access the

templates, use the Template Manager.

1. From the Project Manager menu, select Tools - Utilities
- I nplementation Tenpl ate Manager. This opens the

Template Manager dialog box.

= Template Manager

0 x|

Earnily:

Cloze

% Implementation Templates

" Simulation T emplates

= Configuration Templates Ed..
Template List:
Default Lo

Bename. ..

Delete. .

Impaort...
Export...

Custamize...

Help

U B

2. From the Template Manager dialog box, click the button associ-
ated with the type of template on which you wish to perform an
operation (Configuration, Simulation, or Implementation).

3. Click the appropriate button for the operation (New, Edit, Copy,

and so forth).

Foundation Series 4 User Guide

11-21

Foundation Series 4 User Guide

4. After you have made all of your template entries, click Cl ose.

Flow Engine

11-22

The Project Manager’s Implementation phase button automatically
invokes and controls the Flow Engine to process the design. The Flow
Engine interface prominently displays the status of each implementa-
tion stage as shown in the following figures.

%, watch3[ver5->rev1] - Flow Engine (o] =]
Flowe Wiew Setup Ulilites Help

e el = e e L e

XCADDOE Design Flow [revl) Status: OK
Translate Map Place&Route Timing Configure
| Completed | Completed | Completed | |
=

Total REAL time to PAR completion: 12 =secs
Total CPU time to PAR completion: [=ecs

FAR done.
1] | _’|ZI
> | [] [«] =]
For Help, press F1 [*C4003E-1-PC84 [watchZuct [Mone

Figure 11-8 Flow Engine - FPGA Processing

Xilinx Development System

Design Implementation

2, watch3[ver8->rev1] - Flow Engine (o] =]
Flowe Wiew Setup Ulilites Help

vy Sl BB @

XC9500 Design Flow [rev] Status: OK
Translate Fit Timing Bitstream
[Completed | [|
Writing HGD file "watchl . ngd" . ..
Writing NGDEUILD log file "watch3 bld". ..
HGDEUILD done. TI
| | _>I_I
[» | [» | [« | [m |
Far Help, press F1 |®CO536-5-PC44 [watch3ucf [Mone 2

Figure 11-9 Flow Engine - CPLD Processing

When you process your design, the Flow Engine translates the design
file into the Xilinx internal database format (NGD). The Flow Engine
then implements your design and generates bitstream data.

Process indicators in the Flow Engine main window show you which
of these stages is currently processing. The arrows between each step
turn black after the previous step is completed. Underneath each
process indicator, a progress bar shows the status of each processing
step, whether running, completed, aborted, or failed.

By default, all implementation processing stages are performed. If
you want, you can control processing of your design by using the
STOP button in the Flow Engine Tool bar to stop processing after a
designated stage. Refer to the “Flow Engine Controls” section under
the “Additional Implementation Tools” section for more information
on additional features of the Flow Engine.

For an overview of the processing and file manipulation performed
for FPGAs and CPLDs, refer to the“File Processing Overview”
appendix.

Foundation Series 4 User Guide 11-23

Foundation Series 4 User Guide

11-24

Translate

The Flow Engine’s first step, Translate, merges all of the input
netlists. This is accomplished by running NGDBu ild. For a complete
description of NGDBuild, refer to the “NGDBuild” chapter of the
Development System Reference Guide.

MAP (FPGAS)

The MAP program maps a logical design to a Xilinx FPGA. The input
to a mapping program is an NGD file, which contains a logical
description of the design in terms of both the hierarchical compo-
nents used to develop the design and the lower level Xilinx primi-
tives, and any number of NMC (macro library) files, each of which
contains the definition of a physical macro. MAP first performs a
logical DRC (Design Rule Check) on the design in the NGD file. MAP
then maps the logic to the components (logic cells, 170 cells, and
other components) in the target Xilinx FPGA. The output design is an
NCD (Native Circuit Description) file physically representing the
design mapped to the components in the Xilinx FPGA. The NCD file
can then be placed and routed.

You can run the Mapper from a GUI (Flow Engine) or command line.
For a description of the GUI, see the Design Manager/Flow Engine
Guide, an online book. For a description of the MAP command and its
options, see the Development System Reference Guide, an online book.

Place and Route (FPGAS)

After an FPGA design has undergone the necessary translation to
bring it into the NCD (Native Circuit Description) format, it is ready
to place and route. This phase is done by PAR (Xilinx's Place and
Route program). PAR takes an NCD file, places and routes the design,
and produces an NCD file, which is used by the bitstream generator
(BitGen). The output NCD file can also act as a guide file when you
place and route the design again after you make minor changes to it.

In the Xilinx Development System, PAR places and routes a design
using a combination of two methods.

e Cost-based — This means that placement and routing are
performed using various cost tables which assign weighted
values to relevant factors such as constraints, length of connec-
tion and available routing resources.

Xilinx Development System

Design Implementation

* Timing-Driven — PAR places and routes a design based upon
your timing constraints.

For a complete description of PAR, see the “PAR—Place and
Route” chapter in the Development System Reference Guide.

CPLD Fitter

The CPLD Fitter implements designs for the XC9500/ XL devices. The
Fitter outputs the files listed below.

* The Fitting report (design_name.rpt) lists a summary and detailed
information about the logic and 1/0 pin resources used by the
design, including the pinout, error and warning messages, and
Boolean equations representing the implemented logic.

» The Static timing report (design_name.tim) shows a summary
report of worst-case timing for all paths in the design; it option-
ally includes a complete listing of all delays on each individual
path in the design.

* The Guide file (design_name.gyd) contains all resulting pinout
information required to reproduce the current pinout if you run
the Lock Pins command before the next time the fitter is run for
the same design. (The Guide file is written only upon successful
completion of the fitter.) Multi-Pass Place and Route and Guide
Files are not accessible via the Foundation Project Manager.
Access these functions through the standalone Design Manager
(Start - Programs - Accessories — Design
Manager .

* The Programming file (design_name.jed for XC9000) is a JEDEC-
formatted (9k) programming file to be downloaded into the
CPLD device.

» Timing simulation database (design_name.nga) is a binary data-
base representing the implemented logic of the design, including
all delays, consisting of Xilinx simulation model primitives
(simprims).

For detailed information about implementing CPLD designs, refer to
the CPLD Design Techniques and CPLD Flow Tutorial in the Foundation
on-line help.

Foundation Series 4 User Guide 11-25

Foundation Series 4 User Guide

Configure (FPGAS)

After the design has been completely routed, you must configure the
device so that it can execute the desired function. Xilinx’s bitstream
generation program, BitGen, takes a fully routed NCD (Circuit
Description) file as its input and produces a configuration
bitstream—a binary file with a .bit extension. The BIT file contains all
of the configuration information from the NCD file defining the
internal logic and interconnections of the FPGA, plus device-specific
information from other files associated with the target device. The
binary data in the BIT file can then be downloaded into the FPGA's
memory cells, or it can be used to create a PROM file.

For a complete description of BitGen, see the “BitGen” chapter in the
Development System Reference Guide. This chapter also explains how to
use the command line to run BitGen.

Within the Flow Engine, BitGen runs as part of the Configure process.
For details consult the various configuration template options in the
“Working with Templates” section in the “Using the Design
Manager” chapter of the Design Manager/Flow Engine Guide.

Bitstream (CPLDs)

At the end of a successful CPLD implementation, a .jed programming
file is created. The iIMPACT uses this file to configure XC9500/XL/
XV CPLD devices.

Implementation Reports

The implementation reports provide information on logic trimming,
logic optimization, timing constraint performance, and 1/0 pin
assignment. To access the reports, select the Reports tab from Project
Flow area of the Project Manager. Double click the Implementation
Report Files icon to access the implementation reports.

The Implementation Log on the Reports tab is a record of all the
implementation processing.

11-26 Xilinx Development System

Design Implementation

Floe \ Cartents " Reports \

Pre-Synthesis PostSynthesis Implementation Implementation
Repaort Report Repart Files Laog File

Import EDIF
netlist

Export netlist

Double click the Implementation Report Files icon to access the
Report Browser shown in the following figures. To open a particular

report, double click its icon.

ﬂ Report Browser - watch_sc[verl ->revl] il
ki
Transzlation Report Mavigation Report tap Report
Flace & Route Fad Report Azynchronous
Repart Delay Report
[&)
Fost Layout Timing Post Layout Timing Bitgen Report
Repart Repart
Figure 11-10 Report Browser - FPGAs
ﬁ Report Browser - jc2_sch{verl-»revl) ﬂ

i

Translation Repart Navigation Repart

Post Lapout Timing
Report

Fitting Repart

Figure 11-11 Report Browser - CPLDs

Foundation Series 4 User Guide

11-27

Foundation Series 4 User Guide

11-28

Translation Report

The translation report (.bld) contains warning and error messages
from the three translation processes: conversion of the EDIF or XNF
style netlist to the Xilinx NGD netlist format, timing specification
checks, and logical design rule checks. The report lists the following:

Missing or untranslatable hierarchical blocks
Invalid or incomplete timing constraints

Output contention, loadless outputs, and sourceless inputs

Map Report (FPGAS)

The Map Report (.mrp) contains warning and error messages
detailing logic optimization and problems in mapping logic to phys-
ical resources. The report lists the following information:

Erroneously remov ed logic. Sourceless and loadless signals can
cause a whole chain of logic to be removed. Each deleted element
is listed with progressive indentation, so the origins of removed
logic sections are easily identifiable; their deletion statements are
not indented.

Logic that has been added or expanded to optimize speed.

The Design Summary section lists the number and percentage of
used CLBs, I10Bs, flip-flops, and latches. It also lists occurrences
of architecturally-specific resources like global buffers and
boundary scan logic.

Note The Map Report can be very large. To find information, use key
word searches. To quickly locate major sections, search for the string

‘, because each section heading is underlined with dashes.

Place and Route Report (FPGAS)

The Place and Route Report (.par) contains the following informa-
tion.

The overall placer score which measures the “goodness” of the
placement. Lower is better. The score is strongly dependent on
the nature of the design and the physical part that is being
targeted, so meaningful score comparisons can only be made
between iterations of the same design targeted for the same part.

Xilinx Development System

Design Implementation

» The Number of Signals Not Completely Routed should be zero
for a completely implemented design. If non-zero, you may be
able to improve results by using re-entrant routing or the multi-
pass place and route flow.

* Thetiming summary at the end of the report details the design’s
asynchronous delays.

Pad Report (FPGAS)

The Pad Report lists the design’s pinout in three ways.
» Signals are referenced according to pad numbers.
* Pad numbers are referenced according to signal names.

* PCF file constraints are listed. This section of the Pad Report can
be cut and pasted into the .pcf file after the SCHEMATIC END;
statement to preserve the pinout for future design iterations.

Fitting Report (CPLDs)

The Fitting Report (design_name.rpt) lists summary and detailed
information about the logic and 1/0 pin resources used by the
design, including the pinout, error and warning messages, and
Boolean equations representing the implemented logic.

Post Layout Timing Report

A timing summary report shows the calculated worst-case timing for
the logic paths in your design.

Additional Implementation Tools

From the Project Manager’s Tools menu, you can select Tool s -
| mpl ement at i on to access the additional implementation tools
described below.

Constraints Editor

You can invoke the Xilinx implementation Constraints Editor by
selecting Tool s - Inplenmentation - Constraints
Edi t or.

Foundation Series 4 User Guide 11-29

Foundation Series 4 User Guide

11-30

The Xilinx Constraints Editor is a Graphical User Interface (GUI) that
provides you with a convenient way to create user constraints files
without having to learn constraints syntax.

The Constraints Editor interface consists of a main window, three tab
windows for creating global, port, and advanced constraints, and a
number of dialog boxes.

Information on the Xilinx Constraints Editor can be found in the
Constraints Editor Guide, an online book.

Flow Engine Controls

You can invoke and run the Flow Engine manually by selecting
Tools — Inplenentation — Flow Engi ne. Be aware that
when invoked from the Tools menu, Flow Engine processing is not
under Project Management control.

Controlling Flow Engine Steps

If you want to implement your design in separate steps instead of
automatically with the Implementation phase button, use the
following procedure.

1. Create a new revision by selecting Proj ect - Create Revi -
si on. In the New Revision dialog box, you can accept the
defaults or change the target device, speed, and revision name.
Click OK to create the revision.

2. In the Project Manager Versions tab, select the revision.

3. SelectTools - Inplenentation - Flow Engi ne from the
Project Manager’s menu bar.

4. If you want to modify the implementation option settings, select
Setup - Opti ons from the menu in the Flow Engine to access
the Options dialog box.

5. Set the appropriate options in the Options dialog box.

Refer to the “ Selecting Options’ section for information on the
Options dialog box.

6. Click OKto return to the Flow Engine.
7. To start the Flow Engine, do one of the following.

¢ Inthe Flow Engine window, select Fl ow - Run.

Xilinx Development System

Design Implementation

¢ SelectFl ow — St ep to single step through the implementa-
tion process.

Optionally, you can select Setup - Stop After and select
where to stop processing.

Running Re-Entrant Routing on FPGAs

You can use re-entrant routing to further route an already routed
design. The design maintains its current routing and additional
routing is added. You can reroute connections by running cost-based
cleanup, delay-based cleanup, and additional re-entrant route passes.
Cleanup passes attempt to minimize the delays on all nets and
decrease the number of routing resources used. Cost-based cleanup
routing is faster while delay-based cleanup is more intensive.

Re-entrant routing offers the following advantages.

e Cleanup passes significantly reduce delays, especially on non-
timing driven runs.

e For timing-driven runs, cleanup passes can improve timing on
elements not covered by timing constraints.

e For designs which do not meet timing goals by a narrow margin,
delay-based cleanup passes can reorganize routing so that addi-
tional re-entrant route passes enable the design to meet timing
goals.

Note Re-entrant Routing is supported for the FPGA device families
only.

Use the following procedure to perform Re-Entrant Routing.

1. Inthe Project Manager Versions tab, select an implemented revi-
sion.

2. SelectTools - Inplenentation - Flow Engi ne fromthe
Project Manager’s menu bar.

3. SelectSetup - FPGA Re-entrant Route from the Flow
Engine to access the FPGA Re-entrant Route dialog box.

Foundation Series 4 User Guide 11-31

Foundation Series 4 User Guide

11-32

FPGA Re-entrant Route x|
v i
— Re-entrant Foute O ptions Cancel |

Fun I'I_:II Cost Based Clean-up Passes Help |

Fiun ID ill Delay Based Clean-up Paszes
Fiun I.t’-‘«utn j Fe-entratt Foute Paszes

¥ Uze Timespecs During Re-entrant Route

Select Al | ow Re-entrant Routi ng to route the previously
routed design again.

Select a number between 1 and 5 for the Run _ Cost - Based
Cl eanup Passes field.

These cleanup passes reroute nets if the new routing uses less
costly resources than the original configuration. Cost is based on
pre-determined cost tables. Cost-based cleanup usually has a
faster runtime than the delay-based cleanup, but does not reduce
delays as significantly.

Note If you run both cost-based and delay-based cleanup passes,
the cost-based passes run first.

Select a number between 1 and 5 for the Run _ Del ay- Based
Cl eanup Passes field.

These cleanup passes reroute nets if new routing will minimize
the delay for a given connection. Delay-based cleanup usually
produces faster in-circuit performance.

Select a number between 1 to 2000 for the Run _ Re-entrant
Rout e Passes field to run additional re-entrant routing passes.

These passes are either timing driven or non-timing driven
depending on whether you specified timing constraints.

Select Use Ti mespecs During Re-entrant Routeifyou
want to reroute the design within the specified timing constraints
in your design file.

Xilinx Development System

Design Implementation

9. Click OK. This causes the Place and Route icon in the Flow Engine
to show a loop back arrow and the Re-Entrant route label.

10. If you are specifying timing or location constraints, you have the
option to relax them to give PAR more flexibility. If you modify
the UCF file, you must step backwards with the Flow Engine and
re-run Translation in order to incorporate the changes.

Since your design is already implemented, step back to the begin-
ning of Place and Route using the Step Backward button at the
bottom of the Flow Engine, and then click the button to start
again.

Configuring the Flow

You can configure the implementation flow and control certain
aspects of the Flow Engine interface. To configure the flow, use the
following procedure.

1. Inthe Project Manager Versions tab, select an implemented revi-
sion (or create a new revision).

2. SelectTools - Inplenentation - Flow Engi ne from the
Project Manager’s menu bar.

3. From the Flow Engine menu, select Set up - Advanced to
access the Advanced dialog box.

Advanced

Implementation State: [Rew T A 0

[T UseFlashing to Indicate Heartbeat ez

Help

i}

4. Select a state from the Implementation State list box to update the
Flow Engine as to which implementation state was last
completed.

Note The advanced setting is not used in normal Flow Engine
use. It is used if some processing on the design was performed
outside of the Project Manager or Flow Engine framework, such
as in the FPGA Editor. It can also be used if you ran the Flow

Foundation Series 4 User Guide 11-33

Foundation Series 4 User Guide

11-34

Engine Step Back button by mistake and want to reset the imple-
mentation state to its original state.

5. SelectUse Flashing to Indicate Heartbeat toenable
flashing icons to indicate that a process step is being processed. A
trade-off of this feature is that flashing icons slow down the
implementation process.

6. Click OK

Floorplanner

The Floorplanner is a graphical placement tool that gives you control
over placing a design into a target FPGA. You can access the Floor-
planner through Tool s — | npl enentati on — Fl oorpl anner
on the Project Manager’s menu bar.

Floorplanning is an optional methodology to help you improve
performance and density of a fully, automatically placed and routed
design. Floorplanning is particularly useful on structured designs
and data path logic. With the Floorplanner, you see where to place
logic in the floorplan for optimal results, placing data paths exactly at
the desired location on the die.

With the Floorplanner, you can floorplan your design prior to or after
running PAR. In an iterative design flow, you floorplan and place and
route, interactively. You can modify the logic placement in the Floor-
plan window as often as necessary to achieve your design goals. You
can save the iterations of your floorplanned design to use later as a
constraints file for PAR.

The Floorplanner displays a hierarchical representation of the design
in the Design Hierarchy window using hierarchy structure lines and
colors to distinguish the different hierarchical levels. The Floorplan
window displays the floorplan of the target device into which you
place logic from the hierarchy. The following figure shows the
windows on the PC version.

Logic symbols represent each level of hierarchy in the Design Hier-
archy window. You can modify that hierarchy in the Floorplanner
without changing the original design.

You use the mouse to select the logic from the Design Hierarchy
window and place it in the FPGA represented in the Floorplan
window.

Xilinx Development System

Design Implementation

Alternatively, you can invoke the Floorplanner after running the
automatic place and route tools to view and possibly improve the
results of the automatic implementation.

FPGA Editor

The FPGA Editor is a graphical application for displaying and config-
uring FPGAs. You can use the FPGA Editor to place and route critical
components before running the automatic place and route tools on
your designs. You can also use the FPGA Editor to manually finish
placement and routing if the routing program does not completely
route your design. In addition, the FPGA Editor reads from and
writes to the Physical Constraints File (PCF).

For a description of the FPGA Editor, see the FPGA Editor Guide, an
online book.

You can access the FPGA Editor through Tool s - | npl enent a-
tion - FPGA Editor onthe Project Manager’s menu bar.

CPLD ChipViewer

The ChipViewer provides a graphical view of the CPLD fitting
report. With this tool you can examine inputs and outputs, macrocell
details, equations, and pin assignments. You can examine both pre-
fitting and post-fitting results.

More information on using the CPLD ChipViewer is available in that
tool’s online help (Tool s - I nplenentati on —» CPLD Chi p-
Vi ewer - Hel p)or from the Umbrella Help menu accessed by
Hel p - Foundation Help Contents - Advanced Tool s
- Chi pVi ewer.

Locking Device Pins

You can automatically generate pin locking constraints in your UCF
file for use with other Xilinx implementation tools. Pinout informa-
tion is taken from a placed NCD file for FPGAs or a fitted GYD file

for CPLDs.

To lock device pins, do the following.

1. From the Versions tab in the Project Manager window, select an
implementation revision.

Foundation Series 4 User Guide 11-35

Foundation Series 4 User Guide

2. SelectTools - Inplementation - Lock Device Pins
from the Project Manager menu bar.

3. When the Lock Pins Status confirmation dialog box appears, click
OKor click Vi ew Lock Pins Report toview the report.

Pin locking constraints created with this command are added to your
UCEF file in the PINLOCK section.

If you want to view the report after you have dismissed the Lock Pins
Status dialog box, use Tool s - I nplenmentation - Lock
Pi ns Report from the Project Manager.

11-36 Xilinx Development System

Chapter 12

Verification and Programming

This chapter contains the following sections.
o “Overview”

* “Timing Simulation”

* “Timing Analyzer”

* “In-Circuit Verification”

* “Downloading a Design”

Overview

Design verification is the process of testing the functionality and
performance of your design. Design verification should occur
throughout your design process. Foundation supports three comple-
mentary methods for design verification. These are described below.

e Simulation

You can perform simulations to determine if the timing require-
ments and functionality of your design have been met.

¢ Functional Simulation can be performed in Schematic Flow
projects immediately after design entry and in HDL Flow
projects after synthesis. Refer to the“Functional Simulation
chapter for information on Functional Simulation.

¢ Timing Simulation is performed during the Implementation
phase. The“Timing Simulation” section of this chapter
discusses design verification using Timing Simulation.

» Static timing analysis

Static timing analysis is best for quick timing checks of your
design.

Foundation Series 4 User Guide — PN Online 12-1

Foundation Series 4 User Guide

¢+ For Foundation Express users, the Express Time Tracker
provides post-synthesis, pre-implementation timing analysis
for HDL Flow projects. Refer to “Express Time Tracker”
section of the “Design Methodologies - HDL Flow” chapter
for information.

¢ For Schematic Flow projects and HDL Flow projects, static
timing analysis can be done at two different stages of the
Implementation phase for FPGA devices: after Map or after
Place and Route. It can be done after Fit for CPLDs. Refer to
the “Timing Analyzer” section in this chapter for information
on static timing analysis within the Implementation phase.

* In-circuit verification

As a final test, you can verify how your design performs in the
target application. In-circuit verification tests the circuit under
typical operating conditions. To perform in-circuit verification,
you download your design bitstream into a device with the
Xilinx MultiLINX cable. Refer to “In-Circuit Verification” in the
Device Programming section of this chapter for information.

When the design meets your requirements, the last step in its
processing is downloading the design and programming the target
device.

Timing Simulation

12-2

Timing simulation verifies that your design runs at the desired speed
for your device under worst-case conditions. It can verify timing rela-
tionships and determine the critical paths for the design under worst-
case conditions. It can also determine whether the design contains
set-up or hold violations.

The procedures for functional and timing simulation are nearly iden-
tical. Functional simulation is performed before the design is placed
and routed and simulates only the functionality of the logic in the
design. Timing simulation is performed after the design is placed and
routed and uses timing information based on the delays in the placed
and routed design. Timing simulation describes the circuit behavior
far more accurately than Functional simulation.

Like functional simulation, you must use input stimulus to run the
simulation. To create stimulus, refer to the*“Functional Simulation”
chapter.

Xilinx Development System

Verification and Programming

Note Naming the nets during your design entry is very important for
both functional and timing simulation. This allows you to find the
nets in the simulations more easily than looking for a machine-gener-
ated name

Generating a Timing-annotated Netlist

Before performing timing simulation on your design, you must
generate a timing-annotated netlist by implementing the design as
follows.

1. Within the Project Manager, click the Implementation icon.

a) For Schematic Flow projects, this opens the Implement
Design dialog box.

b) For HDL Flow projects, this opens the Synthesis/Implemen-
tation dialog box.

2. Click the Opt i ons button. This opens the Options dialog box.

3. Verify that the Simulation Template is Foundati on EDI F.
(Change it to Foundat i on EDI F, if necessary.)

4. Implement the design.

a) For Schematic Flow projects, click Run in the Implement
Design dialog box.

b) For HDL Flow projects, click OK in the Synthesis/Implemen-
tation dialog box.

Basic Timing Simulation Process

After the design has been implemented and timing simulation data
produced as described in“Timing Simulation” section, you can
perform a timing simulation. This section describes the basic steps to
perform timing simulation.

1. Open the Timing Simulator by clicking the Timing Simulation
icon on the Verification phase button.

B » W » B K
IMPLEMENTATION VERIF
' Timing Simulation

Foundation Series 4 User Guide 12-3

Foundation Series 4 User Guide

2. The implementation timing netlist is loaded into the simulator.
The Waveform View window displays on top of the Logic Simu-
lator window.

3. Simulate the design as described in the“Functional Simulation”
chapter. Although the procedure is the same for functional and
timing simulation, you are now simulating based on a design
with worst-case delays in the timing simulator.

4. Use the controls from the Simulator window to verify your
design.

Timing Analyzer

The Timing Analyzer performs static timing analysis of an FPGA or
CPLD design. A static timing analysis is a point-to-point analysis of a
design network. It does not include insertion of stimulus vectors.The
FPGA design must be mapped and can be partially or completely
placed, routed, or both. The CPLD design must be completely placed
and routed (fitted).

The Timing Analyzer verifies that the delay along a given path or
paths meets your specified timing requirements. It organizes and
displays data that allows you to analyze the critical paths in a circuit,
the cycle time of the circuit, the delay along any specified path, and
the paths with the greatest delay. It also provides a quick analysis of
the effect of different speed grades on the same design.

The Timing Analyzer works with synchronous systems composed of
flip-flops and combinatorial logic. In synchronous designs, the
Timing Analyzer takes into account all path delays, including clock-
to-Q and setup requirements while calculating the worst-case timing
of the design. However, the Timing Analyzer does not perform setup
and hold checks. You must use a simulation tool for these checks.

The Timing Analyzer creates timing analysis reports, which you
customize by applying filters with the Path Filters menu commands.

For a complete description of the Timing Analyzer, see the Timing
Analyzer Guide, an online manual.

Post Implementation Static Timing Analysis

Post-implementation timing reports incorporate all delays to provide
a comprehensive timing summary. If an implemented design has met

12-4 Xilinx Development System

Verification and Programming

all of your timing constraints, then you can proceed by creating
configuration data and downloading a device. On the other hand, if
you identify problems in the timing reports, you can try fixing the
problems by increasing the placer effort level or using re-entrant
routing. You can also redesign the logic paths to use fewer levels of
logic, tag the paths for specialized routing resources, move to a faster
device, or allocate more time for the paths.

Edit the Implementation template (from the Project Manager, select

| mpl enent ati on — Opti ons) to modify the Place & Route effort
level. For information on re-entrant routing, see the “Additional
Implementation Tools” section of the “Design Implementation”
chapter.

Summary Timing Reports

Summary reports show timing constraint performance and clock
performance. Implementing a design in the Flow Engine can auto-
matically generate summary timing reports. To create summary
timing reports, perform the following steps.

Summary reports show timing constraint performance and clock
performance. Implementing a design in the Flow Engine can auto-
matically generate summary timing reports. To create summary
timing reports, perform the following steps:

1. Open the Options dialog box (I npl ementati on - Opti ons)
from the Project Manager) and select Edi t Opt i ons for the
Implementation template.

2. Select the Timing Reports tab.

3. Forapost-map report, select Pr oduce Logi ¢ Level Tim ng
Report . For a post-PAR report select Pr oduce Post Layout
Ti m ng Report.

4. To modify the reports to highlight path delays or paths that have
failed timing constraints, select a report format.

5. After MAP or PAR has completed, the respective timing reports
appear in the Report Browser.

Foundation Series 4 User Guide 12-5

Foundation Series 4 User Guide

Detailed Timing Analysis

To perform detailed timing analysis, select Tool s - Si rmul ati on/
Verification - Interactive Tinm ng Anal yzer from the
Project Manager menu. You can specify specific paths for analysis,
discover paths not affected by timing constraints, and analyze the
timing performance of the implementation based on another speed
grade. For path analysis, perform the following:

1. Choose sources. From the Timing Analyzer menu, select Pat h
Filters — CustomFilters - Select Sources.

2. Choose destinations. From the Timing Analyzer menu, select
Path Filters - CustomFilters - Select Destina-
tions.

3. To create a report, select one of the options under the Analyze
menu.

To switch speed grades, select Opt i ons - Speed G ade. Aftera
new speed grade is selected, all new Timing Analyzer reports will be
based on the design running with new speed grade delays. The
design does not have to be re-implemented, because the new delays
are read from a separate data file.

In-Circuit Verification

As a final test, you can verify how your design performs in the target
application. In-circuit verification tests the circuit under typical oper-
ating conditions. Because you can program your Xilinx devices
repeatedly, you can easily load different iterations of your design into
your device and test it in-circuit.

To verify your FPGA designs in-circuit, download your design
bitstream into a device with the Xilinx MultiLINX cable.

Refer to the following section for more information on programming
your target device.

Downloading a Design

12-6

To download your design, you must successfully run implementation
to create a configuration bitstream. Xilinx provides the MultiLINX
cable, or the Parallel Cable 111, depending on which development
system you are using, to download the bitstream to a device.

Xilinx Development System

Verification and Programming

You can use the MultiLINX cable to read back and verify configura-
tion data. Detailed cable connection and daisy-chain information is
provided in the iMPACT User Guide.

IMPACT

You can use iIMPACT to download, read back and verify design
configuration data, and to perform functional tests on any device.

iIMPACT uses sequences of instructions to perform programming and
verification operations. Some of the device operation options are
listed below

Program. Downloads the contents of the JEDEC, BIT or Prom file
to the device programming registers.

Verify. Reads back the contents of the device programming regis-
ters and compares them with the JEDEC, BIT or Prom file

Erase. Clears device configuration information.

Functional Test. Applies user-specified functional vectors from
the JEDEC file to the device using the JTAG INTEST instruction,
comparing results obtained against expected values. Reports any
differences to the user.

Blank Check. Checks whether a device has been programmed or
is erased.

Readback Jedec. Reads back the contents of device programming
registers and creates a new JEDEC/Prom file with the results.

Get Device ID. Reads the contents of the JTAG IDCODE register.
Displays contents for the user.

Get Device Checksum. Reads back the contents of device
programming registers and calculates a checksum for compar-
ison against the expected value.

Get Device Signature/Usercode. This value is selected by the
user during fitting. The specified value is translated to binary
values in the JEDEC file. During device programming these
values are loaded into the JTAG USERCODE register. This func-
tion reads the contents of the USERCODE register and displays
the result. For XC1800 Proms, 8 digit hex usercode can be speci-
fied at program time.

Foundation Series 4 User Guide 12-7

Foundation Series 4 User Guide

» Bypass. Ignores this device when addressing devices in the JTAG
boundary scan chain. This option is only available through chain
operations.

Refer to the iIMPACT User Guide in the online book collection for
complete information on iIMPACT.

PROM File Formatter

12-8

The PROM File Formatter provides a graphical user interface that
allows you to format BIT files into a PROM file compatible with
Xilinx and third-party PROM programmers. It is also used to concate-
nate multiple bitstreams into a single PROM file for daisy chain
applications. This program also enables you to take advantage of the
Xilinx FPGA reconfiguration capability, as you can store several
applications in the same PROM file.

PROM files are also compatible with the IMPACT software. You can
use the iIMPACTIMPACT to download a PROM file to a single FPGA
or to a daisy chain of FPGA devices.

A Xilinx PROM file consists of one or more data streams. In this
context, a data stream represents all the configuration data required
to implement a given application. Each data stream contains one or
more BIT files and once saved, will have a separate preamble and
length count.

The PROM file can be formatted in one of three industry standard
formats: Intel MCS-86®, Tektronix TEKHEX, and Motorola EXOR-
macs.

Note You can also format BIT files into a HEX format file. This file
type is not considered a PROM file since you cannot use it to program
PROM devices. A HEX format file is ordinarily used as input to user-
defined programs for microprocessor downloads.

You can store PROM files in PROM devices or on your computer. In
turn, you can use the files to program your FPGA devices either from
a PROM device on your board or from your computer using a serial
or parallel cable. Refer to the IMPACT User Guide for more informa-
tion.

Refer to the PROM File Formatter Guide in the online book collection
for complete information on the PROM File Formatter.

Xilinx Development System

Appendix A

Instantiated Components

This appendix lists the Xilinx Unified Library components most
frequently instantiated in synthesis designs for FPGAs. This
appendix contains the following sections:

e “Library/Architecture Definitions”

e “STARTUP Component”

« “BSCAN Component”

« “READBACK Component”

* “RAM and ROM”

+ “Global Buffers”

e “Fast Output Primitives (XC4000X only)”
« “lOB Components”

e “Clock Delay Components”

The function of each component is briefly described and the pin
names are supplied, along with a listing of the Xilinx product families
involved. Associated instantiation can be used to include the compo-
nent in an HDL design. For complete lists of the Xilinx components,
see the online Constraints Guide.

Note To check which components can be instantiated for a design for
a given device, go to c:./fndtn/synth/lib/device_name (if Foundation
is not installed at c:/fndtn, go to where you installed it). Compare the
list of components shown in the device_name (xc4000e, virtex, for
example) directory against the Libraries Guide. Items that match can
be instantiated.

Foundation Series 4 User Guide — PN Online A-1

Foundation Series 4 User Guide

Library/Architecture Definitions

A-2

The following subsections describe which Xilinx architectural fami-
lies are included in each library.

XC4000E Library

Wherever XC4000E is mentioned, it includes the XC4000E and
XC4000L families. The XC4000L is identical in architecture and
features to the XC4000E but operates at a nominal supply voltage of
3.3V

XC4000X Library

Information under the title XC4000X pertains to the XC4000EX,
XC4000XL, XC4000XV, and XC4000XLA families. The XC4000XL is
identical in architecture and features to the XC4000EX but operates at
a nominal supply voltage of 3.3 V. The XC4000XV has identical
library symbols to the XC4000EX and XC4000XL but operates at a
nominal supply voltage of 2.5 V and includes additional features (the
DRIVE attribute).

XC9000 Library

The title XC9000 pertains to the XC9500, XC9500XL, and XC9500XV
CPLD families.

Spartan Library
The Spartan library pertains to the Spartan family XCS* devices.

SpartanXL Library

The SpatanXL library pertains to the SpartanXL family XCS*XL
devices.

Virtex Library
The Virtex Library pertains to the Virtex family XCV* devices.

Xilinx Development System

STARTUP Component

The STARTUP component is typically used to access the global set/
reset and global 3-state signals. STARTUP can also be used to access
the startup sequence clock.

For information on the startup sequence and the associated signals,
see the Programmable Logic Data Book and the online Libraries Guide.

Table A-1 Design STARTUP Components

Name Library Description Outputs Inputs
STARTUP XC4000E | Used to connect Global Set/Reset, | Q2, Q3, GSR,
XC4000X | global 3-state control, and user Q1Q4, GTS, CLK
Spartan configuration clock. DONEIN
SpartanXL
STARTUP_ Virtex Used to connect Global Set/Reset, GSR,
VIRTEX global 3-state control, and user GTS, CLK
configuration clock.

* For 5200, GSR pin is GR

STARTBUF Component

The STARTBUF component allows you to functionally simulate the
STARTUP component. As with STARTUP, a STARTBUF component
instantiated in your design specifies to the implementation tools to
use GSR. Using the STARTBUF component in VHDL designs is the

preferred method for using GSR/GR.
Table A-2 STARTBUF Library Component

Name Library Description Outputs Inputs
STARTBUF XC4000E |Used to connect Global Set/ | GSROUT, GSRIN,
XC4000X |Reset, global tristate control, |GTSOUT, GTSIN,
Spartan and user configuration clock. | Q20UT, CLKIN
SpartanXL Q30UT,
Q1Q40UT,
DONEINOUT

Foundation Series 4 User Guide A-3

Foundation Series 4 User Guide

BSCAN Component

To use the boundary-scan (BSCAN) circuitry in a Xilinx FPGA, the
BSCAN component must be present in the input design. The TDI,
TDO, TMS, and TCK components are typically used to access the
reserved boundary scan device pads for use with the BSCAN compo-
nent but can be connected to user logic as well. For more information
on the BSCAN component, the internal boundary scan circuitry, and
the directional properties of the four reserved boundary scan pads,
refer to Programmable Logic Data Book and the online Libraries Guide.

Table A-3 Boundary Scan Components

Name Library Description Outputs Inputs
BSCAN XC4000E | Indicates that the boundary scan | TDO, TDI,
XC4000X |logic should be enabled after the DRCK, TMS,
Spartan FPGA has been configured. IDLE, TCK,
SpartanXL SEL1, TDO1,
SEL2 TDO2
BSCAN_ Virtex Used to create internal boundary |TDO1, TDO1,
VIRTEX scan chains in a Virtex device. TDO2 TDO2
TDI XC4000E | Connects to the BSCAN TDI input. |1 —
XC4000X |Loads instructions and data on
Spartan each low-to-high TCK transition.
SpartanXL
TDO XC4000E | Connects to the BSCAN TDO — O
XC4000X |output. Provides the boundary
Spartan scan data on each low-to-high TCK
SpartanXL |transition.
TMS XC4000E | Connects to the BSCAN TMS I —
XC4000X |input. It determines which
Spartan boundary scan is performed.
SpartanXL
TCK XC4000E | Connects to the BSCAN TCK I —
XC4000X |input. Shifts the serial data and
Spartan instructions into and out of the
SpartanXL |boundary scan data registers.
A-4 Xilinx Development System

READBACK Component

To use the dedicated readback logic in a Xilinx FPGA, the READ-
BACK component must be inserted in the input design. The MDO,
MD1, and MD2 components are typically used to access the mode
pins for use with the readback logic but can be connected to user logic
as well. For more information on the READBACK component, the
internal readback logic, and the directional properties of the three
reserved mode pins, see the Programmable Logic Data Book and the
online Libraries Guide.

Table A-4 Readback Components

Name Library Description Outputs Inputs
CAPTURE_ Virtex Controls when to capture register | — CAP,
VIRTEX information for readback. CLK
READBACK | XC4000E | Accesses the bitstream readback DATA, CLK,
XC4000X | function. A low-to-high transition |RIP TRIG
Spartan on the TRIG input initiates the
SpartanXL |readback process.
MDO XC4000E | Connects to the Mode 0 (MO) input |1 —
XC4000X | pin, which is used to determine the
configuration mode.
MD1 XC4000E | Connects to the Mode 1 (M1) input |— (0]
XC4000X | pin, which is used to determine the
configuration mode.
MD2 XC4000E | Connects to the Mode 2 (M2) input || —
XC4000X | pin, which is used to determine the
configuration mode.
RAM and ROM

Foundation Series 4 User Guide

Some of the most frequently instantiated library components are the
RAM and ROM primitives. Because most synthesis tools are unable
to infer RAM or ROM components from the source HDL, the primi-
tives must be used to build up more complex structures. The
following list of RAM and ROM components is a complete list of the
primitives available in the Xilinx library. For more information on the

A-5

Foundation Series 4 User Guide

components, see the Programmable Logic Data Book and the online
Libraries Guide.

Table A-5 Memory Components

Name Library Description Outputs |Inputs
RAM16X1 XC4000E | A 16-word by 1-bit static read-write | O D,
XC4000X |random-access memory compo- A3,
nent. A2,
Al,
A0,
WE
RAM16X1D | XC4000E |A 16-word by 1-bit dual port SPO, D,
XC4000X |random access memory with DPO A3,
Spartan synchronous write capability and A2,
SpartanXL | asynchronous read capability. Al,
Virtex A0,
DPRA3,
DPRA2,
DPRAL,
DPRAO,
WE,
WCLK
RAM16X1S XC4000E | A 16-word by 1-bit static random O D,
XC4000X |access memory with synchronous A3,
Spartan write capability and asynchronous A2,
SpartanXL | read capability. Al,
Virtex AOQ,
WE,
WCLK
RAM32X1 XC4000E | A 32-word by 1-bit static read-write | O D,
XC4000X |random access memory. A0,
Al,
A2,
A3,
A4,
WE

A-6 Xilinx Development System

Table A-5 Memory Components

Name

Library

Description

Outputs

Inputs

RAM32X1S

XC4000E
XC4000X
Spartan
SpartanXL
Virtex

A 32-word by 1-bit static random
access memory with synchronous
write capability and asynchronous
read capability.

O

A4,
A3,
A2,
Al
A0,
WE,
WCLK

RAMB4_Sn

Virtex

4096-Bit dedicated random access
memory blocks with synchronous
write capability

DOA
DOB

WEA,
ENA,
RSTA,
CLKA,
ADDRA,
DIA

RAMB4_
Sn_Sn

Virtex

4096-Bit dual-ported dedicated
random access memory blocks with
synchronous write capability

DOA
DOB

WEA,
ENA,
RSTA,
CLKA,
ADDRA,
DIA,
WEB,
ENB,
RSTB,
CLKEB,
ADDRB,
DIB

ROM16X1

XC4000E
XC4000X
Spartan
SpartanXL

A 16-word by 1-bit read-only
memory component.

A3,
A2,
Al,
A0

ROM32X1

XC4000E
XC4000X
Spartan
SpartanXL

A 32-word by 1-bit read-only
memory component.

A4,
A3,
A2,
Al,
A0

Foundation Series 4 User Guide

A-7

Foundation Series 4 User Guide

Global Buffers

Each Xilinx PLD device has multiple styles of global buffers; the
XC4000EX devices have 20 actual global buffers—eight BUFGLSs,
eight BUFEs, and four BUFFCLKSs. For some designs it may be neces-
sary to use the exact buffer desired to ensure appropriate clock distri-
bution delay.

For most designs, the BUFG, BUFGS, and BUFGP components can be
inferred or instantiated, thus allowing the design implementation
tools to make an appropriate physical buffer allocation. For more
information on the components, see the Programmable Logic Data Book.

Table A-6 Global Buffer Components

Name Library Description Outputs Inputs
BUFG XC4000E | An architecture-independent 0] |
XC4000X | global buffer, distributes high fan-

XC9000 out clock signals throughout a PLD
Spartan device.
SpartanXL
Virtex
BUFGP XC4000E | A primary global buffer, distrib- @] |
Spartan utes high fan-out clock or control
Virtex signals throughout PLD devices.
BUFGS XC4000E | A secondary global buffer, distrib- | O |
Spartan utes high fan-out clock or control
signals throughout a PLD device.
BUFGLS XC4000X | Global low-skew buffer. BUFGLS | O |
SpartanXL | components can drive all flip-flop
clock pins.
BUFGE XC4000X | Global early buffer. XC4000EX @] |
devices have eight total, two in
each corner. BUFGE components
can drive all clock pins in their
corner of the device.
BUFFCLK XC4000X | Fast clocks. XC4000EX devices 0] |
have 4 total, 2 each on the left and
right sides. BUFFCLK components
can drive all IOB clock pins on
their left or right half edge.
A-8 Xilinx Development System

Table A-6 Global Buffer Components

Name Library Description Outputs Inputs
BUFGSR XC9000 Global Set/Reset buffer (@] |
BUFGTS XC9000 Global Tri-State Enable buffer. (@] |

Fast Output Primitives (XC4000X only)

One of the features added to the XC4000X architecture is the fast
output MUX. There is one fast output MUX located in each 10B
which can be used to implement any two input logic functions. Each
component can have zero, one, or two inverted inputs. Because the
output MUX is located in the IOB, it must be connected to the input
pin of either an OBUF or an OBUT. For more information on the
output primitives, see the Programmable Logic Data Book.

Note For information on how to instantiate output MUXs with
inverted inputs, see the Synopsys (XSI) Interface/ Tutorial Guide.

Table A-7 Fast Output Primitives

Name Library Description Outputs Inputs

OAND2 XC4000X |2-input AND gate that is imple- o F,
mented in the output multiplexer 10
of the XC4000EX 10B.

ONAND?2 XC4000X | 2-input NAND gate that is imple- |O F
mented in the output multiplexer 10
of the XC4000EX 10B.

OOR2 XC4000X | 2-input OR gate that is imple- @] F
mented in the output multiplexer 10
of the XC4000EX 10B.

ONOR2 XC4000X | 2-input NOR gate that is imple- O F,
mented in the output multiplexer 10
of the XC4000EX 10B.

OXOR2 XC4000X | 2-input exclusive OR gate that is 0] F
implemented in the output multi- 10
plexer of the XC4000EX IOB.

Foundation Series 4 User Guide A-9

Foundation Series 4 User Guide

Table A-7 Fast Output Primitives

Name Library Description Outputs Inputs

OXNOR2 XC4000X | 2-input exclusive NOR gate thatis | O F,
implemented in the output multi- 10
plexer of the XC4000EX IOB.

OMUX2 XC4000X |2-by-1 MUX implemented in the @] DO,
output multiplexer of the D1,
XC4000EX I10OB. SO

IOB Components

Depending on the synthesis vendor being used, some I0B compo-
nents must be instantiated directly in the input design. Most
synthesis tools support IOB D-type flip-flop inferences but may not
yet support 10B D-type flip-flop inference with clock enables.
Because there are many slew rates and delay types available, there
are many derivatives of the primitives shown. For a complete list of
the 10B primitives, see the online Libraries Guide.

Table A-8 Input/Output Block Components

Name Library Description Outputs Inputs
IBUF XC4000E | Single input buffers. An IBUF o |
XC4000X |isolates the internal circuit from the
XC9000 signals coming into a chip.
Spartan
SpartanXL
OBUF XC4000E | Single output buffers. An OBUF @] |
XC4000X |isolates the internal circuit and
XC9000 provides drive current for signals
Spartan leaving a chip.
SpartanXL
OBUFT XC4000E | Single 3-state output buffer with @] I,
XC4000X | active-low output enable. (3-state T
XC9000 High.)
Spartan
SpartanXL
A-10 Xilinx Development System

Table A-8 Input/Output Block Components

Name Library Description Outputs Inputs
OBUFE XC9000 Single 3-state output buffer with 0] I,
active-high output enable. (3-state T
Low.)

IFD XC4000E |Single input D flip-flop. Q D,
XC4000X C
Spartan
SpartanXL

OFD XC4000E | Single output D flip-flop. Q D,
XC4000X C
Spartan
SpartanXL

OFDT XC4000E | Single D flip-flop with active-high | O D,
XC4000X | 3-state active-low output enable C,
Spartan buffers. T
SpartanXL

IFDX XC4000E |Single input D flip-flop with clock | Q DO,
XC4000X |enable. D1,
Spartan SO
SpartanXL

OFDX XC4000E | Single output D flip-flop with Q D,
XC4000X |clock enable. C,
Spartan CE
SpartanXL

OFDTX XC4000E | Single D flip-flop with active-high | O D,
XC4000X | tristate and active-low output C,
Spartan enable buffers. CE,
SpartanXL T

ILD_1 XC4000E | Transparent input data latch with | Q D,
XC4000X |inverted gate. (Transparent High.) G
Spartan
SpartanXL

Foundation Series 4 User Guide

A-11

Foundation Series 4 User Guide

Clock Delay Components

These components are delay locked loops that are used to eliminate
the clock delay inside the device. The delay locked loop is a digital
variation of the analog phase locked loop.

Table A-9 Clock Delay Component

Name Library Description Outputs Inputs
CLKDLL Virtex Clock delay locked loop used to CLKO, CLKIN,
minimize clock skew. CLK90, CLKFB,
CLK180, |RST
CLK270,
CLS2X,
CLKDV,
LOCKED
CLKDLLHF | Virtex High frequency clock delay locked | CLKO, CLKIN,
loop used to minimize clock skew. |CLK180, |CLKFB,
CLKDV, RST
LOCKED
A-12 Xilinx Development System

Glossary

ABEL

actions

Aldec

aliases

analyze

architecture

ABEL is a high-level language (HDL) and compilation system
produced by Data 1/0 Corporation.

In state machines, actions are HDL statements that are used to make
assignments to output ports or internal signals. Actions can be
executed at several points in a state diagram. The most commonly
used actions are state actions and transition actions. State actions are
executed when the machine is in the associated state. Transition
actions are executed when the machine goes through the associated
transition.

An Electronic Design Automation (EDA) vendor. Aldec provides the
Foundation Project Manager, Schematic Editor, Logic Simulator, and
HDL Editor.

Aliases, or signal groups, are useful for probing specific groups of
nodes.

A process performed to check the syntax of an HDL file.

Architecture is the common logic structure of a family of
programmable integrated circuits. The same architecture can be

Foundation Series 4 User Guide — PN Online Glossary-1

Foundation Series 4 User Guide

attribute

realized in different manufacturing processes. Examples of Xilinx
architectures are the XC4000, Spartan, and XC9500 devices.

Attributes are instructions placed on symbols or nets in a schematic to
indicate their placement, implementation, naming, direction, or other
properties.

binary encoding

BitGen

Using the minimum number of registers to encode a state machine is
called binary, or maximal, encoding, because the registers are used to
their maximum capacity. Each register represents one bit of a binary
number.

The BitGen program produces a bitstream for Xilinx FPGA device
configuration. The BitGen program displays as the Configure step
within the Flow Engine.

Black Box Instantiation

block

breakpoint

buffer

bus

Glossary-2

Instantiation where the synthesizer is not given the architecture or
modules.

A group consisting of one or more logic functions. Also called CLB.

A breakpoint is a condition for which a simulator must stop to
perform simulation commands.

A buffer is an element used to increase the current or drive of a weak
signal and, consequently, increase the fanout of the signal. A storage
element.

A bus is a group of nets carrying common information. In LogiBLOX,
bus sizes are declared so that they can be expanded accordingly

Xilinx Development System

during design implementation.

CLB

The Configurable Logic Block (CLB). Constitutes the basic FPGA cell.
It includes two 16-bit function generators (F or G), one 8-bit function
generator (H), two registers (flip-flops or latches), and
reprogrammable routing controls (multiplexers).

component

A component is an instantiation or symbol reference from a library of
logic elements that can be placed on a schematic.

condition

If there is more than one transition leaving a state in a state machine,
you must associate a condition with each transition. A condition is a
Boolean expression.

constraint

Constraints are specifications for the implementation process. There
are several categories of constraints: routing, timing, area, mapping,
and placement constraints.

Using attributes, you can force the placement of logic (macros) in
CLBs, the location of CLBs on the chip, and the maximum delay
between flip-flops. CLBs are arranged in columns and rows on the
FPGA device. The goal is to place logic in columns on the device to
attain the best possible placement from the standpoint of both
performance and space.

constraints editor

A GUI tool that you can use to enter design constraints. In Foundation
4, there are two constraint editors. The Express Constraints Editor is
integrated with the synthesis tools for pre-implementation
optimization. It available only in the Foundation Express product
configuration. The Xilinx Constraints Editor is integrated with the
Design Implementation tools and available in all product
configurations.

constraints file

A constraints file specifies constraints (location and path delay)

Foundation Series 4 User Guide Glossary-3

Foundation Series 4 User Guide

information in a textual form. An alternate method is to place
constraints on a schematic.

CORE Generator

A software tool for generating and delivering parameterizable cores
optimized for FPGAs. Like LogiBLOX modules, cores are high-level
modules. The library includes cores as complex as DSP filters and
multipliers, and as simple as delay elements. You can use these cores
as building blocks in order to complete your designs more quickly.

CPLD

Complex Programmable Logic Device (CPLD) is an erasable
programmable logic device that can be programmed with a schematic
or abehavioral design. CPLDs constitute a type of complex PLD based
on EPROM or EEPROM technology. They are characterized by an
architecture offering high speed, predictable timing, and simple
software.

The basic CPLD cell is called a macrocell, which is the CPLD
implementation of a CLB. It is composed of AND gate arrays and is
surrounded by the interconnect area.

CPLDs consume more power than FPGA devices, are based on a
different architecture, and are primarily used to support behavioral
designs and to implement complex counters, complex state machines,
arithmetic operations, wide inputs, and PAL crunchers.

CPLD fitter
The CPLD Fitter implements designs for the XC9500 devices.

design entry tools

The Foundation design entry tools consist of the Schematic Editor,
HDL Editor, and State Editor. The tools can be accessed via the Design
Entry button in the Project Manager’s Flow tab. The optional Base
Express and Foundation Express packages contain VHDL and Verilog
design entry tools.

design implementation tools

A set of tools that comprise the mainstream programs used for Xilinx
design implementation. Many of these tools are invoked
automatically by the Flow Engine.Those tools include NGDBuild,

Glossary-4 Xilinx Development System

MAP, PAR, NGDAnNnNo, TRCE, all the NGD2 translator tools, BitGen,
and PROMGen. The GUI-based tools are Design Manager/Flow
Engine, Constraint Editor, FPGA Editor, Floorplanner, PROM File
Formatter, and iMPACT.

Design Manager

Xilinx Alliance graphical user interface for managing and
implementing designs. In Foundation, a standalone version of the
Alliance Design Manager can be accessed from St art — Progr ans
- XilinxFoundation Series 4 - Accessories - Design

Manager.

effort level

Effort level refers to how hard the Xilinx Design System (XDS) tries to

place and route a design. The effort level settings are.

« High, which provides the highest quality placement but requires
the longest execution time. Use high effort on designs that do not
route or do not meet your performance requirements.

* Medium, which is the default effort level. It provides the best
trade-off between execution time and high quality placement for
most designs.

e Low, which provides the fastest execution time and adequate
placement results for prototyping of simple, easy-to-route
designs. Low effort is useful if you are exploring a large design
space and only need estimates of final performance.

elaborate

The HDL process that combines the individual parts of a into a single
design and then synthesizes the design.

Express Compiler
Engine used to compile VHDL and Verilog code for the Base Express

and Foundation Express products.
Express Constraints Editor

GUI available in the synthesis phase of Foundation Express
containing spreadsheets used to define specific optimization
requirements. See also Express Time Tracker. The Express Time

Foundation Series 4 User Guide Glossary-5

Foundation Series 4 User Guide

Tracker is available at the end of the synthesis phase of Foundation
Express. It contains spreadsheets detailing optimization results.

Express Time Tracker

GUI available at the end of the synthesis phase of Foundation Express.
It contains spreadsheets detailing optimization results.

Finite State Machine Editor

Design Entry tool to create and edit state machine descriptions.

fitter

The fitter is the software that maps a PLD logic description into the
target CPLD.

floorplanning

Floorplanning is the process of choosing the best grouping and
connectivity of logic in a design.

It is also the process of manually placing blocks of logic in an FPGA
where the goal is to increase density, routability, or performance.

FPGA

Field Programmable Gate Array (FPGA), is a class of integrated
circuits pioneered by Xilinx in which the logic function is defined by
the customer using Xilinx development system software after the IC
has been manufactured and delivered to the end user. Gate arrays are
another type of IC whose logic is defined during the manufacturing
process. Xilinx supplies RAM-based FPGA devices.

FPGA applications include fast counters, fast pipelined designs,
register intensive designs, and battery powered multi-level logic.

FPGA Editor

The FPGA Editor is a graphical application for displaying and
configuring FPGASs. You can use the FPGA Editor to place and route
critical components before running the automatic place and route
tools on your designs.

FSM

Finite State Machine.

Glossary-6 Xilinx Development System

functional simulation

A process to test the logic in a design before implementation to
determine if it works properly. Uses unit delays because timing
information is not available before implementation.

guided design

Guided design is the use of a previously implemented version of a file
for design mapping, placement, and routing. Guided design allows
logic to be modified or added to a design while preserving the layout
and performance that have been previously achieved.

guided mapping

HDL

HDL Editor

HDL Flow

An existing NCD file is used to “guide” the current MAP run. The
guide file may be used at any stage of implementation: unplaced or
placed, unrouted or routed. In Foundation Series 4, guided mapping
is supported through the Project Manager.

Hardware Description Language. A language that describes circuits in
textual code. The two most widely accepted HDLs are VHDL and
Verilog.

Design entry tool to produce/edit HDL files. The HDL Editor also
provides a syntax checker, language templates, and access to the
synthesis tools.

An HDL Flow project can contain VHDL, Verilog, or schematic top-
level designs. It can contain underlying schematic, HDL (VHDL or
Verilog), or State Machine designs. The entire design is always
exported in HDL terms and synthesized. Top level schematic designs
in an HDL Flow are exported as schematic netlists, optimized by the
synthesis tool, and then exported for Implementation. On the Project
Manager Flow tab, a Synthesis button is included between the Design
Entry and Implementation buttons for this project type.

Foundation Series 4 User Guide Glossary-7

Foundation Series 4 User Guide

hierarchical designs

A hierarchical design is a design composed of multiple sheets at
different levels of your schematic or of multiple HDL files with a top-
level modules calling other modules.

Hierarchy Browser

The left-hand portion of the Foundation Project Manager that displays
the current design project. The browser also displays two tabs, Files
and Versions.

implementation

For FPGAs, implementation is the mapping, placement and routing of
a design. For CPLDs, implementation is the fitting of a design.

Implementation Constraints Editor
See Xilinx Constraints Editor.

instantiation

Incorporating a macro or module into a top-level design. The
instantiated module can be a LogiBLOX module, VHDL module,
Verilog module, schematic module, state machine, or netlist.

Language Assistant

The Language Assistant in the HDL Editor provides templates to aid
you in common VHDL and Verilog constructs, common logic
functions, and architecture-specific features.

Library Manager

The Library Manager is the tool used to perform a variety of
operations on the design entry tools libraries and their contents. These
libraries contain the primitives and macros that you use to build your
design.

locking

Lock placement applies a constraint to all placed components in your
design. This option specifies that placed components cannot be
unplaced, moved, or deleted.

Glossary-8 Xilinx Development System

LogiBLOX

logic

A Xilinx design tool for creating high-level modules such as counters,
shift registers, RAM, and multiplexers.The modules are customizable
and pre-optimized for Xilinx FPGA and CPLD architectural features.
All Xilinx devices with the exception of Virtex support LogiBLOX.

Logic is one of the three major classes of ICs in most digital electronic
systems — microprocessors, memory, and logic. Logic is used for data
manipulation and control functions that require higher speed than a
microprocessor can provide.

Logic Simulator

macro

MAP

mapping

The Logic Simulator, a real-time interactive design tool, can be used
for both functional and timing simulation of designs. The Logic
Simulator creates an electronic breadboard of your design directly
from your design’s netlist. The Logic Simulator can be accessed by
clicking the Functional Simulation icon on the Simulation button or
the Timing Simulation icon on the Verification button in the Project
Manager.

A macro is a component made of nets and primitives (flip-flops or
latches) that implements high-level functions, such as adders,
subtractors, and dividers. Soft macros and RPMs are types of macros.
A macro can be unplaced, partially placed, or fully placed, and it can
also be unrouted, partially routed, or fully routed. See also “physical
macro.”

The MAP program maps a logical design to a Xilinx FPGA. The input
to a mapping program is an NGD file. The MAP program is initiated
within the Flow Engine during Implementation.

Mapping is the process of assigning a design’s logic elements to the
specific physical elements that actually implement logic functions in a
device.

Foundation Series 4 User Guide Glossary-9

Foundation Series 4 User Guide

MRP file

NCD file

net

netlist

NGA file

NGDANNoO

Glossary-10

An MRP (mapping report) file is an output of the MAP run. It is an
ASCII file containing information about the MAP run. The
information in this file contains DRC warnings and messages, mapper
warnings and messages, design information, schematic attributes,
removed logic, expanded logic, signal cross references, symbol cross
references, physical design errors and warnings, and a design
summary.

An NCD (netlist circuit description) file is the output design file from
the MAP program, LCA2NCD, PAR, or EPIC. It is a flat physical
design database correlated to the physical side of the NGD in order to
provide coupling back to the user’s original design. The NCD file is an
input file to MAP, PAR, TRCE, BitGen, and NGDAnno.

A net is a logical connection between two or more symbol instance
pins. After routing, the abstract concept of a net is transformed to a
physical connection called a wire.

A net is an electrical connection between components or nets. It can
also be a connection from a single component. It is the same as a wire
or a signal.

A netlist is a text description of the circuit connectivity. It is basically
a list of connectors, a list of instances, and, for each instance, a list of
the signals connected to the instance terminals. In addition, the netlist
contains attribute information.

An NGA (native generic annotated) file is an output from the
NGDAnNNo run. An NGA file is subsequently input to the appropriate
NGD2 translation program.

The NGDAnNno program distributes delays, setup and hold time, and
pulse widths found in the physical NCD design file back to the logical
NGD file. NGDAnno merges mapping information from the NGM

Xilinx Development System

NGDBuild

NGD file

NGM file

file, and timing information from the NCD file and puts all this data
in the NGA file.

The NGDBuild program performs all the steps necessary to read a
netlist file in XNF or EDIF format and create an NGD file describing
the logical design. The NGDBuild program executes as the Translate
step within the Flow Engine.

An NGD (native generic database) file is an output from the
NGDBuild run. An NGD file contains a logical description of the
design expressed both in terms of the hierarchy used when the design
was first created and in terms of lower-level Xilinx primitives to which
the hierarchy resolves.

An NGM (native generic mapping) file is an output from the MAP run
and contains mapping information for the design. The NGM file is an
input file to the NGDAnNNno program.

one-hot encoding

optimization

optimize

For state machines, in one-hot encoding, an individual state register is
dedicated to one state. Only one flip-flop is active, or hot, at any one
time.

Optimization is the process that decreases the area or increases the
speed of a design. Foundation allows you to control optimization of a
design on a module-by-module basis. This means that you have the
ability to, for instance, optimize certain modules of your design for
speed, some for area, and some for a balance of both.

The third step in the FPGA Express synthesis flow. In this stage, the
implemented design is re-synthesized with constraints the user
specifies. This is the final step before writing out the XNF file from
FPGA Express.

Foundation Series 4 User Guide Glossary-11

Foundation Series 4 User Guide

PAR (Place and Route)

path delay

PCF file

PDF file

PAR is a program that takes an NCD file, places and routes the design,
and outputs an NCD file. The NCD file produced by PAR can be used
as a guide file for reiterative placement and routing. The NCD file can
also be used by the bitstream generator, BitGen.

A path delay is the time it takes for a signal to propagate through a
path.

The PCF file is an output file of the MAP program. It is an ASCII file
containing physical constraints created by the MAP program as well
as physical constraints entered by you. You can edit the PCF file from
within the FPGA Editor. (FPGA only)

Project Description File. The PDF file contains library and other
project-specific information. Not to be confused with an Adobe
Acrobat document with the same extension.

physical Design Rule Check (DRC)

Physical Design Rule Check (DRC) is a series of tests to discover
logical and physical errors in the design. Physical DRC is applied from
the FPGA Editor, BitGen program, PAR program, and iMPACT. By
default, results of the DRC are written into the current working
directory.

physical macro

pin

Glossary-12

A physical macro is a logical function that has been created from
components of a specific device family. Physical macros are stored in
files with the extension .nmc. A physical macro is created when the
FPGA Editor is in macro mode. See also “macro.”

A pin can be a symbol pin or a package pin. A package pin is a
physical connector on an integrated circuit package that carries
signals into and out of an integrated circuit. A symbol pin, also

Xilinx Development System

referred to as an instance pin, is the connection point of an instance to

anet.

pinwires
Pinwires are wires which are directly tied to the pin of a site (CLB,
OB, etc.)

project

Foundation organizes related files into a distinct logical unit called a
project, which contains a variety of file types. A project is created as
either a Schematic Flow or an HDL Flow project.

Project Flowchart

The right-hand portion of the Foundation Project Manager that
provides access to the synthesis and implementation tools, and the
current design project. The project flowchart can display up to four
tabs: Flow, Contents, Reports, and Synthesis (Schematic Flow only).

Project Manager

The Project Manager, the overall Foundation project management
tool, contains the Foundation Series tools used in the design process.

PROM File Formatter

The PROM File Formatter is the program used to format one or more
bitstreams into an MC86, TEKHEX, EXORmacs or HEX PROM file
format.

route

The process of assigning logical nets to physical wire segments in the
FPGA that interconnect logic cells.

route-through

A route that can pass through an occupied or an unoccupied CLB site
is called a route-through. You can manually do a route-through in the
FPGA Editor. Route-throughs provide you with routing resources
that would otherwise be unavailable.

Foundation Series 4 User Guide Glossary-13

Foundation Series 4 User Guide

Schematic Editor

The schematic design tool accessed by selecting the Schematic Editor
icon on the Design Entry button in the Project Manager.

Schematic Flow

A project that uses the Schematic Flow can have top-level schematic,
ABEL, or state machine files. It can contain underlying schematic,
HDL (VHDL, Verilog, or ABEL), state machine designs, or netlists.

state diagram

A state diagram is a pictorial description of the outputs and required
inputs for each state transition as well as the sequencing between
states. Each circle in a state diagram contains the name of a state.
Arrows to and from the circles show the transitions between states
and the input conditions that cause state transitions. These conditions
are written next to each arrow.

state machine

A state machine is a set of combinatorial and sequential logic elements
arranged to operate in a predefined sequence in response to specified
inputs. The hardware implementation of a state machine design is a
set of storage registers (flip-flops) and combinatorial logic, or gates.
The storage registers store the current state, and the logic network
performs the operations to determine the next state.

state machine designs

State machine designs typically start with the translation of a concept
into a “paper design,” usually in the form of a state diagram or a
bubble diagram. The paper design is converted to a state table and,
finally, into the source code itself.

states

The values stored in the memory elements of a device (flip-flops,
RAMs, CLB outputs, and I0Bs) that represent the state of that device
for a particular readback (time). To each state, there corresponds a
specific set of logical values.

Glossary-14 Xilinx Development System

static timing analysis

A static timing analysis is a point-to-point delay analysis of a design
network.

static timing analyzer

status bar

A static timing analyzer is a tool that analyzes the timing of the design
on the basis of its paths.

The status bar is an area located at the bottom of a tool window that
provides information about the commands that you are about to select
or that are being processed.

stimulus information

Stimulus information is the information defined at the schematic level
and representing a list of nodes and vectors to be simulated in
functional and timing simulation.

Symbol Editor

Synopsys

synthesis

Time Tracker

With the Symbol Editor, you can edit features of component symbols
such as pin locations, pin names, pin humbers, pin shape, and pin
descriptions for component symbols.

Synopsys supports HDL, a behavioral language for entering
equations. HDL also enables you to include LogiBLOX schematic
components in a design.

The HDL design process in which each design module is elaborated
and the design hierarchy is created and linked to form a unique design
implementation. Synthesis starts from a high level of logic abstraction
(typically Verilog or VHDL) and automatically creates a lower level of
logic abstraction using a library containing primitives

See Express Time Tracker.

Foundation Series 4 User Guide Glossary-15

Foundation Series 4 User Guide

transitions

TRCE

TWR file

UCF file

verification

Verilog

VHDL

Glossary-16

Transitions define the movement from one state to another in a state
machine. They are drawn as arrows between state bubbles.

TRCE (Timing Reporter and Circuit Evaluator) “trace” is a program
that will automatically perform a static timing analysis on a design
using the specified (either timing constraints. The input to TRCE is an
NCD file and, optionally, a PCF file. The output from TRCE is an
ASCII timing report which indicates how well the timing constraints
for your design have been met.

A TWR (Timing Wizard Report) file is an output from the TRCE
program. A TWR file contains a logical description of the design
expressed both in terms of the hierarchy used when the design was
first created and in terms of lower-level Xilinx primitives to which the
hierarchy resolves.

A UCF (user constraints file) contains user-specified logical
constraints.

Verification is the process of reading back the configuration data of a
device and comparing it to the original design to ensure that all of the
design was correctly received by the device.

Verilog is a commonly used Hardware Description Language (HDL)
that can be used to model a digital system at many levels of
abstraction ranging from the algorithmic level to the gate level. It is
IEEE standard 1364-1995. Foundation Express and Base Express
products include design entry tools to create Verilog designs.
Recognizable as a file with a .v extension.

VHDL is an acronym for VHSIC Hardware Description Language

Xilinx Development System

(VHSIC is an acronym for Very High-Speed Integrated Circuits). An
industry-standard (IEEE 1076.1) HDL. Recognizable as a file with a
.vhd or .vhdl extension.

VHDL can be used to model a digital system at many levels of
abstraction ranging form the algorithmic level to the gate level. It is
IEEE standard 1076-1987. Foundation Express and Base Express
products include design entry tools to create VHDL designs.

Wire
A wire is either a net or a signal.

Xilinx Constraints Editor

A GUI tool that you can use to enter design constraints. The Xilinx
Constraints Editor is integrated with the Design Implementation tools
and available in all product configurations.

Foundation Series 4 User Guide Glossary-17

Foundation Series 4 User Guide

Glossary-18 Xilinx Development System

	Software Manuals Online
	Foundation Series 4 User Guide
	About This Manual
	Conventions
	Typographical
	Online Document

	Introduction
	Architecture Support
	Platform Support
	Tutorials
	Online Help
	Books
	Printed Books
	Online Books
	Document Viewer
	Foundation-Specific Online Books
	Design Entry Online Reference Books
	Synthesis and Simulation Reference Book
	Implementation-Related Online Books
	Device Programming Online Books

	Project Toolset
	Creating Foundation 4 Projects
	Schematic Flow Projects
	HDL Flow Projects (Express Only)

	Project Manager
	Hierarchy Browser
	Files Tab
	Versions Tab

	Project Flowchart Area
	Flow Tab - Project Flowchart
	Alternatives to Flowchart Buttons
	Contents Tab
	Reports Tab
	Synthesis Tab (Schematic Flow Only)

	Messages Area
	Console Tab
	HDL Errors Tab (HDL Flow Only)
	HDL Warnings Tab (HDL Flow Only)
	HDL Messages Tab (HDL Flow Only)

	Accessing LogiBLOX
	Accessing the CORE Generator System
	Documenting Your Design
	Project Archiving
	Design Entry Tools
	Schematic Editor
	State Editor
	HDL Editor
	Symbol Editor

	Synthesis Tools
	Synthesis Button (HDL Flow)
	Synthesis Tab (Schematic Flow)

	Simulation/Verification
	Logic Simulator
	Timing Analyzer
	Specialized Simulation Controls
	HDL Behavioral Simulation Capabilities

	Constraints Editors
	Express Constraints Editor (HDL Flow)
	Xilinx Constraints Editor

	Implementation Tools
	Control Files
	User Constraints File
	Implementation Guide File
	Floorplanner File

	Implementation Tools Menu
	Constraints Editor
	Flow Engine
	Floorplanner
	FPGA Editor
	CPLD ChipViewer
	Automatic Pin Locking

	Device Programming
	iMPACT
	PROM File Formatter

	Utilities
	Schematic Symbol Library Manager
	Command History
	Project Notes
	Implementation Template Manager
	ABEL to VHDL/Verilog Converter
	Altera HDL to VHDL/Verilog Converter

	Design Methodologies - Schematic Flow
	Schematic Flow Processing Overview
	Top-Level Designs
	All-Schematic Designs
	Creating the Schematic and Generating a Netlist
	Performing Functional Simulation
	Implementing the Design
	Creating a New Revision
	Creating a New Version

	Editing Implementation Constraints
	Verifying the Design
	Performing a Static Timing Analysis (Optional)
	Performing a Timing Simulation

	Programming the Device

	Schematic Designs with Instantiated HDL-Based Macros
	Creating HDL Macros
	Creating the Schematic and Generating a Netlist

	Schematic Designs With Instantiated LogiBLOX Modules
	Creating LogiBLOX Modules
	Importing Existing LogiBLOX Modules

	Schematic Designs With Instantiated CORE Generator Cores
	Creating Core Symbols

	Schematic Designs With Finite State Machine (FSM) Macros
	Creating FSM Macros
	Creating the Schematic and Generating a Netlist

	Finite State Machine (FSM) Designs
	Creating a State Editor Design
	Defining States
	Defining Transitions, Conditions, and Actions
	Adding a Top-Level ABEL Design to the Project

	Schematic Design Entry
	Managing Schematic Designs
	Design Structure
	Single Sheet Schematic
	Multi-sheet Flat Schematic
	Hierarchical Schematic
	Adding New Sheets to the Project

	Adding Existing Sheets to the Project
	Opening Non-project Sheets
	Removing Sheets from the Project
	Renumbering Symbol References
	Copying a Section of a Schematic to Another Sheet
	Troubleshooting Project Contents

	Hierarchical Schematic Designs
	Creating a Schematic Macro (Bottom-Up Methodology)
	Recognizing Hierarchical Macros
	Navigating the Project Hierarchy
	Modifying Existing Macros
	Difference between a Macro and a Schematic
	Hierarchy Symbol Changes
	Using a Top-down Methodology
	Hierarchical Design Example

	Manually Exporting a Netlist
	Creating a Schematic from a Netlist
	Miscellaneous Tips for Using the Schematic Editor Tool
	Color-coded Symbols
	Using the Hierarchy Connector
	Using Input and Output Buffers
	Schematic Tabs
	Simulate Current Macro

	Design Methodologies - HDL Flow
	HDL Flow Processing Overview
	Top-level Designs
	All-HDL Designs
	Creating the Design
	Analyzing Design File Syntax
	Performing HDL Behavioral Simulation (Optional)
	Synthesizing the Design
	Express Constraints Editor
	Express Time Tracker
	Performing Functional Simulation
	Implementing the Design
	Editing Implementation Constraints
	Verifying the Design
	Performing a Static Timing Analysis
	Performing a Timing Simulation

	Programming the Device

	HDL Designs with State Machines
	Creating a State Machine Macro

	HDL Designs with Instantiated Xilinx Unified Library Components
	HDL Designs with Black Box Instantiation
	LogiBLOX Modules in a VHDL or Verilog Design
	VHDL Instantiation
	Verilog Instantiation

	CORE Generator COREs in a VHDL or Verilog Design
	VHDL Instantiation
	Verilog Instantiation

	Schematic Designs in the HDL Flow
	Adding a Schematic Library
	Creating HDL Macros
	Creating the Schematic and Generating a Netlist
	Selecting a Netlist Format
	Completing the design

	HDL Design Entry and Synthesis
	HDL File Selection
	Adding the File to the Project
	Removing Files from the Project
	Getting Help with the Language

	Synthesis of HDL Modules
	Schematic Flow Methodology
	HDL Flow Methodology

	Managing Large Designs
	Design Optimization
	Setting Constraints Prior to Synthesis

	Design Partitioning Guidelines
	User Libraries for HDL Flow Projects
	Creating a New Library
	Declaring and Using User Libraries

	Using Constraints in an HDL Design
	Express Constraints Editor
	Xilinx Logical Constraints
	Reading Instance Names from an XNF file for UCF Constraints
	Instance Names for LogiBLOX RAM/ROM
	Calculating Primitives for a LogiBLOX RAM/ROM Module
	Naming Primitives in LogiBLOX RAM/ROM Modules
	Referencing LogiBLOX Entities

	State Machine Designs
	State Machine Example
	State Diagram
	State Machine Implementation
	Encoding Techniques
	Symbolic and Encoded State Machines
	Compromises in State Machine Encoding
	Binary Encoding
	One-Hot Encoding
	One-Hot Encoding in Xilinx FPGA Architecture
	Limitations

	Encoding for CPLDs

	LogiBLOX
	Setting Up LogiBLOX on a PC
	Starting LogiBLOX
	Creating LogiBLOX Modules
	LogiBLOX Modules
	Using LogiBLOX for Schematic Designs
	Using LogiBLOX for HDL Designs
	Module-inferring Tools
	Module-instantiation Tools

	Documentation

	CORE Generator System
	Setting Up the CORE Generator System on a PC
	Accessing the CORE Generator System
	Instantiating CORE Generator Modules
	Documentation

	Functional Simulation
	Basic Functional Simulation Process
	Invoking the Simulator
	Attaching Probes (Schematic Editor Only)
	Adding Signals
	Creating Buses
	Applying Stimulus
	Stimulator Selection Dialog
	Waveform Test Vectors
	Script File Macro

	Running Simulation

	HDL Top-down Methodology
	HDL with Underlying Netlists
	Simulation Script Editor
	Waveform Editing Functions

	Design Implementation
	Versions and Revisions
	Schematic Flow Projects
	Creating Versions
	Creating Revisions

	HDL Flow Projects
	Creating Versions
	Updating Versions
	Creating Revisions
	Creating a new Revision
	Creating the First Version and Revision in One Step

	Revision Control

	Implementing a Design
	Setting Control Files
	User Constraints File
	Guide Files
	Guiding FPGA Designs
	Guiding CPLD Designs
	Setting Guide Files

	Floorplan Files

	Selecting Options
	Place & Route Effort Level
	Program Options
	Implementation Templates
	Simulation Templates
	Configuration Templates (FPGAs)
	Template Manager

	Flow Engine
	Translate
	MAP (FPGAs)
	Place and Route (FPGAs)
	CPLD Fitter
	Configure (FPGAs)
	Bitstream (CPLDs)

	Implementation Reports
	Translation Report
	Map Report (FPGAs)
	Place and Route Report (FPGAs)
	Pad Report (FPGAs)
	Fitting Report (CPLDs)
	Post Layout Timing Report

	Additional Implementation Tools
	Constraints Editor
	Flow Engine Controls
	Controlling Flow Engine Steps
	Running Re-Entrant Routing on FPGAs
	Configuring the Flow

	Floorplanner
	FPGA Editor
	CPLD ChipViewer
	Locking Device Pins

	Verification and Programming
	Overview
	Timing Simulation
	Generating a Timing-annotated Netlist
	Basic Timing Simulation Process
	Timing Analyzer
	Post Implementation Static Timing Analysis
	Summary Timing Reports
	Detailed Timing Analysis
	In-Circuit Verification
	Downloading a Design
	iMPACT
	PROM File Formatter

	Instantiated Components
	Library/Architecture Definitions
	XC4000E Library
	XC4000X Library
	XC9000 Library
	Spartan Library
	SpartanXL Library
	Virtex Library

	STARTUP Component
	STARTBUF Component
	BSCAN Component
	READBACK Component
	RAM and ROM
	Global Buffers
	Fast Output Primitives (XC4000X only)
	IOB Components
	Clock Delay Components

	Glossary

